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Abstract
This paper studies dynamic mechanism design in a Markovian environment and analyzes
a direct mechanism model of a principal-agent framework in which the agent is allowed
to exit at any period. We consider that the agent’s private information, referred to as state,
evolves over time. The agent makes decisions of whether to stop or continue and what to
report at each period. The principal, on the other hand, chooses decision rules consisting of an
allocation rule and a set of payment rules tomaximize her ex-ante expected payoff. In order to
influence the agent’s stopping decision, one of the terminal payment rules is posted-price, i.e.,
it depends only on the realized stopping time of the agent. Thiswork focuses on the theoretical
design regime of the dynamic mechanism design when the agent makes coupled decisions
of reporting and stopping. A dynamic incentive compatibility constraint is introduced to
guarantee the robustness of the mechanism to the agent’s strategic manipulation. A sufficient
condition for dynamic incentive compatibility is obtained by constructing the payment rules
in terms of a set of functions parameterized by the allocation rule. The payment rules are
then pinned down up to a constant in terms of the allocation rule by deriving a first-order
condition. We show cases of relaxations of the principal’s mechanism design problem and
provide an approach to evaluate the loss of robustness of the dynamic incentive compatibility
when the problem solving is relaxed due to analytical intractability. A case study is used to
illustrate the theoretical results.

Keywords Dynamic mechanism design · Principal-agent problem · Optimal stopping

1 Introduction

Mechanism design theory provides a theoretical foundation for designing games that can
induce desired outcomes. The players of the game have private information that is not pub-
licly observable. Hence, the mechanism designer’s collective decisions have to rely on the
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players to reveal their private information. This information asymmetry is an important fea-
ture of mechanism design problems. The revelation principle allows the mechanism designer
to focus on a class of incentive-compatible direct mechanisms to replicate equilibrium out-
comes of indirect mechanisms. In the celebrated work by Vickery ([52]), it has been shown
that the seller receives the same expected revenue independent of the mechanism within a
large class of auctions. Vickrey–Clark–Groves (VCG) mechanism is an example of truthful
mechanism to achieve a social–optimal solution. This work investigates mechanism design
problems in a dynamic environment, in which a player, aka the agent, sends a sequence of
messages based on the gathered information to the designer. The designer, aka the principal,
chooses dynamic rules of encounter of the agent tomaximize the profit based on themessages.
Our model allows the agent to decide how to report his private information to the principal
and whether to stop the mechanism immediately or continue to the future at the same time.
These two coupled decision makings depend on the agent’s dynamic private information that
endogenously depends on the past outcomes of the mechanism. The model covers different
economic scenarios when the agent establishes an agreement with the principal to, for exam-
ple, dynamically purchase private or public goods when his valuation stochastically changes
over time or frequently consume experience goods when his preference is refined after every
usage of the goods, while the agent is allowed to terminate this agreement at any period of
time. Unlike the mechanism design with deadline or a solid commitment period, the agent
in our model owns the right to stop. This additional freedom reduces the agent’s risk in the
long-term relationship with the principal due to the uncertainty of the dynamic environment.
However, agent’s such freedom complicates the principal’s characterization of the incentive
compatibility in the dynamic environment. In this work, we aim to settle the design regimes
of such dynamic mechanism by characterizing the allocation and the payment rules and elab-
orate the incentive compatibility of the mechanism when the agent with time-varying private
information couples his decision making of how to reveal his private information with his
optimal stopping decision.

Many real-world problems are fundamentally dynamic in nature. Research of dynamic
mechanism design has studied many applications in optimal auctions (e.g., [18,30]), screen-
ing (e.g., [1,15,16]), optimal taxation (e.g., [19,34]), contract design (e.g., [55,57]), matching
market (e.g., [2,3]), to name a few. In dynamic mechanism problems, there are mechanisms
without private information. For example, in airline revenue management problems, an air-
line makes decisions about seat pricing on a flight by taking into account the time-varying
inventory and the time evolution of the customer base. In this paper, however, we consider an
information-asymmetric dynamic environment in which the agent privately possesses infor-
mation that evolves over time. The time evolution of the private information may be caused
by external factors, the past observations, as well as the decisions from the principal, as when
the agent employs learning-by-doing regimes. For example, in repeated sponsored search
auctions, the advertisers privately learn about the profitability of clicks on their ads based on
evaluations of the past ads as well as observations frommarket analysis. In this work, we con-
sider a dynamic environment, when the agent’s private information changes endogenously
due to the outcomes of the past decision makings. Evidence in many economic scenarios
has shown that people’s past decisions often play a significant role in shaping their future
preferences ([56]). Business models have taken into account the belief that customers’ pref-
erences can be changed endogenously by using the products or services to form the habit of
the customers and encourage long-term shopping sprees. For example, many products and
services, such as newspapers, online video streaming, software as a service, food delivery,
provide free trial offers to attract new customers to commit long-term subscriptions.
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Optimal stopping theory studies the timing decisions under conditions of uncertainty
and has been successfully adopted in applications of economics, finance, and engineering.
Examples include gambling problems (e.g., [17,23]), option tradings (e.g., [4,28,33]), and
quick detection problems (e.g., [29,43,51]). This paper studies a class of general dynamic
decision-making models, in which the agent has the right to stop the mechanism at any
period based on his current observations and the anticipations of the future. The agent adopts
a stopping rule and is allowed to realize the stopping time in any period before themechanism
terminates naturally upon reaching the final period. In contract design problems, for example,
allowing the stopping decision is made as a clause of a dynamic contract that specifies the
agent’s right to terminate the agreement at any period. However, our optimal stopping setting
is fundamentally different from the contract intra-deal renegotiation (i.e., renegotiationwithin
the life of the contract) and the contract break. In general, a renegotiation occurs due to
the failure of one party to fulfill its obligations or the inability of one party to meet its
commitments. In such cases, one side of the participants seeks relief of its commitments or
wishes to terminate the agreement before the term of that agreement has concluded (see, e.g.,
[49]). The consequence of the renegotiation might be the termination of the contract or a
new contract with modified terms and clauses. Our stopping setting, however, is not due to
any breach of the contract by any participant or the inability of maintaining the agreement;
it is not a consequence of renegotiations of the contract. Instead, early termination due to the
stopping rule is the right of the agent and lies in the commitment of the principal’s dynamic
mechanism. Once the agent decides to terminate the contract at a specific period, he cannot
break the dynamic contract by refusing the outcomes (i.e., allocations and payments) that
have already been realized up to that period.

We consider a finite horizon Markovian environment, in which the agent can observe the
private information, referred to as the state, that arrives dynamically at the beginning of each
period. The dynamic information structure is governed by a stochastic process characterized
by the principal’s decision rules, the transition kernels, and the agent’s strategic behaviors.
After observing his state at each period, the agent chooses a strategy to report his state to
the principal and decides whether to stop immediately or to continue. Conditioning on the
reported information (including the stopping decision), the principal provides an allocation to
the agent and induces a payment. The principal aims tomaximize her ex-ante expected payoff
by choosing feasible decision rules including a set of allocation rules and a set of payment
rules. The principal provides three payment rules including an intermediate payment rule
that specifies a payment based on the report when the agent decides to continue and two
terminal payment rules. One of the terminal payment rules is state-dependent and the other
is posted-price in the sense that this payment rule depends only on the realized stopping
time. The posted-price payment rule enables the principal to influence the agent’s stopping
decision without taking into account the agent’s private information. This state-independent
terminal payment rule could be the early termination fee to disincentivize the agent from
early stopping (when the preferences of the principal and the agent are not aligned), or it
could be a reward to elicit the agent to stop at certain periods before the final period to fulfill
the principal’s interests (when the preferences of the principal and the agent are aligned
or partially aligned). Under some monotone conditions, the optimal stopping rule can be
reformulated as a threshold rule with a time-dependent threshold function. The threshold
rule simplifies the principal’s design of the posted-price payment rule as well as the agent’s
reasoning process for decision makings.

The design problem in this work faces the challenges from the multidimensional interde-
pendence of the agent’s joint decision of reporting and stopping at the current period and the
planned ones for the future. On the one hand, by fixing the current and the planned future
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reporting strategies, the agent’s stopping decision is made by comparing the payoff if he stops
immediately and the best-expected payoff he can anticipate from the future. On the other
hand, with a fixed stopping decision, the (current and the planned future) reporting strate-
gies are chosen by comparing the expected payoffs of different reporting strategies, which
determines the expected instantaneous payoff at each period up to the effective time hori-
zon pinned down by the stopping decision. Therefore, the agent’s stopping decision enters
the principal’s characterization of the dynamic incentive compatibility through this dynamic
interdependence. Given the mechanism, the stopping and the reporting decisions together
determine the agent’s optimal behaviors. The coupling of these two decisions in the analysis
of incentive compatibility distinguishes this work from other dynamic mechanism design
problems.

We define the notion of dynamic incentive compatibility in terms ofBellman equations and
address the challenge induced by the agent’s dynamicmultidimensional decisionmakings via
establishing a one-shot deviation principle (see, e.g., [12]). The one-shot deviation principle
has uncovered a foundation of optimality in game theory. It states that if the agent’s deviation
from truthful reporting is not profitable for one period, then anyfinite arbitrary deviations from
truthfulness are not profitable. Monotonicity regarding the designer’s allocation rules with
respect to the agent’s private information is an important result for the implementability of
mechanism design. Consider a single good auction in which the states are bidders’ valuations
for a single good and the outcomes are the probabilities for the agent to win the good. Here,
the notion of monotonicity is that the probability of winning the good is non-decreasing in the
reported state (see, e.g., [11,35]). Myerson [35] has shown that monotonicity is sufficient for
implementability in a one-dimensional domain. However, in general, monotonicity acts only
as a necessary condition. Rochet [46] has constructed a necessary and sufficient condition,
called cyclic monotonicity, under which one can design a mechanism such that truthful
reporting is optimal for the rational agent. In this work, we describe a set of monotonicity
conditions through inequalities characterized by functions of the allocation rules which we
call potential functions. Given the optimality of the stopping rule, we represent each payment
rule by the potential functions. By applying the envelope theorem, we formulate the potential
functions in closed form in terms of the allocation rule. Our main results, Propositions 2-
4, provide characterizations of the dynamic incentive compatibility when the agent with
time-varying private information makes coupled decisions of reporting and stopping in a
Markovian dynamic environment. The characterizations contribute as design principles by
explicitly constructing the three payment rules in terms of the allocation rule and formulating
the sufficient and the necessary conditions of dynamic incentive compatibility and facilitate a
solid analytical view of dynamic mechanism design to elicit the agent’s truthful reporting and
optimal stopping. The sufficient and the necessary conditions yield a revenue equivalence
property for the dynamic environment.We also show that given the threshold function and the
allocation rule, the state-independent payment rule is unique up to a constant.We observe that
the posted-price payments from the state-independent payment rule are restricted by a class
of regular conditions. Due to the analytical intractability, relaxation approaches are applied to
the principal’s mechanism design problem.We also provide a sufficient condition to evaluate
the loss of the robustness of the dynamic incentive compatibility due to the relaxations and
the approximations used to solve the principal’s problem.
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1.1 RelatedWork

General settings regarding the source of the dynamics in the related literature can be divided
into two categories. On the one hand, the literature on dynamic mechanism design considers
the dynamic population of participants with static private information. Parkes and Singh [39]
have provided an elegant extension of the social-welfare-maximizing (efficiency) VCGmech-
anism to an online mechanism design framework that studies sequential allocation problems
in a dynamic population environment. In particular, they have considered the setting when
each self-interested agent arrives and departs dynamically over time. The private information
in their model includes the arrival and the departure time as well as the agent’s valuation
about different outcomes. However, the agents do not learn new private information or update
their private information. Pai and Vohra [37] have proposed a dynamic mechanism model of
a similar setting but focusing on the profit maximization (optimality) of the designer. Other
works focusing on this setting include, e.g., [14,21,22,37,48,54]. On the other hand, there
are a number of works studying the problems of the static population where the underlying
framework is dynamic because of the time evolution of the private information. This category
of research has been pioneered by the work of Baron and Besanko [9] on the regulation of a
monopoly and the contributions of Courty and Hao [15] on a sequential screening problem.
There is a large amount of work in this category including, for instance, the dynamic pivot
mechanisms (e.g., [10,25]) and dynamic team mechanisms (e.g., [6,8,36]). Pavan et al. [42]
have provided a general dynamic mechanism model in which the dynamic of the agents’
private information is captured by a set of kernels that is applicable for different behaviors
of the time evolution including the learning-based and i.i.d. evolution. They have used a
Myersonian approach and designed a profit-maximizing mechanism with monotonic alloca-
tion rules. Kakade et al. [25] have studied a dynamic virtual-pivot mechanism and provided
conditions on the dynamics of the agents’ private information. They have shown an optimal
mechanism under the environment they call separable. Bergemann and Välimäki [10] and
Parkes [38] have provided surveys of recent advances in dynamic mechanism design.

The challenges of both settings of dynamics described above come from the information
asymmetry between the designer and the agents. Most of the mechanism design problems
study the direct revelation mechanism, in which guaranteeing the incentive compatibility
becomes essentially important. In many dynamic population mechanism problems with
static private information, the incentive compatibility constraints are essentially static ([25]).
The mechanisms with dynamic private information, however, require efforts to guarantee
incentive compatibility.Monotonicity is an important property of incentive-compatiblemech-
anism design that is widely used in the literature on dynamic mechanism design (see, e.g.,
[18,25,42]).

Many situations in economics can bemodeled as stopping problems. There is recent litera-
ture on themechanism designwith stopping time. Kruse and Strack [26] have studied optimal
stopping as a mechanism design problem with monetary transfers. In their model, the agent
privately observes a stochastic process of a payoff-relevant state. The incentive-compatible
mechanism considered in their work contains two mechanism rules where one rule maps
the agent’s report into a stopping decision and the other rule maps the agent’s report into
a payment that is realized only at the stopping time. Hence, their model considers that the
mechanism determines the optimal stopping decision for the agent based on the report and
the agent has only one decision (i.e., reporting) to make. Pavan et al. [41] have described
an application of their dynamic mechanism model to the optimal stopping problem, where
the allocation rule provided by the principal is the stopping rule. Basic formats of stop-
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ping rules have been summarized in Lovász andWinkler [31] and for rigorous mathematical
formulations of general stopping problems, see Peskir and Shiryaev [44].

1.2 Organization

The rest of the paper is organized as follows. In Sect. 2,we introduce the dynamic environment
and specify the key concepts and notations. Section 3 formulates the dynamic principal-agent
problem and determines the optimal stopping rule for the agent. In Sect. 4, we describe the
implementability of the dynamic principal-agent model by defining the dynamic incentive
compatibility constraint and reformulating the optimal stopping rule as a threshold rule.
Section 5 characterizes the dynamic incentive compatibility by establishing the sufficient
and the necessary conditions and showing the properties of revenue equivalence. In Sect. 6,
we formally describe the optimization problem of the principal and show examples of its
relaxations due to the analytical intractability. We also provide an approach to evaluate the
loss of robustness of the dynamic incentive compatibility due to the relaxations. A case study
is given in Sect. 6.2 as a theoretical illustration. Section 7 concludes the work.

2 Dynamic Environment

In this section, we describe the dynamic environment of the model. As conventions, let
x̃t represent the random variable such that xt ∈ Xt is a realized sample of x̃ . By hxs,t ≡
{xs, ...xt } ∈ ∏t

k=s Xk , we denote the history of x from period s up to t (including t), with
hxt ≡ hx1,t , h

x
t,t ≡ hxt,t−1 ≡ xt , for all t ∈ T. For any measurable set X , Δ(X) is the set of

probability measures over X . Table 1 summarizes the main notations of this paper.
There are two rational (risk neutral, under the expected utility hypothesis) participants in

the mechanism: a principal (indexed by 0, she) and an agent (indexed by 1, he). We consider
a finite-time horizon with discrete time t ∈ T ≡ {1, 2, . . . , T }. Let Tt ≡ {t, t + 1, . . . , T },
for all t ∈ T. At each period t , the agent observes his state θt ∈ Θt ≡ [θ t , θ̄t ] ⊂ R.
Based on θt , the agent sends a report mt ∈ Mt to the principal. In this paper, we restrict
our attention on the direct mechanism ([20]), in which the message space coincides with the
state space, i.e., Mt = Θt , for all t ∈ T. Upon receiving the report θ̂t , the principal specifies
an allocation at ∈ At and a payment pt ∈ R. Each At is a measurable space of all possible
allocations. Let σt : ∏t

s=1 Θs × ∏t−1
s=1 Θs × ∏t−1

s=1 As �→ Θt be the reporting strategy at t ,

such that θ̂t = σt (θt |hθ
t−1, h

θ̂
t−1, h

a
t−1) is the report sent to the principal at period t , given

his period-t true state θt and the histories hθ
t−1, h

θ̂
t−1, h

a
t−1. The allocation and the payment

are chosen, respectively, by the decision rules {α, φ}, where α ≡ {αt }t∈T is a collection
of (instantaneous) allocation rules αt : ∏t

s=1 Θs �→ At and φ ≡ {φt }t∈T is a collection
of (instantaneous) payment rules φt : ∏t

s=1 Θs �→ R, such that the principal specifies an

allocation at = αt (θ̂t |h θ̂
t−1) and a payment pt = φt (θ̂t |h θ̂

t−1) when θ̂t is reported at the

current period and h θ̂
t−1 has been reported up to t − 1.

The mechanism allows the agent to leave the mechanism at any period t ∈ T by deciding
whether to stop or continue at each period according to his optimal stopping rule. Hence, the
agent’s decision of σt is coupled with his stopping decision at each period t . Therefore, the
principal’s characterization of incentive compatibility has to take into account the agent’s
coupled decision makings. To influence the agent’s stopping decision, the principal uses
a terminal payment rule ρ : T �→ R, with ρ(T ) = 0, which is independent of agent’s
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Table 1 Summary of notations

Notations Meaning

θ̃t , θt Random variable of (period-t) state, realization of state

σ = {σt }t∈T Reporting strategy

σ̂ [t] = {σ̂ [t]s }s∈T One-shot deviation (reporting) strategy at t

α = {αt }t∈T, at Allocation rule, allocation

φ = {φt }t∈T\{T } Intermediate payment rule

ξ = {ξt }t∈T State-dependent terminal payment rule

ρ State-independent terminal payment rule

hxs,t History of x from s to t , x ∈ {θ, θ̃ , θ̂ , a, ã, α}
Kt , Ft , ft Transition kernel, c.d.f., and p.d.f.

Ξα;σ Stochastic process of the state

Ξα;σ
[
hθ
t
]

Period-t interim process of the state

α|θt , θ̂t Simplified notation of Ξα;σ̂ [t]
[
hθ
t
]
when σ̂ [t]t reports θ̂t

Jα,φ,ξ,ρ
0 (τ ; σ) The principal’s ex-ante expected payoff for (horizon) τ ∈ T

Jα,φ,ξ,ρ
1 (τ ; σ) The agent’s ex-ante expected payoff for τ ∈ T

Jα,φ,ξ,ρ
1,t (τ, θt , σt (θt ); σ |hθ

t−1) The agent’s period-t interim expected payoff for τ ∈ Tt

Ω[σ ] Stopping rule when agent adopts the reporting strategy σ

reports and specifies an additional payment ρ(t) at period t if the agent decides to stop
at t . To distinguish the intermediate periods and the terminal period, let ξt ≡ φt when
the agent realizes his stopping time at period t , such that the agent receives a payment

pt = ξt (θ̂t |h θ̂
t−1) + ρ(t).

The mechanism is information-asymmetric because θt is privately possessed by the agent
for every t ∈ T and the principal can learn the true state only through the report θ̂t . The
mechanism is dynamic because the agent’s state θt evolves endogenously over time and
the decisions of both the agent and the principal are made over multiple periods. The state
dynamics lead to the time evolution of probability measures of the states. As a result, the
expectations of future behaviors at different periods are in general different from each other.

2.1 Markovian Dynamics

We consider that the agent’s state endogenously evolves over time in a Markovian environ-
ment and describe the details of the dynamics and the underlying stochastic process that
governs the state dynamics.

Definition 1 (Markovian Dynamics) The Markovian (endogenous) dynamics are character-
ized by a set of transition kernels K = {Kt }t∈T, where Kt : Θt−1 × ∏t−1

s=1 As �→ Δ(Θt )

is the period-t transition kernel of the state, i.e., θ̃t ∼ Kt (θt−1, hat−1). Let Ft (·| θt−1, hat−1)

be the cumulative distribution function (c.d.f.) of θ̃t , with ft (·|θt−1, hat−1) as the probability
density function (p.d.f.). F1 and f1 are given at the initial period.

In Markovian dynamics, the generation of the next-period state θt+1 depends on the
current-period state θt and the history of allocations hat . Hence, θt+1 is independent of the
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history of true states hθ
t−1 given θt . From Ionescu–Tulcea theorem (see, e.g., [5]), the transition

kernel K , the allocation rule α, and the agent’s reporting strategy σ define a unique stochastic
process (i.e., a probability measure) that governs the state dynamics. Let Ξα;σ denote the
stochastic process. Given any realizations of period-t state and history of states, we define
the period-t interim process in the following definition.

Definition 2 (Interim Process) The interim process Ξα;σ
[
hθ
t

]
at period t ∈ T consists of

(i) a deterministic process of the realized hθ
t ∈ ∏t

s=1 Θs up to time t , and
(ii) a stochastic process starting from t + 1 that is uniquely characterized by period-t state

θt , history of allocations hat ∈ ∏t
s=1 As , the allocation rule αT

t+1 ≡ {αs}s∈Tt+1 , and the
planned reporting strategies σ T

t+1 = {σs}s∈Tt+1 , given the kernels KT
t+1 ≡ {Ks}s∈Tt+1 .

Given the processes Ξα;σ and Ξα;σ [hθ
t ], we specify the timing of the mechanism as

follows.

I. Ex-ante stage: there is no realization of state, i.e., before the mechanism starts. At this
stage, the randomness of the future is characterized by Ξα;σ .

II. Interim stage (at period t): hθ
t are realized according to theMarkovian dynamics. At each

(period-t) interim stage:

1. Given the current state θt , the agent chooses a report θ̂t = σt (θt |hθ
t−1, h

θ̂
t−1, h

a
t−1),

and decides whether to stop immediately or continue to the next period.

2. Upon receiving θ̂t , the principal specifies an allocation at = αt (θ̂t |h θ̂
t−1), a payment

pt = φt (θ̂t |h θ̂
t−1) or pt = ξt (θ̂t |h θ̂

t−1) + ρ(t) if the agent decides to continue or to
stop, respectively.

At each interim stage, the randomness of the future is characterized by Ξα;σ [hθ
t ]. We

denote the corresponding expectations ofΞα;σ andΞα;σ [hθ
t ] byEΞα;σ

[·] andEΞα;σ [hθ
t ][·]

, respectively. We suppress the notation σ when it is a truthful reporting strategy.

3 Dynamic Principal-Agent Problem

In this section, we describe the principal-agent problem by identifying their respective objec-
tives. Let ui,t : Θt × At �→ R denote the (instantaneous) utility of the participant i for
i ∈ {0, 1} such that ui,t (θt , at ) is the utility that the participant i receives when the agent’s
true state is θt and the allocation is at for all t ∈ T. Given any allocation rule α, we assume
that ui,t is Lipschitz continuous in θt , for all θt ∈ Θt , all t ∈ T.

Given any reporting strategy σ , define the ex-ante expected values of the principal and the
agent, respectively, for any time horizon τ ∈ T as follows:

Zα,φ,ξ
0 (τ ; σ) ≡ E

Ξα;σ
[
δτ

[
u0,τ (θ̃τ , ατ (στ (θ̃τ |h θ̃

τ−1, h
θ̂
τ−1, h

ã
τ−1)|h θ̂

τ−1))

− ξτ (στ (θ̃τ |h θ̃
τ−1, h

θ̂
τ−1, h

ã
τ−1)|h θ̂

τ−1)
]

+
τ−1∑

t=1

δt
[
u0,t (θ̃t , αt (σt (θ̃t |h θ̃

t−1, h
θ̂
t−1, h

ã
t−1)|h θ̂

t−1))

− φt (σt (θ̃t |h θ̃
t−1, h

θ̂
t−1, h

ã
t−1)|h θ̂

t−1)
]]

,
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and

Zα,φ,ξ
1 (τ ; σ) ≡ E

Ξα;σ
[
δτ

[
u1,τ (θ̃t , ατ (στ (θ̃τ |h θ̃

τ−1, h
θ̂
τ−1, h

ã
τ−1)|h θ̂

τ−1)

+ ξτ (στ (θ̃τ |h θ̃
τ−1, h

θ̂
τ−1, h

ã
τ−1)|h θ̂

τ−1)
]

+
τ−1∑

t=1

δt
[
u1,t (θ̃t , αt (σt (θ̃t |h θ̃

t−1, h
θ̂
t−1, h

ã
t−1)|h θ̂

t−1))

+ φt (σt (θ̃t |h θ̃
t−1, h

θ̂
t−1, h

ã
t−1)|h θ̂

t−1)
]]

,

where δ ∈ (0, 1] is the discount factor. Let Jα,φ,ξ,ρ
0 (·; σ) : T �→ R and Jα,φ,ξ,ρ

1 (·; σ) : T �→
R denote the ex-ante expected payoffs of the principal and the agent, respectively, given as
follows:

Principal:

Jα,φ,ξ,ρ
0 (τ ; σ) ≡Zα,φ,ξ

0 (τ ; σ) − ρ(τ); (1)

Agent:

Jα,φ,ξ,ρ
1 (τ ; σ) ≡Zα,φ,ξ

1 (τ ; σ) + ρ(τ). (2)

Similarly, we define the interim expected value of the agent evaluated at period t , when

the histories are (hθ
t−1, h

θ̂
t−1, h

a
t−1), θt is observed, and σt (θt ) is reported, as follows, for any

τ ∈ Tt :

Zα,φ,ξ
1,t (τ, θt , σt (θt |hθ

t−1, h
θ̂
t−1, h

a
t−1); σ |hθ

t−1)

≡ E
Ξα;σ [hθ

t ]
[
δτ

[
u1,τ (θ̃τ , ατ (στ (θ̃τ |hθ

τ−1, h
θ̂
τ−1, h

a
τ−1)|h θ̂

τ−1))

+ ξτ (στ (θ̃τ |h θ̃
τ−1, h

θ̂
τ−1, h

ã
τ−1)|h θ̂

τ−1))
]

+
τ−1∑

s=1

δs
[
u1,s(θ̃s, αs(σs(θ̃s |hθ

s−1, h
θ̂
s−1, h

a
s−1)|h θ̂

s−1)

+ φs(σs(θ̃s |h θ̃
s−1, h

θ̂
s−1, h

ã
s−1)|h θ̂

s−1)
]]

,

(3)

with Zα,φ,ξ
1,t (τ, θt |hθ

t−1) ≡ Zα,φ,ξ
1,t (τ, θt , θt ; σ |hθ

t−1)when σ is truthful at every period. Then,
the corresponding period-t interim expected payoff of the agent can be defined as follows:

Jα,φ,ξ,ρ
1,t (τ, θt , σt (θt |hθ

t−1, h
θ̂
t−1, h

a
t−1); σ |hθ

t−1)

= Zα,φ,ξ
1,t (τ, θt , σt (θt |hθ

t−1, h
θ̂
t−1, h

a
t−1); σ |hθ

t−1) + ρ(τ),
(4)

with Jα,φ,ξ,ρ
1,t (τ, θt |hθ

t−1) ≡ Jα,φ,ξ,ρ
1,t (τ, θt , θt ; σ |hθ

t−1) when σ is truthful at every period.
At the ex-ante stage, the principal provides a take-it-or-leave-it offer to the agent by taking

into account the agent’s stopping rule. Given the stopping rule, the time horizon τ of the ex-
ante expected payoffs can be calculated. The principal aims tomaximize her ex-ante expected
payoff (1) by anticipating the agent’s planned reporting strategy and the stopping time, by
choosing the decision rules {α, φ, ξ, ρ}. The agent with his planned reporting strategy σ

decides whether to accept the offer by checking the following rational participation (RP)
constraint:

RP: Jα,φ,ξ,ρ
1 (τ ; σ) ≥ 0, (5)
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under which the agent expects a nonnegative payoff by participating. Besides the RP con-
straint, the principal also wants to incentivize the agent to truthfully reveal his true state in the
direct mechanism. To achieve this, the principal needs to impose the incentive compatibility
(IC) constraint in addition to the RP constraint to guarantee that truthful reporting at each
period is for the agent’s best interests.

With the knowledge of the Markovian dynamics, the agent can determine his current
reporting strategy and plan his future behaviors. Suppose at period t , the agent observes θt

and reports θ̂t . The report θ̂t leads to a current-period allocation at = αt (θ̂t |h θ̂
t−1). As a

rational participant, the current-period decision making of the agent aims to maximize his
interim expected payoff (4). Due to the Markovian dynamics, the probability measures of
each of the future states depend on the current state θt and the history of allocations hat . Hence,
the agent’s decision of how to report his current-period state is independent of the past true

states but depends on hat−1 and h
θ̂
t−1 (through h

a
t−1), i.e., θ̂t = σt (θt |h θ̂

t−1, h
a
t−1). (Hereafter,

we will drop hθ in the notation of the agent’s reporting strategy.) Therefore, guaranteeing
IC when the agent has reported truthfully at all past periods is sufficient to ensure IC when
the agent has a history of arbitrary reports. Given the dependence of the future states on
the histories, the agent can plan his future reporting strategies from period t + 1 onward to
obtain an optimal interim expected payoff. As a result, the principal’s craft of IC constraint at
each period needs to be coupled with the agent’s current and his planned future behaviors. As
described in Sect. 3.2, the agent’s adoption of stopping rule further complicates the principal’s
guarantee of IC.

3.1 Main Assumptions

We introduce the following assumptions to support our theoretical analysis of the dynamic
model with optimal stopping time.

Assumption 1 Given any {α, φ, ξ, ρ} and σ , the following holds, for all t ∈ T,

E
Ξα;σ

[
sup
τ∈Tt

|Jα,φ,ξ,ρ
1,t (τ, θ̃t , σt (θ̃t |h θ̂

t−1, h
a
t−1); σ |h θ̃

t−1)|
]

< ∞. (6)

Assumption 1 guarantees that the expected absolute value of any period-t interim expected
payoff is bounded for any time horizon τ ∈ Tt . This assumption can be satisfied, for example,
when the instantaneous payoff ui,t (θt , at )+ pt is uniformly bounded for any θt ∈ Θt , t ∈ T,
given {α, φ, ξ, ρ} and σ . This assumption is essential to the existence of optimal stopping
rule described in Sect. 3.2.

Define χ
α,φ,ξ
1,t as the difference between the interim expected values when τ = t and

τ = t + 1, respectively, evaluated at period t as follows,

χ
α,φ,ξ
1,t (θt ) ≡ Zα,φ,ξ

1,t (t + 1, θt |hθ
t−1) − Zα,φ,ξ

1,t (t, θt |hθ
t−1). (7)

Here, χα,φ,ξ
1,t (θt ) can be interpreted as the expected marginal change of deferring the stopping

time fromcurrent period t to the next period t+1.Hence,χα,φ,ξ
1,t (θt ) characterizes themarginal

incentive of agent’s stopping decision at period t . General optimal stopping problems do not
require monotonicity assumptions on χ

α,φ,ξ
1,t (θt ). However, as imposed in many economic

models, there is a monotonicity condition referred to as the single crossing property (see, e.g.,
[45]): χ

α,φ,ξ
1,t (θt ) crosses the horizontal axis just once, from negative to positive (resp. from

positive to negative), as the state θt increases (resp. decreases). A single crossing property
applicable in our dynamic model is shown in the following assumption.
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Assumption 2 χ
α,φ,ξ
1,t (θt ) is non-decreasing in θt for all t ∈ T.

This assumption is for the desideratum of establishing a threshold-based optimal stopping
rule in Sect. 4.1. To ensure that Assumption 2 holds, we can, for example, make the derivative
of χα,φ,ξ

1,t with respective to θt nonnegative or impose the monotonicity of the utility function,

payment rules, and their combinations, e.g., each of EΞα;σ [hθ
t ]

[
ξt+1(θ̃t+1|hθ

t )− ξt (θt |hθ
t−1)

]
,

φt (θt ), andEΞα;σ [hθ
t ]

[
u1,t+1(θ̃t+1, αt+1(θ̃t+1|hθ

t ))
]
is non-decreasing in θt . This assumption

can be naturally interpreted in many economic scenarios. For example, suppose that the
principal aims to establish a multiperiod cooperation with an agent, who has time-evolving
productivity (i.e., state) to finish the tasks assigned by the principal over time. Assumption 2
assumes that the agent with higher productivity is more incentivized by the mechanism to
continue instead of stopping immediately than the agent with lower productivity.

Assumption 3 The probability density ft (θt |θt−1, hat−1) > 0 for all θt ∈ Θt , θt−1 ∈ Θt−1,

hat−1 ∈ ∏t−1
s=1 As , t ∈ T\{1}.

Assumption 3 restricts our attention to a full support environment where each state has
a strictly positive probability to be realized at each period. This assumption is imposed to
support the uniqueness of the threshold-based optimal stopping rule and to ensure that the
marginal effect of the change of the current state on the future states is bounded (as used in
Lemma 8). Finally, the following assumption imposes a first-order stochastic dominance on
the dynamics of the agent’s state.

Assumption 4 For all θ ′
t ≥ θt ∈ Θt , θ̄t+1 ∈ Θt+1, hat ∈ ∏t

s=1 As , t ∈ T\{T },
Ft+1(θ̄t+1|θ ′

t , h
a
t ) ≤ Ft+1(θ̄t+1|θt , hat ). (8)

Assumption 4 assumes that a larger state at current period leads to a larger state at the
next period in the sense of a first-order stochastic dominance, i.e., the partial derivative of
Ft+1 with respect to θt is non-positive. It is straightforward to see that Assumptions 1, 3, and
4 are spontaneously compatible to each other. However, since the monotonicity of the state
dynamics influences the probability measures of the expectations taken in the term Zα,φ,ξ

1,t ,

themonotonicity ofχα,φ,ξ
1,t specified byAssumption 2 is correlatedwith Assumption 4. Given

its definition in (7), the monotonicity of χ
α,φ,ξ
1,t also relates to the monotonicity of the utility

function, the allocation rule, and the payment rules. In Sect. 5, the characterizations of the
dynamic incentive compatibility consider the case when all the above four assumptions are
satisfied as well as a more general case without Assumption 2.

3.2 Optimal Stopping Rule

In this section, we construct the optimal stopping rule for the agent and identify the dynamic
incentive compatibility constraints when the agent makes coupled decisions of reporting and
stopping at each period. Let Ω[σ ] denote the agent’s stopping rule when he uses reporting
strategy σ . The optimality of Ω[σ ] is defined as follows.
Definition 3 (Optimal Stopping) Given {α, φ, ξ, ρ} and any reporting strategy σ , the agent’s
stopping rule Ω[σ ] is optimal if there exists a τ ∗ such that

sup
τ∈T

Jα,φ,ξ,ρ
1 (τ ; σ) = Jα,φ,ξ,ρ

1 (τ ∗; σ). (9)
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Let Ω∗[σ ] denote the optimal stopping rule when the agent adopts σ .

Fix {α, φ, ξ, ρ}. To study the optimal stopping problem (9), we introduce the agent’s
valuation function at period t as follows, for all θt ∈ Θt , t ∈ T, any stopping rule σ :

V α,φ,ξ,ρ
t (θt ; σ) ≡ sup

τ∈Tt

Jα,φ,ξ,ρ
1,t (τ, θt , σt (θt |h θ̂

t−1, h
a
t−1); σ |hθ

t−1), (10)

V α,φ,ξ,ρ
t (θt ) = V α,φ,ξ,ρ

t (θt ; σ)when σ is truthful, where the supremum is taken over all time
horizon τ of the processΞα[hθ

t ] starting from t . The valuation function V α,φ,ξ,ρ
t (θt ; σ) is the

maximum interim expected payoff the agent can expect at period t by varying the time horizon

when he has reported h θ̂
t−1, observes the current state θt and reports θ̂t = σt (θt |h θ̂

t−1, h
a
t−1),

and plans to report future states by {σs}s∈Tt+1 . Note that the agent can modify his planned
future reporting strategies at different periods to evaluate the valuation (10).

Suppose that Assumption 1 holds. Backward induction leads to the following Bellman
equation, for any reporting strategy σ :

(i) for all t ∈ T\{T },
V α,φ,ξ,ρ
t (θt ; σ)

= max
(
Jα,φ,ξ,ρ
1,t (t, θt , σt (θt |h θ̂

t−1, h
a
t−1); σ |hθ

t−1),E
Ξα [hθ

t ][V α,φ,ξ,ρ
t+1 (θ̃t+1; σ)

]);(11)

(ii) for t = T ,

V α,φ,ξ,ρ
T (θT ; σ) = Jα,φ,ξ,ρ

1,T (T , θT , σT (θT |h θ̂
T−1, h

a
T−1); σ |hθ

T−1). (12)

The backward induction yields an equivalent representation of V α,φ,ξ,ρ
t by comparing interim

expected payoff if the agent stops at t and the expected valuation of the next period if the
agent continues. Formulations (11) and (12) naturally lead to the following definition of a
stopping region, for any reporting strategy σ , t ∈ T:

Λ
α,φ,ξ,ρ
1,t (t; σ)

≡ {θt ∈ Θt : V α,φ,ξ,ρ
1,t (θt ; σ) = Jα,φ,ξ,ρ

1,t (t, θt , σt (θt |h θ̂
t−1, h

a
t−1); σ |hθ

t−1)}.
(13)

Hence, the period-t stopping region is a set of states that are realized at period t such that the
period-t valuation equals the period-t interim expected payoff if the agent stops at t . Based
on the stopping region (13), we define the stopping rule, for any reporting strategy σ :

Ω∗[σ ] : ∃τ ∈ T, s.t., τ = inf{t ∈ T : θt ∈ Λ
α,φ,ξ,ρ
1,t (t; σ)}. (14)

The stopping rule Ω∗[σ ] shown in (14) calls for stopping at period t if the realized state θt is
in the stopping region. Theorem 1.9 of Peskir and Shiryaev [44] has shown that Ω∗[σ ] given
in (14) solves (10). Since Jα,φ,ξ,ρ(τ ∗; σ) = E

θ̃1∼K1

[
V α,φ,ξ,ρ
1,1 (θ̃1; σ)

]
, Ω∗[σ ] given in (14)

is an optimal stopping rule. Interested readers may refer to Chapter 1 of Peskir and Shiryaev
[44] for a rigorous characterization of general optimal stopping problems for Markovian
processes.

The coupling of the reporting strategy and the optimal stopping decision is captured in (13)
and (14). Given {α, φ, ξ, ρ}, the agent chooses the current σt and plans the future {σs}s∈Tt+1 to

maximize the current period valuation V α,φ,ξ,ρ
t (θt ; σ). For any reporting strategy σ , θt ∈ Θt ,

t ∈ T, we introduce

τ
sup
t [θt ; σ ] = inf{argsup

τ∈Tt

Jα,φ,ξ,ρ
1,t (τ, θt , σt (θt |h θ̂

t−1, h
a
t−1); σ |hθ

t−1)}. (15)
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Here, τ
sup
t [θt ; σ ] is the smallest time horizon that leads to the maximum period-t interim

expected payoff,when the agent usesσ and his true state is θt . On the one hand, the agent’s cur-
rent σt and the planned future {σs}s∈Tt+1 determine τ

sup
t [θt ; σ ]. On the other hand, τ supt [θt ; σ ]

determines how far the agent should look into the future to maximize V α,φ,ξ,ρ
t (θt ; σ). This

coupling complicates the incentive compatibility and we address the challenge in the next
section.

4 Implementability

In this section, we formally define the incentive compatibility in our dynamic environment
and formulate the optimal stopping rule as a threshold-based rule.

Definition 4 (Dynamic Incentive Compatibility) The dynamic mechanism {α, φ, ξ, ρ} is
dynamic incentive-compatible (DIC) if, for all reporting strategy σ ,

(1) for t ∈ T\{T },

max
(
Jα,φ,ξ,ρ
1,t (t, θt |hθ

t−1), E
Ξα [hθ

t ][V α,φ,ξ,ρ
t+1 (θ̃t+1)

])

≥ max
(
Jα,φ,ξ,ρ
1,t (t, θt , σt (θt |h θ̂

t−1, h
a
t−1); σ |hθ

t−1),E
Ξα;σ [hθ

t ][V α,φ,ξ,ρ
t+1 (θ̃t+1; σ)

]);
(16)

(2) for t = T ,

Jα,φ,ξ,ρ
1,T (T , θT |hθ

T−1) ≥ Jα,φ,ξ,ρ
1,T (T , θT , σT (θT |h θ̂

T−1, h
a
T−1); σ |hθ

T−1); (17)

i.e., the agent of state θt maximizes his value at period t by reporting truthfully at all t ∈ T.
The rules {α, φ, ξ, ρ} are called implementable if the corresponding mechanism is dynamic
incentive-compatible.

At the final period t = T , the agent stops with probability 1. His incentive to misreport the
true state is capturedby the immediate instantaneouspayoff. The condition (17) guarantees the
non-profitability of misreporting and thus disincentivizes the agent from untruthful reporting.
At each non-final period t ∈ T\{T }, agent’s exploration of profitable deviations from truthful
reporting strategy takes into account the misreporting of the current state as well as any
possible planned future misreporting. In particular, when the agent’s optimal stopping rule
calls for stopping if he reports truthfully, V α,φ,ξ,ρ

t (θt ) = Jα,φ,ξ,ρ
1,t (t, θt |hθ

t−1); when the

agent’s optimal stopping rule calls for continuing if he reports truthfully, V α,φ,ξ,ρ
t (θt ) =

E
Ξα [hθ

t ][V α,φ,ξ,ρ
t+1 (θ̃t+1)

]
. There are three situations of deviations: (i) misreporting at t and

stopping at t , (ii) misreporting at t , planned misreporting in the future and continuing, (iii)
truthful reporting at t , planned misreporting in the future and continuing. The condition (16)
ensures that no such deviations from truthfully reporting are profitable.

Let σ̂ [t] = {σ̂ [t]s}s∈T be any reporting strategy that differs from the truthful reporting
strategyσ ∗ at only one period t ∈ T, i.e., σ̂ [t] is truthful at all periods before t and is planned to
be truthful at all periods after t .We call σ̂ [t] as a one-shot deviation strategy at t , for any t ∈ T.
To simplify the notation, we denote the process Ξα;σ̂ [t][hθ

t ] with θ̂t = σ̂ [t]t (θt |hθ
t−1, h

a
t−1)

by α|θt , θ̂t and let α|θt = α|θt , θt when the agent reports truthfully. Additionally, we omit
σ̂ [t] in the payoff and the valuation functions and only show θ̂t as a typical reported state

using σ̂ [t]t unless otherwise stated. We denote the corresponding expectation by Eα|θt ,θ̂t [·].
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Proposition 1 Suppose that Assumption 1 holds. In Markovian dynamic environment, if the
agent obtains no gain from untruthful reporting by using any one-shot deviation strategy
σ̂ [t], for any t ∈ T, θt ∈ Θt , and any history of truthful reports hθ

t−1 ∈ ∏t−1
s=1 Θs , then he

obtains no gain by using any untruthful reporting strategy for any arbitrary report history

h θ̂
t−1 ∈ ∏t−1

s=1 Θs , i.e.,

(i) for t ∈ T\{T },
max

(
Jα,φ,ξ,ρ
1,t (t, θt |hθ

t−1), E
α|θt [V α,φ,ξ,ρ

t+1 (θ̃t+1)
])

≥ max
(
Jα,φ,ξ,ρ
1,t (t, θt , θ̂t |hθ

t−1), E
α|θt ,θ̂t [V α,φ,ξ,ρ

t+1 (θ̃t+1)
])

,
(18)

(ii) for t = T ,

Jα,φ,ξ,ρ
1,T (T , θT |hθ

T−1) ≥ Jα,φ,ξ,ρ
1,T (T , θT , θ̂T |hθ

T−1). (19)

Proof See Appendix A. ��
Proposition 1 establishes a one-shot deviation principle for our dynamic mechanism. The

one-shot deviation principle enables us to reduce the complexity of the characterization of the
DIC and to focus on the analysis of the agent’s incentive compatibility at each period when
he has reported truthfully at all past periods and plans to report truthfully at all future periods.
As a result, we can restrict attention to the conditions (18) and (19) as the DIC constraints
when the agent uses any one-shot deviation strategy at each period t ∈ T. In the rest of this
paper, when it comes to the agent’s deviation from truthfulness, we focus on his one-shot
deviation strategy σ̂ [t] that reports θ̂t = σ̂ [t]t (θt |hθ

t−1, h
a
t−1) at any single period t ∈ T.

With a slight abuse of notation, we use h θ̂t
s , s ≥ t , to denote the history of reports (including

the planned reports) when the agent uses one-shot deviation strategy at t and reports θ̂t .
Define the continuing value as, for any θt , θ̂t ∈ Θt , t ∈ T\{T },
μ

α,φ,ξ,ρ
t (θt , θ̂t ) ≡ sup

τ∈Tt+1

E
α|θt ,θ̂t

[
Jα,φ,ξ,ρ
1,t+1 (τ, θ̃t+1|hθ

t )
]

− Jα,φ,ξ,ρ
1,t (t, θt , θ̂t |hθ

t−1), (20)

with μ
α,φ,ξ,ρ
t (θt , θt ) ≡ μ

α,φ,ξ,ρ
t (θt ) when the agent uses the truthful reporting strategy. The

continuing value captures the agent’s maximum expected gain when he decides to continue
to the next period instead of stopping immediately. Then, the stopping rule in (14) can be
characterized by the continuing value as follows, for any one-shot deviation strategy σ̂ [t] at
any t ∈ T:

Ω∗[σ̂ [t]] : ∃τ ∈ T, s.t., τ = inf{t ′ ∈ T : μ
α,φ,ξ,ρ

t ′ (θt ′ , θ̂t ′) ≤ 0}. (21)

Define the marginal value Lα,φ,ξ,ρ
t as follows, for any θt , θ̂t ∈ Θt , t ∈ T\{T }:

Lα,φ,ξ,ρ
t (θt , θ̂t ) ≡ E

α|θt ,θ̂t
[
δt+1[u1,t+1(θ̃t+1, αt+1(θ̃t+1|h θ̂t

t )) + ξt+1(θ̃t+1|h θ̂t
t )

]

+ ρ(t + 1)
]

+ δt
[
φt (θ̂t |hθ

t−1) − ξt (θ̂t |hθ
t−1)

]
,

(22)

with Lα,φ,ξ,ρ
t (θt ) = Lα,φ,ξ,ρ

t (θt , θt ) when the agent uses the truthful reporting strategy.
Hence, Lα,φ,ξ,ρ

t (θt , θ̂t ) −ρ(t) captures the marginal change in the interim expected payoffs
evaluated at t if the agent plans to stop at period t + 1 instead of stopping immediately at t
when his true state is θt and he reports θ̂t .
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Lemma 1 Given {α, φ, ξ, ρ}, we have, for any τ ∈ T,

Jα,φ,ξ,ρ
1 (τ ) = E

Ξα

[ τ−1∑

s=1

Lα,φ,ξ,ρ
s (θ̃s) − ρ(s)

]
+ Jα,φ,ξ,ρ

1 (1), (23)

and, for any θt ∈ Θt , hθ
t ∈ ∏t−1

s=1 Θs , t ∈ T, τ ∈ Tt ,

Jα,φ,ξ,ρ
1,t (τ, θt |hθ

t−1) =E
α|θt

[ τ−1∑

s=t

Lα,φ,ξ,ρ
s (θ̃s) − ρ(s)

]
+ Jα,φ,ξ,ρ

1,t (t, θt |hθ
t−1). (24)

Proof See Appendix B. ��
Lemma 2 Suppose that Assumption 2 holds. Then, Lα,φ,ξ,ρ

t (θt ) is non-decreasing in θt , for
all t ∈ T\{T }.

The proof of Lemma 2 directly follows the formulation of Jα,φ,ξ,ρ
1 in Lemma 1. Lemma 1

shows that the agent’s ex-ante expected payoff and his period-t interim expected payoff can
be represented in terms of Lα,φ,ξ,ρ , ρ, and the expected payoffs when the agent stops at
the starting periods (i.e., period 1 or period t , respectively). Lemma 2 establishes a single
crossing condition that is necessary for the existence of the threshold-based stopping rule
(see Sect. 4.1).

From Lemma 1, we can represent the continuing value in terms of Lα,φ,ξ,ρ
t as follows, for

any θt , θ̂t ∈ Θt , t ∈ T\{T }:

μ
α,φ,ξ,ρ
t (θt , θ̂t ) ≡ sup

τ∈Tt+1

[
E

α|θt ,θ̂t [
τ−1∑

s=t+1

Lα,φ,ξ,ρ
s (θ̃s) − ρ(s)

]]

+ Lα,φ,ξ,ρ
t (θt , θ̂t ) − ρ(t).

(25)

Let, for any θt , θ̂t ∈ Θt , t ∈ T\{T },
μ̄

α,φ,ξ,ρ
t (θt , θ̂t ) ≡ μ

α,φ,ξ,ρ
t (θt , θ̂t ) + ρ(t), (26)

with μ̄
α,φ,ξ,ρ
t (θt , θt ) ≡ μ̄

α,φ,ξ,ρ
t (θt ). Then, we define the following auxiliary functions, for

any θt , θ̂t ∈ Θt , hθ
t−1 ∈ ∏t−1

s=1 Θs , t ∈ T,

Uα,φ,ξ,ρ
S,t (θt , θ̂t |hθ

t−1) ≡ δt
[
u1,t (θt , αt (θ̂t |hθ

t−1)) + ξt (θ̂t |hθ
t−1)

] + ρ(t), (27)

and

Uα,φ,ξ,ρ

S̄,t
(θt , θ̂t |hθ

t−1) ≡ δt
[
u1,t (θt , αt (θ̂t |hθ

t−1)) + ξt (θ̂t |hθ
t−1)

] + μ̄
α,φ,ξ,ρ
t (θt , θ̂t ), (28)

withUα,φ,ξ,ρ
j,t (θt , θt |hθ

t−1) ≡ Uα,φ,ξ,ρ
j,t (θt |hθ

t−1), for j ∈ {S, S̄}, where the subscripts S and S̄

represent “stop” and “nonstop,” respectively. Basically,Uα,φ,ξ,ρ
S,t andUα,φ,ξ,ρ

S̄,t
are the agent’s

expected payoffs that are directly determined by his current reporting strategy σ̂ [t]t and
planned truthful reporting strategies {σ̂ [t]s}s∈Tt+1 , when he decides to stop at t and continue
to t + 1, respectively. We can rewrite the DIC in Proposition 1 in terms of these auxiliary
functions in the following lemma.

Lemma 3 The IC constraints (18) and (19) are equivalent to the following

Uα,φ,ξ,ρ
S,t (θt |hθ

t−1) ≥ Uα,φ,ξ,ρ
S,t (θt , θ̂t |hθ

t−1), (29)
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and

Uα,φ,ξ,ρ

S̄,t
(θt |hθ

t−1) ≥ Uα,φ,ξ,ρ

S̄,t
(θt , θ̂t |hθ

t−1), (30)

for all θt , θ̂t ∈ Θt , hθ
t−1 ∈ ∏t−1

s=1 Θs , t ∈ T.

Conditions (29) and (30) reformulate the incentive constraints in (18) and (19). They
ensure that misreporting is not profitable in the instantaneous payoff when the agent stops
and continues, respectively. If (29) (resp. (30)) is satisfied, the optimality of the stopping rule
guarantees that continuing (resp. stopping) is not profitable when the stopping rule calls for
stopping (resp. continuing).

4.1 Threshold Rule

In this section, we revisit the optimal stopping rule and introduce a class of threshold-based
stopping rule (see, e.g., [24,27,53]). Given the definition of μ̄

α,φ,ξ,ρ
t (θt , θ̂t ) in (26), we can

rewrite the optimal stopping rule in (21) as, for any σ̂ [t] that reports θ̂t ∈ Θt , t ∈ T,

Ω∗[σ̂ [t]] : ∃τ, s.t., τ = inf{t ∈ T : μ̄
α,φ,ξ,ρ
t (θt , θ̂t ) ≤ ρ(t)}, (31)

with the corresponding stopping region

Λ
α,φ,ξ,ρ
1,t (t; θ̂t ) = {θt ∈ Θt : μ̄

α,φ,ξ,ρ
t (θt , θ̂t ) ≤ ρ(t)}. (32)

Hence, the principal can adjust ρ(t) to influence the agent’s stopping time by changing
the stopping region Λ

α,φ,ξ,ρ
1,t (t; θ̂t ). In general, the stopping rule partitions the state space

Θt into multiple zones, which leads to multiple stopping subregions. Suppose that, given
< α, φ, ξ, ρ > and σ̂ [t], there are nt stopping subregions at period t . Let {θ�;k

t , θ
r;k
t },

θ t ≤ θ
�;k
t ≤ θ

r;k
t ≤ θ̄t , denote the boundaries of the kth stopping subregion, such that the

stopping region (32) is equivalent to

α,φ,ξ,ρ
1,t (t; θ̂t |nt ) = {θt ∈ [θ�;k

t , θ
r;k
t ],∀k = 1, . . . , nt }, (33)

with α,φ,ξ,ρ
1,t (t |nt ) = α,φ,ξ,ρ

1,t (t; θt |nt ) when the agent reports truthfully.
If there is only one stopping subregion, i.e., the stopping rule partitions the state space Θt

into two regions, then the stopping rule is a threshold rule. The existence of a threshold rule
depends on the monotonicity of μ̄

α,φ,ξ,ρ
t with respect to θt . The following lemma directly

follows Lemma 2.

Lemma 4 Suppose that Assumption 2 holds. Then, μ̄α,φ,ξ,ρ
t (θt , θ̂t ) is non-decreasing in θt ,

for all t ∈ T\{T }, any θ̂t ∈ Θt .

Since ρ(t) is independent of states or reports, the monotonicity in Lemma 4 suggests a
threshold-based stopping rule for the agent. Let η : T → Θt be the threshold function, for
all t ∈ T, such that the agent chooses to stop the first time the state θt ≤ η(t). Since the agent
has to stop at the final period, we require η(T ) = θ̄T . Let Ω[σ̂ [t]]|η denote the stopping rule
with the threshold function η.

Definition 5 (Threshold Rule) Fix any σ̂ [t], t ∈ T. We say that the stopping rule Ω[σ̂ [t]]|η
is a threshold rule if there exists a threshold function η such that

Ω[σ̂ [t]]|η : ∃τ, s.t, τ = inf{t ∈ T : θt ≤ η(t)}. (34)
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We establish that the optimal stopping rule shown in (31) is a threshold rule in Lemma 5.

Lemma 5 Suppose that Assumption 2 holds. If the stopping rule Ω[σ̂ [t]] is optimal in the
mechanism {α, φ, ξ, ρ}, then it is a threshold rule with a threshold function η, denoted as
Ω[σ̂ [t]]|η.
Proof See Appendix C. ��

Lemma 6 shows the uniqueness of the threshold function.

Lemma 6 Suppose that Assumptions 2 and 3 hold. Then, each threshold rule has a unique
threshold function.

Proof See Appendix D. ��
From (34), the payment rule ρ can be fully characterized by the threshold function η such

that the principal can influence the agent’s stopping time by manipulating η. For example,
setting η(t) = θ t (resp. ηt = θ̄t ) forces the agent to continue (resp. stop) with probability 1.

5 Characterization of Incentive Compatibility

In this section, we characterize the dynamic incentive compatibility of the mechanism. We
first introduce the length functions and the potential functions and show a sufficient condition
by constructing the payment rules in terms of the potential functions based on the relationship
between the length and the potential functions. Second, we pin down the payment rules in
terms of the allocation rule by applying the envelope theorem.

Let, for any θt , θ̂t ∈ Θt , τ ∈ Tt , t ∈ T\{T },

πα
t (θt , θ̂t ; τ) = E

α|θt ,θ̂t
[
δt u1,t (θt , αt (θ̂t |hθ

t−1)) +
τ∑

s=t+1

δsu1,s(θ̃s, αs(θ̃s |h θ̂t
s−1))

+
τ−1∑

s=t+1

δsφs(θ̃s |h θ̂t
s−1) + δτ ξτ (θ̃τ |h θ̂t

τ−1) + ρ(τ)
]
,

(35)

with πα
t (θt ; τ) = πα

t (θt , θt ; τ). The term πα
t (·; τ) denotes the agent’s period-t expected

payoff to go for a time horizon τ > t without the current-period payment specified by φt .
When τ = t , the term πα

t (·; τ) is the agent’s period-t instantaneous payoff if he stops at t .
Define the length functions as, for any θt , θ̂t ∈ Θt , t ∈ T,

�α
S,t (θ̂t , θt ) ≡ δt u1,t (θ̂t , αt (θ̂t |hθ

t−1)) − δt u1,t (θt , αt (θ̂t |hθ
t−1)), (36)

and, for any τ ∈ Tt ,

�α

S̄,t
(θ̂t , θt ; τ) =πα

t (θ̂t ; τ) − πα
t (θt , θ̂t ; τ). (37)

The length function �S̄,t (θ̂t , θt ) (resp. �S,t (θ̂t , θt )) describes the change in the value of πα
t

(resp. δu1,t ) while keeping reporting θ̂t when the agent observes θ̂t instead of observing θt .
From the definition of πα

t , it is straightforward to see that �α
S,t (θ̂t , θt ) = �α

S̄,t
(θ̂t , θt ; t).

Let βα
S,t (·) : Θt → R and βα

S̄,t
(·) : Θt → R be the potential functions that depend only

on α. Proposition 2 shows a sufficient condition for DIC by showing the constructions of
the payment rules in terms of the potential functions and the threshold function (for ρ) and
specifying the relationships between the potential functions and the length functions.
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Proposition 2 Fix an allocation rule α and a threshold function η. Suppose that Assump-
tions 1, 3, and 4 hold. The dynamic mechanism is dynamic incentive-compatible if the
following statements are satisfied:

(i) The payment rules φ, ξ , and ρ, respectively, are constructed as, for all t ∈ T,

φt (θt ) = δ−tβα

S̄,t
(θt ) − δ−t

E
α|θt

[
βα

S̄,t+1
(θ̃t+1)

]
− u1,t (θt , αt (θt |hθ

t−1)), (38)

ξt (θt ) = δ−tβα
S,t (θt ) − u1,t (θt , αt (θt |hθ

t−1)), (39)

ρ(t) = δ−t
E

α|η(t)
[ T−1∑

s=t

(
βα
S,s+1(θ̃s+1 ∨ η(s + 1)) − βα

S,s(θ̃s ∨ η(s))
)

−(
βα

S̄,s+1
(θ̃s+1 ∨ η(s + 1)) − βα

S̄,s
(θ̃s ∨ η(s))

)]
. (40)

(ii) βα

S̄,t
and βα

S,t satisfy, for all θt , θ̂t ∈ Θt , t ∈ T,

βα
S,t (θ̂t ) − βα

S,t (θt ) ≤ �α
S,t (θ̂t , θt ), (41)

βα

S̄,t
(θ̂t ) − βα

S̄,t
(θt ) ≤ inf

τ∈Tt

{
�α

S̄,t
(θ̂t , θt ; τ)

}
− sup

τ ′∈Tt

ρ(τ ′), (42)

and

βα

S̄,t
(θt ) ≥ βα

S,t (θt ) and βα

S̄,T
(θT ) = βα

S,T (θT ). (43)

(iii) βα

S̄,t
and βα

S,t are constructed in terms of α such that the following term is non-decreasing

in θt , for all t ∈ T:

χα
1,t (θt ) = E

α|θt
[
βα
S,t+1(θ̃t+1) − βα

S̄,t+1
(θ̃t+1)

]
− (

βα
S,t (θt ) − βα

S̄,t
(θt )

)
. (44)

Proof See Appendix E. ��
In Proposition 2, the first statement (i) shows three conditions (38)-(40) to construct the

three payment rules in terms of the allocation rule and the threshold function (for ρ) through
the potential functions and the utility function, such that if the potential functions satisfy
the conditions (41)-(43) in the second statement (ii), then the mechanism {α, φ, ξ, ρ} is
DIC. Importantly, the construction of ρ in (40) is based on the setting when the agent’s
optimal stopping rule is a threshold rule with a unique threshold function. The existence of
such threshold rule is established under Assumption 2. Therefore, Proposition 2 imposes an
additional condition for the construction of the potential functions in the third statement (iii)
to guarantee the monotonicity in Assumption 2. The explicit constructions of the potential
functions is constructed from the necessity of the DIC.

Define with a slight abuse of notation, for any θt , θ̂t ∈ Θt , τ ∈ Tt , t ∈ T,

μ̄
α,φ,ξ,ρ
t (θt , θ̂t ; τ) ≡ E

α|θt ,θ̂t [
τ−1∑

s=t

Lα,φ,ξ,ρ
s (θ̃s) − ρ(s)

] + ρ(t),

with μ̄
α,φ,ξ,ρ
t (θt ; τ) = μ̄

α,φ,ξ,ρ
t (θt , θt ; τ), and, for any θt , θ̂t ∈ Θt , hθ

t−1 ∈ ∏t−1
s=1 Θs , τ ∈ Tt ,

t ∈ T

Uα,φ,ξ,ρ
t (τ, θt , θ̂t |hθ

t−1)

≡
{

δt
[
u1,t (θt , αt (θ̂t |hθ

t−1)) + ξt (θ̂t |hθ
t−1)

] + ρ(t), if τ = t,

δt
[
u1,t (θt , αt (θ̂t |hθ

t−1)) + ξt (θ̂t |hθ
t−1)

] + μ̄
α,φ,ξ,ρ
t (θt ; τ), if τ > t,

(45)



Dynamic Games and Applications (2022) 12:701–745 719

with Uα,φ,ξ,ρ
t (τ, θt |hθ

t−1) = Uα,φ,ξ,ρ
t (τ, θt , θt |hθ

t−1).
The following lemma takes advantage of the quasilinearity of the payoff function and

formulates the partial derivative of Uα,φ,ξ,ρ
t (τ, θt |hθ

t−1) with respect to θt .

Lemma 7 Suppose that Assumption 3 holds. In any DIC mechanism, {α, φ, ξ, ρ} satisfy, for
any θt ∈ Θt , hθ

t−1 ∈ ∏t−1
s=1 Θs , τ ∈ Tt , t ∈ T,

∂Uα,φ,ξ,ρ
t (τ, r |hθ

t−1)

∂r

∣
∣
∣
r=θt

=E
α|θt

[ τ∑

s=t

δs
∂u1,s(r , αs(θ̃s |hθ

s−1))

∂r

∣
∣
∣
r=θ̃s

Gt,s(h
θ̃
t,s)

]
, (46)

where

Gt,s(h
θ
t,s) =

s∏

k=t+1

[
− ∂Fk(θk |θk−1, αk−1(θk−1|hθ

k−2))

fk(θk |θk−1, αk−1(θk−1|hθ
k−2))∂r

∣
∣
∣
r=θk−1

]
.

Proof See Appendix F. ��

We establish the explicit formulations of the potential functions in the following proposi-
tion.

Proposition 3 Fix any allocation rule α. Suppose that Assumptions 1, 3, and 4 hold. Suppose
additionally that u1,t (θt , at ) is a non-decreasing function of θt . In any DIC mechanism
{α, φ, ξ, ρ}, with φ, ξ , and ρ constructed in (38)-(40) respectively, the potential functions
βα
S,t and βα

S̄,t
are constructed in terms of α as follows, for any arbitrary fixed state θε,t ∈ Θt ,

any θt , θ̂t ∈ Θt , hθ
t−1 ∈ ∏t−1

s=1 Θs , t ∈ T,

βα
S,t (θt ) =

∫ θt

θε,t

γ α
t (t, r |hθ

t−1)dr , (47)

βα

S̄,t
(θt ) = sup

τ∈Tt

{ ∫ θt

θε,t

γ α
t (τ, r |hθ

t−1)dr
}
, (48)

where γ α
t (τ, θt |hθ

t−1) ≡ ∂Uα,φ,ξ,ρ
t (τ,r |hθ

t−1)

∂r

∣
∣
∣
r=θt

, where α satisfies the conditions (41)-(43).

Proof See Appendix G. ��

Proposition 3 provides explicit formulations of the potential functions that depend only
on the allocation rule α, up to a constant shift (determined by θε,t ). As a result, the payment
rules φ and ξ can be pinned down up to a constant given α. Such results lead to the celebrated
revenue equivalence theorem, which is important in mechanism design problems in static
settings (e.g., [35,52]) as well as in dynamic environments (e.g., [27,42] ). The following
proposition summarizes the property of the revenue equivalence of our dynamic mechanism.

Proposition 4 Fix an allocation rule α. Suppose that Assumptions 1, 3, and 4 hold. Suppose
additionally that u1,t (θt , at ) is a non-decreasing function of θt . Let θaε,t , θbε,t ∈ Θt be any
two arbitrary states. Let φa ≡ {φa

t } and φb ≡ {φb
t } (resp. ξa and ξb) be two payment rules

constructed according to (38) (resp. (39)) by the potential function βα

S̄,t
formulated in (48)

(resp. βα
S,t formulated in (47)) with θaε,t and θbε,t , respectively, as the lower limit of the integral.
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Define ρa and ρb in the similar way, for some threshold functions ηa and ηb, respectively.
Then, there exist constants {Cτ }τ∈T such that, for any θt ∈ Θt , τ ∈ Tt , t ∈ T,

E
α|θt

[ τ−1∑

s=1

δsφa
s (θ̃s |h θ̃

s−1) + δτ ξaτ (θ̃τ |h θ̃
t−1) + ρa(τ )

]

= E
α|θt

[ τ−1∑

s=1

δsφb
s (θ̃s |h θ̃

s−1) + δτ ξbτ (θ̃τ |h θ̃
τ−1) + ρb(τ )

]
+ Cτ .

(49)

Proof See Appendix I. ��
Proposition 4 implies that different DIC mechanisms with the same allocation rule result

in equivalent expected sum of payments paid by the principal up to a constant for any time
horizon τ ∈ Tt given any t ∈ T. The following corollary shows the uniqueness of the
state-independent payment rule ρ for any given threshold function η.

Corollary 1 Fix an allocation rule α. Suppose that Assumptions 1, 3, and 4 hold. Suppose
additionally that u1,t (θt , at ) is a non-decreasing function of θt . Letη be any threshold function
such that η(t) ∈ Θt , for each t ∈ T, and let θaε,t , θbε,t ∈ Θt be any two arbitrary states.
Construct two state-independent payment rules ρa and ρb according to (40) with η in which
the potential functions are formulated in (47) and (48) with θaε,t and θbε,t , respectively, as the
lower limit of the integral. Then, there exist constants {Cρ

t }t∈T such that, for any t ∈ T,

ρa(t) = ρb(t) + Cρ
t , (50)

with ρa(T ) = ρb(T ) = Cρ
t = 0.

If the mechanism does not satisfy the monotonicity condition specified in Assumption 2,
we cannot guarantee a threshold rule (with a unique threshold function) for the mechanism.
Hence, as shown in (33), the optimal stopping rule partitions the state space into multiple
stopping subregions. Let t ≡ {θk; jt }k=nt

k=1, j={k,r} denote the set of boundaries of stopping region
α,φ,ξ,ρ
1,t (t |nt ) given in (33). Define an operator

θt � t ≡
{
argmin

θ
k; j
t ∈t

|θt − θ
k; j
t |, if θt ∈ α,φ,ξ,ρ

1,t (t |nt ),
θt , otherwise.

Here, θt � t makes θt equal to its closest boundary for any θt ∈ Θt which is in any stopping
subregion. The following corollary shows a sufficient condition for the DICmechanismwhen
Assumption 2 does not hold.

Corollary 2 Fix an allocation rule α. Suppose that Assumptions 1 and 3 hold. The dynamic
mechanism is dynamic incentive-compatible if the payment rules φ and ξ are constructed in
(38) and (39), respectively, and ρ is constructed as:

ρ(t) = δ−t
E

α|EΞα [θ̃t ]�t
[ T−1∑

s=t

(
βα
S,s+1(θ̃s+1 � s+1) − βα

S,s(θ̃s � s)
)

− (
βα

S̄,s+1
(θ̃s+1 � s+1) − βα

S̄,s
(θ̃s � s)

)]
,

(51)

where the potential functions βα
S,t and βα

S̄,t
satisfy the conditions (41)-(43).
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Given the stopping region α,φ,ξ,ρ
1,t with t , the proof of Corollary 2 directly follows Propo-

sition 2. The construction of ρ in (51) is equivalent to (40) if the formulations of the potential
functions satisfy the monotonicity condition (44) in Proposition 2 (thus Assumption 2 holds).
The following corollary summarizes that the main results shown in Propositions 3 and 4
and Corollary 1 hold for the general optimal stopping rule.

Corollary 3 Fix an allocation rule α. Suppose that Assumptions 1 and 3 hold. In DIC mecha-
nismwithφ, ξ , andρ constructed in (38), (39), and (51) respectively, (i) the potential functions
are formulated in terms of α in (47) and (48); (ii) the results of the revenue equivalence shown
in Proposition 4 and Corollary 1 hold.

However, the sufficient condition given by Corollary 2 requires the principal to determine
nt and all the boundaries of the nt stopping subregions. If the formulations of the poten-
tial functions maintain the monotonicity specified by Assumption 2, then the principal’s
mechanism design problem only needs to deal with a unique threshold function η(t).

From the construction of ρ in (40) and the formulations of the potential functions in Propo-
sition 3, ρ can be completely modeled by α and η, given the transition kernels. Specifically,
at each t ∈ T, one η(t) ∈ Θt leads to ρ that is constructed by (40) and satisfies (50). Let
r ≡ {r1, . . . , rT } ∈ R

T be any sequence of real values. Define

R̊ ≡ {r ∈ R
T : rt = δ−t

E
α|η(t)

[ T−1∑

s=t

(
βα
S,s+1(θ̃s+1 ∨ η(s + 1)) − βα

S,s(θ̃s ∨ η(s))
)

− (
βα

S̄,s+1
(θ̃s+1 ∨ η(s + 1)) − βα

S̄,s
(θ̃s ∨ η(s))

)]
, for all θt ∈ Θt , t ∈ T}.

(52)

Hence, R̊ is the set of payment sequences that ρ can specify from t = 1 to t = T , given α

and η.

Corollary 4 Fix an allocation rule α. Suppose that Assumptions 1, 3, and 4 hold. Suppose
additionally that u1,t (θt , at ) is a non-decreasing function of θt . Let η be a threshold function.
Suppose that ρ specifies a sequence of payments r = {rt , . . . , rT }, where rt = ρ(t), t ∈ T.
Then, the following statements hold.

(i) In DIC mechanisms, ρ cannot punish the agent for stopping; i.e., rt ≥ 0, for all t ∈ T.
(ii) ρ with α implements the optimal stopping rule (14) if and only if r ∈ R̊.
(iii) Fix any r ∈ R̊. Let r ′ differ from r in arbitrary periods, such that for some t, r ′

t = rt +εt ,
for some nonzero εt ∈ R. Suppose r ′ /∈ R̊ due to these r ′

t ’s. Then, posting r
′ may fail the

incentive compatibility constraints.
(iv) Let φ and ξ be constructed in Proposition 2. If the mechanism does not involve ρ, then

{α, φ, ξ} is dynamic incentive-compatible if and only if there exists η(t) ∈ Θt such that,
for all t ∈ T,

E
α|η(t)

[ T−1∑

s=t

(
βα
S,s+1(θ̃s+1 ∨ η(s + 1)) − βα

S,s(θ̃s ∨ η(s))
)

− (
βα

S̄,s+1
(θ̃s+1 ∨ η(s + 1)) − βα

S̄,s
(θ̃s ∨ η(s))

)] = 0,

(53)

where βα

S̄,t
and βα

S,t are constructed in terms of α in Proposition 3.

The following proposition shows a necessary condition for DIC that follows Lemma 7.
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Proposition 5 Suppose that Assumptions 1 and 3 hold. In any DIC mechanism {α, φ, ξ, ρ},
the following conditions hold: for any arbitrary fixed state θε,t ∈ Θt , any θt , θ̂t ∈ Θt ,
hθ
t−1 ∈ ∏t−1

s=1 Θs , t ∈ T,

∫ θ̂t

θt

γ α
t (t, r |hθ

t−1)dr ≤
∫ θ̂t

θt

∂u1,t (x, αt (θ̂t |hθ
t−1))

∂x

∣
∣
∣
x=r

dr , (54)

sup
τ∈Tt

{ ∫ θ̂t

θε,t

γ α
t (τ, r |hθ

t−1)dr
}

− sup
τ∈Tt

{ ∫ θt

θε,t

γ α
t (τ, r |hθ

t−1)dr
}

≤ sup
τ∈Tt

{ ∫ θ̂t

θt

E
α|r ,θ̂t

[ τ∑

s=t

∂u1,s(x, αs(θ̃s |h θ̂t
s−1))

∂x

∣
∣
∣
x=θ̃s

Gt,s(h
θ̃
t,s)dr

]}
, (55)

where γ α
t (τ, θt |hθ

t−1) ≡ ∂Uα,φ,ξ,ρ
t (τ,r |hθ

t−1)

∂r

∣
∣
∣
r=θt

.

Proof See Appendix H. ��
Proposition 5 establishes a first-order necessary condition for DIC. This necessary con-

dition takes advantage of the envelope condition established in Lemma 7 to characterize the
necessity of DIC in terms of the allocation rule. Note that the conditions (54) and (55) hold
for both formulations of ρ in Proposition 2 and Corollary 2, respectively.

6 Principal’s Optimal Mechanism Design

At the ex-ante stage, the principal provides a take-it-or-leave-it offer by designing the deci-
sion rules {α, φ, ξ, ρ} to maximize her ex-ante expected payoff (1). The time horizon of the
principal’s optimization problem is the mean first passage time, τ̄ . Given the agent’s optimal
stopping rule, τ̄ is determined by {α, φ, ξ, ρ} and the stochastic process Ξα . Propositions 2
and 3 imply that φ and ξ can be represented by α. From Corollary 4, ρ can be fully char-
acterized by α and η. Then, we can determine τ̄ by α, η, and Ξα , i.e., τ̄ = λ(α, η;Ξα).
Specifically,

τ̄ = λ(α, η;Ξα)

=
T∑

t=1

t · Pr
(
θ̃t ≤ η(t)

)

= E
Ξα

[ T∑

t=1

t · Ft (η(t)|θ̃t−1, αt−1(θ̃t−1|h θ̃
t−2))

]
.

(56)

Since the principal’s mechanism design problem is finite horizon, i.e., T < ∞, τ̄ always
exists.

Given {α, φ, ξ, ρ}, the agent decides whether to participate at the ex-ante stage, by check-
ing the rational participation (RP) constraint,

RP: Jα,φ,ξ,ρ
1 (λ(α, η;Ξα)) ≥ 0; (57)

i.e., the ex-ante expected payoff of the agent is nonnegative. Since the decision making at the
ex-ante stage involves no private information, the principal’s evaluation of τ̄ coincides with
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the agent’s. Hence, the principal’s problem is

max
α,φ,ξ,ρ

Jα,φ,ξ,ρ
0 (λ(α, η;Ξα))

s.t., DIC,

RP.

(58)

The mechanism design problem formulated in (58) can be generally applicable to
principal-agent models in different economic environments, in which the agent’s private
information endogenously changes over time. The mechanism could be a dynamic contract,
in which the principal commits to a T -period contract and the agent is allowed to unilater-
ally terminate the contract without advance notification. As an illustration, consider that the
principal is an employer and the agent is an employee. The employee’s state is his attitude
towards work, which dynamically changes over time due to the time-evolving development
of employee loyalty. The employer’s mechanism design problem is to seek an optimal way
to design and allocate inter-temporal work and salary arrangements to facilitate the ongoing
development of employee loyalty and to specify compensation or penalty policy to influence
the employee’s unilateral termination of the contract and hedge the corresponding risk of los-
ing profit. Other applications include dynamic subscription policies (e.g., magazine, online
courses, and customized products), insurance, and leasing. Allowing for the early termination
provides additional flexibility for the agent and reduces his risk due to the uncertainty of the
dynamic environment, thereby increasing the attractiveness of the principal’s offer.

Exactly solving themechanism design problem (58) needs to satisfy the following criteria:
(C1) game-theoretic constraints, i.e., DIC and RP, (C2) profit-maximizing, assuming truthful
reporting, and (C3) computational constraints (e.g., scale, size, speed, accuracy of approx-
imation, and complexity). The classic economic analysis of mechanism design focuses on
criteria C1 and C2, based on some distributional assumptions about the participants (e.g., a
known probability distribution of the private information, known dynamics, etc.). Algorith-
mic mechanism design studies the mechanism design problem by applying approaches, such
as robust analysis and algorithmic approximations, and taking into account the computational
constraints as important ones, in addition to the classic game-theoretic analysis. When it is
not possible to exactly solve the mechanism design problem (due to that, e.g., the incentive
compatibility constraint is too strong), we need to relax the aforementioned three criteria.

Relaxations can be applied to each of the criteria or the hybrid of them.Mechanism design
problems can be analytically relaxed by, for example, imposing additional assumptions and
conditions that reduce the strength of C1 or relax the optimality of C2. Computational relax-
ations, usually referred to as approximations, are considered due to the analytical intractability
or because C3 is not satisfied. However, relaxations, especially the computational ones, may
inevitably lose the robustness of the incentive compatibility to the agent’s strategic report-
ing; i.e., the agent may gain profits by deviating from truthful reporting. As highlighted in
the algorithmic mechanism design, addressing the tension between the game-theoretic con-
straints and the computational ones is the central challenge when the economic models are
used in practice.

Nevertheless, the game-theoretic guarantee of strong incentive compatibility is impor-
tant with the theoretical and the practical interest ([7,32,40]). For example, strong incentive
compatibility leads to the simplicity of the agent’s reasoning in the decision making and
the dynamic stability such that the agent does not need to modify the reporting strategy in
response to changes in the environment and other agents’ behaviors in the multiagent cases.
Strong incentive compatibilitymay also provide normative advice in the sense that the system
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is fair because agents cannot game the system to their advantage. Moreover, for empirical
analysis, reasonably assuming that reporting is truthful enables the empirical work to adjust
mechanism parameters or to reshape economic policies without predicting the corresponding
complicated strategic responses (i.e., strategic reporting) of the agents.

6.1 Relaxation

It is beyond the scope of this paper to design efficient computational algorithms and ana-
lyze computational relaxations. We restrict attention to analytical relaxations and provide
examples of such relaxations in this section.

The principal’s mechanism design problem (58) can be relaxed by applying a first-order
approach (see, e.g., [47,50]) to modify the objective function, which requires the principal
to choose decision rules with which her ex-ante expected payoff is at a stationary point; i.e.,
βα
S,t and βα

S̄,t
satisfy the conditions in Proposition 3 and {φ, ξ, ρ} are constructed according

to (38)-(40). Specifically, the original ex-ante expected payoff function (1) can be rewritten
as follows:

Jα,φ,ξ,ρ
0 (τ̄ ) = −Jα,φ,ξ,ρ

1,1 (τ̄ , θ1) + E
Ξα

[ 1∑

i=0

τ̄∑

t=1

δt ui,t (θ̃t , αt (θ̃t |h θ̃
t−1))

]

− E
Ξα

[1 − F1(θ̃1)

f1(θ̃1)

τ̄∑

t=1

δt
∂u1,t (r , αt (θ̃t |h θ̃

t−1))

∂r

∣
∣
r=θ̃t

G1,t (h
θ̃
1,t )

]
.

(59)

Lemma 8 Suppose that Assumptions 1, 3, and 4 hold. Suppose additionally that the utility
function u1,t (θt , at ) is non-decreasing in θt . Then, J

α,φ,ξ,ρ
1,t is a non-decreasing function of

θt , for all t ∈ T.

Proof See Appendix J. ��

From Lemma 8, the condition Jα,φ,ξ,ρ
1,1 (τ̄ , θ1) ≥ 0 implies the RP constraint (57) due to

Jα,φ,ξ,ρ
1 (τ̄ ) = E

Ξα

[
Jα,φ,ξ,ρ
1,1 (τ̄ , θ̃1)

]
. Therefore, under the assumption that Jα,φ,ξ,ρ

1,1 (τ̄ , θ1) =
0, the principal’s mechanism design problem can be solved by the following constrained
dynamic programming:

max
α,η

Jα
0 (λ(α, η;Ξα)) = E

Ξα

[ λ(α,η;Ξα)∑

t=1

δt
[ 1∑

i=0

ui,t (θ̃t , αt (θ̃t |h θ̃
t−1))

− 1 − F1(θ̃1)

f1(θ̃1)

∂u1,t (r , αt (θ̃t |h θ̃
t−1))

∂r

∣
∣
∣
r=θ̃t

G1,t (h
θ̃
1,t )

]]

,

s.t., DIC,

Jα,φ,ξ,ρ
1,1 (τ̄ , θ1) = 0.

(60)

The relaxed problem (60) is independent of the payment rules {φ, ξ, ρ}.
Corollary 5 Suppose that Assumptions 1, 3, and 4 hold. Suppose additionally that the utility
function u1,t (θt , at ) is non-decreasing in θt . If the problem (60) has solutions, then there exist
payment rules {φ∗, ξ∗, ρ∗} such that themechanism decision rules {α∗, φ∗, ξ∗, ρ∗}maximize
(58). The resulting mechanism is DIC and satisfies Jα,φ,ξ,ρ

1,1 (τ̄ , θ t ) = 0.
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However, the constrained dynamic programming (60) in general does not have closed-
form solutions and computational approximations are necessary. As mentioned earlier in this
section, approximations may reduce the robustness of the DIC, i.e., there exist εS,t ≥ 0 and
εS̄,t ≥ 0, t ∈ T, such that, for all θt , θ̂t ∈ Θt , hθ

t−1 ∈ ∏t−1
s=1 Θs ,

Uα,φ,ξ,ρ
S,t (θt |hθ

t−1) + εS,t ≥ Uα,φ,ξ,ρ
S,t (θt , θ̂t |hθ

t−1), (61)

and

Uα,φ,ξ,ρ

S̄,t
(θt |hθ

t−1) + εS̄,t ≥ Uα,φ,ξ,ρ

S̄,t
(θt , θ̂t |hθ

t−1). (62)

The inequalities (61) and (62) imply that the agent cannot improve his payoff by more than
εS,t (resp. εS̄,t ) through misreporting his true state if he decides to stop at t (resp. to continue
at t).We say that suchmechanismwith {α, φ, ξ, ρ} is {

εS,t , εS̄,t

}
-DIC. Define the deviations,

for t ∈ T,

dα
S,t = sup

θt ,θ̂t∈Θt

{
u1,t (θt , αt (θ̂t |hθ

t−1)) − u1,t (θ̂t , αt (θ̂t |hθ
t−1)) + βα

S,t (θ̂t ) − βα
S,t (θt )

}
, (63)

and

dα

S̄,t
= sup

θt ,θ̂t∈Θt

{

sup
τ∈Tt

{
πα
t (θt , θ̂t ; τ)

}
− sup

τ∈Tt

{
πα
t (θ̂t ; τ)

}
+ βα

S̄,t
(θ̂t ) − βα

S̄,t
(θt )

}

, (64)

where πα
t is given in (35).

Proposition 6 Suppose that Assumptions 1, 3, and 4 hold. Let α◦ be an approximated optimal
allocation rule as a solution to (60). Let βα◦

S̄,t
and βα◦

S,t , respectively, be constructed according

to (47) and (48). If the payment rules φ◦ and ξ◦ are constructed according to (38) and (39),
respectively, and ρ◦ is constructed according to (40) (with an additional assumption that
u1,t (θt , at ) is non-decreasing in θt ) or (51), then

(i) the mechanism is
{
dα◦
S,t , d

α◦
S̄,t

+ supτ∈Tt

{
ρ◦(τ )

}}
-DIC, when dα◦

S,t > 0 and dα◦
S̄,t

>

− supτ∈Tt
(ρ◦(τ ));

(ii) the mechanism is DIC, when dα◦
S,t ≤ 0 and dα◦

S̄,t
≤ − supτ∈Tt

(ρ◦(τ )).

Proof See Appendix K. ��
Proposition 6 provides an approach to evaluate the worst-case scenario of the agent’s

strategic misreporting; i.e., the most profitable deviations from truthfulness, when the
allocation rule α◦ is an approximate solution of the relaxed problem (60). If the pay-
ment rules are constructed according to (38)-(40) in Proposition 2, then the mechanism

is
{
dα◦
S,t , d

α◦
S̄,t

+ supτ∈Tt

{
ρ◦(τ )

}}
-DIC. The evaluation approach also provides a sufficient

condition for DIC, i.e., if dα◦
S,t ≤ 0 and dα◦

S̄,t
≤ − supτ∈Tt

(ρ◦(τ )), then the mechanism is DIC.

6.2 Case Study

We consider a dynamic resource allocation problem to illustrate the verification of the the-
oretical conditions shown in Propositions 2, 3, and 5 . Note that this example is crafted as
analytically tractable for the purpose of illustration. Consider that the principal allocates
resource at ∈ At = [0, āt ] to the agent based on his state θt at each time t ∈ T. Suppose
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that Θt = [θ, θ̄ ] ⊂ R+, for all t ∈ T, the dynamics of the agent’s state follow a nonlinear
autoregressive model: (see, e.g., [13]): for t ∈ T\{T },

θt+1 = ζ(θt ) + bt+1, (65)

where ζ(θt ) is a nonlinear, non-decreasing, and Lipschitz continuous function of θt with
bounded derivative and minθt∈Θt ζ(θt ) = θ and maxθt∈Θt ζ(θt ) < θ̄ , and bt is distributed
over B = [0, θ̄ − ζ(θ̄)]. Since ζ is non-decreasing in θt , the condition in Assumption 4 is
satisfied. Suppose that ζ and the distribution of bt are set such that Assumption 3 holds.
Suppose additionally that the initial kernel has F1 and f1 such that

1−F1(θ1)
f1(θ1)

is non-increasing
in θ1. According to (65), θk , for k ∈ Tt , can be represented in terms of θt ; i.e., there exists
some function ζ̄t,k : Θt × Bk−t �→ Θk , such that θk = ζ̄t,k(θt ; hbt+1,k). The utility functions
of the agent and the principal are given as follows, respectively:

u1,t (θt , at ) = κ(θt )at + c1, (66)

where κ is an increasing linear function of θt and c1 ∈ R+, and

u0,1(θt , at ) = c2a
2
t + c3, (67)

where c2 ∈ R− and c3 ∈ R+ are two nonzero real numbers. It is straightforward to see that
the agent’s utility function u1,t is Lipschitz continuous. We assume that both the principal’s
and the agent’s utility functions are bounded, i.e., there exist constants k < ∞, k′ < ∞,
{gt }t∈T with |gt | < ∞, and {g′

t }t∈T with |g′
t | < ∞, such that |u0,t (θt , at )| ≤ k|θt | + gt and

|u1,t (θt , at )| ≤ k′|θt | + g′
t . By applying the partial derivatives in Lemma 7 to the agent’s

ex-ante and interim expected payoff functions, we obtain that the boundedness condition in
Assumption 1 is satisfied.

Since Assumptions 1, 3, and 4 hold, Lemma 8 yields that the principal’s mechanism
design problem can be reduced to (60) which takes the following form:

max
α,η

Jα
0 (λ(α, η;Ξα)) = E

Ξα

[ λ(α,η;Ξα)∑

t=1

δt
[
αt (θ̃t )

(
κ(θ̃t ) + c2αt (θ̃t )

) + c1 + c3

− 1 − F1(θ̃1)

f1(θ̃1)

dκ(x)

dx

∣
∣
∣
x=θ̃t

αt (θ̃t )

t∏

s=1

dζ(x)

dx

∣
∣
∣
x=θ̃s

]]
,

s.t. DIC,

Jα,φ,ξ,ρ
1,1 (τ̄ , θ) = 0.

(68)

Instead of solving the constrained dynamic programming (68), we follow a shortcut pro-
cedure (see, e.g., [50]) by first ignoring the constraints. Hence, the allocation rule α∗

t that
maximizes (68) (without constraints) is

α∗
t (θt |hθ

t−1)

= max
{
0,

1

2c2

[1 − F1(θ1)

f1(θ1)

dκ(x)

dx

∣
∣
∣
x=θt

t∏

s=1

dζ(x)

dx

∣
∣
∣
x=θs

− κ(θt )
]}

.
(69)

Based on the given environment (i.e., with all non-designed variables), α∗
t (θt ) is non-

decreasing in θt . Greedy algorithms can be used to choose τ̄ ∗ such that the pair {α∗, τ ∗}
leads to the maximum value Jα∗

0 (τ̄ ∗). Then, the corresponding threshold η can be deter-
mined or approximated according to (56).
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From Proposition 3, the potential functions are constructed as follows:

βα∗
S,t (θt ) =

∫ θt

θ

δtα∗
t (r |hθ

t−1)
dκ(x)

dx

∣
∣
∣
x=r

dr , (70)

and

βα∗
S̄,t

(θt ) = sup
τ∈Tt

{ ∫ θt

θ

E
α∗|r[

τ∑

s=t

δsα∗
s (θ̃s |h θ̃

s−1)
dκ(x)

dx

∣
∣
∣
x=θ̃s

s∏

k=t+1

dζ(x)

dx

∣
∣
∣
x=θ̃k−1

]
dr

}
. (71)

For simplicity, let, for τ ∈ Tt , t ∈ T,

Dα∗
t,τ (θt ) = E

α∗|θt
[ τ∑

s=t

δsα∗
s (θ̃s |h θ̃

s−1)
dκ(x)

dx

∣
∣
∣
x=θ̃s

s∏

k=t+1

dζ(x)

dx

∣
∣
∣
x=θ̃k−1

]
. (72)

It is straightforward to verify that Dα∗
t,τ (θt ) ≥ 0, for all θt ∈ [θ, θ̄ ], τ ∈ Tt , t ∈ T. Hence,

the R.H.S. of (71) attains the maximum when τ = T . Since u1,t is increasing in θt and
Assumptions 1, 3, and 4 hold, from Proposition 3, we can construct the payment rules
according to (38), (39), and (40) in Proposition 2, respectively, as follows:

φt (θt ) = sup
τ∈Tt

{ ∫ θt

θ
E

α∗|r[
τ∑

s=t

δsα∗
s (θ̃s |hθ̃

s−1)
dκ(x)

dx

∣
∣
∣
x=θ̃s

s∏

k=t+1

dζ(x)

dx

∣
∣
∣
x=θ̃k−1

]
dr

}

−E
α∗|θt

[
sup
τ∈Tt

{ ∫ θ̃t+1

θ

τ∑

s=t+1

δsα∗
s (θ̃s |hθ̃

s−1)
dκ(x)

dx

∣
∣
∣
x=θ̃s

s∏

k=t+2

dζ(x)

dx

∣
∣
∣
x=θ̃k−1

dr
}]

−u1,t (θt , α
∗
t (θt )), (73)

ξt (θt ) =
∫ θt

θ
α∗
t (r |hθ

t−1)
dκ(x)

dx

∣
∣
∣
x=r

dr − u1,t (θt , α
∗
t (θt )), (74)

and

ρ(t) = sup
τ∈Tt

{ ∫ η∗(t)

θ

E
α∗|r[

τ∑

s=t+1

δsα∗
s (θ̃s ∨ η∗(s)|h θ̃

s−1)
dκ(x)

dx

∣
∣
∣
x=θ̃s∨η∗(s)

·
s∏

k=t+1

dζ(x)

dx

∣
∣
∣
x=θ̃k−1∨η∗(k−1)

]
dr

}
.

(75)

The length function (36) is given as, for all t ∈ T,

�α∗
S,t (θ̂t , θt ) = δt

[
κ(θ̂t )α

∗
t (θ̂t |hθ

t−1) − κ(θt )α
∗(θ̂t |hθ

t−1)
]
. (76)

From (76), we have

�α∗
S,t (θ̂t , θt ) ≥ δt

∫ θ̂t

θt

dκ(x)

dx

∣
∣
∣
x=r

α∗
t (r |hθ

t−1)dr

= δt
∫ θ̂t

θ

dκ(x)

dx

∣
∣
∣
x=r

α∗
t (r |hθ

t−1)dr − δt
∫ θt

θ

dκ(x)

dx

∣
∣
∣
x=r

α∗
t (r |hθ

t−1)dr

= βα∗
S,t (θ̂t ) − βα∗

S,t (θt ).

(77)

Hence, the allocation rule α∗
t in (69) satisfies condition (41) in Proposition 2 and condition

(54) in Proposition 5.
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Next, we check condition (55) in Proposition 5. Let, for τ ∈ Tt , t ∈ T,

Mα∗
t (θt , θ̂t ; τ) = E

α∗|θt ,θ̂t
[
δtκ(θt )α

∗
t (θ̂t |hθ

t−1) +
∫ θ̃t+1

θ

E
α|r[Dα∗

t+1,T (r)
]
dr

−
∫ θ̃τ

θ

E
α|r[Dα∗

τ,T (r)
]
dr + δτ

[
∫ θ̃τ

θ

Dα∗
τ,τ (r)dr

]]
,

(78)

and

Mα∗
t (θt , θ̂t ; t) =

∫ θt

θ

δtα∗
t (θ̂t |hθ

t−1)
dκ(x)

dx

∣
∣
∣
x=r

dr . (79)

Then, the length function (37) is given as, for τ ∈ Tt , t ∈ T,

�α∗
S̄,t

(θ̂t , θt ; τ) = Mα∗
t (θ̂t , θ̂t ; τ) − Mα∗

t (θt , θ̂t ; τ)

=
∫ θ̂t

θt

[ d

dx
Mα∗

t (x, θ̂t ; τ)

∣
∣
∣
x=r

]
dr .

(80)

Let θ̂t ≥ θt ∈ [θ, θ̄ ]. Due to themonotonicity of κ andα∗ and Dα∗
t,s(θt ) ≥ 0, for all θt ∈ [θ, θ̄ ],

s ∈ Tt , t ∈ T, we have, from (80),

sup
τ∈Tt

{
�α∗
S̄,t

(θ̂t , θt ; τ)
}

=
∫ θ̂t

θt

[ d

dx
Mα∗

t (x, θ̂t ; T )

∣
∣
∣
x=r

]
dr .

≥
∫ θ̂t

θt

E
α∗|r ,θ̂t

[ T∑

s=t

δs
dκ(x)

dx

∣
∣
∣
x=θ̃s

α∗
s (θ̃s |h θ̃

s−1)

s∏

k=t+1

dζ(x)

dx

∣
∣
∣
x=θ̃k−1

]
dr .

(81)

From the construction of the potential function βα∗
S̄,t

in (71), we have

R.H.S. of (81)

≥ sup
τ∈Tt

{ ∫ θ̂t

θ

E
α∗|r ,θ̂t

[ τ∑

s=t

δs
dκ(x)

dx

∣
∣
∣
x=θ̃s

α∗
s (θ̃s |h θ̃

s−1)

s∏

k=t+1

dζ(x)

dx

∣
∣
∣
x=θ̃k−1

]
dr

}

− sup
τ∈Tt

{ ∫ θt

θ

E
α∗|r ,θ̂t

[ τ∑

s=t

δs
dκ(x)

dx

∣
∣
∣
x=θ̃s

α∗
s (θ̃s |h θ̃

s−1)

s∏

k=t+1

dζ(x)

dx

∣
∣
∣
x=θ̃k−1

]
dr

}

= βα∗
S̄,t

(θ̂t ) − βα∗
S̄,t

(θt ).

(82)

Let θ̂t ≤ θt ∈ [θ, θ̄ ]. Then,

sup
τ∈Tt

{
�α∗
S̄

(θ̂t , θt ; τ)
}

=
∫ θ̂t

θt

α∗
t (θ̂t |hθ

t−1)
dκ(x)

dx

∣
∣
∣
x=r

dr .

Since α∗
t is non-decreasing,

∫ θ̂t
θt

α∗
t (θ̂t |hθ

t−1)
dκ(x)
dx

∣
∣
∣
x=r

dr ≥ ∫ θ̂t
θt

α∗
t (r |hθ

t−1)
dκ(x)
dx

∣
∣
∣
x=r

dr .

From the fact that 0 ≤ Dα∗
t,t (θ

′
t ) ≤ Dα∗

t,τ (θ
′
t ) for any θ ′

t ∈ [θ, θ̄ ], τ ∈ Tt , we have
∫ θ̂t
θt

Dα∗
t,t (r)dr ≥ ∫ θ̂t

θt
Dα∗
t,τ (r)dr , for all τ ∈ Tt , t ∈ T. Then, it is straightforward to see

that condition (55) is satisfied when θ̂t ≤ θt , given the construction of βα∗
S̄

in (71). Hence,
the allocation rule α∗

t in (69) satisfies condition (55) in Proposition 3.
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Finally, we use the evaluation approach in Proposition 6. From (77), the deviation dα∗
S,t = 0.

The deviation dα∗
S̄,t

in (64) can be written as

dα∗
S̄,t

= sup
θt ,θ̂t∈Θt

{

sup
τ∈Tt

{
Mα∗

t (θt , θ̂t ; τ) + ρ(τ)
}

− sup
τ∈Tt

{
Mα∗

t (θ̂t , θ̂t ; τ) + ρ(τ)
}

+ βα∗
S̄,t

(θ̂t ) − βα∗
S̄,t

(θt )

}

= sup
θt ,θ̂t∈Θt

{ ∫ θ̂t

θt

E
α∗|r[Dα∗

t,T (r) − δtα∗
t (θ̂t |hθ

t−1)
dκ(x)

dx

∣
∣
∣
x=r

dr
]}

=
∫ θ̄

θ

E
α∗|r[Dα∗

t,T (r) − δtα∗
t (θ̄ |hθ

t−1)
dκ(x)

dx

∣
∣
∣
x=r

dr
]
.

(83)

The following corollary summarizes the results of this case study by using the results in
Propositions 2, 3, and 6 .

Corollary 6 Consider the state dynamics (65). The agent optimizes his interim expected payoff
at each period with the utility function (66). The principal optimizes her ex-ante expected
payoff with the utility function (67). Suppose that {α∗, η∗} maximizes (68) by ignoring the
constraints. Letφ, ξ , andρ be constructed byβα∗

S,t andβα∗
S̄,t

given in (70) and (71), respectively.

Then, the mechanism with {α∗, φ, ξ, ρ} admits {
0, dα∗

S̄,t
+ ρ(t)

}
-DIC, where dα∗

S̄,t
is given in

(83). The mechanism is DIC if, for any t ∈ T,

α∗(θ̄) ≥ 1

δt [κ(θ̄) − κ(θ)]
[

ρ(t) +
∫ θ̄

θ

E
α∗[

Dα∗
t,T (r)

]
dr

]

, (84)

where Dα∗
t,T and ρ(t) are given in (72) and (75), respectively.

As stated in Corollary 6, the mechanism with decision rules that solves (68) is in general
not DIC. Condition (84) is directly from the statement (i i) of Proposition 6. The mechanism
is DIC if the non-designed components of the model (i.e., κ , θ̄ , θ , and ξ ) satisfy condition
(84).

7 Conclusion

This work focuses on the theoretical characterizations of the incentive compatibility of a
finite horizon dynamic mechanism design problem, in which the agent has the right to stop
the mechanism at any period. We have studied an optimal stopping time problem under
this dynamic environment for the agent to optimally select the time of stopping. A state-
independent payment rule has been introduced that delivers a payment only at the realized
stopping time. This payment rule enables the principal to directly influence the realization
of the agent’s stopping time. We have also shown that under certain conditions, the optimal
stopping problem can be fully represented by a threshold rule. Dynamic incentive compati-
bility has been defined in terms of the Bellman equations. A one-shot deviation principle has
been established to address the complexity from the dynamic nature of the environment and
the coupling of the agent’s reporting choices and stopping decisions. By relying on a set of
formulations characterized by the non-monetary allocation rule and the potential functions,
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we have constructed the payment rules to obtain the sufficiency argument of the dynamic
incentive compatibility. The quasilinear payoff formulation enables us to derive a necessary
condition for the dynamic incentive compatibility from the envelope theorem which deter-
mines the explicit formulation of the potential functions. These settings naturally lead to the
revenue equivalence.

Our analysis provides a new design paradigm for optimal direct mechanism in gen-
eral quasilinear dynamic environments when the dynamic incentive compatibility takes into
account not only the agent’s reporting behaviors but also his stopping decisions. From the
necessary and the sufficient conditions,we can design the state-independent terminal payment
rule by the allocation rule and the threshold function. As a result, the expected first-passage
time (i.e., the expected time horizon of the principal’s ex-ante expected payoff) seen at the
ex-ante stage is fully determined by the allocation rule and the threshold function given the
transition kernels of the state.We have described the principal’s optimalmechanismdesign by
applying a relaxation approach that reformulates the principal’s optimal mechanism design
by making the principal make decisions at a stationary point. Hence, the principal’s opti-
mization problem can be handled by finding the optimal allocation rule and the optimal
threshold function. A regular condition has been provided as a design principle for the state-
independent payment rule. An evaluation approach has been provided to evaluate the loss of
the robustness of the dynamic incentive compatibility due to relaxations or computational
approximations. In a case study, we have shown an example of a relaxed mechanism design
and used the evaluation approach to obtain an approximate dynamic incentive-compatible
mechanism.

The extension to multiple-agent environments would be a natural next step. In envi-
ronments with multiple agents, allowing the early exit of each agent leads to a dynamic
population over time, which is state-dependent. The relationships between population and
individual payoffs could complicate the analysis of the incentive compatibility. One non-
trivial extension could introduce the arrivals of new agents whose incentives of participation
are characterized by both dynamic rational participation constraints as well as the history of
the mechanism. Involving renegotiation after the agent realizes the stopping time is another
direction of non-trivial extensions, especially when the agent can predict and plan how he
will renegotiate with the principal. In the agent’s decision makings, he can leverage this
prediction into his joint decision of reporting and stopping at each period. Due to the dynam-
ics of the agent’s state, the (planned) renegotiation also changes over time. As a result, the
principal’s mechanism design needs to address the effect of the predicted renegotiation on
the characterization of the dynamic incentive compatibility.
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Appendix

For notational compactness, we suppress the notations hθ
t−1, h

θ̂
t−1, and hat−1 from α, φ, ξ ,

and σ .
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A Proof of Proposition 1

The proof of the only if part directly follows from the optimality of truthful reporting and
here we only provide the proof of the if part. Suppose, on the contrary, the truthful reporting
strategy σ ∗ satisfies (18) and (19) but not (16) and (17). Then there exists a reporting strategy
σ ′ and a state θt , at period t ∈ T, such that V α,φ,ξ,ρ

t (θt ; σ ′) > V α,φ,ξ,ρ
t (θt ; σ ∗). Suppose

that the optimal stopping rule with σ ∗ calls for stopping and the agent decides to continue
by using σ ′, i.e.,

Jα,φ,ξ,ρ
1,t (t, θt ) < E

Ξα;σ ′ [hθ
t ][V α,φ,ξ,ρ

t+1 (θ̃t+1)
]
.

Hence, there exists some ε > 0 such that

E
Ξα;σ ′ [hθ

t ][V α,φ,ξ,ρ
t+1 (θ̃t+1)

] ≥ Jα,φ,ξ,ρ
1,t (t, θt ) + 2ε. (85)

Let σ ′′ be the reporting strategy such that if σ ′′ and σ ′ have the same reporting strategies
from period t to t + k, for some k ≥ 0, then

E
Ξα;σ ′′ [hθ

t ][V α,φ,ξ,ρ
t+1 (θ̃t+1)

] ≥ E
Ξα;σ ′ [hθ

t ][V α,φ,ξ,ρ
t+1 (θ̃t+1)

] − ε. (86)

From (85) and (86), we have

E
Ξα;σ ′′ [hθ

t ][V α,φ,ξ,ρ
t+1 (θ̃t+1)

] ≥ Jα,φ,ξ,ρ
1,t (t, θt ) + ε. (87)

Here, (87) implies that any deviation(s) for the periods from t to t + k (reporting truthfully
for all other periods) can improve the value V α,φ,ξ,ρ

t .
Let σ̂ s denote the reporting strategy that differs only at period s from σ ∗ and σ̂ s

s = σ ′′
s ,

for s ∈ [t, t + k]. Then, we have
E

Ξ
α;σ̂ t+k−1 [hθ

t ][V α,φ,ξ,ρ
t+1 (θ̃t+1)

]
> Jα,φ,ξ,ρ

1,t (t, θt ). (88)

Now, we look at period t + k − 1. Because σ ∗ satisfies (18) and (19), we have, for all
θt+k−1 ∈ Θt+k−1,

E
Ξ

α;σ̂ t+k−2 [hθ
t+k−1][V α,φ,ξ,ρ

t+k−1 (θt+k−1)
] = V α,φ,ξ,ρ

t+k−1 (θt+k−1)

≥ max
(
Jα,φ,ξ,ρ
1,t+k−1(t + k − 1, θt+k−1, σ̂

t+k−1
t+k−1 (θt+k−1)|hθ

t+k−2),E
Ξ

α;σ̂ t+k−1 [hθ
t+k−1][V α,φ,ξ,ρ

t+k (θ̃t+k)
])

= V α,φ,ξ,ρ
t+k−1 (θt+k−1; σ̂ t+k−1

t+k−1 ).

(89)

Then,

E
Ξ

α;σ̂ t+k−2 [hθ
t ][V α,φ,ξ,ρ

t+1 (θ̃t+1)
] ≥ E

Ξ
α;σ̂ t+k−1 [hθ

t ][V α,φ,ξ,ρ
t+1 (θ̃t+1)

]
. (90)

From (88) and (90), we have

E
Ξ

α;σ̂ t+k−2 [hθ
t ][V α,φ,ξ,ρ

t+1 (θ̃t+1)
]

> Jα,φ,ξ,ρ
1,t (t, θt ).

Backward induction yields

E
Ξα;σ̂ t [hθ

t ][V α,φ,ξ,ρ
t+1 (θ̃t+1)

]
> Jα,φ,ξ,ρ

1,t (t, θt ),

which contradicts the fact that σ ∗ satisfies (18) and (19).
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Following the similar analysis, we can prove the cases when the optimal stopping rule
with truthful σ ∗ (1) calls for stopping and the agent decides to stop, (2) calls for continuing
and the agent decides to continue, and (3) calls for continuing and the agent decides to stop.

��

B Proof of Lemma 1

We prove (23) here. The proof of (24) can be done analogously. For any τ ∈ T, the agent’s
ex-ante expected payoff (2) can be written as

Jα,φ,ξ,ρ
1 (τ ) = E

Ξα

[ τ−1∑

t=1

[
δt+1[u1,t+1(θ̃t+1, αt+1(θ̃t+1)) + ξt+1(θ̃t+1)

] + ρ(t + 1)

+ δt
[
φt (θ̃t ) − ξt (θ̃t )

] − ρ(t)
]

+ δ
[
u1,1(θ̃1, α1(θ̃1)) + ξ1(θ̃1)] + ρ(1)

]

.

From law of total expectation, we have

Jα,φ,ξ,ρ
1 (τ ) = E

Ξα

[ τ−1∑

t=1

[
E

α;θt
[
δt+1[u1,t+1(θ̃t+1, αt+1(θ̃t+1)) + ξt+1(θ̃t+1)

] + ρ(t + 1)

+ δt
[
φt (θ̃t ) − ξt (θ̃t )

]] − ρ(t)
]

+ δ
[
u1,1(θ̃1, α1(θ̃1)) + ξ1(θ̃1)] + ρ(1)

]

= E
Ξα

[ τ−1∑

s=1

Lα,φ,ξ,ρ
s (θ̃s) − ρ(s)

]
+ Jα,φ,ξ,ρ

1 (1).

��

C Proof of Lemma 5

Let σ̂ [t] be the one-shot deviation strategy that reports θ̂t for the true state θt at t . LetΩ∗[σ̂ [t]]
be the optimal stopping time rule defined in (14) with the stopping region Λ

α,φ,ξ,ρ
1,t (t; σ̂ [t])

given in (13) (equivalently, (32)). Suppose that at period t the agent observes a state θt ∈
Λ

α,φ,ξ,ρ
1,t (t; σ̂ [t]). Hence, the agent stops at t optimally. Then, we obtain, for every θ ′

t ≤ θt ,

ρ(t) ≥ μ̄
α,φ,ξ,ρ
t (θt , θ̂t ) ≥ μ̄

α,φ,ξ,ρ
t (θ ′

t , θ̂t ),

where the inequality is due to Lemma 4. Therefore, θ ′
t ∈ Λ

α,φ,ξ,ρ
1,t (t; σ̂ [t]) for every θ ′

t ≤ θt ,

which implies that Λ
α,φ,ξ,ρ
1,t (t; σ̂ [t]) is an interval left-bounded by θ t . Since Lα,φ,ξ,ρ

t is

continuous,Λα,φ,ξ,ρ
1,t (t; σ̂ [t]) is closed. Hence, according to Assumption 3, there exists some

η(t) ∈ Θt such that Λ
α,φ,ξ,ρ
1,t (t; σ̂ [t]) = [θ t , η(t)]. ��

D Proof of Lemma 6

LetΩ[σ̂ [t]]|η andΩ[σ̂ [t]]|η′ denote the optimal stopping rulewith threshold functions η and
η′, respectively. Let τη and τη′ denote the expected realized stopping time fromΩ[σ̂ [t]]|η and
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Ω[σ̂ [t]]|η′, respectively. Without loss of generality, suppose η(t) < η′(t) for some t ∈ T.
Here, we obtain the probability of τη = t as:

Pr (τη = t) = Pr (θt ≤ η(t), τη > t − 1) =E
Ξα

[

E
α|θt−1

[
1{θ̃t≤η(t)}

]
1{τη>t−1}

]

.

We can obtain Pr (τη′ = t) in a similar way. Then,

Pr (τη′ = t) − Pr (τη = t) = E
Ξα

[

E
α|θt−1

[
1{θ̃t≤η′(t)}

]
1{τη′>t−1}

]

− E
Ξα

[

E
α|θt−1

[
1{θ̃t≤η(t)}

]
1{τη>t−1}

]

= E
Ξα

[

E
α|θt−1

[
1{η(t)≤θ̃t≤η′(t)}

]
1τη>t−1

]

.

(91)

Since τη = τη′ , the probabilities Pr (τη′ = t) and Pr (τη = t) are equal, i.e., (91) equals 0.

However, fromAssumption 3, we knowE
α|θt−1

[
1{η(t)≤θ̃t≤η′(t)}

]
> 0 and Pr (τη > t−1) > 0,

which implies that

E
Ξα

[

E
α|θt−1

[
1{η(t)≤θ̃t≤η′(t)}

]
1τη>t−1

]

> 0.

This contradiction implies that η is unique. ��

E Proof of Proposition 2

From the construction of ξ in (39), we have

ξt (θ̂t ) − ξt (θt ) = δ−tβα
S,t (θ̂t ) − δ−tβα

S,t (θt ) + u1,t (θt , αt (θt )) − u1,t (θ̂t , αt (θ̂t ))

= δ−tβα
S,t (θ̂t ) − δ−tβα

S,t (θt ) − (u1,t (θ̂t , αt (θ̂t )) − u1,t (θt , αt (θ̂t )))

+ u1,t (θt , αt (θt )) − u1,t (θt , αt (θ̂t ))).

(92)

From the definition of �α
S,t in (36) and the condition (41),

R.H.S. of (92) = δ−tβα
S,t (θ̂t ) − δ−tβα

S,t (θt ) + u1,t (θt , αt (θt )) − �α
S,t (θ̂t , θt )

+ u1,t (θt , αt (θt )) − u1,t (θt , αt (θ̂t )))

≤ u1,t (θt , αt (θt )) − u1,t (θt , αt (θ̂t ))),

which implies

u1,t (θt , αt (θt )) + ξt (θt ) ≥ u1,t (θt , αt (θ̂t ))) + ξt (θ̂t ), (93)

i.e.,

Uα,φ,ξ,ρ
S,t (θt |hθ

t−1) ≥ Uα,φ,ξ,ρ
S,t (θt , θ̂t |hθ

t−1).
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From the construction of φ in (38), we have, for any τ ∈ Tt+1,

φt (θ̂t ) − φt (θt ) = βα

S̄,t
(θ̂t ) − E

α|θ̂t
[
βS̄,t+1(θ̃t+1)

]
− u1,t (θ̂t , αt (θ̂t ))

− βα

S̄,t
(θt ) + E

α|θt
[
βS̄,t+1(θ̃t+1)

]
+ u1,t (θt , αt (θt ))

= βα

S̄,t
(θ̂t ) − βα

S̄,t
(θt ) + E

α|θt
[ T∑

s=t

δsu1,s(θ̃s , αs(θ̃s)) +
T−1∑

s=t+1

δsφs(θ̃s) + δτ ξT (θ̃T )
]

− E
α|θ̂t

[ τ−1∑

s=t

δsu1,s(θ̃s , αs(θ̃s)) +
τ−1∑

s=t+1

δsφs(θ̃s) + βα

S̄,τ
(θ̃τ )

]
.

(94)

From the condition (42), we have

R.H.S. of (94) ≤ inf
τ∈Tt

{
E

α|θ̂t
[ τ∑

s=t

δs
[
u1,s(θ̃s , αs(θ̃s))

] +
τ−1∑

s=t+1

δsφs(θ̃s) + δτ ξτ (θ̃τ )
]

− E
α|θt ,θ̂t

[ τ∑

s=t

δs
[
u1,s(θ̃s , αs(θ̃s))

] +
τ−1∑

s=t+1

δsφs(θ̃s) + δτ ξτ (θ̃τ )
]}

− sup
τ∈Tt

ρ(τ)

+ E
α|θt

[ T∑

s=t

δsu1,s(θ̃s , αs(θ̃s)) +
T−1∑

s=t+1

δsφs(θ̃s) + δT ξT (θ̃T )
]

− E
α|θ̂t

[ τ−1∑

s=t

δsu1,s(θ̃s , αs(θ̃s)) +
τ−1∑

s=t+1

δsφs(θ̃s) + βα

S̄,τ
(θ̃τ )

]
.

(95)

From the condition (43), βα

S̄,t
(θt ) ≥ βα

S,t (θt ), for all θt ∈ Θt , t ∈ T. Hence, βα

S̄,t
(θt ) ≥ ξt (θt )

+u1,t (θt , αt (θt )), for all θt ∈ T, t ∈ T. Then,

inf
τ∈Tt

{
E

α|θ̂t
[ τ∑

s=t

δs
[
u1,s(θ̃s, αs(θ̃s))

] +
τ−1∑

s=t+1

δsφs(θ̃s) + δτ ξτ (θ̃τ )
]

− E
α|θ̂t

[ τ−1∑

s=t

δsu1,s(θ̃s, αs(θ̃s)) +
τ−1∑

s=t+1

δsφs(θ̃s) + βα

S̄,τ
(θ̃τ )

]}

≤ inf
τ∈Tt

{
E

α|θ̂t
[ τ∑

s=t

δs
[
u1,s(θ̃s, αs(θ̃s))

] +
τ−1∑

s=t+1

δsφs(θ̃s) + δτ ξτ (θ̃τ )
]

− E
α|θ̂t

[ τ∑

s=t

δsu1,s(θ̃s, αs(θ̃s)) +
τ−1∑

s=t+1

δsφs(θ̃s) + δτ ξτ (θ̃τ )
]}

= 0.

(96)
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Hence, from (96), we have

R.H.S. of (95) ≤ E
α|θt

[ T∑

s=t

δsu1,s(θ̃s , αs(θ̃s)) +
T−1∑

s=t+1

δsφs(θ̃s) + δT ξT (θ̃T )
]

+ inf
τ∈Tt

{
− E

α|θt ,θ̂t
[ τ∑

s=t

δs
[
u1,s(θ̃s , αs(θ̃s))

] +
τ−1∑

s=t+1

δsφs(θ̃s) + δτ ξτ (θ̃τ )
]}

− sup
τ∈Tt

ρ(τ).

(97)

From the construction of ρ in (40) and Lemma 2, we have, for some τ ′ ∈ Tt

R.H.S. of (97) ≤ E
α|θt

[ τ ′
∑

s=t

δsu1,s(θ̃s , αs(θ̃s)) +
τ ′−1∑

s=t+1

δsφs(θ̃s) + δτ ′
ξτ ′ (θ̃τ ′ ) + ρ(τ ′)

]

+ inf
τ∈Tt

{
− E

α|θt ,θ̂t
[ τ∑

s=t

δs
[
u1,s(θ̃s , αs(θ̃s))

] +
τ−1∑

s=t+1

δsφs(θ̃s) + δτ ξτ (θ̃τ )
]}

+ inf
τ∈Tt

{
− ρ(τ)

}
,

(98)

which can be further bounded as

R.H.S. of (98) ≤ sup
τ∈Tt

{
E

α|θt
[ τ∑

s=t

δsu1,s(θ̃s , αs(θ̃s)) +
τ−1∑

s=t+1

δsφs(θ̃s) + δτ ξτ (θ̃τ ) + ρ(τ)
]}

+ inf
τ∈Tt

{
− E

α|θt ,θ̂t
[ τ∑

s=t

δs
[
u1,s(θ̃s , αs(θ̃s))

] +
τ−1∑

s=t+1

δsφs(θ̃s) + δτ ξτ (θ̃τ ) + ρ(τ)
]}

= sup
τ∈Tt

{
E

α|θt
[ τ∑

s=t

δsu1,s(θ̃s , αs(θ̃s)) +
τ−1∑

s=t+1

δsφs(θ̃s) + δτ ξτ (θ̃τ ) + ρ(τ)
]}

− sup
τ∈Tt

{
E

α|θt ,θ̂t
[ τ∑

s=t

δs
[
u1,s(θ̃s , αs(θ̃s))

] +
τ−1∑

s=t+1

δsφs(θ̃s) + δτ ξτ (θ̃τ ) + ρ(τ)
]}

.

Hence, from the definition of Uα,φ,ξ,ρ

S̄,t
, we have

Uα,φ,ξ,ρ

S̄,t
(θt |hθ

t−1) ≥ Uα,φ,ξ,ρ

S̄,t
(θt , θ̂t |hθ

t−1).

Therefore, we can conclude that the mechanism is DIC. ��

F Proof of Lemma 7

Let m̃t be uniformly distributed over (0, 1). Given the kernel Kt , define the inverse of
Ft (·|θt−1, at−1) as follows:

F−1
t (mt |θt−1, at−1) = inf{θt ∈ Θt : Ft (θt |θt−1, at−1) ≥ mt }.
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Let θt ∈ Θt and θt+1 ∈ Θt+1 be any two realized states at two adjacent periods, for any
t ∈ T\{T }. Then, we have

∂θt+1

∂r

∣
∣
∣
r=θt

=∂F−1
t+1(mt+1|r , at )

∂r

∣
∣
∣
r=θt

= −∂Ft+1(θt+1|r , at )
ft+1(θt+1|θt , at )∂r

∣
∣
∣
r=θt

.

Then, for any sequence of realized states {θt , θt+1, . . . , θt+k}, for some k > 1, we have

∂θt+k

∂r

∣
∣
∣
r=θt

=
t+k∏

s=t+1

∂F−1
s (ms |r , as−1)

∂r

∣
∣
∣
r=θs−1

=
t+k∏

s=t+1

[ −∂Fs(θs |r , as−1)

fs(θs |θs−1, as−1)∂r

∣
∣
∣
r=θs−1

]
.

In any DIC mechanism, truthful reporting strategy is optimal. Then, the envelope theorem
yields the following:

∂Uα,φ,ξ,ρ
t (τ, r |hθ

t−1)

∂r

∣
∣
∣
r=θt

=E
α|θt

[ τ∑

s=t

∂u1,s(r , αs(θ̃s))

∂r

∣
∣
∣
r=θ̃s

· ∂θ̃s

∂l

∣
∣
∣
l=θt

]

=E
α|θt

[ τ∑

s=t

∂u1,s(r , αs(θ̃s))

∂r

∣
∣
∣
r=θ̃s

·
s∏

k=t+1

[ −∂Fk(θk |r , ak−1)

fk(θk |θk−1, ak−1)∂r

∣
∣
∣
r=θk−1

]]

=E
α|θt

[ τ∑

s=t

∂u1,s(r , αs(θ̃s))

∂r

∣
∣
∣
r=θ̃s

· Gt,s(h
θ
t,s)

]
.

��

G Proof of Proposition 3

Since u1,t (θt , at ) is a non-decreasing function of θt , then
∂u1,t (r ,at )

∂r

∣
∣
∣
r=θt

≥ 0 , for all t ∈ T.

From Assumption 4, we have ∂Ft+1(θt+1|r ,at )
∂r

∣
∣
∣
r=θt

≤ 0. Therefore, from Lemma 46, the term

γ α
t (τ, θt |hθ

t−1) is nonnegative.

From the definition of χ
α,φ,ξ
1,t (θt ) in (7), we have

χ
α,φ,ξ
1,t (θt ) = Zα,φ,ξ

1,t (t + 1, θt |hθ
t−1) − Zα,φ,ξ

1,t (t, θt |hθ
t−1)

= E
α|θt

[ t+1∑

s=t

δsu1,s (θ̃s , αs (θ̃s )) + δt+1ξt+1(θ̃t+1) + δtφt (θt )
]

− [δt u1,t (θt , αt (θt )) + δt ξt (θt )].

Substituting the constructions of φ and ξ given by (38) and (39), respectively, yields

χ
α,φ,ξ
1,t (θt ) =E

α|θt
[
βS̄,t (θt ) − βS̄,t+1(θ̃t+1)

]
+ E

α|θt
[
βS,t+1(θ̃t+1) − βS,t (θt )

]
. (99)

Given the formulations of βS,t and βS̄,t in (47) and (48), respectively, we have

R.H.S. of (99) = E
α|θt

[
sup
τ∈Tt

{ ∫ θt

θε,t

γ α
t (τ, r |hθ

t−1)dr
}

− sup
τ∈Tt+1

{ ∫ θ̃t+1

θε,t+1

γ α
t+1(τ, r |hθ

t )dr
}]

+ E
α|θt

[ ∫ θ̃t+1

θε,t+1

γ α
t+1(t + 1, r |hθ

t )dr −
∫ θt

θε,t

γ α
t (t, r |hθ

t−1)dr
]
.

(100)
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Since γ α
t is nonnegative for all t ∈ T, then

R.H.S. of (100) = E
α|θt

[ ∫ θt

θε,t

γ α
t (T , r |hθ

t−1)dr −
∫ θ̃t+1

θε,t+1

γ α
t+1(T , r |hθ

t )dr
]

+ E
α|θt

[ ∫ θ̃t+1

θε,t+1

γ α
t+1(t + 1, r |hθ

t )dr −
∫ θt

θε,t

γ α
t (t, r |hθ

t−1)dr
]
.

(101)

Taking partial derivative of χ
α,φ,ζ
1,t given in (101) with respect to θt gives

∂χ
α,φ,ξ
1,t (r)

∂r

∣
∣
∣
r=θt

= E
α|θt

[
γ α
t (T , θt |hθ

t−1) − γ α
t+1(T , θ̃t+1|hθ

t )Gt,t+1(θ̃t+1)
]

+ E
α|θt

[
γ α
t+1(t + 1, θ̃t+1|hθ

t )Gt,t+1(θ̃t+1) − γ α
t (t, θt |hθ

t−1)
]
.

From Lemma 7, we have

E
α|θt

[
γ α
t (T , θt |hθ

t−1)drx − γ α
t (t, θt |hθ

t−1)
]

= max
{
E

α|θt
[ T∑

s=t+1

δs
∂u1,s(r , αs(θ̃s))

∂r

∣
∣
∣
r=θ̃s

Gt,s(h
θ̃
t,s)

]
, 0

}

= E
α|θt

[ T∑

s=t+1

δs
∂u1,s(r , αs(θ̃s))

∂r

∣
∣
∣
r=θ̃s

Gt,s(h
θ̃
t,s)

]
,

where the second equality is from the fact that γ α
t is nonnegative; and

E
α|θt

[
γ α
t+1(T , θ̃t+1|hθ

t )Gt,s(h
θ̃
t,s)

]
= E

α|θt
[ T∑

s=t+1

δs
∂u1,s(r , αs(θ̃s))

∂r

∣
∣
∣
r=θ̃s

Gt+1,s(h
θ̃
t+1,s)Gt,s(h

θ̃
t,s)

]

= E
α|θt

[ T∑

s=t+1

δs
∂u1,s(r , αs(θ̃s))

∂r

∣
∣
∣
r=θ̃s

Gt,s(h
θ̃
t,s)

]
.

Also, Assumption 4 implies that Gt,t+1(θt+1) ≥ 0 for all θt+1 ∈ Θt+1. Hence, we have

∂χ
α,φ,ξ
1,t (r)

∂r

∣
∣
∣
r=θt

=E
α|θt

[
γ α
t+1(t + 1, θ̃t+1|hθ

t )Gt,t+1(θ̃t+1)
]

≥ 0.

Therefore, the constructions of potential functions given in (47) and (48) satisfy the mono-
tonicity condition specified by Assumption 2, i.e., the statement (iii) in Proposition 2 is
satisfied. ��

H Proof of Proposition 5

Fix an arbitrary θ̂ε,t ∈ Θε . We discuss the following two cases:
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1.�t ∈ �t(t) :

Let θ̂t ∈ Λt (t). Without loss of generality, suppose θ̂t ≤ θt . Let θ , θ1, θ2 ∈ Θ̄t ≡ [θ̂t , θt ].
Since the mechanism is DIC, there exists ξ such that

δt
[
u1,t (θt , αt (θt )) + ξt (θt )

] + ρ(t) ≥ δt
[
u1,t (θt , αt (θ̂t )) + ξt (θ̂t )

] + ρ(t). (102)

Define

Bt (θ) ≡ max
x∈Θ̄t

δt
[
u1,t (θ, αt (x)) + ξt (x)

]
. (103)

DIC implies that

θ ∈ argmax
x∈Θ̄t

δt
[
u1,t (θ, αt (x)) + ξt (x)

]
.

Then, we obtain

|Bt (θ
2) − Bt (θ

1)| ≤ max
x∈Θ̄t

δt
∣
∣u1,t (θ

2, αt (x)) − u1,t (θ
1, αt (x))

∣
∣

= max
x∈Θ̄t

δt
∣
∣
∣

∫ θ2

θ1

∂u1,t (y, αt (x))

∂ y

∣
∣
y=θ

dθ

∣
∣
∣

= max
x∈Θ̄t

δt
∣
∣
∣βα

S,t (θ
2) − βα

S,t (θ
1)

∣
∣
∣.

By Assumption 1, we have that Bt is Lipschitz continuous. Thus, Bt is differentiable almost
everywhere. Therefore, we have

Bt (θt ) − Bt (θ̂t ) =
∫ θt

θ̂t

d Bt (y)

dy

∣
∣
y=θ

dθ.

Applying envelope theorem to Bt yields

dBt (y)

dy

∣
∣
y=θ

= ∂

∂x

[
δt u1,t (x, αt (θ)) + ξt (θ)

]∣∣
∣
x=θ

= ∂

∂x
δt u1,t (x, αt (θ))

∣
∣
∣
x=θ

=γ α
t (t, θ |hθ

t−1).

Therefore, we have

βα
S,t (θt ) − βα

S,t (θ̂t ) =Bt (θt ) − Bt (θ̂t )

=δt
[
u1,t (θt , αt (θt )) + ξt (θt )

] − δt
[
u1,t (θ̂t , αt (θ̂t )) + ξt (θ̂t )

]

From the definition of �α
S,t (θt , θ̂t ), we have

�α
S,t (θt , θ̂t ) =δt u1,t (θt , αt (θt )) − δt u1,t (θ̂t , αt (θt ))

=δt u1,t (θt , αt (θt )) − δt u1,t (θ̂t , αt (θ̂t )) + δt u1,t (θ̂t , αt (θ̂t )) − δt u1,t (θ̂t , αt (θt ))

≥δt
[
u1,t (θt , αt (θt )) − u1,t (θ̂t , αt (θ̂t )) + ξt (θt ) − ξt (θ̂t )

]

=βα
S,t (θt ) − βα

S,t (θ̂t ).
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2.�t /∈ �t(t) :

Similar to the case when θt ∈ Λt (t), DIC implies the existence of φ and ξs such that

δt
[
u1,t (θt , αt (θt )) + ξt (θt )

] + μ̄
α,φ,ξ,ρ
t (θt )

≥ δt
[
u1,t (θt , αt (θ̂t )) + ξt (θ̂t )

] + μ̄
α,φ,ξ,ρ
t (θt , θ̂t ).

Define

B ′
t (θ) ≡ max

x∈Θ̄t

[
δt

[
u1,t (θ, αt (x)) + ξt (x)

] + μ̄
α,φ,ξ,ρ
t (θ, x)

]
. (104)

Since the mechanism is DIC, we have

θ ∈ argmax
x∈Θ̄t

[
δt

[
u1,t (θ, αt (x)) + ξt (x)

] + μ̄
α,φ,ξ,ρ
t (θ, x)

]
.

Envelope theorem yields the following:

βα

S̄,t
(θ̂t ) − βα

S̄,t
(θt ) = B ′

t (θ̂t ) − B ′
t (θt )

= δt
[
u1,t (θ̂t , αt (θ̂t )) + ξt (θ̂t )

] + μ̄
α,φ,ξ,ρ
t (θ̂t )

− δt
[
u1,t (θt , αt (θt )) + ξt (θt )

] − μ̄
α,φ,ξ,ρ
t (θt ).

(105)

From the definition of μ̄
α,φ,ξ,ρ
t , (105) can be extended as follows:

βα

S̄,t
(θ̂t ) − βα

S̄,t
(θt )

= sup
τ∈Tt+1

{

E
α|θ̂t

[ τ∑

s=t

δs
[
u1,s(θ̃s, αs(θ̃s)) +

τ−1∑

s=t+1

φs(θ̃s) + ξτ (θ̃τ )
] + ρ(τ)

]}

− sup
τ∈Tt+1

{

E
α|θt

[ τ∑

s=t

δs
[
u1,s(θ̃s, αs(θ̃s)) +

τ−1∑

s=t+1

φs(θ̃s) + ξτ (θ̃τ )
] + ρ(τ)

]}

+ φt (θ̂t ) − φt (θt ).

(106)

Since the mechanism is DIC, we have

R.H.S. of (106) ≤ sup
τ∈Tt+1

{

E
α|θ̂t

[ τ∑

s=t

δs
[
u1,s(θ̃s , αs(θ̃s)) +

τ−1∑

s=t+1

φs(θ̃s) + ξτ (θ̃τ )
] + ρ(τ)

]}

− sup
τ∈Tt+1

{

E
α|θt

[ τ∑

s=t

δs
[
u1,s(θ̃s , αs(θ̃s)) +

τ−1∑

s=t+1

φs(θ̃s) + ξτ (θ̃τ )
] + ρ(τ)

]}

+ sup
τ∈Tt+1

{

E
α|θt

[ τ∑

s=t

δs
[
u1,s(θ̃s , αs(θ̃s)) +

τ−1∑

s=t+1

φs(θ̃s) + ξτ (θ̃τ )
] + ρ(τ)

]}

− sup
τ∈Tt+1

{

E
α|θt ,θ̂t

[ τ∑

s=t

δs
[
u1,s(θ̃s , αs(θ̃s)) +

τ−1∑

s=t+1

φs(θ̃s) + ξτ (θ̃τ )
] + ρ(τ)

]}

,
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which is equal to

sup
τ∈Tt+1

{

E
α|θ̂t

[ τ∑

s=t

δs
[
u1,s(θ̃s, αs(θ̃s)) +

τ−1∑

s=t+1

φs(θ̃s) + ξτ (θ̃τ )
] + ρ(τ)

]}

− sup
τ∈Tt+1

{

E
α|θt ,θ̂t

[ τ∑

s=t

δs
[
u1,s(θ̃s, αs(θ̃s)) +

τ−1∑

s=t+1

φs(θ̃s) + ξτ (θ̃τ )
] + ρ(τ)

]}

= sup
τ∈Tt+1

{
πα
t (θ̂t )

}
− sup

τ∈Tt+1

{
πα
t (θt , θ̂t )

}
.

Hence, the condition (55) is satisfied. ��

I Proof of Proposition 4

Let θaε,t , θ
b
ε,t ∈ Θ associate with β

α;a
S̄,t

and β
α;b
S̄,t

, respectively. For any period t ∈ T\{1}, time
horizon τ ∈ T,

Jα,φa ,ξ,ρ
1,t (τ, θt |hθ

t−1) − Jα,φa ,ξ,ρ
1,t−1 (τ, θt−1|hθ

t−2)

= Jα,φa ,ξ,ρ
1,t (τ, θt |hθ

t−1) − E
Ft (θt−1,at−1)

[
Jα,φa ,ξ,ρ
1,t−1 (τ, θ̃t |hθ

t−2)
]

= E
Ft (θt−1,at−1)

[
Jα,φa ,ξ,ρ
1,t (τ, θt |hθ

t−1) − Jα,φa ,ξ,ρ
1,t−1 (τ, θ̃t |hθ

t−1)
]

= E
Ft (θt−1,at−1)

[ ∫ θt

θaε,t

γ α
t−1(τ, r |hθ

t−2)dr −
∫ θ̃t

θaε,t

γ α
t−1(τ, r |hθ

t−2)dr
]

= E
Ft (θt−1,at−1)

[ ∫ θt

θ̃t

γ α
t−1(τ, r |hθ

t−2)dr
]

= E
Ft (θt−1,at−1)

[ ∫ θt

θbε,t

γ α
t−1(τ, r |hθ

t−2)dr −
∫ θ̃t

θbε,t

γ α
t−1(τ, r |hθ

t−2)dr
]

= Jα,φb,ξ,ρ
1,t (τ, θt |hθ

t−1) − Jα,φb,ξ,ρ
1,t−1 (τ, θt−1|hθ

t−2).

Hence, we have

E
α|θt

[ τ−1∑

s=1

δsφa
s (θ̃s) + δτ ξaτ (θ̃τ ) + ρa(τ )

]
− E

α|θt
[ τ−1∑

s=1

δsφb
s (θ̃s) + δτ ξbτ (θ̃τ ) + ρb(τ )

]

= E
α|θt−1

[ τ−1∑

s=1

δsφa
s (θ̃s) + δτ ξaτ (θ̃τ ) + ρa(τ )

]
− E

α|θt−1
[ τ−1∑

s=1

δsφb
s (θ̃s) + δτ ξbτ (θ̃τ ) + ρb(τ )

]
.

(107)

Induction gives the following

E
α|θt

[ τ∑

s=1

δsφa
s (θ̃s) + δτ ξaτ (θ̃τ ) + ρa(τ )

]
− E

α|θt
[ τ∑

s=1

δsφb
s (θ̃s) + δτ ξbτ (θ̃τ ) + ρb(τ )

]

= E
Ξα

[ τ∑

s=1

δsφa
s (θ̃s) + δτ ξaτ (θ̃τ ) + ρa(τ )

]
− E

Ξα

[ τ∑

s=1

δsφb
s (θ̃s) + δτ ξbτ (θ̃τ ) + ρb(τ )

]

= Cτ . (108)

��
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J Proof of Lemma 8

It is straightforward to see that

∂ Jα,φ,ξ,ρ
1,t (τ, r |hθ

t−1)

∂r

∣
∣
∣
r=θt

= ∂Uα,φ,ξ,ρ
t (τ, r |hθ

t−1)

∂r

∣
∣
∣
r=θt

= E
α|θt

[ τ∑

s=t

∂u1,s(r , αs(θ̃s))

∂r

∣
∣
∣
r=θ̃s

Gt,s(h
θ̃
t,s)

]
.

From Assumption 4, we have Gt,s(h θ̃
t,s) ≥ 0. Since u1,t is a non-decreasing function of θt ,

∂ Jα,φ,ξ,ρ
1,t (τ,r |hθ

t−1)

∂r

∣
∣
∣
r=θt

≥ 0. Therefore, Jα,φ,ξ,ρ
1,t (τ, r |hθ

t−1) is a non-decreasing function of θt ,

for all t ∈ T. ��

K Proof of Proposition 6

From the construction of φ in (38), we have, for any τ ′, τ ′′ ∈ Tt+1,

φt (θ̂t ) − φt (θt ) = βα

S̄,t
(θ̂t ) − E

α|θ̂t
[
βS̄,t+1(θ̃t+1)

]
− u1,t (θ̂t , αt (θ̂t ))

− βα

S̄,t
(θt ) + E

α|θt
[
βS̄,t+1(θ̃t+1)

]
+ u1,t (θt , αt (θt ))

= βα

S̄,t
(θ̂t ) − βα

S̄,t
(θt ) + E

α|θt
[ τ ′′−1∑

s=t

δsu1,s(θ̃s , αs(θ̃s)) +
τ ′′−1∑

s=t+1

δsφs(θ̃s) + βα

S̄,τ ′′ (θ̃τ ′′ )
]

− E
α|θ̂t

[ τ ′−1∑

s=t

δsu1,s(θ̃s , αs(θ̃s)) +
τ ′−1∑

s=t+1

δsφs(θ̃s) + βα

S̄,τ ′ (θ̃τ ′ )
]
.

(109)

From the definition of dα

S̄,t
in (64), we have for any τ ′, τ ′′ ∈ Tt ,

R.H.S. of (109) ≤ sup
τ∈Tt

{
E

α|θ̂t
[ τ∑

s=t

δs
[
u1,s(θ̃s , αs(θ̃s))

] +
τ−1∑

s=t+1

δsφs(θ̃s) + δτ ξτ (θ̃τ )
]

+ ρ(τ)
}

− sup
τ∈Tt

{
E

α|θt ,θ̂t
[ τ∑

s=t

δs
[
u1,s(θ̃s , αs(θ̃s))

] +
τ−1∑

s=t+1

δsφs(θ̃s) + δτ ξτ (θ̃τ )
]

+ ρ(τ)
}

+ dα

S̄,t

+ E
α|θt

[ τ ′′−1∑

s=t

δsu1,s(θ̃s , αs(θ̃s)) +
τ ′′−1∑

s=t+1

δsφs(θ̃s) + βα

S̄,τ ′′ (θ̃τ ′′ )
]

− E
α|θ̂t

[ τ ′−1∑

s=t

δsu1,s(θ̃s , αs(θ̃s)) +
τ ′−1∑

s=t+1

δsφs(θ̃s) + βα

S̄,τ ′ (θ̃τ ′ )
]
.

(110)
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From the condition (43), βα

S̄,t
(θt ) ≥ βα

S,t (θt ), for all θt ∈ Θt , t ∈ T. Hence, βα

S̄,t
(θt ) ≥

ξt (θt )+ u1,t (θt , αt (θt )), for all θt ∈ T, t ∈ T. Then,

sup
τ∈Tt

{
E

α|θ̂t
[ τ∑

s=t

δs
[
u1,s(θ̃s , αs(θ̃s))

] +
τ−1∑

s=t+1

δsφs(θ̃s) + δτ ξτ (θ̃τ ) + ρ(τ)
]

− E
α|θ̂t

[ τ−1∑

s=t

δsu1,s(θ̃s , αs(θ̃s)) +
τ−1∑

s=t+1

δsφs(θ̃s) + βα

S̄,τ
(θ̃τ )

]}

≤ sup
τ∈Tt

{
E

α|θ̂t
[ τ∑

s=t

δs
[
u1,s(θ̃s , αs(θ̃s))

] +
τ−1∑

s=t+1

δsφs(θ̃s) + δτ ξτ (θ̃τ ) + ρ(τ)
]

− E
α|θ̂t

[ τ∑

s=t

δsu1,s(θ̃s , αs(θ̃s)) +
τ−1∑

s=t+1

δsφs(θ̃s) + δτ ξτ (θ̃τ )
]}

= sup
τ∈Tt

{
ρ(τ)

}
.

(111)

Hence, from (111), we have, for any τ ′ ∈ Tt

R.H.S. of (110) ≤ E
α|θt

[ τ ′−1∑

s=t

δsu1,s(θ̃s , αs(θ̃s)) +
τ ′−1∑

s=t+1

δsφs(θ̃s) + βα

S̄,τ ′ (θ̃τ ′ )
]

+ sup
τ∈Tt

{
ρ(τ)

}
+ dα

S̄,t

− sup
τ∈Tt

{
E

α|θt ,θ̂t
[ τ∑

s=t

δs
[
u1,s(θ̃s , αs(θ̃s))

] +
τ−1∑

s=t+1

δsφs(θ̃s) + δτ ξτ (θ̃τ )
]

+ ρ(τ)
}
.

(112)

From the construction of ρ in (40) and Lemma 2, we have, for some τ ′ ∈ Tt

R.H.S. of (112) ≤ E
α|θt

[ τ ′
∑

s=t

δsu1,s(θ̃s , αs(θ̃s)) +
τ ′−1∑

s=t+1

δsφs(θ̃s) + δτ ′
ξτ ′ (θ̃τ ′ ) + ρ(τ ′)

]
+ dα

S̄,t

+ sup
τ∈Tt

{
ρ(τ)

}

− sup
τ∈Tt

{
E

α|θt ,θ̂t
[ τ∑

s=t

δs
[
u1,s(θ̃s , αs(θ̃s))

] +
τ−1∑

s=t+1

δsφs(θ̃s) + δτ ξτ (θ̃τ ) + ρ(τ)
]}

= sup
τ∈Tt

{
E

α|θt
[ τ∑

s=t

δsu1,s(θ̃s , αs(θ̃s)) +
τ−1∑

s=t+1

δsφs(θ̃s) + δτ ξτ (θ̃τ ) + ρ(τ)
]}

− sup
τ∈Tt

{
E

α|θt ,θ̂t
[ τ∑

s=t

δs
[
u1,s(θ̃s , αs(θ̃s))

] +
τ−1∑

s=t+1

δsφs(θ̃s) + δτ ξτ (θ̃τ ) + ρ(τ)
]}

+ dα

S̄,t
+ sup

τ∈Tt

{
ρ(τ)

}
,
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which is equal to

sup
τ∈Tt

{
E

α|θt
[ τ∑

s=t

δsu1,s(θ̃s, αs(θ̃s)) +
τ−1∑

s=t+1

δsφs(θ̃s) + δτ ξτ (θ̃τ ) + ρ(τ)
]}

− sup
τ∈Tt

{
E

α|θt ,θ̂t
[ τ∑

s=t

δs
[
u1,s(θ̃s, αs(θ̃s))

] +
τ−1∑

s=t+1

δsφs(θ̃s) + δτ ξτ (θ̃τ ) + ρ(τ)
]}

+ dα

S̄,t
+ sup

τ∈Tt

{
ρ(τ)

}
.

Hence, from the definition of Uα,φ,ξ,ρ

S̄,t
, we have

Uα,φ,ξ,ρ

S̄,t
(θt |hθ

t−1) + dα

S̄,t
+ sup

τ∈Tt

{
ρ(τ)

}
≥ Uα,φ,ξ,ρ

S̄,t
(θt , θ̂t |hθ

t−1).

Following the similar way, we can prove the following

Uα,φ,ξ,ρ
S,t (θt |hθ

t−1) + dα
S,t ≥ Uα,φ,ξ,ρ

S,t (θt , θ̂t |hθ
t−1),

where dα
S,t is defined in (63).

Therefore, we can conclude that the mechanism is
{
dα◦
S,t , d

α◦
S̄,t

+ supτ∈Tt

{
ρ◦(τ )

}}
-DIC

if dα
S,t > 0 and

[
dα
t + supτ∈Tt

{
ρ(τ)

}
> 0; otherwise, the mechanism is DIC. We can prove

the case when the payment rule ρ is constructed according to (51) by following the similar
way. ��
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