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Abstract
Within a noncooperative transboundary pollution dynamic game, we study the strategic
impact of a region’s investment in the adoption of a cleaner technology, as embodied by
a reduction in the emission per output ratio, on the equilibrium outcomes and regions’ wel-
fare. The ratio of emissions to output is endogenous and is a decreasing function of the
level of the stock of cleaner technology. Each region can invest in a cleaner technology in
addition to its control of emissions. Cleaner technology is assumed to be public knowledge
so that both regions benefit from the investment in this technology of an individual region.
Pollution damage is modeled as a strictly convex function in the pollution stock. We analyze
the feedback equilibrium of the noncooperative game between two regions played over an
infinite horizon. The formulation of the transboundary pollution dynamic game does not fit
any special structure of analytically tractable games such as linear-state or linear-quadratic
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differential games. We use numerical methods to characterize the feedback equilibrium of
the noncooperative game. The equilibrium trajectories of the stocks of pollution and cleaner
technology as well the regions’ welfare are compared under different scenarios.

Keywords Transboundary pollution · Differential games · Clean technologies · Numerical
methods

1 Introduction

Nowadays, there is no doubt that transboundary pollution has become an issue of growing
concern. The creation of different policies to face transboundary pollution problems, such
as global warming, is on the political agenda. A dynamic game is a natural framework
of analysis for transboundary pollution problems, in particular, for the problem of global
warming. The problem extends over time and has externalities in the sense that emissions
of all countries accumulate in a common stock of pollution and this stock damages all
agents’ welfare. The formulation of transboundary pollution problems as dynamic games
allows us to understand the dynamic trade-offs and agents’ behavior. Dynamic game models
of transboundary pollution were originally proposed by Ploeg and Zeeuw [28], Long [26],
and Dockner and Long [17]. These seminal papers have been extended in different ways.
Jørgensen et al. [23], Long [27] and De Zeeuw [15] surveyed this literature.

The present paper contributes to this literature and studies the strategic impact of invest-
ment in cleaner technologies on equilibrium outcomes in a transboundary pollution dynamic
game. The literature has already emphasized that a key factor in environmental pollution
control is the adoption of more environmentally friendly technologies by firms. Different
approaches have been used to model technical change in the environmental economics liter-
ature (Baker et al. [1]). In this paper we consider that the principal source of the incentive to
invest in cleaner technology relies on the fact that emissions per unit of output are assumed
to diminish as larger stocks of cleaner technology are accumulated. The decision to invest
in cleaner technology is inherently dynamic and there are costs of adjusting the stock of
clean technology. As far as we know, these assumptions were proposed for the first time in
a dynamic game model of transboundary pollution in Ploeg and Zeeuw [28]. These authors
assume that the cleaner technology is public knowledge and compare the outcome under pol-
icy coordination and the noncooperative precommitment outcome, when the players make
their emission and investment decisions following the open-loop Nash equilibrium. In this
paper we follow the approach presented in Ploeg and Zeeuw [28] but focus on subgame-
perfect Nash equilibria. This equilibrium concept is considered more realistic because the
strategies supporting this equilibrium do not require precommitment to a course of action
over time. The disadvantage of this more realistic equilibrium concept is that the subgame-
perfect Nash equilibrium is difficult to compute. Jørgensen and Zaccour [24, 25] and recently
De Frutos and Martín-Herrán [13] assume the same type of cleaner technology, but in these
cases it is region specific. Special functional forms for the instantaneous benefit, the emission-
output ratio and the pollution damage are proposed such that the differential game belongs to
the class of linear-state differential games. Although for this class of differential games the
subgame-perfect Nash equilibria can be easily characterized analytically, unfortunately these
equilibria are constant over time. On the contrary with our model specification, subgame-
perfect Nash equilibria are not constant over time, but depend on the state variables.
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As far as we know, there is no previous study in the literature that has introduced the
possibility of investment in clean technology in order to reduce the emission-output ratio,
nor analyzed how the availability of new technology could affect the subgame-perfect Nash
equilibrium emission and investment strategies dependent on the stocks of pollution and
clean technology. Our paper intends to fill this gap.

Our model allows us to consider the interplay of two dynamic processes, the process of
environmental degradation or improvement, and the process of developing clean technology.
The pollutant emissions accumulate into a global stock of pollutants, and hence, stock exter-
nalities between the players occur.Because the investment in cleaner technologies accumulate
into a global or public knowledge stock of clean technology, stock externalities between the
players also occur. All countries benefit from the investment in clean technology of any
individual country. Therefore, our model presents both environmental and innovation exter-
nalities. The pollution externality is negative, while the cleaner technology externality is
positive. One of the distinguishing characteristics of this paper is the presence of two exter-
nalities, positive and negative, respectively, in a problem that takes into account the strategic
interactions between the players who make their decisions on emission and investment with-
out any prior commitment.

Specifically, in this paper we study the strategic behavior of two countries facing trans-
boundary pollution under a noncooperative infinite-horizon differential game framework.
Emissions accumulate in a common pollution stock and cause environmental damage in both
regions. In our model, the countries invest in cleaner technologies to reduce the emission-
output ratio and hence aim to reduce the environmental damage caused by the pollution
stock. Both countries invest in a common cleaner technology that is assumed to be public
knowledge. Making the emission-output ratio endogenous greatly increases the difficulty
for the characterization of subgame-perfect Nash equilibria of the differential game, since it
loses its linear-quadratic formulation.

The class of linear-quadratic differential games belongs to the analytically tractable game
structures that allow the analytical characterization of subgame-perfect Nash equilibria.Most
of the transboundary pollution dynamic games proposed in the literature belong to this class.
For example, the recent works by Bertinelli et al. [6], Benchekroun and Martín-Herrán [4],
Bréchet et al. [7], Chang et al. [8] and Vardar and Zaccour [29] all formulate linear-quadratic
differential games to analyze different questions related to transboundary pollution. Richer
formulations of these transboundary pollution dynamic games lead to nonlinear-quadratic
differential games. For these games numerical algorithms and methods are needed to char-
acterize the feedback Nash equilibria. Recently, this numerical approach has been developed
in De Frutos and Martín-Herrán [11, 12, 14], Jaakkola and Ploeg [22], El Ouardighi et al.
[18], De Frutos et al. [9] for the analysis of environmental policies in transboundary pollution
differential games.

In this paper we apply a numerical algorithm that allows us to numerically characterize
subgame-perfect Nash equilibria of the transboundary dynamic game. This game presents
two state variables: the stocks of pollution and cleaner technology, and two control vari-
ables for each player: the emission rate and the investment in cleaner technology. The
numerical algorithm we use to carry out this analysis essentially consists on solving an
approximate discrete-time dynamic game. The dynamic programming equations associated
with the discrete-time dynamic game are solved using a tensorial Chebyshev method.

Themain objective of this work is to analyze the strategic impact of a country’s investment
in a cleaner technology on the equilibrium levels of the countries’ emissions, on the level of
pollution and on the countries’ welfare. As a first step, more specifically, we want to check
whether or not our richer formulation still preserves themain conclusions inBenchekroun and



816 Dynamic Games and Applications (2022) 12:813–843

Ray Chaudhuri [5]: that the adoption of cleaner technology could lead to an increase in coun-
tries’ emissions, thereby increasing the pollution stockwhichmight be detrimental towelfare.
In Benchekroun andRayChaudhuri [5] (hereafter B&RC for short), the emission-output ratio
is taken as given and the focus is on the analysis of exogenous changes in technology. In our
paper, we extend the model in the direction of making the emission-output ratio endogenous.
Specifically, the ratio of emissions per output can be reduced through investment in cleaner
technology. Because clean technology is assumed to be public knowledge, both countries
benefit from the investment in clean technology of an individual country, and therefore, an
additional (positive) externality is introduced in the model. The endogenization of the clean
technology dynamics and the feedback information structure allow the players to determine
their optimal emission and investment strategies depending on the current states of the stocks
of pollution and cleaner technology.

In a second step, with the aim of complementing the previous study and deepening our
understanding of the strategic impact of investing in cleaner technology, we analyze the tran-
sition paths of the decision and state variables toward their steady-state values. At this point
we are completely departing from B&RC, which does not study the transitional dynamics.
However, because in this last paper the transboundary pollution dynamic game is formulated
as a linear-quadratic differential game with a single state variable and Nash equilibria in
linear strategies are characterized, the transition paths are monotonous increasing or decreas-
ing time-paths converging toward the steady-state values, depending on whether the initial
pollution stock is lower or greater than its long-run value. In our richer formulation, the
endogenization of the cleaner technology adds a second state variable to the problem, and
therefore, the path dynamics may lose their monotonous character. We aim to check whether
the equilibrium control and state trajectories monotonously approach their long-run values
or if some of the variables may overshoot or undershoot the long-run equilibrium before
converging. This analysis of the transitional dynamics toward the long-run equilibrium will
allow us to show, among other things, whether the cleaner technology is used to mitigate an
immediate environmental problem or to prevent a future problem, depending on the initial
state of the environment. This question has been previously analyzed by Fischer et al. [20]
but in the context of a unique decision-maker, and hence, without the strategic interactions
among the two countries as studied in this paper. Fischer et al. [20] considered two dynamic
processes describing the time evolution of the pollution stock and of the cleaner technology
and show (under the assumption that the initial stock of the cleaner technology equals zero)
that the optimal transition paths toward the steady state are quite different depending on
whether the initial environment is clean or dirty. These paths can involve overshooting or
undershooting of the pollution or cleaner technology stock targets before converging.

Our numerical results allow us to qualify the main conclusions in B&RC. The adoption
of a cleaner technology, in our framework represented by a greater value of the stock of
clean technology, results in an increase in emissions when the stock of pollution is above a
certain level. Furthermore, our results show that this last threshold is defined by the long-run
pollution level and that this behavior only emerges when the stock of cleaner technology is
below a bound. Concerning the effect of the adoption of a cleaner technology on welfare,
B&RC shows that when the damage caused by the stock of pollution is large enough, adopting
a cleaner technology reduces welfare throughout the transition phase from an initial pollution
stock to the steady state. Our results show that this somehow counterintuitive result in our
context applies for large values of the initial pollution stock and for upper bounded values of
the initial cleaner technology stock. Thus, endogenizing the dynamics of clean technology and
therefore introducing a new externality in the model (in this case positive) lead to results that
qualify those obtained in B&RC.More specifically, in general terms our results show that the
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main conclusions obtained when technological improvements are formulated as exogenous
changes in technology, as considered in B&RC, are only valid in our framework, where the
dynamics of the clean technology stock has been endogenized, when this stock is below a
threshold. We show that these conclusions are reverted when this threshold is exceeded.

Concerning the equilibrium trajectories, our numerical results show that depending on the
initial value of the stocks of pollution and cleaner technology, the equilibrium trajectories can
monotonously approach their long-run values, or theymaypresent non-monotonous behavior.
In some cases, they can overshoot/undershoot the long-run equilibrium before converging.
Our numerical simulations show that the non-monotonous behavior can emerge for any of
the state and control variables.

Some of the results derived in this paper appear in the single decision-maker version of
the model, while others are exclusive to the formulation of dynamic games. Specifically, in
the case of a single decision-maker, it may be that greater cleaner technology implies higher
emissions. However, cleaner technology is always associated with greater welfare, which
does not always happen when the strategic interaction between the players is considered.
The non-monotonicities of the optimal paths also appear in the optimal control formulation
of the model, although they are more frequent and more pronounced when each player
behaves strategically with respect to his competitor.

The paper is organized as follows: in Sect. 2, we present and recall the transboundary
pollution dynamic game formulated for the first time in the seminal paper by Ploeg andZeeuw
[28]. Section 3 presents the characterization of the approximate Markov-perfect equilibrium
strategies and value functions. Section 4 analyzes the equilibrium trajectories. Section 5
summarizes the results of the robustness analysis. Section 6 presents our concluding remarks.

2 TheModel

Consider two countries. Each country produces a single consumption good. We denote by
Yi (t) the production of good i at time t ≥ 0. The instantaneous net social benefits of produc-
tion of country i are given by

Bi (Yi (t)) = Yi (t)

(
A − Yi (t)

2

)
, (1)

with A being a positive parameter. This functional form has been proposed in seminal works
in this area (Ploeg and Zeeuw [28] and Dockner and Long [17]) and used in many other
studies since then, as surveyed in Jørgensen et al. [23]. The specification implies decreasing
marginal benefits of production in an interior solution.

The production of Yi (t) generates pollution emissions. Ei (t) denotes the emission rate
of country i at time t . Most of the dynamic game models used to analyze transboundary
pollution problems considered a constant emission-output ratio [23]. One main feature of
our model is that we consider the case where the ratio of emissions to output is endogenous
and a decreasing function of the level of the stock of cleaner technology. This assumption
was first introduced by Ploeg and Zeeuw [28] and later on by Jørgensen and Zaccour [24,
25] and De Frutos and Martín-Herrán [13]. By investing in cleaner technology, each country
can reduce its emission-output ratio. Ploeg and Zeeuw [28] considered that the stock of
cleaner technology is public knowledge, while [24, 25] and De Frutos and Martín-Herrán
[13] assumed that the stock of cleaner technology is country specific. We follow [28] and
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assume that the emission rate Ei (t) resulting from production of country i is given by

Ei (t) = α(K (t))Yi (t), (2)

where K (t) denotes the stock of cleaner technology at time t . Function α is a decreasing and
strictly convex function of the stock of cleaner technology to account for decreasing returns
on the investment activities in cleaner technology.

Because the cleaner technology is assumed to be public knowledge, both countries benefit
from the investment in cleaner technology of the other country. Therefore, the dynamics of
the stock of cleaner technology is described by the following differential equation:

K̇ (t) = I1(t) + I2(t) − μK (t), K (0) = K0, (3)

where Ii (t) denotes the investment in clean technology in country i , μ is the (constant) rate
of depreciation of the common stock of clean technology and K0 is the initial stock of this
technology. Adjustment costs associated with investment in clean technology are represented
by:

C(Ii (t)) = c

2
I 2i (t), c > 0, (4)

to account for increasing investment marginal costs.
The stock of pollution p accumulates according to:

ṗ(t) = E1(t) + E2(t) − δ p(t), p(0) = p0, (5)

where δ > 0 describes the natural rate of decay of the pollutant and p0 is the initial value
of the stock of pollution. The accumulated stock of pollution causes damage in each country
given by:

D(p(t)) = ϕ

2
p2(t), (6)

where ϕ > 0 is a damage parameter.
The objective of country i is to choose the rate of pollutant emissions as well as the level

of investment in cleaner technology to maximize its own payoff. Alternatively, country i
could choose the production strategy Yi (t) rather than the rate of pollution emissions. Due
to (2), the two options are mathematically equivalent. Treating the emission rate, Ei , as a
control variable, as we have assumed, implies that the instantaneous objective function of
each player is not linear-quadratic, while the dynamics of the two state variables are described
by linear ordinary differential equations. In the alternative case, in which the production Yi (t)
is treated as a control variable of player i , the objective function would be quadratic, but the
dynamics of the pollution stock would be described by a nonlinear differential equation. The
standard assumption in dynamic pollution games considers that the instantaneous payoff of
each country is given by a benefit from consumption measured by Bi (Yi (t)) in (1), minus the
cost of the investment in cleaner technology C(Ii (t)) in (4), and the damage caused by the
stock of pollution D(p(t)) in (6). Taking into account the relationship between production,
emissions and clean technology described in (2), the objective of player i is to maximize the
following discounted payoff:

Ji (Ei , Ii , p0, K0)=
∫ ∞

0

(
B̃i (Ei , K )− c

2
I 2i (t)− ϕ

2
p2(t)

)
e−ρt , (7)

with

B̃i (Ei , K ) = α−1(K (t))Ei (t)

(
A− α−1(K (t))Ei (t)

2

)
,
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subject to the dynamics of the stocks of cleaner technology and pollution given in (3) and (5),
respectively. Parameter ρ is the constant time discount rate. Therefore, the differential game
considers two players (countries) and each player has pollution emissions and investment in
cleaner technology as control variables. The differential game presents two state variables
(the stocks of cleaner technology and pollution) and is played noncooperatively over an
infinite time horizon.

As already commented in the introduction, one of the differentiated characteristics of
our study is that our analysis is focused on stationary Markov-perfect Nash equilibria. On
the one hand, contrary to the strategies that support open-loop Nash equilibria as assumed
in Ploeg and Zeeuw [28], the strategies supporting Markov-perfect Nash equilibria do not
require precommitment to a course of action over time and have been assumed to be a good
description of realistic behavior (see, for example, Basar and Olsder [3], Haurie et al. [21]
and Jorgensen et al. [23]). On the other hand, with the functional forms for instantaneous
benefits and emission-output ratio considered in (1) and (2), the dynamic game does not
belong to the class of state separable or linear-state differential games, as was the case in
Jørgensen and Zaccour [24]. For this class of games, it is well known (see, Dockner et al.
[16]) that the feedback Nash equilibria can be analytically characterized although they are
degenerated in the sense that they are constant over time. In our specification, the two countries
play a noncooperative game using a feedback information structure with non-degenerated
feedback Nash equilibria such that the emission and investment decisions of a country are
state-dependent: that is, they depend at any point in time on the state of the stocks of pollution
and cleaner technology at that moment.

3 Feedback Equilibrium Strategies

The formulation of the dynamic game in the preceding section does not allow for the analyt-
ical characterization of the emission and investment feedback Nash equilibrium strategies.
Therefore, we resort to numerical algorithms to carry out this analysis.

3.1 Discrete-Time Approximation

We look for an approximation to a Nash equilibrium of the problem using a numerical
method inspired by a procedure well-known in the case of optimal control problems (see
Bardi and Capuzzo-Dolcetta [2], Ch. 6). This method has been previously used in De Frutos
and Martín-Herrán [11, 14] to analyze differential game problems. Essentially the procedure
we use in this paper consists in substituting the continuous-time game by a discrete-time
approximation and solving this last game by dynamic programming in a discrete grid in state
space using a tensorial Chebyshev approximation. In De Frutos and Martín-Herrán [11, 14],
a finite element method was employed.

Let h > 0 be the time step and let tn = nh, n = 0, 1, . . . , be the discrete times. We define
the discrete discount factor as βh = 1 − ρh. We consider the discrete-time infinite horizon
game defined as follows. The objective function for player i = 1, 2, is:

Jh,i (Ei , I i , p0, K0) = h
∞∑
n=0

βn
h G(Ei,n, Ii,n, pn, Kn) (8)
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where

G(E, I , p, K ) = α−1(K )E

(
A − α−1(K )E

2

)
− c

2
I 2 − ϕ

2
p2,

and Ei and I i denote sequences of nonnegative real numbers Ei = {Ei,n}∞n=0, I i = {Ii,n}∞n=0.
The dynamics are:

pn+1 = pn + h(E1,n + E2,n − δ pn),

Kn+1 = Kn + h(I1,n + I2,n − μKn),
(9)

where p0 and K0 are the initial conditions in (5) and (3), respectively.
We look for Nash equilibria of the discrete-time game. The discrete-time value functions

Vh,i (p, K ), i = 1, 2, are computed as solutions of the system of Bellman equations:

Vh,i (p, K ) = max
Ei≥0,Ii≥0

(
hG(Ei , Ii , p, K ) + βhVh,i ( p̃, K̃ )

)
, i = 1, 2, (10)

with

p̃ = p + h(E1 + E2 − δ p),

K̃ = K + h(I1 + I2 − μK ).
(11)

This type of discretization is well known for optimal control problems (see Bardi and
Capuzzo-Dolcetta [2], Ch. 6 and Falcone [19]). It has been used in De Frutos and Martín-
Herrán [11, 14] in the context of differential games. It can be shown (see De Frutos et al. [9])
that a feedback Nash equilibrium for the discrete-time game (8)–(9) is an ε-Nash equilibrium
of the differential game defined by Eqs. (3), (5), and (7), where ε can bemade arbitrarily small
taking h small enough. This guarantees that a feedback Nash equilibrium of the discrete-time
game, although suboptimal, is a good approximation to the feedback Nash equilibrium of
the differential game for h small enough.

3.2 The Numerical Method

System (10) is approximated using collocationwith a basis of tensorial products ofChebyshev
polynomials. We choose pL > 0, and KL > 0 big enough, and for given positive integers N
and M , we define the polynomials:

φn(p) = Tn
(
2

p

pL
− 1

)
, p ∈ [0, pL ], n = 0, . . . , N ,

ψn(K ) = Tn
(
2
K

KL
− 1

)
, K ∈ [0, KL ], n = 0, . . . , M,

where Tn is the Chebyshev polynomial in [−1, 1] of degree n. Let us denote by PN ,M the
space of bivariate polynomials defined as the tensorial product of the space of polynomials of
degree N in the p-variable and degreeM in the K -variable. A generic polynomial Q ∈ PN ,M

can be written as:

Q(p, K ) =
N ,M∑

n=0,m=0

qn,mφn(p)ψm(K ),

where qn,m are the Chebyshev coefficients.
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Let us consider:

pn = pL
xn + 1

2
, n = 0, . . . , N ,

Km = KL
ym + 1

2
, m = 0, . . . , M,

the Chebyshev nodes in [0, pL ] and [0, Kl ]. Here, xn = − cos(nπ/N ), n = 0, . . . , N , and
ym = − cos(mπ/M), m = 0, . . . , M .

We compute an approximation V N ,M
h,i ∈ PN ,M solving the collocation equations for every

(pn, Km), n = 0, . . . , N , m = 0, . . . , M ,

V N ,M
h,i (pn, Km)= max

Ei≥0,Ii≥0

(
hG(Ei , Ii , pn, Km)+βhV

N ,M
h,i ( p̃n, K̃m)

)
, i = 1, 2, (12)

where p̃n and K̃m are defined as in (11).
Collocation Eq. (12) are solved by a fixed-point iteration (policy iteration). Let En,m,[0]

i

and I n,m,[0]
i , n = 0, . . . , N , m = 0, . . . , M , i = 1, 2, be arbitrary initial approximations.

For r > 0, we compute the r + 1 iteration by the following rule: for i = 1, 2, j = 3− i , and
n = 0, . . . , N , m = 0, . . . , M , solve the collocation equations:

V N ,M,[r+1]
h,i (pn, Km)=

(
hG(En,m,[r ]

i , I n,m,[r ]
i , pn, Km)+βhV

N ,M,[r+1]
h,i ( p̃n, K̃m)

)
,

where

p̃n = pn + h(En,m,[r ]
i + En,m,[r ]

j − δ pn),

K̃m = Km + h(I n,m,[r ]
i + I n,m,[r ]

j − μKm).

Then compute

(
En,m,[r+1]
i , I n,m,[r+1]

i

) = argmax
Ei≥0,Ii≥0

(
hG(Ei , Ii , pn, Km)+βhV

N ,M,[r+1]
h,i ( p̂n, K̂m)

)
,

where

p̂n = pn + h(Ei + En,m,[r ]
j − δ pn),

K̂m = Km + h(Ii + I n,m,[r ]
j − μKm).

The iteration is stoppedwhen the difference between two consecutive iterants is small enough.
Once the iteration is stopped we define the approximate value function V N ,M

h,i as the polyno-

mial in PN ,M defined by the values V N ,M,[r+1]
h,i (pn, Km), n = 0, . . . , N ,m = 0, . . . , M . The

approximate discrete-time optimal policies are the polynomials E∗
h,i ∈ PN ,M , I ∗

h,i ∈ PN ,M

defined by E∗
h,i (pn, Km) = En,m,[r+1]

i , I ∗
h,i (pn, Km) = I n,m,[r+1]

i , for all n = 0, . . . , N ,
m = 0, . . . , M and i = 1, 2. The approximate discrete-time optimal trajectories are com-
puted by:

p∗
ν+1 = p∗

ν + h
(
E∗
h,1(p

∗
ν , K

∗
ν ) + E∗

h,2(p
∗
ν , K

∗
ν ) − δ p∗

ν

)
,

K ∗
ν+1 = K ∗

ν + h
(
I ∗
h,1(p

∗
ν , K

∗
ν ) + I ∗

h,2(p
∗
ν , K

∗
ν ) − μK ∗

ν

)
.

The optimal trajectories are initialized with p∗
0 = p0 and K ∗

0 = K0 with p0 and K0 being
the initial conditions in (5) and (3), respectively.
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3.3 Approximate Feedback Equilibrium Strategies

As already commented in the introduction one of the main objectives of this paper is to ana-
lyze the strategic impact of a country’s investment in a cleaner technology on the equilibrium
levels of the countries’ emissions, on pollution levels, and on the countries’ welfare. In this
subsection we focus on the effect that the adoption of a cleaner technology has on emissions.
We are interested in exploring whether the counterintuitive effects of implementing a cleaner
technology on pollution emissions presented in Benchekroun and Ray Chaudhuri [5] remain
valid in our more general setting. More specifically, we want to explore whether the effects
in B&RC come as a result of their modeling of exogenous changes in technology, which
decreases the emission to output ratio, where the new technology is readily available and
free. In our framework the ratio of emissions to output is endogenous and a decreasing func-
tion of the level of the stock of cleaner technology. In our model, the technology is no longer
a parameter, but it is optimally determined by the players through their costly investments in
cleaner technology.We are interested in showing if and how the endogenous determination of
the technology does impact the effect of the adoption of a cleaner technology on emissions.
Clean technology is assumed to be public knowledge, and consequently, endogenizing the
clean technology dynamics introduces a positive externality into the problem, as it could
certainly enhance the effects of the strategic interactions between the players. Because we
characterize feedback equilibrium strategies, once the cleaner technology dynamics is endo-
genized, the players determine their optimal emission and investment strategies depending
on the current states of the stocks of pollution and cleaner technology.

Hence, in this section, we study the strategic responses of each country to a change in
the level of (initial) pollution and the (initial) level of the stock of cleaner technology. For
the numerical examples, we particularize function α(K ) in (2) as follows: α(K ) = e−γ K

with γ being a positive parameter. This choice is made for analytical convenience, as it is
a function that presents the needed features and is smooth enough to avoid problems in the
numerical simulations. This functional form has already been used in previous papers that
have assumed that the ratio of emissions to output can be reduced through the investment
in a stock of cleaner technology, which instead of being public knowledge, is country or
region specific (Jørgensen and Zaccour [24, 25] and De Frutos and Martín-Herrán [13].) As
a benchmark case we retain the following parameter values: A = 0.5, ϕ = 1, c = 1, δ =
0.5, μ = 0.5, ρ = 0.1, γ = 1, h = 10−3, Np = NK = 50. Figures 1, 2, 3, 4 and the results
collected in Conjectures 1–5 have been derived using these values. However, we have carried
out a thorough robustness analysis of the results in Conjectures 1–5 with respect to changes
in all the model parameters. We have run new numerical simulations, changing in each case
the value of each of the parameters of the model. A short summary of this robustness analysis
is presented in Sect. 5. All the simulations lead to qualitatively similar results, meaning that
optimal strategies and welfare satisfy the properties described at the different points in each
conjecture.

For the benchmark case, the steady-state values of the state variables, stocks of pollu-
tion and cleaner technology, and the control variables, emission and investment in cleaner
technology, are1 pss = 0.3595, Kss = 0.1592, Ess = 0.0898, I ss = 0.0397. The value
function at these values is V (pss, Kss) = −0.1834.

Conjecture 1 presents the results derived from the analysis of the level curves of the
optimal output along the optimal emission and investment in cleaner technology feedback

1 Due to the symmetric structure of the differential game, we focus on symmetric equilibrium strategies, and
hence, we remove the superscript associated with each player.
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Fig. 1 Optimal output function

strategies. Figure 1 presents the optimal output Y (p, K ) as a function of the state variables,
p and K .

Conjecture 1 1. Keeping constant the stock of cleaner technology at level K f ,

(a) Output Y (p, K f ) is a non-increasing function of the pollution stock.
(b) Output Y (p, K f ) is strictly positive for any level of the pollution stock below a

threshold, p̃Y . This threshold increases with K f and is always larger than the steady-
state pollution stock, pss .

2. Keeping constant the stock of pollution at level p f ,

(a) Output Y (p, K f ) is a non-decreasing function of the stock of cleaner technology.
(b) For low or intermediate fixed values of the stock of pollution, p f , output Y (p f , K )

is strictly positive for any level of the stock of cleaner technology. As p f increases,
output Y (p f , K ) is zero for any value of the stock of cleaner technology below a
threshold, K̃Y , and positive above K̃Y . The threshold K̃Y increases with p f and is
always greater than the steady-state of the stock of cleaner technology, K ss .

Result 1.a. in Conjecture 1 reproduces those results obtained in the standard transboundary
pollution dynamic game formulation where investment in clean technology is not an option.
The countries restrict their emissions as the stock of pollution increases. Keeping constant
the stock of clean technology, from (6) a rise in the level of accumulated pollution leads
to an increase in the marginal damage cost. Hence, the country cuts its emissions to the
level that equalizes the marginal benefit. In the standard framework without investment in
clean technology, there is a direct relationship between output and emissions. Therefore, the
countries reduce their output as the stock of pollution increases. The lower the fixed level of
the stock of clean technology, K f , themore pronounced the decrease in output Y (p, K f ) as p
increases. Result 1.b. in Conjecture 1 shows that when the pollution stock is large enough, the
marginal emissions are too costly for the countries, and consequently they cease production
and hence emissions. The greater the fixed level of the stock of clean technology, K f , the
wider the range of values of the pollution stock for which production is worthy.
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Fig. 2 Emission feedback strategy

Result 2.a. in Conjecture 1 establishes that for any fixed level of the stock of pollution,
p f , the cleaner the technology (the greater the stock of clean technology), the greater the
countries’ output, Y (p f , K ). From (1), benefits increase with output provided that output
remains below the upper bound A. Because the stock of pollution is assumed to be fixed at
level p f , the larger the stock of clean technology, the larger output Y (p f , K ), and, hence,
the greater the benefits. These greater benefits more than compensate for the cost of the
investment in clean technology needed to boost its stock. The decision makers want to take
advantage of lower investment costs when the stock of cleaner technology is lower. Result
2.b. in Conjecture 1 shows that production Y (p f , K ) is worthy regardless of the stock of
cleaner technology if the environment is clean (low values of p f ). However, for a dirtier
environment (greater values of p f ), production Y (p f , K ) is only worthy if the stock of clean
technology is large enough to compensate for the damage coming from the greater pollution.

Figures 2 and 3 present the optimal emission and investment in cleaner technology feed-
back strategies as functions of the state variables, the stocks of pollution, p, and cleaner
technology, K . Both figures show that for large values of the pollution stock, if the stock of
clean technology is small, the optimal emission rate is null, and so is the investment in clean
technology. When either the pollution stock is smaller or the stock of clean technology is
greater, first the country starts to emit at a positive rate, and this positive emission is followed
by a positive investment in clean technology.

The strategic interaction between the two players implies that while emissions are zero,
and therefore, so is production, neither of the two players has an interest in investing in cleaner
technology, which in the short-term means an additional cost which due to its global nature,
could benefit the other player. On the contrary, in the case of a single decision-maker (the
optimal control problem) for the same values of the parameters, we have checked that even
when emissions are zero, investment in cleaner technology never is (see Fig. 4). The optimal
investment policy of the decision maker always prescribes positive investments. Once the
possibility of free-riding on the investment in clean technology by the other country has
been eliminated, the only decision maker has less short-term behavior and is more interested
in raising its stock of cleaner technology, being able to take advantage of it in the future.
Furthermore, the strategic effect in the case of two decision-makers which reduces incentives
to invest in cleaner technology can be reinforced by the fact that, under some circumstances,
increasing the stock of cleaner technology might induce the other player to produce and emit
more, which leads to larger pollution and greater environmental damage.
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Fig. 3 Investment feedback strategy

Conjecture 2 presents the patterns that can be deduced from the analysis of the level curves
of the emission feedback strategy plotted in Fig. 2.

Conjecture 2 1. For any fixed value of the stock of cleaner technology, K f ,

(a) The emission rate E(p, K f ) is a non-increasing function of the pollution stock.
(b) The lower the fixed value of the stock of cleaner technology, K f , the more pronounced

the decrease in emissions as the pollution stock grows. The emissions are almost
unchanged for large values of K f .

(c) The emission rate E(p, K f ) is strictly positive for any level of the pollution stock
below a threshold, p̃E = p̃Y . This threshold increases with K f and is always larger
than the steady-state pollution stock, pss .

2. For any fixed value of the pollution stock, p f ,

(a) If p f is lower than the steady-state pollution stock, p f < pss , then the emission rate,
E(p f , K ), is a non-decreasing function of the stock of cleaner technology.

(b) If p f is greater than the steady-state pollution stock, p f > pss , then there exists a
threshold K̂ such that if K < K̂ , then the emission rate E(p f , K ) is a non-decreasing
function of the stock of cleaner technology, while if K > K̂ , then E(p f , K ) is non-
increasing. The greater p f , the larger this threshold.

(c) For low fixed values of the stock of pollution, p f , the optimal emission rate E(p f , K )

is strictly positive for any level of the stock of clean technology. As p f increases, the
optimal emission rate E(p f , K ) is zero for any value of the stock of clean technology
below a threshold, K̃E = K̃Y , and positive above K̃E . This threshold increases with
p f .

As expected, the results in Points 1.a, 1.b, and 1.c in Conjecture 2 reproduce those obtained
in the standard transboundary pollution dynamic game formulationwhere investment in clean
technology is not an option.Keeping constant the stock of cleaner technology, from (2) there is
a direct relationship between emissions and output. As already commented, output Y (p, K f )

decreaseswith the stock of pollution, as do the emissions, E(p, K f ). Point 1.c inConjecture 2
reproduces in terms of emissions the result in Point 1.b in Conjecture 1.

Although one could expect that the result in Point 2.a in Conjecture 2 holds for any value
of the pollution stock, Point 2.b in Conjecture 2 shows that this is not always the case. The
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adoption of a cleaner technology, in our framework represented by a greater value of the stock
of clean technology, K , does not compulsorily lead to a decrease in emissions. Point 2.a in
Conjecture 2 qualifies the following result in B&RC: The adoption of a cleaner technology
results in a decrease in emissions in the short run only when the stock of pollution is below a
certain level.As inB&RCwe show that the use of a cleaner technology results in an increase in
emissions when the stock of pollution is greater than a threshold. Furthermore, our numerical
results show that this threshold in our case corresponds to the long-run pollution level and
that this behavior only appears when the stock of cleaner technology is below a bound. The
endogenization of the dynamics of the clean technology stock allows us to show that the
conclusion derived under the assumption that technological improvements is exogenously
given and for free is only applicable in the endogenous and costly case through investment
in cleaner technology if the stock of cleaner technology is below a threshold. The conclusion
is reverted when this threshold is exceeded. The intuition behind this result is as follows.
Keeping constant the stock of pollution, the cleaner technology reduces the marginal damage
from pollution and the country has an incentive to emit more. When the fixed pollution
stock level is large and the stock of cleaner technology is below a threshold, the damage
caused by this stock is large enough, and any increase in the stock of clean technology
greatly reduces the marginal pollution damage, and as a consequence, the country increases
its emissions until marginal benefit andmarginal damage are equal.When the stock of cleaner
technology surpasses a threshold, there is a saturation effect, in the sense that the regions are
not interested in increasing production above the maximum A, and hence, they are interested
in reducing emissions with the aim of reducing the damage coming from the pollution stock,
and simultaneously maintaining the production below its maximum value A.

Point 2.c in Conjecture 2 is a direct consequence of the relationship between output and
emissions as described by expression (2) and Point 2.b in Conjecture 1.

Conjecture 3 presents the patterns that can be deduced from the analysis of the level curves
of the investment feedback strategy plotted in Fig. 3.

Conjecture 3 1. For any fixed value of the stock of cleaner technology, K f , there exists a
threshold K̆ (which is greater than the steady-state value of the stock of cleaner technology,
K ss) such that

(a) If K f is lower than K̆ , then the investment in clean technology, I (p, K f ) is a non-
increasing function of the the pollution stock.

(b) If K f is greater than K̆ , then the optimal investment in cleaner technology I (p, K f )

presents an inverted U-shaped behavior with respect to the pollution stock, i.e., any
increase in the pollution stock leads first to an increase in the optimal investment
in clean technology, I (p, K f ), followed by a decrease after the stock of pollution
exceeds a threshold.

(c) The investment is strictly positive for any level of the pollution stock below a threshold,
p̃I . This threshold increases with K f and is always larger than the steady-state
pollution stock. Furthermore, p̃I < p̃E .

2. For any fixed value of the pollution stock, p f ,

(a) There exists a threshold K̄ such that the investment in cleaner technology, I (p f , K )

is a non-decreasing function of the stock of cleaner technology if K < K̄ , while it is
non-increasing if K > K̄ . The greater p f , the larger the threshold K̄ .

(b) For low fixed values of the stock of pollution, p f , the optimal investment, I (p f , K ) is
strictly positive for any level of the stock of cleaner technology. As p f increases, the
optimal investment, I (p f , K ), is zero for any value of the stock of clean technology
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below a threshold, K̃ I , and positive above K̃ I . This threshold increases with p f .
Furthermore, K̃ I > K̃E .

The forward-looking and strategic behavior of the players is behind the result in Point
1.a in Conjecture 3. If the constant level of the cleaner technology, K f , is small, for large
values of the pollution stock, output will become zero, and hence, the investment in cleaner
technology becomes worthless. Therefore, for low values of K f , the investment in cleaner
technology is a non-increasing function of the pollution stock. For larger values of K f , the
result in Point 1.b applies. From Points 1.a and 1.b in Conjecture 2, we know that for a given
constant level of the stock of cleaner technology, K f , the optimal emission rate decreases as
the pollution stock increases, and that this decrease in emissions is stronger the lower K f .
From the expression of the benefit function in (1) and the function showing the relationship
between emission and production (2), one can easily conclude that for a fixed K f , the lower
the emission rate, the lower the benefits from production. The larger the value of K f , the
less pronounced the decrease of production benefits. In this case, on the one hand, if the
pollution stock is below an upper bound, the corresponding optimal emission rate is quite
large and decreases as the pollution stock increases. The decrease in the emission rate can be
compensated by increasing the level of cleaner technology and hence boosting the investment
in cleaner technology. On the other hand, if the pollution stock surpasses the upper bound, the
corresponding optimal emission rate is smaller, and the decrease in the production benefits
cannot be compensated by an increase in the stock of cleaner technology, and hence, the
optimal strategy prescribes a decrease in the investment of this technology to slow down the
cost of this investment.

Point 1.c in Conjecture 3 is a direct consequence of Point 1.c in Conjecture 2.
Keeping constant the pollution stock at level p f , Point 2.a in Conjecture 3 establishes that

the investment strategy increases with the stock of cleaner technology in order to boost this
stock if the latter is below a given level. However, once this level is surpassed, the investment
strategy prescribes a decrease in investment as the stock of clean technology increases.
Investments are greater at low levels of the stock of clean technology due to the increasing
investmentmarginal costs.Again Point 2.b inConjecture 3 is a direct consequence of Point 2.c
in Conjecture 2. The optimal strategy prescribes zero investment while the optimal emission
rate is null. Once the optimal emission rate is strictly positive, the countries are interested in
investing in cleaner technology.

It is worthy to recall that as previously said in the dynamic game formulation, a zero
optimal emission rate is linked to a null optimal investment, because the strategic interaction
between the two players and the public nature of the cleaner technology imply that no player
is interested in investing in this technology while emissions and production are zero. Both
players want to avoid free-riding behavior from their competitor, in such a way that the com-
petitor benefits from the investment in clean technology of the other country. Furthermore,
the incentive to reduce the investment in cleaner technology comes from the fact that, under
some circumstances, a greater cleaner technology might induce the other player to increase
its production and emissions, leading to a larger pollution, which is costly in terms of the
pollution damage. However, when the problem is formulated with a single decision-maker
for the same values of the parameters, optimal investment is always positive when optimal
emissions are zero, as illustrated in Fig. 4. Once the strategic behavior between the players
is removed, and the possibility to free-ride on the investment in cleaner technology by the
other country has been eliminated, the forward-looking decision maker is more interested in
investing in cleaner technology to increase this stock and to take advantage of it in the future.
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Fig. 4 Optimal control problem. Optimal emission (left) and investment (right) policies

Fig. 5 Optimal value function

3.4 Approximate Value Functions

In this subsection we analyze the effect that the adoption of a cleaner technology has on
welfare. We are interested in exploring whether the counterintuitive effects of implementing
a cleaner technology on welfare presented in B&RC (2014) applies in our richer setup, where
the dynamics of the cleaner technology stock is endogenized.

Figure 5 presents the optimal value function. Clearly and as expected, keeping constant
the stock of cleaner technology, K f , the value function V (p, K f ) decreases as the stock
of pollution augments. On the contrary, analyzing the level curves of the value function
(see Table 1) one can easily deduce that, keeping constant the stock of pollution, p f , a
cleaner technology does not unequivocally result in greater welfare; that is, the value function
V (p f , K ) does not compulsorily increase with the stock of clean technology. Specifically:

Conjecture 4 For any fixed value of the stock of pollution, p f , there exists a threshold p̆ such
that

1. If p f < p̆, then any increase in stock of cleaner technology leads to an increase in the
optimal value function, V (p f , K ).

2. If p f > p̆, then there exists a threshold K such that if K < K any increase in the stock
of cleaner technology leads to a decrease in the optimal value function, V (p f , K ), while
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V (p f , K ) increases with the stock of cleaner technology if K > K. The greater p f , the
larger this threshold K .

The somehow counterintuitive result in Point 2 in Conjecture 4 shows that a decrease in
the emissions per output ratio (in our framework represented by a greater value of the stock
of cleaner technology) does not compulsorily lead to an increase in welfare. This result is
in the same vein as the following obtained in B&RC: When the damage from pollution is
large enough, adopting a cleaner technology (a decrease in the exogenously given emissions
per output ratio) reduces welfare throughout the transition phase from an initial pollution
stock to the steady state. In our case, we show that the use of a cleaner technology results in
a reduction of welfare when the initial stock of pollution is sufficiently large and the initial
cleaner technology is below an upper bound. The endogenization of the dynamics of the
clean technology stock allows us to derive our conclusion in terms of the initial size of the
stock of cleaner technology. The intuition behind this result is as follows.

From the optimality conditions, we know that this result can only occur when the invest-
ment in cleaner technology is zero. As shown in Figs. 2 and 3 when the initial conditions
reflect a situation with small values of the stock of cleaner technology and large values of
the pollution stock, both the emission and investment equilibrium strategies are null, and
therefore, both pollution and clean technology stocks decrease over time. Consider a fixed
initial value of the pollution stock, p f , and two different initial values of the stock of cleaner
technology, K 0

1 , K 0
2 , with K 0

1 < K 0
2 . On the one hand, as long as the equilibrium invest-

ment strategy remains null, it is true that K1(t) < K2(t), where Ki (t) = K 0
i e

−μt denotes
the time evolution of the stock of cleaner technology starting from the initial condition K 0

i .
On the other hand, as long as the equilibrium emission strategy remains null, it is true that
p1(t) = p2(t) = p f e−δt , denoting the time evolution of the pollution stock starting from
the initial condition p f . Consequently, the optimal path starting at (p f , K 0

2 ) leaves the zero-
emission and zero-investment region in a shorter period of time than the optimal path starting
at (p f , K 0

1 ) due to the curvature of the boundary of these regions. Hence, there is a period
of time in which both optimal investment paths are zero, although the optimal path of the
emission rate associated with the greatest initial cleaner technology becomes positive, while
the optimal path of the emission rate associated with the lowest initial cleaner technology
remains zero. The effect on welfare of a greater (positive) emission rate is twofold. First,
the benefits from production increases, but second, a greater emission rate leads to a greater
pollution stock and pushes up the damage from pollution. Therefore, both effects affect wel-
fare in opposite directions: the first positively and the second negatively. In all the numerical
simulations carried out, we found that the negative effect outweighs the positive effect. The
environmental damage caused by greater emissions are not compensated by greater benefits
associated with greater production. One possible explanation for this result could be that as
the initial stock of technology was low and throughout this initial period of time this stock is
depreciating at rate μ, because no investment in clean technology is made, when the regions
start emitting their emission rates are very large, in order to increase their production, and as
a by-product they generate a large pollution stock. This short-term behavior is reproduced
in the long-term, when the accumulation of welfare along the optimal paths in their transi-
tion toward their steady-state values, which do not depend on the initial value of the cleaner
technology stock, is considered.

The result of Point 2 in Conjecture 4 is motivated by the existence of strategic interaction
between the players. In the case of a single decision-maker,we have checked that this behavior
is not present, and in this last formulation, welfare always grows as the stock of cleaner
technology increases. The reason stems from the fact that, as already pointed out for the
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same values of the parameters, we have checked that the optimal investment policy in cleaner
technology in the optimal control framework is always positive, even when emissions are
zero. The unique forward-looking decision-maker, once the competitive aspect disappears
and the positive externality associated with the clean technology is removed, is interested
in investing in cleaner technology to increase the stock which will allow greater production
benefits together with less environmental damage in the future.

Table 1 presents the optimal value function (the optimal welfare) for different initial
values of both stocks, pollution and cleaner technology. Each entry in Table 1 corresponds
to V (p0, K0). Recall that the steady-state values are (pss, Kss) = (0.3595, 0.1592), and
hence, the table presents the results for initial values of the stocks as the following: much
lower, lower, around, greater, and much greater than their long-run values.

Table 1 corroborates our previous result which stated that regardless of the initial value
of the stock of cleaner technology, for any K0 fixed, the value function V (p0, K0) decreases
as the initial value of the pollution stock (p0) increases. Furthermore, the table illustrates
the result in Conjecture 4 which established that the effect of an increase of the initial stock
of cleaner technology on the value function depends on the initial value of the pollution
stock. For small or intermediate initial values of p0 (p0 = 0, 0.12, 0.38, 0.45 in Table 1) the
value function V (p0, K0) increases with the initial value of the stock of cleaner technology
(K0). However, as the value of p0 becomes larger (p0 = 0.66, 1.32, 2 in Table 1), the value
function V (p0, K0) either decreases with the initial value of the stock of cleaner technology
if K0 is lower than a threshold K or increases with the initial value of the stock of cleaner
technology if K0 is larger than K . The threshold K increases with p0.

In the rest of this section we collect some results derived from the comparison of different
pairs of initial conditions (p0, K0), where the initial value of the pollution stock and the
initial value of the clean technology are different.

Let consider two pairs of initial conditions (p(1)
0 , K (1)

0 ) and (p(2)
0 , K (2)

0 ) such that p(1)
0 <

p(2)
0 and K (1)

0 > K (2)
0 ; that is, the first pair represents a situation with a lower initial pollution

stock and a greater initial stock of clean technology. Table 1 shows that, as expected in this
situation, welfare in the first pair surpasses welfare in the second case, i.e., V (p(1)

0 , K (1)
0 ) >

V (p(2)
0 , K (2)

0 ). Each entry in Table 1 is higher than any other entry that is located to its left
(lower initial stock of cleaner technology) and in some lower row (greater initial pollution
stock). Furthermore, if the environment is initially very polluted such that p(1)

0 and p(2)
0 are

very large, and p(1)
0 < p(2)

0 , then V (p(1)
0 , K (1)

0 ) > V (p(2)
0 , K (2)

0 ) whatever the initial values
of the stock of clean technology are. In this case, for a very polluted initial environment
(p0 = 0.66, 1.32, 2), a dirtier initial situation (a greater initial value of the pollution stock)
cannot be compensated by a greater initial value of the cleaner technology stock, resulting
in lower welfare.

If the environment is not initially very polluted, and p(1)
0 < p(2)

0 , then the optimal value

functions satisfy V (p(1)
0 , K (1)

0 ) > V (p(2)
0 , K (2)

0 ) whenever the initial values of the stocks of

clean technology are small or moderate. However, if p(1)
0 < p(2)

0 and K (1)
0 < K (2)

0 with K (2)
0

being large, then V (p(1)
0 , K (1)

0 ) < V (p(2)
0 , K (2)

0 ).
From the previous results we can conclude the following

Conjecture 5 For identical or greater initial values of the stock of pollution, an initial cleaner
technology (a larger initial value of the stock of clean technology) could result in lower
welfare.



Dynamic Games and Applications (2022) 12:813–843 831

Ta
bl
e
1

W
el
fa
re

fo
r
di
ff
er
en
ti
ni
tia

lv
al
ue
s
of

th
e
st
oc
k
of

po
llu

tio
n,

p 0
,a
nd

cl
ea
n
te
ch
no

lo
gy
,
K
0

K
0

=
0

K
0

=
0.
12

K
0

=
0.
17

K
0

=
0.
22

K
0

=
0.
44

K
0

=
2

K
0

=
3

p 0
=

0
−0

.0
74

9
−0

.0
65

4
−0

.0
61

3
−0

.0
56

9
−0

.0
34

9
0.
13

42
0.
21

04

p 0
=

0.
12

−0
.1
06

4
−0

.0
98

2
−0

.0
94

7
−0

.0
91

1
−0

.0
71

7
0.
10

08
0.
18

35

p 0
=

0.
38

−0
.1
97

5
−0

.1
93

9
−0

.1
91

9
−0

.1
89

6
−0

.1
78

0
−0

.0
11

7
0.
08

31

p 0
=

0.
45

−0
.2
27

−0
.2
25

1
−0

.2
23

9
−0

.2
22

4
−0

.2
13

1
−0

.0
51

8
0.
04

57

p 0
=

0.
66

−0
.3
28

9
−0

.3
32

0
−0

.3
33

1
−0

.3
34

2
−0

.3
35

3
−0

.1
96

6
−0

.0
91

8

p 0
=

1.
32

−0
.9
07

3
−0

.9
08

9
−0

.9
09

5
−0

.9
10

0
−0

.9
13

9
−0

.8
91

2
−0

.7
75

5

p 0
=

2
−1

.9
24

5
−1

.9
25

4
−1

.9
25

8
−1

.9
26

2
−1

.9
27

8
−1

.9
77

0
−1

.8
78

9



832 Dynamic Games and Applications (2022) 12:813–843

Conjecture 5 shows a result in the same vein as that obtained in B&RC:When the damage
from pollution is large enough, a decrease in the emissions per output ratio reduces welfare.
The endogenization of the dynamics of the clean technology in our setup allows us to corrobo-
rate that cleaner technology does not compulsorily lead to greater welfare. More specifically,
as presented in Conjecture 5, we show that cleaner technology results in lower welfare when
the initial pollution stock is high; that is, when a dirty initial environment is considered or
when taking intermediate values, the stock of cleaner technology remains upper bounded.

4 Equilibrium Trajectories

Aiming to complementing the previous study of the strategic impact of investing in cleaner
technology, in this sectionwe characterize the equilibrium control and state paths to the steady
state. Because the endogenization of the cleaner technology introduces a second state variable
in the transboundary pollution dynamic game, we know that the equilibrium control and state
paths may lose their monotonous character presented in the standard linear-quadratic game
formulation with only one state variable. Here, we are interested in determining whether
the equilibrium trajectories monotonously approach their long-run values or if some of them
overshoot/undershoot these values before converging. It is interesting to knowwhich optimal
time-paths and under which circumstances present a behavior that at a first sight could be
seen as not optimal, because the paths do not follow the straightest path toward their steady-
state values, which could be considered a more expected trend. These non-monotonous
behaviors do not appear exclusively when the strategic interaction between the players is
considered, but also arise in scenarios with a single decision-maker, when models with
more than one state variable are formulated. Within an optimal control framework, with
two state variables, the pollution and cleaner technology stocks, for example, Fischer et
al. [20] show that the optimal time trajectories toward the steady state can present non-
monotonicities depending on whether the initial environment is clean or dirty. For the single
decision-maker formulation of our model we have shown that the optimal paths can be non-
monotonous and can involve overshooting or undershooting of the long-run targets before
converging. However, the comparison of the optimal time-paths for the game and optimal
control formulations allows us to conclude that the non-monotonicities are more frequent
and more pronounced when each player behaves strategically with respect to his competitor.
The positive and negative externalities present in the game formulation promote these non-
monotonous behaviors.

For the dynamic game formulation, we present two sets of figures. In the first set, in each
figure we fix an initial level of the stock of cleaner technology and plot the equilibrium paths
for different values of the initial pollution stock (p0 = 0, p0 = 0.15, p0 = 0.45, p0 = 0.66,
with the steady-state pollution stock being pSS = 0.3595). In the second set, in each figure
we fix an initial value for the pollution stock and plot the equilibrium paths for different
values of the initial level of the stock of cleaner technology (K0 = 0, K0 = 0.12, K0 =
0.22, K0 = 0.44, with the steady-state stock of technology being K SS = 0.1592). In each
figure, we have four subplots. The two subplots in the upper part of the figure collect the
equilibrium trajectories of the control variables, the emission rate (left) and the investment
in cleaner technology (right). The two subplots in the lower part of the figure present the
equilibrium trajectories of the state variables, the stock of pollution (left) and the stock of
cleaner technology (right). The complete sets of figures are collected in Appendix A. Here,



Dynamic Games and Applications (2022) 12:813–843 833

Fig. 6 Optimal paths for K0 = 0.12

we only present a selectionwith some of themost representative cases which show interesting
non-monotonous behavior.

As a benchmark case, we first assume that initially there is no stock of clean technol-
ogy, hence, K0 = 0 (Figure 1 in Appendix A) or that this initial stock is very small
relative to its steady-state level. Under this assumption all the optimal paths increase or
decrease monotonously toward their long-run values. Hence, the pollution stock increases
or decreases monotonously toward its steady-state value depending on whether the initial
value is lower or greater than the long-run value. Correspondingly, the optimal emission path
decreases/increases toward its long-run value when the pollution stock increases/decreases.
To some extent, the behavior of the pollution and emission trajectories mimic the behavior of
the trajectories in the standard transboundary pollution dynamic game where investment in
cleaner technology is not an option. The stock of cleaner technology monotonously increases
approaching its long-run level. The investment trajectory presents the same qualitative behav-
ior as the emission trajectory. For initial values of the pollution stock lower than its long-run
value, the pollution stock increases as time goes on, leading to an increase in the damage from
pollution. In this case, the greater environmental damage is compensated with a decrease in
the investment cost, and hence, the investment in cleaner technology decreases as time goes
by. For initial values of the pollution stock greater than its long-run value, just the opposite
reasoning applies, and the investment increases with time. Note that for a dirty initial envi-
ronment (p0 = 0.66), there is an initial period of time for which the investment in cleaner
technology is not worthy, because emissions (and therefore production) are almost nil.
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Figure 6 considers K0 = 0.12, which is an initial intermediate value of the stock of clean
technology which is lower than the long-run value (K SS is around 0.16). The subplots for
the control trajectories (emissions and investment) as well as the pollution stock trajectory
present qualitatively the same behavior as previously described for the case of a null or very
small initial stock of cleaner technology. The main difference appears in the equilibrium
trajectory of the stock of cleaner technology. In the previous scenario the stock of cleaner
technology monotonously increased toward its long-run value. However, in Fig. 6, with a
greater initial value of the stock of cleaner technology (K0 = 0.12), thismonotonous behavior
exclusively appears when p0 is quite close to its long-run value (p0 = 0.375, p0 = 0.45).
For p0 much lower than its steady-state value (p0 = 0, p0 = 0.12), the stock of cleaner
technology overshoots its long-run value before converging. In this case, the environmental
problem is not initially important and hence, at the beginning the emission rates are very
large, leading to a large production which allows for a large initial investment in cleaner
technology. At the beginning, this large initial investment makes it possible for the stock of
clean technology to increase rapidly and surpass its long-run value. As the pollution stock
grows over time, the emissions and investment decrease, and as a consequence, the stock of
cleaner technology decreases toward its steady-state value. When p0 is much larger than its
steady-state value (p0 = 0.66), the equilibrium trajectory of the stock of cleaner technology
is U-shaped, loosening the monotonous behavior. In this situation, the initial state of the
environment is dirty. As a consequence, both emissions and investment are initially very small
(almost null), and hence, the stock of clean technology diminishes because the investment
does not compensate for the depreciation of the technology. As the pollution stock decreases,
the emissions and investment increase, and consequently, the stock of cleaner technology
augments toward its steady-state value.

When an intermediate initial value of the stock of cleaner technology (K0 = 0.22) is
greater than the long-run value, emissions, investment, and pollution stock trajectories present
qualitatively the same behavior as in the previous scenarios (Figure 3 in Appendix A). In this
case, the equilibrium trajectory of the stock of cleaner technology again is only monotonous
when p0 is quite close to its long-run value (p0 = 0.375, p0 = 0.45), although in the present
case the stock of technology decreases with time. When p0 is much lower than its steady-
state value (p0 = 0, p0 = 0.12) the equilibrium trajectory of the stock of clean technology
presents an invertedU-shape.When p0 is much larger than its steady-state value (p0 = 0.66),
the equilibrium trajectory of the stock of clean technology undershoots its long-run value
before converging.

Moving to a very large initial value of the stock of cleaner technology (K0 = 0.44, Fig. 4
in Appendix A), the trajectories of emission, investment, and pollution stock are qualitatively
similar to the previous cases. Furthermore, the monotonous behavior of the stock of cleaner
technology is recovered, although in this case the stock decreases in its convergence to the
long-run value.

The second set of figures is described below. In each figure, we fix an initial value of
the pollution stock (p0 = 0, p0 = 0.15, p0 = 0.45, p0 = 0.66) and plot the equilibrium
paths for different values of the initial level of the stock of cleaner technology. In each of
these figures, the stock of clean technology is fixed at five different levels: K0 = 0, K0 =
0.12, K0 = 0.17, K0 = 0.22, and the long-run value is K SS = 0.1592. All these figures
show the somehow counterintuitive result that the greater the initial stock of clean technology,
the greater the pollution stock, either along the entire time trajectory or at least after a short
period of time.

Figure 7 assumes that initially there is no stock of pollution, and hence that there is a
very clean initial environment, p0 = 0. The pollution stock monotonously increases toward
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Fig. 7 Optimal paths for p0 = 0

its long-run value, and in response to the rise in the pollution stock, the emission trajectory
decreases with time. The greater the initial stock of clean technology, the lower the emission
rate for an initial time period, although this behavior reverses at a certain time. In this later
case, a larger initial stock of cleaner technology leads to greater emissions. The investment
trajectory also decreases with time, while the trajectory of the stock of cleaner technology
presents different behaviors depending on its initial value. If K0 is null, the stock of clean
technology increases monotonously toward its long-run value. For positive initial values of
K0 lower than or very similar to the steady-state value (K0 = 0.12, 0.17) the stock of clean
technology overshoots its long-run value before converging. For greater initial K0 values, the
clean technology decreases monotonously toward the steady state. For a quite clean initial
environment (p0 = 0.15, Figure 6 in Appendix A) the optimal paths present a behavior
which is qualitatively similar to those shown in Fig. 7 for p0 = 0.

Figure 8 presents the equilibrium trajectories when p0 = 0.45, which is an initial value of
the pollution stock greater than the long-run value. The subplots for the emission, investment,
and pollution stock trajectories are qualitatively opposite of those presented in the previous
cases where the initial value of the pollution stock was lower than its long-run value (p0 =
0, p0 = 0.15). The pollution stock monotonously decreases toward its long-run value for
intermediate and large initial values of the stock of clean technology, but undershoots this
long-run value for small initial values. The emission rate monotonously increases toward
its long-run value. The investment in cleaner technology monotonously increases toward its
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Fig. 8 Optimal paths for p0 = 0.45

long-run value, except when the initial value of the cleaner technology is large enough that
it decreases.

Moving to a larger initial value of the stock of pollution (p0 = 0.66, Fig. 8 in Appendix
A), the same qualitative behavior of the trajectories of emission, investment, and pollution
stock as in the previous figures is reproduced. In this case, if the initial value of the stock
of cleaner technology is very large, the optimal investment time-path overshoots its long-
run value when converging. Concerning the stock of cleaner technology the only difference
is that in this last case, the cleaner technology stock undershoots its long-run value before
converging if the initial value is moderately greater than the long-run value.

5 Robustness Analysis

This section is devoted to the study of the robustness of the results presented in Sect. 3.
We run new numerical simulations, in each case changing the value of each of the model
parameters. Considering the benchmark case defined in Sect. 3, we change each parameter
by 20% while keeping all other parameters fixed and check that the qualitative results col-
lected in Conjectures 1–5 remain unchanged. By “qualitatively similar results” we mean that
optimal strategies and welfare satisfy the properties described at the different points in each
conjecture. In Appendix B, we present the results of our exhaustive analysis. For each of
the seven parameters of the model, we plot the emission and investment feedback strategies
corresponding to three different values of the parameter at hand: the benchmark value, a 20%
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Fig. 9 The optimal output function (left-up), emission (right-up), and investment (left-down) feedback strate-
gies and the optimal value function (right-down)

increment, and a 20% decrement. Furthermore, for each of these three cases we compute
the steady-state values of the state variables (pollution and cleaner technology stocks), the
control variables (emissions and investment), and the value function evaluated at the steady
state. All the figures presented in Appendix B clearly show that the results presented in
Conjectures 1–5 are robust when each of the parameters are changed at least 20%.

In order to underline the robustness of the results on the characteristics of the optimal
strategies and the value function presented inConjectures 1–5,we analyze here a newexample
in which the values of the parameters are very different from those of the benchmark case.
The new values of the parameters are inspired by those used in Vardar and Zaccour [29]. This
last paper analyzes the strategic impact of adaptation measures to prevent the adverse effects
of accumulated pollution through a transboundary pollution dynamic game, also inspired by
the original Ploeg and Zeeuw’s model (1992). The values of the parameters that are related to
pollution and emissions, and not to investment and clean technology, are similar to those used
in Benchekroun and Ray Chaudhuri [5] in their numerical example, where they fix values
of the parameters based on empirical evidence. These new values of the parameters are as
follows: A = 1, ϕ = 0.003, c = 0.005, δ = 0.01, μ = 0.1, ρ = 0.025, γ = 0.05, h =
10−3/2, and Np = NK = 70. For these parameter values the steady-state values of the state
variables (stocks of pollution and cleaner technology) and of the control variables (emission
and investment in cleaner technology) are pSS = 10.043, K SS = 5.1348, ESS = 0.0502,
and I SS = 0.2567. The value function at these values is V (pSS, K SS) = −3.5441.

Figure 9 presents the optimal output function (left-up), emission (right-up), and investment
(left-down) feedback strategies and the optimal value function (right-down). Comparing the
plots in this figure with those in the corresponding figures for the benchmark case, it can
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Table 2 Welfare for different initial values of the stock of pollution, p0, and clean technology, K0

K0 = 0 K0 = 3 K0 = 5 K0 = 7 K0 = 10 K0 = 15 K0 = 35

p0 = 0 2.018 2.122 2.188 2.253 2.345 2.487 2.920

p0 = 3 0.8072 0.9128 0.9831 1.0528 1.1556 1.3194 1.8559

p0 = 7 −1.442 −1.3597 −1.2990 −1.2360 −1.1381 −0.9704 −0.3567

p0 = 10 −3.6034 −3.5544 -3.511 −3.463 −3.3826 −3.232 −2.6085

p0 = 15 −7.9733 −8.0572 −8.0908 −8.1099 −8.1169 −8.0628 −7.5151

p0 = 20 −13.567 −13.574 −13.577 −13.616 −13.724 −13.828 −13.624

p0 = 25 −20.9734 −20.9738 −20.9739 −20.974 −20.975 −21.030 −21.024

be easily checked that the results in Conjectures 1–5 also apply to this new example. The
confirmation that the results from the qualitative point of view are still valid in this new
example allows us to conclude the robustness and generality of the results.

We present the optimal value function (the optimal welfare) for different initial values
of both stocks, pollution, and cleaner technology in Table 2. Each entry corresponds to
V (p0, K0) and the table presents the results for the initial values of the stocks as follows:
much lower, lower, around, greater, and much greater than their long-run values. The values
in Table 2 confirm the results obtained in the benchmark case on how the value function
changes as the initial conditions of the pollution and cleaner technology stocks are modified
and collected in Conjectures 4 and 5.

For this new example, we also characterize the equilibrium control and state paths to the
steady state for different initial values of the stocks of pollution and cleaner technology. The
complete set of figures are collected in Appendix C. The comparison of the optimal paths
in this example with the optimal paths in the benchmark case for the initial values of the
stock variables (below, near, or above the corresponding steady-state value) easily shows
that these paths present similar trends, except the investment trajectory when the pollution
stock is zero; that is, when the environmental problem is not important. In this case, for
an initially complete clean environment, the cleaner technology is used to prevent a future
problem, and regardless of the initial value of the stock of clean technology, the investment
presents an inverted U-shape over time. Here, we present some optimal paths which present
non-monotonous behavior, and we estimate the magnitude of the non-monotonicities.

Figures 10 and 11 present the optimal paths for K0 = 4 and K0 = 8, that is, an initial
stock of cleaner technology lower and greater than the long-run value (K SS = 5.1340),
respectively. Both figures show the inverted U-shaped investment as time goes by when
p0 = 0, as discussed above. In this case, if we measure the over-investment with respect to
a hypothetical monotonous path as the difference of the maximum and the long-run value,
this excess when K0 = 4 (Fig. 10) represents about a 5% and a 7% when K0 = 8 (Fig. 11).
If K0 = 4, for any other initial value of the pollution stock other than zero, the investment
trajectory shows a monotonous behavior. However, this is not the case for K0 = 8, and
non-monotonicities appear for p0 = 4 and especially for p0 = 12. In the latter case, for a
very polluted initial environment (p0 = 12), the U-shape of the investment at the beginning
leads to a under-investment of 7.5% compared to what would be done if the investment grew
monotonously toward its long-term value.

Regarding the trajectory of the stock of clean technology, non-monotonous behaviors
are more pronounced when K0 = 4. In this case, for p0 = 0, 4, 8, the trajectory of the
stock of clean technology overshoots its long-run value before converging. The excess of
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Fig. 10 Optimal paths for K0 = 4

Fig. 11 Optimal paths for K0 = 8
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the accumulated stock of clean technology represents about 5% if p0 = 0, 4 and about
2.2% if p0 = 8. Furthermore, for an initial very polluted environment (p0 = 12), the initial
U-shape of the stock of technology corresponds to an initial decrease in this stock which
represents a decrease of 3.24% with respect to its steady-state value. For K0 = 8 and an
initial very polluted environment (p0 = 12), the stock of cleaner technology undershoots
its long-run value. With respect to a hypothetical monotonous path, the stock of cleaner
technology decreases by 7.5% compared to its long-run value. For greater initial values of
the stock of cleaner technology (K0 = 12), Fig. 4 in Appendix C shows that in addition to
non-monotonous behaviors for investment in technology, these behaviors also appear when
emissions show an inverted U-shape when the initial pollution stock is less than the stationary
value (p0 = 0, 4, 8). Non-monotonicities also appear for the investment, the emission, and
the stock of cleaner technology in the second set of figures collected in Appendix C (Figs. 5–
8), where in each figure we fix an initial value for the pollution stock and plot the equilibrium
paths for different values of the initial level of the stock of cleaner technology.

6 Concluding Remarks

This paper analyzes the strategic behavior of two countries facing transboundary pollution.
We have analyzed a transboundary pollution noncooperative differential game played over an
infinite horizon. Emissions accumulate in a common pollution stock and cause environmental
damage in both regions. In addition to the choice of optimal emissions as in the standard
model, in our model the countries invest in cleaner technologies to reduce the amount of
emission-output ratio, aiming to reduce the environmental damage caused by the pollution
stock. The countries invest in a common cleaner technology that is assumed to be public
knowledge. Our model allows us to consider the interplay of two dynamic processes, the
process of environmental degradation or improvement, and the process of developing cleaner
technology. There are two types of externalities between the players: The pollution externality
is negative, while the cleaner technology externality is positive.

The investment in cleaner technology as a key factor in environmental pollution control
has been already emphasized in the literature in the context of a single decision-maker as well
as in the context of multiple decision makers. However, as far as we know, the transboundary
pollution dynamic games which assumed that a country can reduce its emission-output ratio
by investing in the stock of clean technology have focused either in open-loop strategies
(the open-loop equilibrium is not strongly time-consistent or subgame-perfect), or in special
functional forms such that the differential game is linear state and the subgame-perfect
Nash equilibria are degenerated in the sense that they are constant over time. In our model
the subgame-perfect Nash equilibria are not constant over time, but depend on the state
variables. As far as we know, this is the first study to have introduced the possibility of
investment in cleaner technology in order to reduce the emission-output ratio and analyzed
how the availability of new technology could affect the subgame-perfect Nash equilibrium
emissions and investment strategies dependent on the pollution stock and the stock of clean
technology.

Our paper extends the model in Benchekroun and Ray Chaudhuri [5] (B&RC) in the
direction of making the emission-output ratio endogenous, which these authors took as given.
B&RC focused on the analysis of exogenous changes in technology and concluded that,
faced with the adoption of a cleaner technology, countries may respond by increasing their
emissions, which results in an increase in the stock of pollution that may be detrimental to
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welfare. Because in our framework cleaner technology is assumed to be public knowledge,
an additional positive externality is introduced in the model. One of the main objectives of
our paper was to check whether or not our richer formulation, where the ratio of emissions
per output can be reduced through investment in cleaner technology, still preserves the main
conclusions in B&RC. The richer formulation of the transboundary pollution dynamic game
leads to a nonlinear quadratic differential game. We have used a numerical method that
allows us to characterize the feedback subgame-perfect Nash equilibria of the transboundary
dynamic game. The endogenization of the clean technology dynamics introduces a new state
variable in the model, and hence, the game presents two state variables, the stock of pollution
and the stock of cleaner technology, and two control variables for each player, the emission
rate and the investment in cleaner technology. The numerical algorithmwe have used to carry
out the analysis essentially consists of solving the programming equations associated with
the discrete-time dynamic game by means of a tensorial Chebyshev approximation method.

Our numerical results allow us to qualify the main results in B&RC. Specifically, we have
shown that the main conclusions obtained when technological improvements are formulated
as exogenous changes in technology, as considered in B&RC, are only valid for large values
of the pollution stock and when the stock of cleaner technology is below a certain threshold.
Under these circumstances, the adoption of a cleaner technology may lead to greater emis-
sions and a greater pollution stock, which implies lower welfare. We have shown that these
conclusions are reverted when the threshold of the stock of cleaner technology is exceeded.

In order to deepen the understanding of the strategic impact of investing in cleaner tech-
nology, we have analyzed the transition paths of the decision and state variables toward their
steady-state values. Concerning the equilibrium trajectories, we have shown that depending
on the initial value of the stocks of pollution and cleaner technology, the equilibrium tra-
jectories can approach monotonously their long-run values or they can lose the monotonous
behavior and may even overshoot/undershoot the long-run equilibrium before converging.
In our numerical examples, we have shown that the non-monotonous behavior can emerge
for any of the state and control variables.

We have carried out an exhaustive robustness analysis of the results, running different
numerical simulations, augmenting/diminishing the value of each of the model parameters
by 20%with respect to the benchmark case and checking that the qualitative results collected
in Conjectures 1–5 remain unchanged. To highlight the robustness of the results on the
characteristics of the optimal strategies and the value function we have also analyzed another
example considering parameter values that are very different from those in the benchmark
case. We have checked that all the results also apply to this new example.

Future research can extend our work in at least three ways. First, our approach has relied
on complete symmetry between the two countries. An interesting issue for further research
would be to look at asymmetries in emissions. The differential game with two regions facing
a pure downstream pollution problem is undoubtedly worth studying. Second, it would be
interesting to consider that each country develops its own cleaner technology to reduce
the emission-output ratio, instead of assuming that this technology is public knowledge, as
supposed in the present work. In this case, the positive externality associated with the public
nature of the cleaner technology stock in the present formulation would be eliminated. It
would be interesting to see how the elimination of this positive externality could affect the
results obtained in the present work. Third, it would also be worthwhile to further the analysis
of the strategic impact of the investment in cleaner technology by considering a setting where
pollution diffuses over time and across space. The linear-state differential game with spatial
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pollution diffusion analyzed in De Frutos &Martín-Herrán [13] constitutes a first step in this
direction. The analysis of a richer formulation is in our research agenda.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s13235-022-00445-z.
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