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Abstract
A durable good monopolist faces a continuum of heterogeneous customers who make pur-
chase decisions by comparing present and expected price-quality offers. The monopolist
designs a sequence of price-quality menus to segment the market. We consider the Markov
perfect equilibrium (MPE) of a game where the monopolist is unable to commit to future
price-qualitymenus.We obtain the novel results that: (a) under certain conditions, themonop-
olist covers the whole market in the first period (even when a static Mussa–Rosen monopolist
would not cover the whole market), because this is a strategic means to convince customers
that lower priceswould not be offered in future periods and that (b) this can happen only under
the stage-wise Stackelberg leadership assumption (whereby consumers base their expecta-
tions on the value of the state variable at the end of the period). Conditions under whichMPE
necessarily involves sequentially trading are also derived.
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1 Introduction

In their celebrated paper on the Coase Conjecture, Gul et al. [7] pointed out that the monop-
olist’s inability to commit to a future path of prices is a fundamental feature of a dynamic
theory of monopoly. They wrote (p. 155) that “a dynamic theory of monopoly must take into
account the fact that a monopolist cannot normally sign contracts to guarantee that the future
prices of his output will be above some minimal level.” Indeed, “without repeat purchases
monopoly rents must depend substantially on a monopolist’s ability to commit to prices or
quantities offered in the future.”1 In the limiting case where the time interval that must elapse
between two different offers becomes arbitrarily small, the only possible equilibrium out-
come is that the market opens at a price equal either to the marginal cost (MC) when MC
is higher than the valuation of the lowest consumer type (the No Gap case) or to the lowest
type’s valuation when it is higher than the MC (the Gap case). In both cases, the monopolist
loses all or part of its monopoly power.2 This result is known as Coase conjecture.

It is illuminating to consider the mechanism underlying this result. A monopolist who is
unable to practice discrimination among potential customers in a given period may have a
strong incentive to practice discrimination among them over different periods. The firm is
tempted to offer sequentially lower and lower prices to customers with smaller and smaller
willingness to pay. Since consumers rationally expect such behavior, they have an incentive
to delay their purchase until the price is lower.When the interval between two different offers
becomes infinitesimal, they wait until the price equals the (constant) marginal cost (or, in the
Gap case, the lowest type’s valuation of the durable). This ends up being the only rational
outcome, given that the firm cannot credibly commit not to change the price of the good in
the future.

The present paper (i) shows generally that this result may not hold when the monopolist
is able to discriminate, within any given period, among its heterogeneous customers by
offering them, in the Mussa–Rosen [26] way, a set of (durable) goods that differ in quality
and (ii) provides some new insights into durable goods monopoly theory. To the best of our
knowledge, this questionhas only been studied in the literature ofmarket dynamics for durable
goods by Inderst [9] who considered only two types of consumers with different preferences
for quality who can be offered at least two different qualities each period. Nonetheless, it
constitutes a particularly relevant question when we consider the recent advances in digital
technologies. Indeed, the digitization of many economic activities has drastically changed
market design and business practices in a vast range of sectors, opening the road for smart
factories and for massive product customization. For example, in the automotive industry, car
manufacturers likeTesla nowallow their clients to customize their own carmodel according to
their preferences.3 Luxury brands like Louis Vuitton or Gucci allow customers to create their
own personalized luxury items. Audiovisual content distributors like Netflix allow customers
to choose their own consumption bundle from a wide range of audiovisual contents.

In this paper, we extend [9] by showing in a model with a continuum of types that firms’
ability to design increasingly rich menus of quality-price options to their customers (by
tailoring the product-price specification to the tastes of different segments of consumers)
may result in market dynamics that depart from standard Coasian dynamics. We obtain the

1 p.156.
2 Technically, as noticed by Inderst [9],“while the real time in which the market is served goes to zero as the
time between periods shrinks, the number of periods it takes to clear the market also increases”.
3 More precisely, consumers may use the Tesla online platform (https://www.tesla.com/en_GB/models/
design#battery) to parametrize a wide range of characteristics of the car (including the personalized dash-
board). At the end, different consumers may end up getting differentiated variants of their cars.

https://www.tesla.com/en_GB/models/design#battery
https://www.tesla.com/en_GB/models/design#battery
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novel results that (a) under certain conditions, the monopolist covers the whole market in the
first period (even when a staticMussa–Rosenmonopolist would not cover the whole market),
because this is a strategic means to convince customers that lower prices would not be offered
in future periods, and that (b) this can happenonly under the stage-wiseStackelberg leadership
assumption (whereby consumers, having seen the monopolist’s move, decide whether to buy
or to wait, based on their future rent expectations conditioned on the value of the anticipated
state variable at the end of the period). Conditions under which MPE necessarily involves
sequentially trading are also derived.

We assume that the firm does not know the consumers’ types.4 Thus, in each period, the
only form of discrimination is second-degree price-quality discrimination. Apart fromquality
discrimination (which intends to capture firms’ recent business practices regarding massive
customization and market hyper-segmentation), other features of our model are standard.
A firm sells an infinitely durable good to a continuum of infinitely lived customers. Each
consumer buys at most one unit of the good in their lifetime. Their preferences for quality are
private information. The innovative feature of our model vis-à-vis the mainstream literature
on durable goods pricing is that the monopolist may propose within each period a menu of
different qualities at different prices to different customers (e.g., in the Tesla example, the
firm ends up offering a menu of quality-price differentiated specifications for a given car and
consumers end up picking up a given product from the set of all variants available in the
Tesla online platform).

We consider that in each period, a period-specific price-quality schedule is made available
to all potential customers and the firm cannot commit to future price-quality schedules (equi-
librium outcomes are also obtained for the following useful benchmarks: the social planners’
welfare maximizing solution and the full commitment monopoly solution).

By combining the features of the standard durable good dynamic model with those of the
static model of monopoly and product quality proposed byMussa and Rosen [26], our model
can be conceived as a dynamic version of theMussa–Rosenmodel, in which the durable good
monopoly offers in each period a new price-quality schedule for customers who have not
bought a durable good before. Consumers decide when to make their purchase, knowing the
current price-quality schedule, and having rational expectations about themonopolist’s future
price-quality schedules. In aMarkovPerfect Equilibrium (MPE), themonopolist quality/price
strategy maximizes his discounted lifetime profit, given consumers’ expectations, and given
the monopolist’s sales strategy, the consumers’ expectations are rational. We assume that
firms and consumers move sequentially (and we also discuss equilibrium results under the
alternative assumption of simultaneous moves).

Since, within any given period, the firm is able to offer a menu of price-quality pairs
to its customers, it may seem reasonable to conjecture that the monopolist’s temptation to
practice intertemporal price discrimination would disappear. In other words, the ability to
offer to heterogeneous customers different price-quality pairs might render the commitment
problem a non-issue, thus invalidating Coase conjecture. One of the striking results of this
paper is to provide general sufficient conditions which ensure that there is indeed a MPE in
which the Coasian conjecture regarding profit erosion does not hold, though the market is
instantaneously covered. This MPE, which we show to be unique, corresponds to a modified

4 See Laussel et al. [18] for a model in which a monopolist firm producing a non-durable good gets full
information on customers’ preferences after their first purchase, using such information to make personalized
price-quality offers (first-degree price discrimination). Laussel et al. [19] also look at the case of non-durable
goods. Their setup departs from the present model (and also from [18]) since there, the monopolist is unable
to adjust the specification of the product (quality) when it gets information on customers’ tastes (after the
customers’ first purchase).
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version of the staticMussa–Rosenmonopoly equilibrium, themodification being that the firm
is constrained to cover the whole market. Thus, lack of commitment affects only the range of
consumers covered; of course, the lower bound of that range changes all price-quality pairs.5

We obtain that, for distributions of preferences such that welfare maximization leads to
full market coverage, the monopolist covers all the market either when the static Mussa–
Rosen monopolist always does it or, when the latter does not cover it but the discount factor
is close to one (which amounts to saying that the length of the commitment period must be
small enough, though it may be strictly bounded away from zero).

Looking then at the linear-quadratic case, we derive two even less demanding sufficient
conditions and we show that at least one of them must be satisfied for immediate full market
coverage to be an equilibrium strategy. In this MPE, the monopolist actually profits from
offering customizable Mussa–Rosen price-quality menus to its customers. Thus, when this
MPE prevails, we identify one theoretical rationale (among other factors) explaining why an
increasing number of firms announce that they are committed to the new product customiza-
tion paradigm.6

We argue that this paper not only fills a gap between the two literatures, but also provides
some new insights. Our immediate full market-covering result, while at first sight might look
like a standard result in the standard durable goodmonopoly literature, displaying a seemingly
Coasian flavor, is actually obtained under quite different conditions and for quite different
reasons. Without quality differentiation, immediate full market coverage is a limit result
when the length of commitment tends toward zero. In our paper, it may obtain even when the
length of commitment is strictly positive. In the standard durable good monopoly literature,
immediate full market is due to consumers’ expectations that the monopolist will infinitely
quickly lower prices to attract new customers. In contrast, in our model, it is a strategic choice
to serve immediately all customers so as to credibly commit not to lower prices to attract
unserved consumers in subsequent periods. Moreover, our analysis unveils that these results
depend significantly on consumers’market expectations about their future surplus, when they
contemplate delaying their purchases. Asmentioned earlier, in our baselinemodel we assume
that the monopolist decisions precede consumers’ ones. This means that, in any period, the
expectations of surplus which delay their purchase depend on the expected value of the state
variable at the end of the period (or equivalently, the size of potential customers—who have
not bought the good yet—in the subsequent period).

We also investigate how our results on immediate market coverage are affected when this
assumption is replaced by the alternative one that consumers and firms move simultaneously
(and therefore consumers need to formulate expectations on the market size at the beginning
of the period). Our results unveil that in this case immediate full market coverage occurs for
a much smaller set of parameter values, and it becomes necessary, but is no longer sufficient,
that the static Mussa–Rosen monopolist would cover the whole market. Moreover, in that
case, the discount factor must be small enough, so that the model is close enough to the static
Mussa–Rosen one.

The rest of the paper is organized as follows: Section 2 considers related literature. Sec-
tion 3 presents the main ingredients of the model. Section 4 deals with the Markov perfect
equilibria under non-commitment. Section 5 derives sufficient conditions for the existence of
full-market covering Markov perfect equilibria under general assumptions. Section 6 obtains

5 We are grateful to an anonymous referee for drawing our attention to this point.
6 For example, McKinsey [24] argues that “Personalization is teetering on the edge of the buzzword precipice.
But companies that can figure out what it really means and how to take advantage of it are already outstripping
their competition.” For more information, visit https://www.mckinsey.com/business-functions/marketing-
and-sales/our-insights/perspectives-on-personalization-at-scale [Access date: 25 February 2020] .

https://www.mckinsey.com/business-functions/marketing-and-sales/our-insights/perspectives-on-personalization-at-scale
https://www.mckinsey.com/business-functions/marketing-and-sales/our-insights/perspectives-on-personalization-at-scale
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more precise sufficient conditions and necessary conditions for immediate full market cov-
erage in the linear-quadratic case. Section 7 concludes.

2 Related Literature

To the best of our knowledge, there is a very scarce literature investigating how the recent
product customization trends affect market dynamics in durable-goods industries. Herein,
our contribution is to shed some light on this question by bringing together (i) the literature on
Coase conjecture and (ii) the literature on quality second-degree discrimination à la Mussa–
Rosen [26].

Hence, our paper is closely related to these two streams of literature. First, it contributes
to the literature beginning with [2], who argued that, in the No Gap case, a durable-good
monopolist who cannot commit to its future prices and outputs will lose all his monopoly
power: in equilibrium, the price is equal to the constant marginal cost, and all potential
customers are served instantaneously.7 A number of exceptions have been put forward. See,
for example, Kahn [13] for non-constant marginal cost, and Karp [12] for durable goods
subject to depreciation. The Coase conjecture may also fail when the durable good is subject
to network externalities (e.g., Mason [23], Laussel et al. [20]).8 In all these cases, however,
even when the Coase conjecture fails, non-commitment always reduces monopoly profits
relative to the full commitment solution. In Kahn’s continuous time model for instance, the
market is (only) asymptotically fully covered and the monopolist retains positive profits even
in theNoGap case. Herein, we show that the possibility to engage in intratemporal quality and
price discrimination may actually lead to positive profits, therefore identifying one additional
circumstance where Coasian predictions related to profit erosion do not hold.

The paper also relates closely to the vast literature on firms’ product specification strate-
gies, starting with the seminal work by Mussa and Rosen [26] and attracting the attention of
a large number of scholars. To the best of our knowledge, the large majority of works in this
field has looked at the problem of firms’ optimal product design within a static context.9 Of
particular interest to the present paper is the streamof literature that dealswith principal-agent
problems, which are often relevant when firms choose their product menus under imperfect
information about consumers’ true tastes.

In particular, the formulation of our model highly benefits from the literature that deals
with principal-agent problems in which agents’ types are their own private information.
Following the path-breaking work of Mirrlees [25], several authors have formalized the rev-
elation principle (e.g., Holmstrom [8], Myerson [27]), which has proved fruitful in many
applications, such as models of regulation and incentive contracts (see, for example, Laf-
font and Tirole [16,17], Laffont and Martimort [17]). Extensions of this mechanism design
approach include the multi-dimensional case (e.g., Martimort [22]) and the multi-period case
(e.g., the generalization of Mirrlees’ model to a dynamic setting, as in Kocherlakota [14],
Golosov et al. [5,6], Stantcheva [29]).

7 In the Gap case the price tends instantaneously toward the lowest type’s valuation. The profit is substantially
eroded but not entirely dissipated. Immediate full market-coverage still holds.
8 Laussel et al. [20] show that the standard results for Coasian dynamics must be modified when the durable-
good monopolist participates in two distinct markets with consumption network effects (the primary market
and the aftermarket).
9 In static settings, the issue of optimal product design has been widely studied, following the seminal work
of Mussa and Rosen [26]. Some recent contributions include Deneckere and McAfee [3] and Johnson and
Myatt [11]. Johnson and Myatt [10] look at the problem of optimal product design in a competitive setup.
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To the best of our knowledge, there are very few papers on durable goods that take
into account the dynamic interplay between the Coasian conjecture and the existence of
asymmetric information on consumers’ willingness to pay (à la [26]). Nava and Schiraldi
[28] analyzed a dynamic game where a monopolist offers two horizontally differentiated
varieties of a durable. They found that“in any perfect Bayesian equilibrium of the game: (1)
there is skimming, as the measure of buyers in the market at any point in time is a truncation
of the original measure and (2) the market clears instantaneously whenever the seller sets
static market-clearing prices.” Instead of looking at horizontally differentiated industries
with fixed varieties (as done in Nava and Schiraldi [28]), herein we look at industries with
vertically differentiated products and we give the monopolist the ability to choose the price-
quality menu that maximizes its profit, given consumers’ rational expectations about future
quality-price menus.

Board and Pycia [1] also study, like we do, a dynamic monopoly with durable-goods
when there is a single buyer who privately knows her value for the good and who has
an outside option they may exercise each period.10 They show that their model displays a
unique equilibrium in which the firm sets the monopoly price every period. Differently from
our model, the outside option ends up leaving low-type consumers out of the market.

Takeyama [30] analyzed a two-period model with two types of consumers, allowing for
quality upgrading in the second period. She showed that the monopolist may benefit from
offering to the low-type consumers a higher quality than in a static setting, in order to ensure
that such consumers will not upgrade in period two: if low-type consumers would upgrade in
the second period, the monopolist would have to give high-type consumers additional rents
to dissuade them from mimicking the low type ones. Kumar [15] considered time-consistent
intertemporal price-quality discrimination by a durable goods monopolist in the so-called
Gap Case when there is a continuum of types. Assuming away quality upgrading, he showed
that the Coase conjecture holds because, as the time between two different offers shrinks
to zero, the monopolist’s profit tends to the pooling one that would arise if everybody had
the lowest type’s valuation for quality. This departs from our framework, where, in each
commitment period, the possibility of offering a menu of price and qualities allows the firm
to make positive profits by extracting some information rents from lower types buying in
each period.

The most closely related paper is Inderst [9]. He assumes, however, that there are only two
types of consumers. In each period, the monopolist may offer a range of product qualities.
He shows that if the fraction of high-valuation consumers is small enough, or if the real time
between two consecutive periods becomes sufficiently small, then there exists an equilibrium
in which the monopolist serves the whole market in the first period. He points out that the
restriction to two types is a limitation of the model, and that the method of proofs in his paper
“does not allow for an immediate generalization” (p. 174). Our paper considers a model with
a continuum of customer types, with a general distribution of types. We identify sufficient
conditions for a non-commitment monopolist to cover the market immediately in the initial
period. As mentioned earlier, this occurs if the static Mussa–Rosen monopolist would cover
the whole market and/or if the discount factor is close enough to one. In the linear-quadratic
case, we obtain more precise and less restrictive sufficient conditions for immediate full
market coverage: either the discount factor is smaller than a critical value which is strictly

10 The outside option may be, for instance, the possibility of buying another product.



580 Dynamic Games and Applications (2022) 12:574–607

smaller than 1 if the customer-base is “super-strong” 11 or, if not, the range of consumers’
types is small enough. Moreover, one of these conditions should be satisfied for immediate
full market coverage.

3 TheModel

A monopolist produces an infinitely durable good at different quality levels. Let q be the
quality index, where q can take any nonnegative value: q ∈ [0,∞). The lowest possible
quality is zero.We assume that a unit of durable at quality 0 yields no benefit to any consumer.
The unit cost of a durable good at quality level q is c(q). With respect to quantity, we assume
constant returns to scale: the cost of producing x units of the durable at quality q is simply
xc(q). With respect to quality, c(q) is assumed to be strictly convex and twice differentiable.
We refer to c′(q) as the marginal cost of providing quality q . Specifically we suppose that
the function c(q) has the following properties:

Assumption A1 c(0) ≥ 0, c′(0) ≥ 0 , with c′(q) > 0 and c′′(q) > 0 for all q > 0.

Remark 1 The possibility that c(0) > 0 is admitted. In that case, the cost of producing a
unit of durable, even at the lowest quality, is strictly positive (i.e., it implies a fixed cost).
Regardless of whether c(0) = 0 or c(0) > 0, it follows from Assumption A1 that there exists
a unique q̂ ∈ [0,∞) such that

q̂c′ (̂q) = c (̂q) , (1)

where q̂ represents the quality level for which the marginal cost of providing quality q̂ equals
the corresponding average cost. Obviously, q̂ > 0 iff c(0) > 0. If c(0) = 0, then q̂ = 0. As
we shall see, q̂ plays an important role in the characterization of (i) the optimum allocation
under a benchmark scenario (the social planner’s solution), and also of (ii) the equilibrium
strategy of the firm (in the case of a durable-good monopoly). In particular, the last consumer
served by the welfare-maximizing social planner will get a quality level such that his/her
valuation of the provided quality level coincides with the production cost of a durable with
that quality level, getting a zero surplus (with the zero marginal surplus condition being
equivalent to the one presented in (1)).

Time is a continuous variable, t ∈ [0,∞). Consumers are infinitely-lived. There is a
continuum of consumer types, indexed by θ , where θ ∈ [

θ, θ
]

, θ > θ ≥ 0. We refer to θ as
the individual’s marginal valuation of quality, which is private information. In addition, the
type θ of any given consumer remains the same over her whole lifetime.

We assume that a consumer of type θ who makes use of a unit of durable at quality level
q from time t to time infinity derives a utility flow of θq at each instant of time τ ∈ [t,∞).
Since we look at an infinitely lived durable good, we assume that once consumers have
bought a unit at a given quality q , they will not need to buy the good again. Instead, they
exit the market and enjoy the service flow yielded by that unit for their whole lifetime.
Thus, by assumption, immediate consumption of the durable dissipates the consumers’ need
forever.12 In light of this, consumers who have bought a unit of durable in a given period n do

11 The customer base is “super strong” if the lowest type customers’ maximum net surplus (gross surplus
minus production cost) is strictly positive, i.e., if a benevolent social planer would always strictly prefer to
supply them.
12 That does not mean that this consumption does not yield permanent per period benefits.
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not consider upgrading it to a higher quality in later periods. This is the so-called permanent
exit assumption, which is quite common in the literature, whether it is made implicitly
or explicitly. 13 As noticed by Nava and Schiraldi14 (2019, p. 22), such an assumption is
compelling for goods whose immediate consumption dissipates the need forever as it is, for
instance, the case for many services.15 The lifetime utility of a customer of type θ , discounted
back to time t at the instantaneous discount rate r > 0, is accordingly

Ut (θ, q) ≡
∫ ∞

t
e−r(τ−t)θqdτ = 1

r
θq.

Individuals who do not get allocated a unit of the good get zero lifetime utility. In order
to streamline our model and analysis, we make the following additional assumption on the
distribution of consumer types.

Assumption A2 The cumulative distribution of consumer types, denoted by F(θ), is contin-
uously differentiable, with F(θ) = 0, F

(

θ
) = 1, and the density function f (θ) ≡ F ′(θ),

which is strictly positive for all θ ∈ [

θ, θ
]

.

AssumptionA2 allows us to define the “inverse hazard rate” function h(θ) over the interval
[

θ, θ
]

:

h(θ) = 1 − F(θ)

f (θ)
≥ 0, with h(θ) = 1

f (θ)
> 0 and h

(

θ
) = 0.

As we shall see later, this function will play an important role in the analysis of the strategies
of the monopolist.

3.1 A Benchmark Scenario: The Social Planner Solution

In this section, we consider the following benchmark scenario: a social planner wishes to
maximize social welfare (SW ), given by the integral (over

[

θ, θ
]

) of lifetime utilities of all
individuals of all types θ ∈ [

θ, θ
]

, net of the cost c(q(θ)) of supplying individuals of type θ

with a unit of durable of quality q(θ). (We assume that all consumers with the same type θ

get the same treatment.) The function SW is specified as follows:

SW =
∫ θ

θ

δ(θ)

[

1

r
θq(θ) − c(q(θ))

]

f (θ)dθ,

where δ(.) is a function, defined over
[

θ, θ
]

, that can only take one of two values, 1 or 0. For
given θ ′, θ ′′ ∈ [

θ, θ
]

, δ(θ ′) = 1 means that all consumers of type θ ′ get allocated one unit
of the durable good at time t = 0 for use during their lifetime, while δ(θ ′′) = 0 means all
consumers of type θ ′′ are not allocated a unit of the durable good and thus have zero lifetime

13 For instance, Kumar ([15], p. 900), wrote that “Each consumer is in the market for only one unit of the
good and exits after making the purchase” . Inderst ([9], p. 174) stated that “Consumers want to buy at most
a single good”. ([28], p. 6) wrote that “In the baseline setting, buyers have unit-demand for the product and
exit the market upon purchasing either of the two varieties.” On the contrary, for a model where upgrading is
possible, see Takeyama [30].
14 They remark that “after all, in these models, durability simply amounts to sales permanently depleting the
demand for the good.”
15 For instance, one may think of a cataract operation, or a removal of an internal organ such as “Appendix”
or the tonsil.
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utility. Conditional on δ(θ ′) = 1, the quality of the durable assigned to consumers of type θ ′
is denoted by q(θ ′). An allocation is a pair of functions (δ(.), q(.)).

Result 1 Let ̂θ be given by

̂θ ≡
{

rc(̂q)
q̂ if c(0) > 0

rc′(0) if c(0) = 0

Then, the socially efficient allocation has the following properties:

(i) Consumers of type θ < ̂θ are not served, because their valuation of any quality level is
strictly lower than the production cost of a durable with that quality level.

(ii) Consumers of type θ ≥ ̂θ are offered durables of quality qse(θ), defined by

qse(θ) = c′−1(θ/r) for θ ≥ ̂θ . (2)

so that higher type consumers are offered higher quality and achieve higher surplus.

Proof See “Appendix”. ��
Example 1 Assume that c(q) = B + 1

2q2. It is easy to show that q̂ = √
2B and̂θ = rc′ (̂q) =

r
√
2B. Then, if̂θ ∈ [

θ, θ
]

, the socially efficient quality level for type θ is

qse(θ) = 1

r
θ , for all θ ∈

[

r
√
2B, θ

]

(3)

and for consumers of type θ < r
√
2B, it is socially efficient that they do not get any durable

good at all.

Notice that, at the social planner’s full information solution, the distribution of rents
between consumers and the firm is underminedwithin bounds.A type θ ≥ ̂θ consumer cannot
be enticed to buyunless θ

r qse(θ) ≥ pse(θ),where pse(θ) is the price of the durable supplied to
a type θ -customer.Thefirmcannot be enticed to supply customers unless pse(θ) ≥ c(qse(θ)).

It obviously follows that pse(θ) ∈ [c(qse(θ)), θ
r qse(θ)].

In order to restrict the number of cases to be considered in subsequent sections where we
will be comparing the outcome under monopoly with the social optimum, let us define the
concepts of a customer base, a strong customer base, and a super-strong customer base.

Definition A customer base is a cumulative distribution of types, denoted by F(θ), defined
over

[

θ, θ
]

, where θ > θ ≥ 0. A customer base is said to be strong if

θ ≥ ̂θ, (4)

and super-strong if

θ > ̂θ. (5)

Clearly, when condition (4) is satisfied, then, for the customer base under study, given
Assumptions A1 and A2, it is socially efficient to serve all consumer types θ ∈ [

θ, θ
]

.
In contrast, under monopoly, the assumption that the customer base is strong is not sufficient
to ensure that the monopolist will serve the whole market, as we shall see below.

The concepts of a strong and a super-strong market base are related in a simple way to
the Gap / No Gap cases in the standard durable goods model (see, for instance, Fudenberg
and Tirole [4], p.400). The Gap case in this literature arises when for all consumers’ types
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(including the lowest type) the utility of one unit of the durable is strictly greater than its
marginal cost. Our concept of a super-strong consumer base corresponds to an extension of
the Gap case to a model with an endogenous quality level: the consumer base is super-strong
iff the maximum social surplus16 from serving any consumer’s type is strictly positive. The
No Gap case in the standard durable good literature is when the utility of unit of the durable
is not greater than its production cost. In our model with endogenous quality level, this arises
when̂θ ≥ θ , i.e., the market is just strong (but not super-strong) or even weak (when̂θ > θ ).

3.2 Monopoly Under Asymmetric Information

In what follows, we study several types of alternative equilibrium outcomes that may arise
in a monopoly market, under asymmetric information and consumers’ rational expectations.
We assume that the monopolist announces at discrete points of time, (t0, t1, t2, . . .), t0 <

t1 < t2 < · · · < t j < · · · , a schedule of prices pti (.) which applies over the time interval
[

ti , ti+1), where pti (q) is the price assigned to a durable of quality q , which is maintained
constant over that time interval. Moreover, we assume that ti+1 − ti = �, where � is the
same for all i = 0, 1, 2, . . . . The parameter � defines the length of commitment period. We
shall investigate howmonopoly’s profit under each equilibrium type depends on�. (It will be
convenient to refer to the period commencing at time tn as period n, where n = 0, 1, 2, 3, . . .).

To streamline our analysis of the monopoly’s price-quality offers under asymmetric infor-
mation, we make some further assumptions:

Assumption A3 (Monotone decreasing inverse hazard rate) The function h(θ) is monotone
decreasing over the interval

[

θ, θ
]

.

Assumption A3 is the standard assumption ensuring that, when a monopolist practices
second-degree price discrimination, there is “nobunching” in equilibrium (i.e., in equilibrium,
eachpositive quality level is produced in order to supply a unique consumer type).Assumption
A3 is satisfied by many distributions, such as the uniform, normal, Poisson, exponential, and
binomial distributions.

Assumption A4 The customer base is strong: θ > θ ≥ ̂θ .

Note that A4 implies that there exists a range of strictly positive quality levels such that

1

r
θq − c(q) > 0.

In what follows, we assume that A1, A2, A3, and A4 hold.
Notice that Assumption A4 only means that the whole market is supposed to be eco-

nomically viable. It is made only for the sake of convenience and is not really restrictive.
Suppose indeed on the contrary that the market is weak, i.e., that̂θ > θ. We can then restrict
our attention only to the economically viable parts of the market, those for which there
exist potential benefits for trade in durables, i.e., the segment

[

̂θ, θ
]

, simply with a density
function f (θ)/1 − F(̂θ) on this interval. The results of Sects. 5 and 6 about the existence
and uniqueness of an immediate full market-covering Markov perfect equilibrium remain
unchanged provided full market-covering is intended to mean, in line with the durable goods
monopoly literature, immediate full covering of the economically viable parts of the market,
i.e., the immediate realization of all potential gains from trade.

16 The quality level being selected according to equation (2) so as to maximize the social surplus of each
consumer’s type.
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Remark 2 If θ − h
(

θ
)

< 0, this inequality together with Assumption A3 and the fact that
h
(

θ
) = 0 implies that there exists a unique value θc ∈ (θ, θ ], at which the downward

sloping curve h(θ) intersects the 45 degree line, i.e., at which

θc − h(θc) = 0. (6)

This implies that θ − h(θ) < 0 iff θ ∈ [

θ, θc
)

and θ − h(θ) > 0 iff θ ∈ (

θc, θ
]

. As is
well known, in that case, a (full-committed) monopolist would never supply q(θ) > 0 for
θ ∈ [

θ, θc
)

, given that c(q) ≥ 0 for all q ≥ 0. The full-commitment monopoly is analyzed
in the following section.

3.2.1 Another Benchmark: The Full-Commitment Monopoly

The static (or full-commitment) second-degree discrimination model à la Mussa–Rosen pro-
vides a useful benchmark. In this full-commitment scenario, the monopolist offers at time
t = 0 a menu, i.e., a price-quality schedule (q, p(q)), and commits to maintain the same
schedule for ever. Consumers then either choose an item on the menu to purchase immedi-
ately at t = 0, or refuse to make a purchase, and then, they exit the market (as there is no point
for them to wait for a better deal next period, given that the monopolist credibly commits
to make the same offer in the next period). As is well known, making use of the revelation
principle, the monopolist’s menu can be represented by a pair of functions, (q (θ) , p(θ)) for
all θ ∈ [

θ∗, θ
]

, such that (q (θ) , p(θ)) satisfy the usual incentive compatibility constraint,17

where θ∗ ≥ θ is the monopolist’s cutoff type, such that consumers of types θ ∈ [

θ, θ∗) will
not be served. Following the Mirrlees’ trick, we define the informational rent of a type θ

customer (where θ ∈ [

θ∗, θ
]

) by

U (θ) = 1

r
θq(θ) − p(θ) = max

˜θ

1

r
θq

(

˜θ
) − p

(

˜θ
)

. (7)

Then, applying the envelope theorem, we obtain dU
dθ = 1

r q(θ) for θ ∈ [

θ∗, θ
]

. Since θ∗ is
the cutoff type of customers (the lowest type of customers that are served), it is clear that the
monopolist will extract all the surplus from this type, i.e., U (θ∗) = 0, and it follows that, for
all θ ∈ [

θ∗, θ
]

,

U (θ) = U (θ) − U (θ∗) =
∫ θ

θ∗
dU (θ ′)
dθ ′ dθ ′ =

∫ θ

θ∗
1

r
q(θ ′)dθ ′. (8)

Using equations (7) and (8), we can express the price p(θ) as

p(θ) = 1

r
θq(θ) −

∫ θ

θ∗
1

r
q(θ ′)dθ ′. (9)

Let us start by characterizing, under full commitment, the monopolist’s optimal cutoff type,
θ∗, and the quality offered to consumer types above the cutoff type. Conditional on a given
cutoff type θ∗ ≥ θ , the profit of the monopolist is

π =
∫ θ

θ∗
[p(θ) − c(q(θ))] f (θ)dθ. (10)

17 See below for more details.
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Lemma 1 The monopolist’s “virtual surplus” in the full-commitment benchmark, denoted
by ṽ(θ, q(θ)) is given by:

ṽ(θ, q(θ)) = 1

r
[θ − h(θ)] q(θ) − c(q(θ)). (11)

Lemma 1 shows that ṽ(θ, q(θ)) is equal to consumers’ gross utility, 1r θq(θ), minus production
cost, minus the term h(θ) 1r q(θ), which measures the effect of selling q(θ) on the aggregate
informational rent (I R), which is equal to

I R =
∫ θ

θ∗
[h(θ)]

1

r
q(θ) f (θ)dθ

as obtained in equation (A.7) in “Appendix” (see also (8)18).

Remark 3 The “virtual surplus” function ṽ(θ, q(θ)) is defined only for θ ∈ [

θ, θ
]

because
h(θ) is not defined neither for θ < θ , nor for θ > θ .

Given that θ∗is the cutoff type, pointwise differentiation of profit (as given in integral (A.8)
in “Appendix”) with respect to q(θ) implies that the monopolist must choose, for customers
of type θ ∈ [

θ∗, θ
]

, a value q(θ) ≥ 0 that maximizes ṽ(θ, q(θ)). Define

qm(θ) = argmax
q≥0

1

r
[θ − h(θ)] q − c(q).

The maximization yields the FOC that characterizes the optimal quality qm(θ) to be offered
to consumers of type θ ∈ [

θ∗, θ
]

,

qm(θ) =
{

(c′)−1 (θ/r − h(θ)/r)

0
if θ − h(θ) ≥ 0
if θ − h(θ) < 0

(12)

Comparing with the social optimal solution, it becomes evident the important role that
information rents optimization plays on the optimal decision of the fully committed monop-
olist (whose effect is conveyed through the hazard function h(θ), which does not affect the
planner’s solution, while shaping the monopolist’s quality provision decision).

Result 2 (i) If

1

r

[

θ − h(θ)
]

qm(θ) − c(qm(θ)) > 0 (13)

then θ∗opt = θ .
(ii) If 1

r

[

θ − h(θ)
]

qm(θ) − c(qm(θ)) < 0 , then θ > θ∗opt > θ .
(iii) For the monopolist to offer strictly positive quality to consumers of type θ , it is necessary

that θ − h(θ) > 0 (though not sufficient if c(0) > 0 or c′(0) > 0).

Proof See “Appendix”. ��
Example 1 (continued): Assume the uniform distribution of types, with the support

[

θ, θ
]

.19 We consider the quadratic cost c(q) = B + 1
2q2, so that q̂ = √

2B and ̂θ =
rc′ (̂q) = r

√
2B. Moreover, assume that the market is super-strong:

θ > θ > ̂θ.

18 Note that h(θ) 1r q(θ) is not the information rent U (θ) of type θ .
19 With the uniform distribution, h(θ) = θ − θ , and θ − h(θ) = 2θ − θ , which is positive iff θ ≥ θ/2.
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If a type θ is served, the quality offered to that type is:

qm(θ) = 1

r
[θ − h(θ)] = 1

r
(2θ − θ)

and the cost of producing the quality level offered to this type θ is

c
(

qm(θ)
) = B + (2θ − θ)2

2r2
.

Suppose for now that θ = θ/2. Then, if B = 0, the market will be fully covered, with
qm

(

θ
) = 0 and qm(θ) > 0 for all θ ∈ (

θ/2, θ
]

, with v(θ) = 1
r (θ − θ)0− B − 0 = 0. If, on

the contrary, B > 0, then clearly θ cannot be the optimal cutoff type, because, with B > 0,
we would have v(θ) = −B < 0, which means that the necessary condition is not satisfied.
It follows that when B > 0, the optimal cutoff type θ∗opt must begreater than θ/2.20 More
generally, when θ ≤ θ/2, if B > 0, the (full-commitment) monopolist’s optimal cutoff type
θ∗opt is an interior one

θ∗opt = θ + r
√
2B

2
>

2θ +̂θ

2
> θ.

What happens if θ > θ/2? In that case, the optimal cutoff point is interior (meaning θ∗opt > θ )
iff

θ <
θ +̂θ

2
.

Under our linear-quadratic specification, for the Mussa–Rosen static monopolist to cover the

whole market, it is necessary and sufficient that θ ≥ θ+̂θ
2 . Notice that the assumption that

the customer base is super-strong does not ensure that θ ≥ θ+̂θ
2 .

For example, consider the numerical example with θ = 1, θ = 0.55, B = 2 and r = 0.1.
Then̂θ = 0.2, and

θ∗opt = θ + r
√
2B

2
= 1 + 0.2

2
= 0.6 > θ,

which means that the market is not fully covered. (We would need θ ≥ 0.6 to get full market
coverage). We are now ready to state a useful result:

Claim 1 For the static Mussa–Rosen monopolist to cover the whole market, i.e., θ∗opt = θ ,
it is necessary (though not sufficient) that the market is super-strong, i.e. , θ > ̂θ.

Proof See “Appendix”. ��
Remark 4 A special case which will prove to be of interest is what we call the constrained
full commitment monopolist or, equivalently, the constrained static MR monopolist. It only
differs from the standard Mussa–Rosen monopolist by the fact that the firm is constrained
to serve all the consumers’ types θ ∈ [

θ, θ
]

. The quality offered to type θ customers is still
defined by Eq. (12), except that it is offered to all types θ ∈ [

θ, θ
]

, not only to types
[

θ∗, θ
]

.

Even customers whose virtual surplus ṽ(θ, qm(θ)) is negative are served.21

20 To compute the optimal cutoff, we use the condition 1
r (2θ∗opt − θ)

[

qm (θ∗)
] − B − 1

2
[

qm (θ∗opt )
]2 =

0 => 1
r2

(2θ∗opt − θ)2 − B − 1
2r2

(2θ∗opt − θ)2 = 0,

implying: θ∗opt = θ+r
√
2B

2 = 2θ+̂θ
2 > θ.

21 Function ṽ(.) is defined in Lemma 1 by Eq. (11).
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Prices of course differ since even the lowest type consumers should prefer to buy the
good rather than to exit the market. The equilibrium price is simply:

pC (θ) =1

r
θqm(θ) −

∫ θ

θ

1

r
qm(θ ′)dθ ′.

Comparing pC (θ) to the unconstrained price p(θ) fromEq. (9), we see that their difference
is simply pC (θ) − p(θ) = − ∫ θ∗

θ
1
r qm(θ ′)dθ ′ which is strictly negative (and independent of

θ ) for all θ as long as θ∗ > θ , i.e., as long as the full market-coverage constraint is binding.
Very intuitively, the monopolist must lower its price by a fixed amount in order to induce low
type customers to buy.

We will show in Sects. 5 and 6 that, under certain conditions, there exists an immediate
full market-coveringMarkov perfect equilibrium of our dynamic gamewhich exactly mimics
the constrained static Mussa–Rosen equilibrium.

3.2.2 Lack of Commitment by the Monopolist: Participation Constraints in a
Multi-period Setting

We have shown that if the monopolist is able to commit to future price-quality schedules,
he will commit to the infinite repetition of the initial (i.e., period zero) static Mussa–Rosen
schedule. If this schedule implies that there exists a cutoff type θ∗ > θ , then, under the
commitment policy, the unserved customer types (those θ in the interval

[

θ, θ∗)) will remain
unserved for ever. Knowing this, all customers of type θ ∈ [

θ∗, θ
]

will choose to buy the
durable at time t = 0, as there is no point to wait for future offers that will be the same as the
offer at time t = 0. In this full-commitment case, the surplus of the cutoff type θ∗ is zero.

Now, let us turn to the case of a monopolist that cannot commit to future price-
quality schedules. In this case, it is possible that potential consumers in period n (where
n = 0, 1, 2, 3, . . .) anticipate that the future price-quality schedules differ from the present
one, and consequently, some of them might have the incentive to delay the purchase of the
durable to take advantage of a better deal in the future. For a consumer to buy in period n
rather than in period n + 1, it must be the case that her lifetime surplus if she purchases the
durable in period n is at least as great as what she can get if she delays the purchase till the
next period. Let us formulate the incentive-compatibility constraints and the participation
constraints that must be satisfied for customers who buy in period n.

At the beginning of each period n, the monopolist offers to all potential new customers
(those who have not bought the durable in some earlier period) a monotone increasing price-
quality schedule pn = φn(q),where φn is a mapping from the domain of feasible qualities
[0,∞) to the space of nonnegative prices, R2+ = [0,∞). As is well known, according to the
revelation principle, without loss of generality we can restrict attention to mechanisms that
induce the consumers to reveal their true type. This means that in any period n, all consumers
who have not bought the durable in a previous period are facing a set of (quality, price)
pairs

(

qn(˜θ), pn(˜θ)
)

, which depend on their reported type˜θ when buying in period n. A type
θ -customer, where θ ∈ [

θn+1, θn
]

, who purchases the durable in period n would be willing
to report her true type if and only if it does not pay to pretend to be a different type, i.e., iff

θ = argmax
˜θ

1

r
θqn(˜θ) − pn(˜θ). (14)

Accordingly, facing a truth-inducing menu of (quality, price) pairs, the net utility (over
the entire lifetime) of a type θ ∈ [θn+1, θn] customer who buys the durable good in period n
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is 1
r θqn(θ) − pn(θ). We denote this by Un(θ):

Un(θ) ≡ max
˜θ

1

r
θqn(˜θ) − pn(˜θ) = 1

r
θqn(θ) − pn(θ). (15)

The envelope theorem implies that the quality-price schedule (qn(θ), pn(θ)) is incentive
compatible iff

U ′
n(θ) = 1

r
qn(θ). (16)

Note that by a standard revealed preference argument,Un(θ) is convex, which impliesU ′
n(θ)

is monotone increasing: for any two values θ ′ and θ ′′ in [θn+1, θn], with θ ′′ > θ ′, it holds
that qn(θ ′′) ≥ qn(θ ′), i.e., qn(θ) is non-decreasing.

By integrating (16), we find that for all θ ∈ [

θn+1, θn
]

, it holds that

Un(θ) = Un(θn+1) +
∫ θ

θn+1

(

1

r
qn(s)

)

ds. (17)

The integral on the RHS of Eq. (17) is the difference between the informational rent (i.e.,
lifetime surplus) of a type-θ consumer over the informational rent of the marginal type θn+1.
By definition, the latter is indifferent between (a) buying in period n, at the bottomof the rung,
and (b) buying in period n + 1, at the top of the rung. Notice that, whatever the quality-price
schedule (qn(θ), pn(θ)) , given (16), (17) and the very definition of θn+1, any consumer of
type θ > θn+1 is better off to buy the good in period n rather than waiting to buy later. For
later use, let us denote by R(θn, θn+1) the difference between the informational rent of a
customer at the top rung in period n and that of a customer at the bottom rung in period n:

R(θn, θn+1) ≡
∫ θn

θn+1

1

r
qn(s)ds. (18)

A consumer who chooses to delay the purchase in period n by waiting for the next price-
quality offer (available in period n+1) must forgo the utility flow arising from consuming the
service of the durable good in period n. Recall that the length of themonopolist’s commitment
period is �. Let β denote the discount factor across periods, i.e.,

β ≡ e−r� < 1,

where r > 0 is the instantaneous rate of discount. Then, a quality-price schedule
(qn(θ), pn(θ)) is incentive-feasible if, in addition to the incentive compatibility condition
(16) (which is equivalent to (17)), it also satisfies the following participation constraint (PC)
for first-time buyers in period n:

Un(θ) ≥ β

[

1

r
θqb

n+1(θ) − pb
n+1(θ)

]

,∀θ ∈ [

θn+1, θn
]

, (19)

where the RHS of Eq. (19) is the (discounted) lifetime net utility obtained by a consumer
of type θ ∈ [θn+1, θn] who delays her purchase to period n + 1 and

(

qb
n+1(θ), pb

n+1(θ)
)

denote the best price-quality pair which a type-θ consumer may choose in period n + 1
when she delays her purchase of the durable good to period n +1. It can be shown22 that, for
θ ∈ [θn+1, θn], a type-θ customer, when assessing the benefits of delaying the purchase of the

22 See Laussel et al. [18], Claim 1, for a proof of this result (in “Appendix”) in a different context (a model
with non-durable goods, where the monopolist gets full information on consumers’ type θ after their first
purchase).
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durable good to period n +1 instead of buying it in period n, will find it optimal (conditional
on deviating) to identify herself as the highest type among the set of consumers getting
the good in period n + 1, or equivalently, ˜θ = θn+1. Thus, it follows that the participation
constraint (19) for a type θ ∈ [θn+1, θn] may be written as

�n(θ) ≡ Un(θ) − β

(

1

r
θqn+1(θn+1) − pn+1(θn+1)

)

≥ 0, (20)

∀θ ∈ [

θn+1, θn
]

.

Since θn+1 is defined as the type who is indifferent between buying the durable good at n
or at n +1, it holds that, for the (marginal) type θn+1, condition (20) is satisfied with equality.
Thus we have�n(θn+1) = 0. Then, to ensure that the participation constraint (20) is satisfied
for all the infra-marginal types, θ ∈ (θn+1, θn], we require that �′

n(θ) ≥ 0, which using Eq.
(16), is equivalent to qn(θ) ≥ βqn+1(θn+1). Since qn(θ) is non-decreasing, a necessary and
sufficient condition for the latter inequality to hold is23

qn(θn+1) − βqn+1(θn+1) ≥ 0. (21)

Inequality (21) requires that thelowest quality offered to new customers in period n is greater
than the (discounted) highest quality offered to new customers in period n + 1.

Recall that qn+1(θn+1) is the quality level intended for the highest consumer type among
those who purchase the durable in period n + 1. One may expect that the“no distortion
at the top ” property (which often arises in static settings) also applies in our dynamic
model. Consequently, we would expect qn+1(θn+1) = qse(θn+1),where qse(θ) is the first-
best quality for type θ , as defined by Eq. (2). As shown later in this paper, this actually turns
out to be the case in equilibrium.When this is indeed the case, constraint (21) can be rewritten
as:

qn(θn+1) ≥ βqse(θn+1). (22)

This inequality requires that the quality level offered to the bottom-rung customer in period
n must be at least as large as the (discounted) first-best quality for that type.

Finally, the condition �n(θn+1) = 0 implies that

Un(θn+1) = βUn+1(θn+1), (23)

in line with the result obtained in Laussel et al. [18] for the case of durable goods where the
monopolist is able to uncover consumers’ exact quality valuation θ, after her first purchase.
Equation (23) indicates that in equilibrium the marginal consumers in period n, those of type
θn+1, are indifferent between being at the top rung of all new consumers in period n + 1 and
being at the bottom rung of all new consumers in period n. Evaluating Eq. (17) at n + 1, the
indifference condition (23) implies:

Un(θn+1) = β

(

Un+1(θn+2) +
∫ θn+1

θn+2

[

1

r
qn+1(θ)

]

dθ

)

. (24)

Using (24) and (18), we deduce that

Un(θn+1) =
∞
∑

j=1

β j

(

∫ θn+ j

θn+ j+1

[

1

r
qn+ j (θ)

]

dθ

)

(25)

23 A similar condition has been obtained inLaussel et al. [18] for the case of amonopolist that sells non-durable
goods (and gets full information on consumers’ preferences after their first purchase).
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=
∞
∑

j=1

β j R(θn+ j , θn+ j+1). (26)

Recall that Un(θn+1) is the rent of the marginal new customer in period n. The above
equation shows that, in equilibrium, this rent must be equal to the discounted sum (over j)
of the differences between the informational rent of the customer who has purchased the
good at the top rung and the one at the bottom rung in period n + j, similarly to what was
obtained in Laussel et al. [18] and companion papers (although the authors studied repeated
consumption of a non-durable good).

The profit (evaluated at the beginning of period n) which the monopolist makes in period
n from selling the durable good to customers in period n is

πn =
∫ θn

θn+1

[(pn(θ) − c(qn(θ))] f (θ)dθ.

Using Eq. (15), πn can be rewritten as

πn =
∫ θn

θn+1

[

1

r
θqn(θ) − c(qn(θ)) − Un(θ)

]

f (θ)dθ. (27)

After integration by parts, we obtain

πn =
∫ θn

θn+1

{ 1
r [θ − h(θ, θn)] qn(θ)

−c(qn(θ)) − Un(θn+1)

}

f (θ)dθ, (28)

where Un(θn+1) is given by Eq. (25), and where the function h(θ; θn) is defined by

h(θ; θn) ≡ F(θn) − F(θ)

f (θ)
for θ ∈ [

θn, θ
]

. (29)

In the next section, we study the Markov perfect equilibria arising in a monopoly under
asymmetric information. Throughout the subsequent analysis, we assume that themonopolist
is unable to commit to future prices and qualities.

4 Markov Perfect Equilibria Under Non-commitment

Having spelled out the participation constraints, let us now explore possible Markov perfect
equilibria when themonopolist cannotmake commitment beyond the current period of length
�, and consumers have rational expectations.

4.1 TheMonopolist’s Markovian Cutoff Rule and Consumers’ Expectation Rule

Now, in any period n, the firm cannot commit to offer in subsequent periods j > n to
potentially new consumers (those who have not purchased the durable) the same price quality
schedule which it offers to consumers in period n. Thus, in any period, the firm will only
offer (quality, price) pairs that are optimal for the intertemporal profit maximization problem
starting from that period onwards. We ask the following questions: Can the repetition of the
static Mussa–Rosen equilibrium constitute an equilibrium under non-commitment? If so,
under which conditions?

In order to investigate thismatter, we focus on equilibria inwhich themonopolist’s strategy
is a Markovian function of a state variable, 	(n), which denotes the lowest type among
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customers who have bought the durable in the periods prior to n, allowing us to follow
the market expansion at each point in time (or equivalently, the fraction of customers who
remain out of the market). We assume that in each period, the monopolist is the first mover,
announcing the additional number of customers that he will serve (namely,	(n)−	(n +1)
), and themenu of (quality, price) to be offered to these new customers (he is able to commit to
this for the duration �, which establishes the length of the commitment period). Consumers
are second movers within the same period: having seen the monopolist’s move, they decide
whether to buy or towait, based on their forecast future rent (their forecasting being a function
of 	(n + 1) which the monopolist is able to commit to, as long as he remains within his the
commitment period of length �). This means that our game has the stage-wise Stackelberg
leadership property.24 We shall see later that equilibrium properties under this assumption of
sequential moves actually lead to different results from the ones obtained under simultaneous
moves.

In the sequential equilibrium, the consumers’ expectations function must be a best reply
to the monopolist’s strategy, such that the consumers expectations are correct given the
monopolist’s strategy, i.e., they are rational. Moreover, starting from any (date, state) pair
(n,	(n)), the monopolist’s strategy maximizes its profit, given the anticipated consumers’
expectations function. Let us now formally define below the state variable, the monopolist’s
strategy, and the consumers expectation function.

Letting, in any period n, X(n) ∈ [0, 1] denote the fraction of the customer base that has
purchased the product in previous periods 0, 1, 2, .., n −1 , with X(0) = 0, the state variable
	(n) is defined in the following simple way:

	(n) ≡ F−1(1 − X(n)),

where F(.) is the cumulative distribution of θ . Then 	(0) = θ ≡ θ0, and 	(n) ∈ [

θ, θ
]

.
We specify that the firm’s Markovian strategy is a pair (ψ, η), that consists of two com-

ponents: (a) a Markovian cutoff rule ψ(.), which, at the beginning of each period n, given
	(n), specifies the next 	(n + 1), thus determining the fraction of the currently unserved
customer base that will be served in period n and (b) a Markovian quality-schedule rule η(.),
defining the monopolist’s type-dependent quality offers to consumers who buy the durable
good in period n.

In other words, the firm’s Markovian cutoff rule ψ(.) is a function, non-increasing and
bounded below by θ,whichmaps any currently observed value	(n), into a value	(n+1) =
ψ(	(n)) ≤ 	(n). The value 	(n + 1) = ψ (	(n)) is to be interpreted as the lowest-type
of customers that the firm intends to serve in period n.

A quality-schedule mapping η (.) determines for any given currently observed value	(n)

an associated quality schedule qn(.|	(n) ), which is itself a function that assigns to each θ ∈
[	(n + 1),	(n)] a value q ≥ 0, where 	(n + 1) = ψ (	(n)). The value qn(θ |	(n)) is
to be interpreted as the quality level offered to a customer of type θ ∈ [	(n + 1),	(n)] in
period n, given the value 	(n) of the state variable.

The consumers’ Markovian expectations rule, denoted by �(.), predicts, given the antici-
pated value	(n+1) of the state variable, the lifetime rent of themarginal first-time customer
in period n, i.e., Un(θn+1). The function �(.) maps 	(n + 1) into the set of positive real
numbers.We interpret� (	(n + 1)) as the predicted value of the lifetime rent of themarginal
customer in period n who is, in equilibrium, indifferent between (a) buying the durable good

24 See, e.g., Long [21] for an exposition of the concept of stage-wise Stackelberg leadership and for a review
of that literature.
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in period n, located at the bottom rung of the set of shoppers in period n, and (b) being a
top-rung shopper in period n + 1.

In light of these definitions, we are now ready to formally introduce the stage-wise Stack-
elberg leadership assumption:

Assumption A5 (Stage-wise Stackelberg Leadership Assumption): At each stage n, given
	(n), the monopolist moves first and announces a value 	(n + 1) ≤ 	(n) , and then,
consumers’ expectations of the period n marginal customer’s lifetime net surplus are given
by Un(θn+1) = �(	(n + 1)).

Assumption A5 is crucial for the analysis that follows. An alternative to the stage-wise
Stackelberg leadership assumption would be the stage-wise simultaneous moves assumption,
that is, replacing A5 by the assumption that consumers in period n form their expectations
of Un(θn+1) by using a rule ˜�(.) based on the currently observed state variable, 	(n), i.e.,
Un(θn+1) = ˜�(	(n)) instead of Un(θn+1) = �(	(n + 1)). Later, we will comment briefly
on some implications of such an alternative formulation. Returning to the investigation of
the properties of the MPE, when Assumption A5 holds, we have that when consumers have
the ability to perfectly anticipate future market outcomes, condition (25) implies that the
expectations function �(.) must reflect rational expectations, i.e.,

�(	(n + 1)) =
∞
∑

j=1

β j

(

∫ 	∗(n+ j)

	∗(n+ j+1)

[

1

r
qn+ j (s)

]

ds

)

= Un(θn+1), (30)

where {	∗(.)}∞n+1 is the path of the state variable 	 induced by the strategic behavior of the
monopolist from period n, when the state variable takes the value 	(n), and where

qn+ j (s) = qn+ j
(

s|	∗(n + j)
)

,

i.e., the quality schedule that the consumers expect to be offered in period n + j is the same
as the schedule that the monopolist’s equilibrium strategy would select. Note that, due to
(24), �(	(n + 1)) satisfies the following equation:

�(	(n + 1)) = β

(

�(	(n + 2)) +
∫ θn+1

θn+2

[

1

r
qn+1(s)

]

ds

)

. (31)

In what follows, we analyze in more detail the firm’s optimal Markovian sales and quality
strategies. On the firm’s side, a Markovian strategy (η(.), ψ(.)) maximizes the monopolist’s
profit, given the anticipated consumer expectations function �(.) if (a) it yields a sequence
of cutoff values θn+1 and schedules qn(.) that maximize the monopolist’s expected profits
from any starting (date, state) pair (n,	(n)), and (b) the rational expectations condition (30)
is satisfied by such a sequence.

Using our definition of themodified inverse hazard rate, i.e., Eq. (29), theBellman equation
for the monopolist is then

V (	(n) =

max
qn(.),θn+1

⎧

⎨

⎩

∫ θn
θn+1

[

θ−h(θ;	(n))
r qn(θ |	(n))

−c(qn(θ |	(n))) − �(	(n))

]

f (θ)dθ

+βV (	(n + 1))

⎫

⎬

⎭

, (32)

where the RHS is to be maximized with respect to qn(θ |	(n)) and 	(n + 1), subject to the
constraint

qn(	(n + 1)|	(n)) ≥ βqn+1(	(n + 1)|	(n + 1)). (33)
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Given 	(n), pointwise maximization of the RHS of the Bellman equation with respect to
qn(θ |	(n)) subject to the constraint (33) yields the necessary condition that determines the
quality offered to customers of type θ in period n . Clearly, if constraint (33) is not binding
for a type θ ∈ [	(n + 1),	(n)] , then the monopolist’s optimal quality for that type is given
by:

q∗∗(θ |	(n)) ≡ c′−1
[

θ − h(θ;	(n))

r

]

. (34)

It follows that, if

q∗∗(	(n + 1)|	(n)) > βq∗∗(	(n + 1)|	(n + 1)) ≡ βc′−1
[

	(n + 1)

r

]

,

then the monopolist’s offers, q∗∗(θ |	(n)) for all types θ ∈ [	(n + 1),	(n)) , satisfy
constraint (33) with strict inequality.

If, on the contrary, there exists a type θ∗∗(θn, θn+1) ∈ [	(n + 1),	(n)) such that

q∗∗(θ∗∗(θn, θn+1)|	(n)) = βq∗∗(	(n + 1)|	(n + 1)),

then the monopolist’s optimal offers are equal to q∗∗(θ |	(n)) only for the types θ ∈
[

θ∗∗(θn, θn+1),	(n)
]

, while offers for consumers whose type belong to
[

	(n + 1),

θ∗∗(θn, θn+1)
]

are bunched. It follows that the quality offered to type θ -new customers

in period n is given by:

qm(θ |	(n)) = max{q∗∗(θ |	(n), βqse(	(n + 1))}. (35)

It should also be noticed that consumers at the top of the rung are always offered the
first-best quality, i.e.,

qm(	(n)|	(n)) = qse(	(n)).

5 Immediate Full Market-CoveringMarkov Perfect Equilibria

In this section, keeping Assumptions A1 to A5, we investigate which conditions may ensure
that, along the equilibrium play, the market is fully covered in the initial period, n = 0, as
in the conventional Mussa–Rosen setting. For this to hold, the monopolist’s Markov perfect
equilibrium strategy must be such that, at the beginning of any period n ≥ 0, given any
observed value of the concurrent state variable 	(n) ∈ [

θ, θ
]

, the monopolist’s equilibrium
cutoff rule is ψ(	(n)) = θ , i.e., all the customers that have not made a purchase will be
served in period n . The consumers, having received the message sent by the monopolist at
the beginning of period n, then rationally expect, in period n, that if for some reason (e.g.,
because of “trembling hands”) the lowest type of consumers that actually make a purchase
in period n (denoted by 	(n + 1)) turns out to be higher than θ , then in any case the market
will be covered in the following period, so that the lifetime surplus of type θn+1 consumers
is equal to the (discounted) surplus she will get if she delays her purchase until period n + 1.
This means that Eq. (31) reduces to:

�(	(n + 1)) = β

∫ θn+1

θ

[

1

r
qn+1(s)

]

ds. (36)
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According to the stage-wise Stackelberg leadership assumption, the monopolist, when
choosing in period n the value of 	(n + 1), i.e., the number of new customers it will serve
in that period, is fully taking into account the effect of this choice on the lifetime rent of the
marginal customer in period n, i.e., it accounts for (36). This assumption is crucial. Without
it, immediate full market-covering equilibria may not happen even in the case where a static
Mussa–Rosen monopolist would cover the whole market, as we shall show later.

Given θn which is observed at the beginning of period n, if the firm chooses to cover
immediately the market in period n (i.e., even the lowest type, θ , will be served in period n),
its profit for period n will be25

Z(θn, θ) ≡
∫ θn

θ

[

θ − h(θ;	(n))

r
qm(θ |	(n)) − c(qm(θ |	(n)))

]

f (θ)dθ, (37)

where qm(θ |	(n)) is defined by (35) and h(θ;	(n)) is the modified inverse hazard rate such
as defined by Eq. (29).

It will be convenient to refer to the bracketed term in Eq. (37) as v(θ;	(n)) and call it the
virtual surplus (starting from the beginning of period n, given that all types θ ∈ [

	(n), θ
]

have bought their durable goods):

v(θ;	(n)) ≡ [θ − h(θ;	(n))]

r
qm(θ |	(n)) − c(qm(θ |	(n))).

Notice that the quality schedule qm(θ |	(n)) is identical to the static Mussa–Rosen’s
schedule if 	(n) = θ . We are here studying the Markov perfect equilibrium of a monopolist
who cannot commit to future offers. An interesting feature of MPE when the firm cannot
commit to future offers is that, as we will demonstrate, it may be optimal for the firm to fully
cover the market immediately, even if the virtual surplus function v(θ;	(n)) turns out to be
negative for a subset of types θ ∈ [

θ, θ + ε
]

for some strictly positive ε.
This is in sharp contrast to the case of a static (or full-commitment) Mussa–Rosen monop-

olist, who would optimally choose not to make any offers to these low-type consumers but
this exactly corresponds to the constrained static MR monopolist, defined in Remark 4. The
reason why in a MPE a monopolist may be willing to make a loss on its sales to the low
types, θ ∈ [

θ, θ + ε
]

in order to fully cover the market is as follows. If the monopolist leaves
these customers unserved in period 0, then at the beginning of period 1, his future self may
be tempted to serve them, offering them higher quality at attractive prices. Anticipating this,
higher-type consumers in a subset of

(

θ + ε, θ
]

may deviate, by refraining from buying in
period 0. To prevent this deviation, the monopolist may find it advantageous to strategically
sell to all types of consumers in period 0.

To study the conditions under which full market coverage is optimal, it is useful to note
some properties of the function v(θ;	(n)).

Lemma 2 (i) The function v(θ;	(n)) is decreasing in 	(n) and increasing in θ ;
(ii) Customers of type θn, if they have not bought the good prior to period n, will be offered

the socially efficient quality qse(θn), implying no distortion at the top;
(iii) If Assumption A4 holds (i.e., the customer base is strong), starting from any given θn ∈

(θ, θ ], we obtain that the profit from full market-coverage is positive.

Example 1 (continued): In the linear-quadratic case, straightforward computations show
that profit (37) from full market coverage equals

1

r2
(	(n) − θ)

[

(	(n) − θ)2 + 3
(

θ2 − (

̂θ
)2
)]

,

25 This follows from Eq. (28), where θn+1 is replaced with θ , and where U (θ) = 0.
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which is always positive if θ ≥ ̂θ, i.e., if the customer base is strong.
Having proved that themonopolist never losesmoney by fully covering themarket does not

necessarilymean that an immediate full market-coverage is the profit-maximizing strategy. In
order to prove that the monopolist’s immediate full market-coverage strategy,ψ(	(n)) = θ,

∀(	(n)) = θ ∈ (θ, θ ], is the equilibrium cutoff strategy, it is necessary and sufficient to rule
out a one-shot deviation to some value 	(n + 1) ∈ (θ,	(n)], i.e., to show that it is better
for the monopolist to fully cover the market in period n rather than in period n + 1. Notice
that it is not enough to show that this holds when 	(n) = θ, since one must prove that
the candidate equilibrium strategy of full market coverage satisfies the subgame perfection
requirement, i.e., a deviation from it would not be profitable.

What is then the monopolist’s profit for such a deviation? In light of constraint (22), two
cases should be considered and therefore we obtain two different sufficient conditions which
are given in Proposition 1.26 The two cases are analyzed in detail in “Appendix” (see the
proof of Proposition 1).

Proposition 1 Under Assumptions A4 and A5, immediate full market-coverage is the unique
Markov perfect equilibrium strategy if

(i) either the static Mussa–Rosen monopolist would cover all the market, i.e., θ = θ∗;
(ii) or, despite the fact that the static Mussa–Rosen monopolist would not cover all the market,

i.e., θ < θ∗, the discount factor β is close enough to 1.

Proof See “Appendix”. ��
Proposition 1 establishes thatwhen there exists an immediate fullmarket-coverageMarkov

perfect equilibrium of the game it is the unique one and that this MPE corresponds to the con-
strained Mussa–Rosen static monopoly equilibrium defined in Remark 4. The game exhibits
basically non-Coasian features. On the one hand, when the length � of the commitment
period is short enough (so that the discount factor is close enough to 1), instantaneous full
market-coverage is a Markov perfect equilibrium of the game, which at first sight might
seem to look like a Coasian feature, but a more careful reflection reveals that the underlying
mechanism is completely different: it is a strategic choice of the monopolist which yields an
implicit credible commitment not to lower future prices (since all customers are here served
at the beginning of the game when β is sufficiently close to 1, or equivalently, � is short
enough).27 On the other hand, the monopolist’s strategy of covering immediately the whole
market avoids the erosion of profits, which remain always strictly positive, whereas in the No
Gap case of the standard model they tend to zero as the time between two period becomes
infinitesimal. This is clearly a non-Coasian feature of our MPE.

The last part of the sufficient condition (ii) in the above Proposition turns out to be
somewhat too restrictive. Indeed, as will be shown in the following section, which considers
the linear quadratic specification, in the case when the staticMussa–Rosenmonopolist would
not cover all the market but the customer base is strong (A4 holds), the discount factor needs
not be very high for immediate full market-coverage to be a Markov perfect equilibrium of
the game.

26 The first case (Case A) arises when	(n +1) is such that qm (	(n +1)|	(n)) > βqse(	(n +1)),whereas
the second case (Case B) arises when 	(n + 1) is such that qm (	(n + 1)|	(n)) < βqse(	(n + 1)).
27 It should be noticed in addition that this occurs here in one period (the initial one) while in the standard
durable model it takes (in the limit, as the duration of each period becomes infinitesimal) an infinite number
of periods.
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Remark 5 If Assumption A5 (the stage-wise Stackelberg leadership assumption) were
dropped and, instead, Un(θn+1) = �(	(n)) (i.e., the monopolist and the consumers move
simultaneously within each period), then condition θ∗ = θ in part (i) would become neces-
sary but it would cease to be sufficient for immediate full market-coverage to be a Markov
perfect equilibrium strategy.

Necessity is rather obvious. Assume indeed to the contrary that θ∗ > θ . Then, in the initial
period, the monopolist could deviate to 	(1) = θ∗, not serving in that period consumers for
which the virtual surplus is negative while keeping, due to expectations slackness, the rent
to marginal customers equal to zero and then cover in period 1 the rest of the market with a
positive benefit (provided that the market base is strong).28 Such a deviation ensures greater
profits than full market coverage in the initial period. To show that, under the simultaneous
move specification, the condition θ∗ = θ is not sufficient, it is enough to provide an example.
To this end, let us return toExample 1 and consider θ = 4, θ = 3, B = 0.5 and r = 1. It is easy

to check that θ+r
√
2B

2 = 2.5 so that a static (or full-commitment) Mussa–Rosen monopolist
would serve all consumers in the initial period. Without full commitment, monopolist’s
aggregate profit from serving in the initial period only consumers with θ ∈ [	(1), 4] for
some 	(1) ∈ [3, 4], and serving the remaining customers in the next period equals

1

6

[

(52 − 99β) + 	(1)2(24 − 9β) + 	(1)3(−4 + β) + 	(1)(−45 + 51β)
]

.

This expression takes its maximum at 	(1) = 3 iff β ≤ 3/8. This shows that immediate
full market coverage is not a Markov perfect equilibrium strategy for all β > 3/8.

There is a simple intuition for θ∗ = θ not being a sufficient condition for immediate full
market coverage equilibriumwhen consumers and themonopolist make simultaneousmoves.
Deviating allows the firm to reoptimize and select in period 1 a quality-schedule qm(θ |	(1))
for types θ ∈ [

θ,	(1)
]

which gives it greater profits per period than the quality schedule
qm(θ |θ). The cost of this deviation is that subsequent profits are worth less than profits in
period 1 as long as the discount factor β < 1. Accordingly, the deviation is profitable when
the discount factor is high enough (in the numerical example above, we should have β > 3

8 ).
Not surprisingly, under consumers’ expectations slackness, immediate full market coverage
requires both that theMussa–Rosen static monopolist would cover the whole market and that
the agents discount the future heavily enough, so that the model is close enough to a static
one.

6 The Linear-Quadratic Case

Let us now focus on themore tractable linear-quadratic casewhich has already been presented
in Example 1. Proposition 2 provides necessary and sufficient conditions for immediate full-
market coverage to be aMarkov perfect equilibrium strategy under the stage-wise Stackelberg
leadership property (Assumption A5). In Remark 6, wewill comment again on the alternative
scenario where consumers’ expectations depend on the state variable at the beginning of the
period (	(n)) rather than at the end (	(n + 1)).

Proposition 2 Under Assumption A5 and the assumption that the customer base is super-
strong (i.e., ̂θ < θ < θ), in the linear-quadratic case,

28 The proof is analogous to the proof of Lemma 1.
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(i) if β ∈ (β, 1], where we define β ≡
(

̂θ
θ

)2
< 1, immediate full market coverage is a

Markov perfect equilibrium strategy, regardless of how big the ratio θ/θ is.
(ii) if β ∈ [0, β], immediate full market coverage is a Markov perfect equilibrium strategy

if θ/θ ≤
[

(2 − β) −
√

(1 − β)(β − β)
]

≡ μ(β).

(iii) for full market coverage to be a Markov perfect equilibrium strategy, it is necessary
that either β > β or θ/θ ≤ μ(β).

Proof See “Appendix”. ��
Proposition 2 is not a simple corollary of Proposition 1. It provides conditions which

are not only sufficient but necessary as well. These conditions are less restrictive than the
ones in Proposition 1. Consider, for instance, the condition θ/θ ≤ μ(β).When c(0) = 0, the
inequality θ/θ ≤ μ(β) is equivalent to the condition that the static Mussa–Rosen monopolist
would cover the whole market if (but not only if) β = 0.With β = 0, the sufficient condition

in (ii) above reduces to θ/θ ≤ (2 −
√

β) ⇔ θ ≥ θ+̂θ
2 . Since μ(β) is increasing in β for

all β ∈ [

0, β
]

, the condition in Proposition 2 in less stringent than the one in Proposition 1
(which requires that β is close to 1). On the other hand, it is clear from Proposition 2 that in
the linear-quadratic case the condition that β is close enough to 1 has only some bite when
β < 1, i.e., when the customer base is super-strong.

In order to highlight even more the role of the stage-wise Stackelberg assumption versus
the simultaneous moves assumption (slackness of consumers’ expectations), we show in
Remark 6 that in the latter case the conditions for the existence of an immediate full market
coverage equilibrium are much more restrictive that in the former one.

Remark 6 Consider again Example 1. Then, under slack consumers’ expectations, immediate

full market coverage is aMarkov perfect equilibrium strategy iff (i) θ+r
√
2B

2 ≤ θ (theMussa–

Rosen static monopolist would cover the whole market) and (ii) β ≤ (θ−2θ)2−2r2B
θ2−2r2B

< 1 (the

discount factor is small enough).29

Proof See “Appendix”. ��
Remark 6 simply shows that, under slack consumers’ expectations (i.e., simultaneous

moves within each period), immediate full market coverage occurs only if the model is close
enough to a static model where the monopolist would cover the whole market. The condition
that the discount factor should be low enough goes opposite to the sufficient condition in the
stage-wise Stackelberg leadership case that immediate full coverage occurs if the discount
factor is close enough to 1. The condition in that case is much more restrictive than the ones
in Proposition 2.

Finally it may be interesting to compare the equilibrium price-quality under full com-
mitment (the unconstrained MR static monopoly equilibrium) and no commitment (the
immediate full market-covering equilibrium). This is done below in the linear-quadratic case
when θ = 10, θ = 5, c(q) = 2+ 1

2q2, r = 1.Under full commitment (blue curve), a range of
qualities q ∈ [2, 10] are offered at price p(q) = 1

4 (10+q)2−24.Under no commitment (red
curve), a wider range of qualities q ∈ [0, 10] are offered at a price p(q) = 1

4 (10+ q)2 − 25.
In the common range of qualities, the price under no commitment is smaller than the price
under full commitment by a fixed amount.

29 Notice that the numerator is positive since θ ≥ θ+r
√
2B

2 (full market coverage by the staticMRmonopolist)
and the denominator is positive as well since the market is strong.
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Fig. 1 The price-quality
schedules under commitment and
non-commitment

Figure 1 illustrates that our immediate full market-covering MPE corresponds exactly to
the equilibrium of a Mussa–Rosen static monopolist who is constrained to cover the whole
market and that the quality schedule q(θ) is the same in our model as in the unconstrained
MR model (except for the ranges of value of θ ), while the price p(θ) is smaller by a fixed
amount.

7 Concluding Remarks

This paper enriches the literature on durable goods monopoly by considering a model in
which a durable good monopolist, facing a continuum of customers with private information
about their preferences, has the technological ability to offer a continuum of quality levels for
the durable good. One of our findings is that, thanks to this additional ability to practice intra-
period price discrimination with a price-quality menu, the monopolist’s inability to commit
to future price offers does not lead to the erosion of monopoly profit (unlike the standard
one-quality level durable good monopoly analyzed by Coase, where the lack of commitment
leads to lower aggregate profit, which, in the No Gap case, shrinks to zero as the length of
the commitment period tends to zero).

Moreover, we found two alternative sufficient conditions for immediate full market cov-
erage to be a Markov perfect equilibrium of the game. Interestingly, such a Markov perfect
equilibrium exhibits both Coasian and non-Coasian features. When the length � of the com-
mitment period is short enough (so that the discount factor is close enough to 1), instantaneous
full market-coverage is a Markov perfect equilibrium of the game, which is a seemingly
Coasian feature, but which occurs here under different conditions and for completely dif-
ferent reasons. Moreover, the monopolist’s profits under immediate full market coverage
remains always strictly positive, which is definitely a non-Coasian feature. The standard
Coasian result of profit erosion (under the traditional one-quality assumption) has been inter-
preted as an outcome of competition between the present monopolist and his future selves. It
turns out that this classic time-inconsistency problem in intertemporal price discrimination
can be mitigated by replacing intertemporal price discrimination with intra-period price-and-
quality discrimination within each cohort of customers, as our model has shown. By covering
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immediately the whole market, the monopolist is indeed able to commit not to lower its price
in subsequent periods: by serving low-type consumers at a loss, he is able to make greater
profits on high type ones.

Our result that having the ability to practice intra-period price discrimination mitigates
against the curse of time-inconsistency suggests that the lack of commitment on future prices
may encourage a durable good monopolist to invest in technology that enables the supply
of many versions of the durable good (each with a different quality level), shedding light on
an additional theoretically plausible explanation to justify firms’ recent investments in mass
customization technologies within a wide variety of industries.

Appendix

Proof of Result 1. Clearly, the solution of the social welfare maximization is as follows. For
each type θ ∈ [

θ, θ
]

, the plannermust choose δ(θ) ∈ {0, 1} and q(θ) ∈ [0,∞) tomaximize

δ(θ)

[

1

r
θq(θ) − c(q(θ))

]

; (A.1)

Consider first the case where c(0) > 0, i.e., c(q) = B + g(q) where B > 0 and g(0) =
0, g′(q) > 0 and g′′(q) > 0. Then, there exists a unique q̂ > 0 such that c′(̂q) = c(̂q)/q̂ .
Let us define a critical consumer type,̂θ , by the condition that

1

r
̂θ = c′(̂q). (A.2)

Graphically, the straight line 1
r
̂θq (with slope ̂θ/r ) is tangent to the strictly convex cost

curve c(q) at q = q̂ . It is clear from this observation that the social planner, in solving the
maximization problem (A.1) for type ̂θ , finds that the optimal surplus for this type is zero.
This means that the planner is indifferent between (i) allocating to typêθ consumers a unit of
durable at quality q̂, i.e.,

{

δ
(

̂θ
) = 1, with q

(

̂θ
) = q̂

}

, requiring them to meet the cost c(̂q),
or (ii) not allocating to them any unit of durable good, i.e., δ

(

̂θ
) = 0. Either action yields a

net lifetime utility of zero for these consumers. It follows from the convexity of c(q) that, for
consumers of type θ > ̂θ , the planner’s optimal solution is δ(θ) = 1, and they are allocated
a unit of durable of quality level qse(θ), which is defined by the condition

1

r
θ = c′ (qse(θ)

)

, θ ∈ (

̂θ, θ
]

, (A.3)

where the superscript in qse(θ) indicates that it is the socially efficient quality level. These
consumers gain strictly positive lifetime net utility (θ/r)qse(θ) − c (qse(θ)). By the same
token, for consumers of type θ < ̂θ , the planner’s optimal solution is δ(θ) = 0. Such
consumers are not served, and their lifetime net utility is zero.

In the case where c(0) = 0, we have q̂ = 0. Again,̂θ is defined bŷθ/r = c′(̂q) ≥ 0. The
planner’s optimal allocation of durable goods is the same as in the case where B > 0.

In summary, we definêθ by

̂θ ≡
{

rc(̂q)
q̂ if c(0) > 0

rc′(0) if c(0) = 0
(A.4)

and we denote by qse(θ) the socially efficient quality level for any given type θ ≥ ̂θ , i.e.,

qse(θ) = c′−1(θ/r) for θ ≥ ̂θ , (A.5)
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which corresponds to the quality level identified in Result 1. ��
Proof of Lemma 1 Substituting for p(θ), using Eq. (9), we get

π =
∫ θ

θ∗

[

1

r
θq(θ) − c(q(θ))

]

f (θ)dθ −
∫ θ

θ∗

[∫ θ

θ∗
1

r
q(θ ′)dθ ′

]

f (θ)dθ. (A.6)

The second integral in (A.6) is called “the aggregate informational rents”, or I R, that
consumers obtain thanks to their private information about their types.

Applying the formula of integration by parts, the second integral in (A.6), which is the
aggregate informational rent (over all types), can be written as:

I R =
∫ θ

θ∗
[1 − F(θ)]

1

r
q(θ)dθ =

∫ θ

θ∗
[h(θ)]

1

r
q(θ) f (θ)dθ. (A.7)

Therefore,

π =
∫ θ

θ∗

[

1

r
θq(θ) − c(q(θ)) − h(θ)

1

r
q(θ)

]

f (θ)dθ,

where, by definition,

h(θ) ≡ 1 − F(θ)

f (θ)
.

Rearranging terms, we get

π =
∫ θ

θ∗

[

1

r
[θ − h(θ)] q(θ) − c(q(θ))

]

f (θ)dθ. (A.8)

We refer to the term inside the brackets [. . .] as the “virtual surplus” and denote it by
ṽ(θ, q(θ)):

ṽ(θ, q(θ)) = 1

r
[θ − h(θ)] q(θ) − c(q(θ)),

as pointed out in Lemma 1. ��
Proof of Result 2 Let us now define the “optimized virtual surplus” function v(θ) :

v (θ) ≡ ṽ(θ, qm(θ)).

By the envelope theorem, we obtain the result that v(θ) is increasing in θ30:

dv(θ)

dθ
= ∂ṽ(θ, qm(θ))

∂θ
= 1

r

[

1 − h′(θ)
]

qm(θ) ≥ 0 because of A3.

The monopolist’s profit, given the cutoff type θ∗ ∈ [

θ, θ
]

, is then

π(θ∗) =
∫ θ

θ∗

[

1

r
[θ − h(θ)] qm(θ) − c(qm(θ))

]

f (θ)dθ

≡
∫ θ

θ∗
v(θ) f (θ)dθ. (A.9)

30 Note that by Assumption A4 and h(θ) = 0, we have v
(

θ
)

> 0.
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So far, we have considered an arbitrary cutoff type θ∗. Now, let us turn to the monopolist’s
choice of the optimal cutoff type, denoted by θ∗opt .

θ∗opt ≡ argmax
θ∗≥θ

π(θ∗). (A.10)

When θ∗ is evaluated at θ∗opt , the following FOC conditions must be met:

dπ(θ∗)
dθ∗ ≤ 0, θ∗ − θ ≥ 0,

[

θ∗ − θ
] dπ(θ∗)

dθ∗ = 0,

since dπ(θ∗)
dθ∗ = −v(θ∗) f (θ∗), and since f (θ) > 0 for all θ ∈ [

θ, θ
]

(by Assumption A2),
the FOC conditions may be written as

v(θ∗) f (θ∗) ≥ 0, θ∗ − θ ≥ 0,
[

θ∗ − θ
]

v(θ∗) = 0. (A.11)

That is, the optimal cutoff is implicitly defined by the condition that

1

r

[

θ∗opt − h(θ∗opt )
]

qm(θ∗opt ) − c(qm(θ∗opt )) = 0 if θ∗opt > θ (A.12)

≥ 0 if θ∗opt = θ. (A.13)

This allows us to prove each point in Result 2 as follows:

(i) Since v(θ) is non-decreasing, if v
(

θ
)

> 0, then v(θ) > 0 for all θ > θ , which implies
that θ∗opt − θ = 0;

(ii) Since v
(

θ
)

> 0 by Assumption A4, if v(θ) < 0, then there exists θ∗opt such that
v
(

θ∗opt
) = 0;

(iii) This follows from Eq. (11). ��
Proof of Claim 1 Since ∂v

∂θ
> 0, the condition θ∗ = θ is equivalent to the condition that

v(θ, qm(θ)) = 1
r

(

θ − h(θ)
)

qm(θ)−c(qm(θ)) ≥ 0. Since h(θ) is monotone decreasing and
h
(

θ
) = 0,we have h(θ) > 0 for θ < θ . Therefore, for v(θ, qm(θ)) ≥ 0 to hold, it is necessary

that 1
r θqm(θ) − c(qm(θ)) > 0. This inequality in turn implies that 1

r θqse(θ) − c(qse(θ)) >

0,because the very definition of qse implies that 1
r θqse(θ) − c(qse(θ)) ≥ 1

r θq − c(q) for
all q ≥ 0. Finally, the inequality 1

r θqse(θ) − c(qse(θ)) > 0 is possible if only if θ > ̂θ , by
definition of̂θ . ��
Proof of Lemma 2. First, using the Envelope theorem, it is clear that v(θ;	(n)) is decreasing
in 	(n) and increasing in θ , leading to point (i) in Lemma 2. As far as concerns point (ii)
in Lemma 2, note that since h(θn;	(n)) = 1, there is no distortion of the top: customers
of type θn , if they have not bought the good prior to period n, will be offered the socially
efficient quality qse(θn); therefore, v(θn;	(n)) > 0 because θn > θ ≥ ̂θ .

Now, as far as concerns point (iii) either v(θ;	(n)) > 0, or v(θ;	(n)) ≤ 0. If
v(θ;	(n)) > 0, then all types θ ∈ [

θ,	(n)
]

will be served, and we are done. If
v(θ;	(n)) ≤ 0, then there exists a unique θ ∈ [

θ;	(n)
]

such that v(θ,	(n)) = 0 .
Then let us denote that value by �(	(n)). Notice that �(θ) = θ∗opt , the optimal cutoff value
for the static Mussa Rosen case. Obviously (i) v(θ ′,	(n)) ≥ 0 for all types θ ′ ≥ �(	(n))

and (ii) �(	(n)) is increasing in	(n) since when applying the implicit function to equation

v(θ;	(n)) = 0,

one obtains

�′ (	(n)) = dθ

d	(n)
= −v	(n)

vθ

> 0.
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Then, a necessary condition for an immediate fullmarket-covering strategyψ (	(n)) = θ ,
∀	(n) ∈ [

θ, θ
]

to be an equilibrium strategy is that the monopolist’s profit for covering the
market immediately, denoted by Z(θn, θ), as defined by Eq. (37), be nonnegative. For, if
Z(θn, θ) is strictly negative, then, for any value of the discount factor β < 1, the firm would
be better off delaying market coverage to the next period. We now show that Z(θn, θ) ≥ 0 if
Assumption A4 holds, i.e., the customer base is “strong.”, leading to point (iii) in Lemma 2.

Taking the derivative of (37) with respect to θn , and making use of the Envelope theorem
and noting that there is no distortion at the top, i.e., for type θn , one obtains

∂ Z(θn, θ)

∂θn
= f (θn)

[

(

θn

r
qse(θn) − c(qse(θn))

)

−
∫ θn

θ

1

r
qm(θ |	(n))dθ

]

.

Under Assumption A4, this derivative is positive if θn is evaluated at θ. To show that it is
positive for any θn > θ , it suffices to show that the bracketed term is increasing in θn . Differ-
entiating it wrt θn and using again the Envelope theorem,31 one obtains− ∫ θn

θ
1
r

∂qm (θ |	(n))
∂	(n)

dθ

which is > 0 since ∂qm (θ |	(n))
∂	(n)

< 0 ��
Proof of Proposition 1 (a) Existence:

According to constraint (22), we need to consider two cases when investigating if the
monopolist profits from deviating from full market coverage:

CaseA:When	(n+1) is such that qm(	(n+1)|	(n)) > βqse(	(n+1)), the deviation
profit, denoted by D, equals

D =
∫ θn

θn+1

( [θ−h(θ;	(n))]
r qm(θ |	(n))

−c(qm(θ |	(n))) − �(	(n + 1))

)

f (θ)dθ

+β

∫ θn+1

θ

( [θ−h(θ;	(n+1))]
r qm(θ |	(n + 1))

−c
[

qm(θ |	(n + 1))
]

)

f (θ)dθ.

Given Eq. (36), D may be conveniently rewritten as

D =
∫ θn

θn+1

( [θ−h(θ;	(n))]
r qm(θ |	(n))

−c
[

qm(θ |	(n))
]

)

f (θ)dθ

+β

∫ θn+1

θ

( [θ−h(θ;	(n))]
r qm(θ |	(n + 1))

−c
[

qm(θ |	(n + 1))
]

)

f (θ)dθ. (A.14)

The difference, d ≡ Z(θn, θ) − D, between profits as given by (37) and the deviation
profits (A.14), equals

d =
∫ θn+1

θ

(

[θ − h(θ;	(n))]

r
qm(θ |	(n)) − c

[

qm(θ |	(n))
]

)

f (θ)dθ

−β

∫ θn+1

θ

(

[θ − h(θ;	(n))]

r
qm(θ |	(n + 1)) − c

[

qm(θ |	(n + 1))
]

)

f (θ)dθ.

(A.15)

We can re-write d as follows:

(1 − β)

∫ θn+1

θ

( [θ−h(θ;	(n))]
r qm(θ |	(n))

−c
[

qm(θ |	(n))
]

)

f (θ)dθ +

31 Notice that qse(θ) = argmax
q

θ
r q − c(q).
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β

⎡

⎣

∫ θn+1
θ

(

[θ−h(θ;	(n))]
r qm(θ |	(n)) − c

[

qm(θ |	(n))
]

)

f (θ)dθ−
∫ θn+1
θ

(

[θ−h(θ;	(n))]
r qm(θ |	(n + 1)) − c

[

qm(θ |	(n + 1))
]

)

f (θ)dθ

⎤

⎦ . (A.16)

The second, bracketed, term is clearly positive since qm(θ |	(n)) has been defined as
the period n virtual surplus maximizer for types- θ customers. The first term is positive
or negative according as the integral of virtual surpluses is positive or negative over the
interval

[

θ, θn+1
]

. Using the Envelope theorem, the virtual surplus for type θ customers is a
decreasing function of 	(n). Therefore, a sufficient condition for the first term to be positive
is that it is positive for 	(n) = θ and all θ ∈ [

θ, θ
]

. This is equivalent to condition that the
static Mussa–Rosen monopolist finds it optimal to serve the whole market (i.e., θ = θ∗). An
alternative sufficient condition is that β be close enough to 1.

According to the previous analysis, we obtain two different sufficient conditions obtained
as follows.

(i) If θ = θ∗, then θ ≥ �(	(n)), meaning that the virtual surplus for serving type θ -
consumers in period n is positive, whatever 	(n). Accordingly, the first term in (A.16) is
always positive. Since the second one is positive, whatever the value of β, deviation is never
a better strategy than immediate full market-coverage.

(ii) If θ < θ∗, the first term in (A.16) may be negative for some values of θn+1 since the
virtual surplus for serving low types of consumers is negative. However, since the second
term is positive, a high enough value of β ensures that the sum is positive. Once more, under
this condition, deviation is never a better strategy than full market-coverage.

Case B: When 	(n + 1) is such that qm(	(n + 1)|	(n)) < βqse(	(n + 1)), the
monopolist who deviates is constrained to select the quality βqse(	(n +1)) over the interval
(θn+1, θ

∗∗(θn, θn+1)] where θ∗∗(θn, θn+1) is the value of θ which satisfies qm(θ |	(n)) =
βqse(	(n + 1)).32 She clearly obtains profits which are smaller than in the unconstrained
case, namely smaller than (A.14). A sufficient condition for a deviation to be unprofitable is
then that (A.16) be positive for all θn+1 ∈ [

θ, θ
]

. Since the second, bracketed, term in (A.16)
is always positive and the virtual surplus 1

r (θ − h((θ;	(n))qm(θ |	(n)) − c(qm(θ |	(n)))

is decreasing in 	(n), being maximum when 	(n) = θ .

(b) uniqueness
(i) Suppose first that on the contrary there exists an MPE such that the market is fully

covered in a finite number of steps ≥ 2 so that at the last step N , θ(N ) = θ Consider then
the two previous steps N − 2 and N − 1. At N − 2, the firm may instead choose to cover
instantaneously the market so that ψ(θ(N − 2)) = θ(N − 1) = θ. Due to the Stackelberg
leadership Assumption A.5., this implies that �(θ(N − 1)) = 0. Then, this deviation is
profitable iff D defined in the part (a) of Proof of Proposition 1 is negative, i.e., if immediate
full-market coverage is an MPE.

(ii) Suppose then that there exists an MPE in which the market is fully covered only
asymptotically, in an infinite number of steps. At step n, the static MR monopolist would
cover all themarket if θ(n) < ˜θ where 1

r

[

θ − h(θ;˜θ)
]

qm(θ)−c(qm(θ)) = 0.As themarket
is superstrong˜θ > θ so that 1

r

[

θ − h(θ; θ)
]

qm(θ) − c(qm(θ)) > 0 for all θ ∈ [θ,˜θ). Since
themarket is supposed to be asymptotically covered, there always exists some step n at which
θ(n) ∈ [θ,˜θ). It is then more profitable at this period to cover fully the market immediately
in one step.

32 Notice that the strict monotonicity of qm (θ |	(n)) with respect to θ (which follows from our assumptions)
ensures that the solution is unique.
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(iii) Suppose finally that there exists an MPE where the market is not fully covered, i.e.,
such that θ(n)− > θinf ≥ ˜θ > θ when n tends toward infinity. There is then always some
n great enough so that θ(n) is arbitrary close to θinf and then the firm’s discounted profits
from n to +∞ are arbitrary close to 0. If the market is super-strong we have from Lemma 2
that covering fully and immediately the remaining market yields strictly positive profits and
is accordingly a profitable deviation. ��

Proof of Remark 5 As far as concerns sufficiency, note that if the static Mussa–Rosen monop-
olist covers the whole market

[

θ, θ
]

, it also covers any smaller market
[

θ,	(n)
]

where
	(n) < θ since �(	(n)) < �(θ) = θ∗.

The proof of Remark 5 is straightforward. Indeed, under the simultaneous moves assump-
tion, an immediate full market coverage equilibrium must be such that �(	(n)) = 0,
∀	(n) ∈ [

θ, θ
]

. The profit along the candidate equilibrium path is still given by (37).
Suppose that θ∗ > θ. Consider n = 0 and a deviation to 	(1) = θ∗. The firm is then
expected to fully cover the market in period 1 and �(	(1)) = 0. This deviation yields
profits equal to

∫ θ

θ∗

[

θ − h(θ)

r
qm(θ |1) − c(qm(θ |1))

]

f (θ)dθ

+β

∫ θ∗

θ

[

θ − h(θ; θ∗)
r

qm(θ |θ∗) − c(qm(θ |θ∗))
]

f (θ).

��

Proof of Proposition 2 (a) Proof of parts (i) and (ii) of Proposition 2
Parts (i) and (ii) provide sufficient conditions for immediate market coverage. As already

indicated, we only need to consider conditions that ensure that the value of d , i.e., (A.16), is
positive.

Straightforward computations show that (A.16) can be expressed as:

(	(n + 1) − θ) × {

2(2θ2 − 3Br2)(1 − β) − 6θ	(n)(1 − β) + 3	(n)2

+(4θ(1 − β) − 6	(n))	(n + 1) + (4 − β)	(n + 1)2
}

For all 	(n + 1) ∈ (θ,	(n)], the sign of this expression is the sign of the bracketed term
{. . .}. This bracketed term is a U-shaped second-order polynomial in 	(n + 1) which we
shall denote as P(	(n + 1);	(n)). A deviation is not profitable if whatever 	(n) ∈ (θ, θ ],
this polynomial either has no real root or, if there exist real roots, the smallest root is greater
than 	(n).

• The polynomial has no real root if the discriminant of the polynomial is negative. The
discriminant is equal to:

−(1 − β)
[

4θ2 + 2Br2(−4 + β) + 2θ(−2 + β)	(n) + 	(n)2
]

.

It is indeed negative if either condition (i) or condition (ii) below holds:

(i) β > β ≡
(

̂θ
θ

)2
. Notice that β < 1 iff the customer base is super-strong, i.e., θ > ̂θ;

(ii) β ≤ β and 	(n) ≤ θ
[

(2 − β) −
√

(4 − β)(β − β)
]

for all 	(n) ∈ [

θ, θ
]

. Notice

that the interval of values ofβ such that this condition is satisfied is non-void iffβ >
4β−1
2β+2

.
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Fig. 2 The area where P(	(n + 1), 	(n)) ≥ 0

• Consider the case β ≤ β. The polynomial P(θ,	(n)) is straightforwardly positive if

	(n)/θ ≤
[

(2 − β) −
√

(1 − β)(β − β)
]

≡ μ(β), i.e., if 	(n) ≤ θμ(β). Now,

P(	(n + 1), θμ(β)) = (4 − β)(	(n + 1) − θ) + 6θ
√

(1 − β)(β − β)

is increasing in 	(n +1). Accordingly, θ ≤ θμ(β) is sufficient to ensure that immediate
full market-coverage is an equilibrium strategy for all 	(n) ∈ [

θ, θ
]

.33

To help the reader to visualize the argument, we have pictured below, in the
(	(n + 1),	(n)) space, the area (in blue) where P(	(n + 1),	(n)) ≥ 0 and
	(n + 1) ≤ 	(n). Figure 2 is drawn for θ = 3, θ = 8, r = 1, B = 2, (implying
that β = 4/9), and β = 0.2. Notice that θμ(β) = 4.07335.

When β increases, the white “finger” in the blue area shrinks, disappearing completely
when β becomes greater than 4/9.

(b) Proof of part (iii) of Proposition 2
The conditions in parts (i) and (ii) are sufficient conditions, obtained for Case A, where

	(n +1) ≥ 	(n)
2−β

. They are sufficient because the profit differential in Case B is smaller than
in Case A. We now show that for immediate market coverage to be the equilibrium outcome
it is necessary that either β > β or θ ≤ θμ(β).

Suppose that β ≤ β and θ > θμ(β). Then there exists some 	(n) ≤ θ belonging to the

non-void interval θ
[

(2 − β) −
√

(1 − β)(β − β)
]

, θ(2− β)], and such that we are in Case
A when 	(n + 1) = θ and P(θ,	(n)) < 0. By continuity there is a 	(n + 1) close enough
to θ and a 	(n) ∈ [	(n + 1)μ(β),	(n + 1)(2 − β)] such that P(	(n + 1),	(n)) < 0 so

33 Notice that this condition is weaker than the condition θ ≤ θ
[

(2 − β) −
√

(4 − β)(β − β)
]

;.
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that, starting from 	(n), full market-coverage is not an equilibrium strategy. We conclude
that, for full market-coverage to be an equilibrium strategy from any 	(n) ∈ (θ, θ ], it is
necessary that either β > β or θ ≤ θμ(β). ��
Proof of Remark 6 Consider that initially the firm picks a cutoff 	(1) ∈ [

θ, θ
]

, anticipating
to cover the whole market in period 1 if not in period 0, and notice that immediate full market
coverage corresponds to the special case when 	(1) = θ. The corresponding profits equal

π(	(1)) =
∫ θ

	(1)
(
1

2r2
(2θ − θ)2 − B) f (θ)dθ (A.17)

+β

∫ 	(1)

θ

(
1

2r2
(2θ − 	(1))2 − B) f (θ)dθ. (A.18)

Remember that, given slack consumers’ expectations, the consumers expect the firm to
cover the market instantaneously so that �(	(n)) = 0, ∀	(n) ∈ [

θ, θ
]

, ∀n ≥ 0. Differen-
tiating (A.17) twice with respect to 	(1), one obtains

π ′′(	(1)) = 2θ − 4θ + β(	(1) − θ),

which is negative for all β ∈ [0, 1] and all 	(1) ∈ [

θ, θ
]

since θ ≥ θ+r
√
2B

2 . Concavity of
(A.17) with respect to 	(1) then implies that choosing 	(1) = θ maximizes (A.17), i.e.,
no deviation is profitable iff π ′(	(1)) ≤ 0. Straightforward computations show that this is

equivalent to β ≤ (θ−2θ)2−2r2B
θ2−2r2B

.

Notice then that the same argument holds in any period n, simply replacing θ by 	(n)

and 	(1) by 	(n + 1). One then obtains the constraint β ≤ (	(n)−2θ)2−2r2B
θ2−2r2B

which is

automatically satisfied if β ≤ (θ−2θ)2−2r2B
θ2−2r2B

is satisfied. ��
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