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Abstract
Motivated by inventory control problems with set-up costs, we consider a coordination game
where each player’s dynamics is an inventory model characterized by a controlled input and
an uncontrolled output. An activation cost is shared among active players, namely players
who control their dynamics at a given time. At each time, each player decides to be active
or not depending on its inventory level. The main contribution of this paper is to show that
strategies at a Nash equilibrium have a threshold structure on the number of active players.
Furthermore, we provide an explicit expression for the lower and upper threshold is given
both in the deterministic case, namely when the exogenous signal is known, and in the
single-stage game. The relevance of the above results is discussed in the context of inventory
control where Nash equilibrium reordering strategies imply that a single retailer reorders only
if jointly with a number of other retailers and will reorder to restore a pre-assigned inventory
level.

Keywords Dynamic games · Inventory control

1 Introduction

This paper studies a discrete-state discrete-time dynamic game where players have to coor-
dinate actions within a finite horizon window [2,3]. Each player’s dynamics is an inventory
model characterized by a controlled input and an uncontrolled output. The output flow is an
uncontrolled exogenous signal. The input flow is controlled by the player and is subject to
an activation cost. The state of the player is the accumulated discrepancy between input flow
and output flow. The activation cost is shared among active players, namely those players
who control their dynamics at a given time. The possibility of sharing the activation cost
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determines the need for coordination of control strategies on the part of the players. We study
the cases under deterministic and stochastic disturbances. All results can be extended to the
vector case by using the robust decomposition approach in [4, Section 3]. Applications arise
in coordinated replenishment [8], and opportunistic maintenance [7].

1.1 Contribution

This study contributes in different ways to advance the theory on dynamic coordination
games with activation costs for the control. An example of two-threshold strategy is the
(s, S) strategy used in inventory control, see [6] and [5, Chapter 4]. We recall that (s, S)

strategies are strategies where replenishments occur anytime the inventory level goes below
a lower threshold s. Replenishments bring back the inventory level up to a higher threshold
S. In particular, we highlight the following results.

– Strategies at a Nash equilibrium have a threshold structure. We obtain this result in two
steps. First, we prove that Nash equilibria are associated with (s, S) strategies via K -
convex analysis. Second, we view the (s, S) strategies as threshold strategies on the
number of active retailers.

– Lower and upper thresholds have an explicit expression in the deterministic case, namely
when the exogenous signal is known, or in single-stage games.

– We corroborate our results with a numerical analysis of a stylized inventory model.

This paper is organized as follows. In Sect. 2, we introduce the dynamic inventory game.
In Sect. 4, we first show that all Nash equilibrium strategies have a two-threshold structure
with a reorder level and an order-up-to level. We then provide a dual interpretation of such
strategies as threshold strategies on the number of active players. In Sect. 5, we specialize
our results to the case of single stage coordination game. In Sect. 6, we provide numerical
analysis. Finally, in Sect. 7, we draw conclusions and discuss future works.

2 Dynamic Inventory Coordination Game

Consider a set of n retailers Γ = {1, . . . , n}. At stage t = 0, . . . , N −1, the i th retailer holds
inventory xti ∈ Z, faces a stochastic demand ωt

i ∈ Z+ and orders a quantity uti ∈ Ut
i ⊆ Z+,

where Ut
i denotes the set of admissible decisions, Z the set of integers, and Z+ the set of

nonnegative integers. Thus, for all retailers i ∈ Γ , inventory xti , which we refer to as the
state of retailer i , evolves according to a linear finite-state, discrete-time model of the form:

xt+1
i = xti + uti − ωt

i . (1)

Here, we assume that there are no delays between orders and deliveries. For all retailers,
we also suppose that the inventory at hand plus inventory ordered may not exceed the storage
capacity denoted byCstore. Hence, we have xti +uti ≤ Cstore.We also assume thatCstore ≥ xi0
so to exclude an empty set of feasible orders.

Now, for each time t , let us introduce the vector of the retailers’ decisions ut = [uti ]i∈Γ

and the vector of decisions of all retailers other than i ut−i = [utj ] j∈Γ , j �=i ∈ Ut
−i , whereU

t
−i

denotes the Cartesian product of all sets Ut
j j �= i . At each stage, the i th retailer has a cost
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gi (xti , u
t
i , u

t
−i ) = K

1+∑n
j=1, j �=i δ(utj )

δ(uti ) + cuti

+pE{max(0,−xt+1
i )} + hE{max(0, xt+1

i )}, (2)

where E{.} indicates expectation, K ≥ 0 represents the transportation cost, c ≥ 0 is the
purchase cost per stock unit, h ≥ 0 is the penalty on holding, p ≥ 0 the penalty on shortage.
The term δ(uti ) is one if the i th retailer replenishes, i.e., is active, and zero otherwise.

We henceforth denote by at the number of active retailers at stage t , i.e.:

at :=
∑n

j=1
δ(utj ).

Note that the term K
1+∑n

j=1, j �=i δ(utj )
δ(uti ), which describes the fixed cost paid by retailer i

in (2), is equal to K
at if retailer i is active and equal to zero otherwise.

After introducing the N stage decision vectors ui0∼N−1 = [u0i , . . . , uN−1
i ] and

u−i
0∼N−1 = [u0−i , . . . , u

N−1
−i ], and denoting by Φi (xNi ) a penalty term on final state, the

cost over the horizon from 0 to N is of the form

Ji
(
x0i ,ui

0∼N−1,u−i
0∼N−1

) = Φi
(
xNi

) + ∑N−1
t=0 gi

(
xti , u

t
i , u

t
−i

)
. (3)

A challenging issue in the definition of the stage cost (2) is its dependence on the num-
ber of active retailers through the term K

1+∑n
j=1, j �=i δ(utj )

δ(uti ). This term establishes that the

transportation cost K is equally divided by all active retailers. This in turn implies that the
cost of one retailer also depends on the decisions of all other retailers. Conditions (1)–(3)
describe the dynamics and the costs of our game.

Other concepts we will make use of in the rest of the paper are Nash equilibrium strategies
and K -convexity which we briefly recall next.

Definition 1 Decisions ui� are at a Nash equilibrium, if it holds for all i ∈ Γ

Ji
(
x0i ,ui

�,u−i
�
) ≤ Ji

(
x0i ,ui,u−i

�
) ∀ ui ∈ U 0

i × · · · ×UN−1
i .

For the inventory problem, once at a Nash equilibrium, no retailer benefits from changing its
replenishment decisions. The following definition of K -convexity is borrowed from [6].

Definition 2 A function f : R → R is K -convex, where K ≥ 0, if

K + f (z + y) ≥ f (y) + z

[
f (y) − f (y − b)

b

]

∀z ≥ 0, b > 0, y.

K -convexity is used in [6] and reiterated in [5] to prove optimality of (s, S) strategies. We
will make use of K -convexity to prove the main result of this work.
In the following section, we consider threshold strategies according to which, given an inven-
tory level xti , there exists a threshold l

t
i ∈ {1, 2, . . . , n}, such that retailer i reorders only if

the number of active players at is greater than or equal to such a threshold. Such strategies
are given by

μi (x
t
i , a

t ) =
{
reorder if at ≥ lti ,
do not reorder if at < lti .

(4)

As main result, we will show that all Nash equilibrium strategies have the threshold
structure (4). To emphasize that lti depends on xti , we sometimes write lti (x

t
i ).

Note that orders depend on the history of the game as they are function of the state variable
xti which in turn depends on the past orders of the retailer as in (1). Orders of a single retailer
also depend on her competitors’ orders through variable at .
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An additional concept that is important to explain is the one of subgame perfect equilib-
rium. We have borrowed and adapted from [9] the following definition:

Definition 3 A subgame perfect equilibrium is a n-tuple of strategies u� = [ui�]i∈Γ , such
that for every i ∈ Γ and every history xti , we have that:

Ji
(
xti ,ui

�,u−i
�
) ≤ Ji

(
xti ,ui,u−i

�
) ∀ ui ∈ U 0

i × · · · ×UN−1
i .

Therefore, note that, if strategy (4) returns a Nash equilibrium, then such equilibrium is
also subgame perfect in the sense that the strategy returns the optimal order depending on
the current state xti and irrespective of the fact that past orders might not be optimal.

To simplify the proofs and the graphs plotted in the following figures, in the rest of the
paper, we assume that the penalty term on the final state Φ(xni ) is null. However, the results
that we prove still hold if Φ(xni ) is a generic convex function with a minimum in xni = 0.

3 On the Generality of theModel

Consider an n-dimensional inventory model characterized by discrete states xt ∈ Z
n , integer

controls ut ∈ Z
n+, and binary controls yt ∈ {0, 1}n , and discrete stochastic disturbances

wt ∈ Z
n+, where t = 0, 1, . . . is the time index. The evolution of the state is described by a

linear discrete-time (difference) equation in the general form (5) below, where A and E are
matrices of compatible dimensions and x(0) = ξ0 ≥ 0 is a given initial state. Integer and
binary controls are linked through the general capacity constraints (6), where the (scalar)
parameter c is an upper bound on control, with the inequalities in (5) and (6) to be interpreted
component-wise.

xt+1 = Axt + Ewt + ut , (5)

0 ≤ ut ≤ cyt , yt ∈ {0, 1}n . (6)

The above dynamics are characterized by two discrete valued control variables per each
state. Starting from nonnegative initial states, we wish to control the state to remain confined
to the positive orthant, which may describe a safety region in engineering applications or
reflect the desire to prevent shortfalls in inventory applications.

A common situation is where the disturbance seeks to push the state out of the desired
region. Its value is given at the beginning and fixed that way. Each column of matrix E
establishes how each disturbance component influences the evolution of the state vector.
Then, it is reasonable to assume Ew(k) < 0, where the inequality is to be interpreted
component-wise.

With regard to (5), we can isolate the dependence of one component state on the other
ones and rewrite (5) in a way that establishes similarity with standard lot sizing models [10]:

xt+1 = xt + Bxt + Ewt + ut . (7)

Equation (7) is a straightforward representation of (5) where

B := A − I =: {bi j }, bi j = ai j − δi j ,

δi j :=
{
1, if i = j ,
0, otherwise.

To preserve the nature of the problem,which has stabilizing control actions playing against
unstabilizing disturbances, we assume that the influence of other states on state i is relatively
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“weak.” In other words, we assume that the influence of Bxt is small if compared with the
unstabilizing effects of disturbances captured by the term Ewt . This is captured by assuming
that the sum Δxt + Ewt has same (negative) sign of Ewt , namely

Bxt + Ewt < 0,

where inequality is again component-wise and it holds almost everywhere. Essentially, the
states’ mutual dependence expressed by Bxt only emphasizes or reduces “weakly” the desta-
bilizing effects of the disturbances. In the following, we present a robust decomposition
approach that translates dynamics (7) into n scalar dynamics in “lot sizing” form [10].

With the term “robust decomposition” wemean a transformation through which dynamics
(7) are replaced by n independent uncertain lot sizing models of the form (8) where xti is the
inventory, dti the demand, uti the reordered quantity andD

t
i ⊂ R denotes the uncertainty set:

xt+1
i = xti − dti + uti , dti ∈ D t

i . (8)

Recall that in (7) the disturbance is given at the beginning and fixed that way.We use those
values of the disturbance to determine setD t

i in (8), as explained in the following. Replacing
(7) with (8) is possible once we relate the demand dti to the current values of all other state
components and disturbances as expressed below:

dti = −
[∑n

j=1 bi j x
t
j + ∑n

j=1 Ei jw
t
j

]

= − [〈Bi•xt 〉 + 〈Ei•wt 〉] ,
(9)

where we denote by Bi• the i th row of the matrix B, with the same convention applying to
Ei•.

In other words, we assume that the influence that all other states have on state i enters into
Eq. (8) through demand dti defined in (9).

Following the decomposition, each lot sizing model is controlled by an agent i (whose
state is xi ) who plays against a virtual opponent which selects a worst-case demand, which
can be viewed as a two-player game.

Our next step is to make the n dynamics in the form (8) mutually independent. Toward
that end, we introduce Xt as the set of xt and observe that this set is bounded for bounded dti .
The set Xt can be defined in two steps. First, we assume that the states never leave a given
region, then we compute the worst-case vector xt in the region, namely the vector xt that,
once substituted in (9), has the effect of pushing the i th state out of the safe region. Then, we
check whether the trajectory still lies within the region.

Boundedness of Xt means that there exists a scalar φ > 0 such that ‖x‖∞ ≤ φ for all
x ∈ Xt . In view of this, it is possible to decompose the system by replacing the current
demand dti by the maximal or minimal demand as computed below:

d
t
i = max

ξ∈Xt

{−〈Bi•ξ 〉 − 〈Ei•wt 〉} =
∑

j
[Bi j ]−φ − 〈Ei•wt 〉

dti = min
ξ∈Xt

{−〈Bi•ξ 〉 − 〈Ei•wt 〉} =
∑

j
[Bi j ]+φ − 〈Ei•wt 〉,

where [Bi j ]+ denotes the positive part of Bi j , i.e., max{Bi j , 0} and [Bi j ]− the negative part.
From the above preamble, we derive the uncertainty set as

D t
i = {η ∈ R : dti ≤ η ≤ d

t
i }.

Likewise, (10) describes the demand that would push the state out of the positive orthant
in the longest time.
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4 Nash Equilibrium Strategies

In this section,we show that allNash equilibrium strategies are threshold strategies of type (4):
retailer i reorders only if the number of active retailers is greater than or equal to a given
threshold. For the general model explained in Sect. 3, proving that strategies at a Nash
equilibrium have a threshold structure is not straight forward, for that reason in this section
the results are given for a single retailer i . To show this, in the next subsection we prove
the optimality of the (s, S)-like strategies via K -convex analysis (see the definition in [5],
chapter 4). We recall from [5] that (s, S) strategies are strategies where replenishments occur
anytime the inventory level goes below a lower threshold s. Replenishments bring back the
inventory level up to a higher threshold S [6]. This is formally stated below where μ(.) is the
strategy, x the inventory, and s and S lower and upper thresholds, respectively:

μ(x) =
{
S − x if x < s,
0 if x ≥ s.

(10)

We refer to (s, S)-like strategies as (s, S) strategieswhose thresholds depend on the players
and on time, i.e., we will have s := sti and S := Sti for fixed i and t .

In Theorem 1, we prove the optimality of (s, S)-like strategies. Before doing this, we need
some preliminary analysis which is inspired by [5, Chapter 4].

Let K t (ut−i ) = K
1+∑

i∈Γ , j �=i δ(utj )
be the transportation cost charged to each retailer i that

replenishes at stage t . Fix decisions u0−i , . . . , u
N−1
−i of all retailers other than i over the horizon

and denote such decisions ū0−i , . . . , ū
N−1
−i . Similarly, denote the resulting transportation costs

by K 0, . . . , K N−1. Note that K t is a function of ut−i but for ease of notation sometimes we
omit the dependence. Then, let us rewrite the stage cost (2) for retailer i as

gi (x
t
i , u

t
i , ū

t
−i ) = K tδ(uti ) + cuti

+pE{max(0,−xt+1
i )} + hE{max(0, xt+1

i )}.
Now, we can write the cost-to-go from stage t to the final stage recursively using dynamic
programming and the Bellman equation. Let us use the superscript t to indicate the iteration.
Then, we have

vti (x
t
i , ū

t∼N−1
−i ) = min

uti∈U
[gi (xti , uti , ūt−i )

+E{vt+1
i (xt+1

i , ūt+1∼N−1
−i )}], t = 0, . . . N − 1, (11)

J N
i (xNi ) = 0, (12)

where J 0i (x0i , ū
0−i ) is equal to the cost Ji (x

0
i , u

0−i ) introduced in (3). Being yti = xti + uti , the
instantaneous inventory position, i.e., the inventory level just after the order has been issued,
let us define the new function

Gt
i (y

t
i , ū

t+1∼N−1
−i ) = cyti + pE{max(0,−(yti − ωt

i ))}
+ hE{max(0, yti − ωt

i )} + E{vt+1
i (xt+1

i , ūt+1∼N−1
−i )},

and rewrite the Bellman Eq. (11) as follows

vti (x
t
i , ū

t∼N−1
−i ) = −ci x

t
i + min

yti ≥xti

[K t (ut−i )

+Gt
i (y

t
i , ū

t+1∼N−1
−i ), Gt

i (x
t
i , ū

t+1∼N−1
−i )]. (13)
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Note that if we can show that vt+1
i isK -convex withK = K t then Gt

i is alsoK -convex
for K = K t and the Bellman Eq. (13) has a unique minimizer. Indeed, it has been proved
in [5], chapter 4.2, that K -convexity of Gt

i (y
t
i , ū

t+1
−i ) implies K -convexity of vti (x

t
i , ū

t
−i ).

This represents a sufficient optimality condition for the (s, S)-like strategies with thresholds
depending on time t , that is, s := sti and S := Sti , where s

t
i and Sti satisfy:

Sti = argmin
γ

Gt
i (γ, ūt+1∼N−1

−i ),

Gt
i (s

t
i , ū

t+1∼N−1
−i ) = Gt

i (S
t
i , ū

t+1∼N−1
−i ) + K t (ut−i ).

The meaning of sti and Sti is exactly the same as in the (s, S) strategies (cfg. [5]), that is,
sti represents the minimum threshold on inventory level below which retailers replenish to
restore the inventory up to level Sti . Now, let us call s

t
i , the threshold which corresponds to

the assumption that the i th retailer is charged the whole transportation cost, i.e.,

Gt
i

(
sti , ū

t+1∼N−1
−i

)
= Gt

i

(
Sti , ū

t+1∼N−1
−i

)
+ K .

In the above condition, we have set K t = K .
Analogously, let us denote by sti the threshold computed as if all retailers would share

equally the transportation cost, i.e.,

Gt
i (s

t
i , ū

t+1∼N−1
−i ) = Gt

i (S
t
i , ū

t+1∼N−1
−i ) + K

n
.

In essence, in the condition above, each retailer is charged a transportation cost K t = K
n ,

namely one nth of the full cost K . Hence, we have si ≤ sti ≤ si .
The following theorem establishes the optimality of (s, S)-like strategies, where each pair

of thresholds is valid on different intervals of inventory levels.

Theorem 1 Let K t be nondecreasing. Solutions of the Bellman Eq. (11) are at most N
different (s, S)-like strategies (sti , Sti ), t = 0, . . . , N − 1, where Sti ∈ {∑t+ j

t̂=t
ωi (t̂), j =

t, . . . , N − 1 − t} and threshold sti verifies G
t
i (s

t
i , ū

t+1
−i ) = Gt

i (S
t
i , ū

t+1
−i ) + K t .

Proof The proof is by induction. Assume J N
i (xNi ) = 0, and consider the convex function

GN−1
i

(
yN−1
i , ūN

−i

)
= cyN−1

i + pE{max
(
0,−

(
yN−1
i − ωN−1

i

))
}

+ hE{max
(
0, yN−1

i − ωN−1
i

)
}. (14)

Then, we say that GN−1
i (·) is convex and hence, it is also K -convex whereK = K N−1

as shown in Fig. 1. Here, we also use the notation

HN−1
i (xi ) := pE{max(0,−(xN−1

i − ωN−1
i )}

+ hE{max(0, xN−1
i − ωN−1

i )}.
The above reasoning on K -convexity implies that the piecewise linear function

vN−1
i

(
xN−1
i , ūN−1

−i

)
= −ci x

N−1
i + min

yN−1
i ≥xN−1

i

[
K N−1

(
uN−1

−i

)

+GN−1
i

(
yN−1
i , ūN

−i

)
,GN−1

i

(
xN−1
i , ūN

−i

)]
(15)
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is K N−1-convex, with a global minimum at SN−1
i := argminγ GN−1

i (γ, ūN
−i ) (in the deter-

ministic case if the cost of purchase is relatively small then SN−1
i = ωN−1

i ) (see, e.g., Fig. 1).
To obtain SN−1

i , let a probability distribution function φN−1 : Z+ → [0, 1] be given,
namely ω �→ φN−1(ω) where φN−1(ω) is the probability that ωN−1

i = ω for all ω ∈ Z+.
Then, the cost of reordering is given by

K N−1(uN−1
−i ) − ci x

N−1
i + GN−1

i (γ, ūN
−i )

= K N−1(uN−1
−i ) + ci u

N−1
i

+pE{max(0,−(γ − ωN−1
i ))} + hE{max(0, γ − ωN−1

i )}
= K N−1(uN−1

−i ) + ci (γ − xN−1
i ) + hEN−1

h (γ ) + pEN−1
s (γ ),

where Et
h(γ ) and Et

s(γ ) are the expected holding and shortage, respectively, defined as:

Et
h(γ ) := E

{
max

(
0, γ − ωt

i

)}
,

Et
s

(
γ ) := E

{
max(0,− (

γ − ωt
i

))}
.

Let the discrete difference operator be given, d
dS and let us apply such an operator to function

GN−1
i

(
γ, ūN

−i

) = ci
(
γ − xN−1

i

)
+ hEh(γ ) + pEs(γ ). Then, we have

d

dγ
GN−1

i

(
γ, ūN

−i

)
:= GN−1

i

(
γ + 1, ūN

−i

)
− GN−1

i

(
γ, ūN

−i

)

= ci + hΦN−1
ω [γ ] − p

(
1 − ΦN−1

ω [γ ]
)

.

where

Φ t
ω[γ ] :=

∑γ

ω=0
φt

ω, 1 − Φ t
ω[γ ] :=

∑∞
ω=γ+1

φt
ω.

In the above equations, we make use of the following conditions

∑γ+1
ω=0(γ + 1 − ω)φN−1

ω = ∑γ
ω=0(γ + 1 − ω)φN−1

ω

= ∑γ
ω=0(γ − ω)φN−1

ω + ∑γ
ω=0 φN−1

ω ,

∑∞
ω=γ+2(ω − γ − 1)φN−1

ω = ∑∞
ω=γ+1(ω − γ − 1)φN−1

ω

= ∑∞
ω=γ+1(ω − γ )φN−1

ω − ∑∞
ω=γ+1 φN−1

ω .

(16)

The order-up-to level SN−1
i is the optimal γ , which is obtained from solving

min
γ

{

γ | d

dγ
GN−1

i

(
γ, ūN

−i

)
≥ 0

}

= min
γ

{
γ | ci + hΦN−1

ω [γ ] − p
(
1 − ΦN−1

ω [γ ]
)

≥ 0
}

.

From the above, we then obtain

SN−1
i = argmin

γ

{
γ | ΦN−1

ω [γ ] ≥ −ci + p

h + p

}
.

To obtain sN−1
i , let us consider the cost of not reordering, which is given by
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−ci x
N−1
i + GN−1

i (xN−1
i , ūN

−i ) = pE{max(0,−(xN−1
i − ωN−1

i ))}
+ hE{max(0, xN−1

i − ωN−1
i )}

= hEh(x
N−1
i ) + pEs(x

N−1
i )

Also, we have

sN−1
i := arg min

xN−1
i

{
xN−1
i | hEh

(
xN−1
i

)
+ pEs

(
xN−1
i

)

≤ K N−1
(
uN−1

−i

)
− ci

(
SN−1
i − xN−1

i

)

+ hEh

(
SN−1
i

)
+ pEs

(
SN−1
i

)}
.

Now, we are going to assume that the statement is true for some t = m, and we are going
to proof that it is also valid for t = m − 1.

Consider now the convex function (see Fig. 2 which illustrate the example of t = N − 2)

Gm−1
i (ym−1

i , ūm−i ) = ci y
m−1
i + pE

{
max

(
0,−

(
ym−1
i − ωm−1

i

))}

+ hE

{
max

(
0, ym−1

i − ωm−1
i

)}
+ E

{
vmi

(
xmi , ūm−i

)}

= ci y
m−1
i + hEh

(
ym−1
i

)
+ pEs

(
ym−1
i

)

+
∑∞

ω=0
vmi

(
ym−1
i − ω, ūm−i

)
φm−1

ω . (17)

We know that Gm−1
i is K -convex, with K = Km−1. This property implies that the

function

vm−1
i

(
xm−1
i , ūm−1

−i

)
= −ci x

m−1
i + min

ym−1
i ≥xm−1

i

[
Km−1

(
um−1

−i

)

+Gm−1
i

(
ym−1
i , ūm−i

)
,Gm−1

i

(
xm−1
i , ūm−i

)]
, (18)

is Km−1-convex, with a global minimum at Sm−1
i := argminγ G

m−1
i (γ, ūm−i ). It is important

to notice that we can ensure the existence of a unique minimum value in (18) thanks to the
nondecreasing property of Km−1.

The cost of reordering for t = m − 1 is given by

Km−1
(
um−1

−i

)
− ci x

m−1
i + Gm−1

i

(
γ, ūm−i

)

= Km−1
(
um−1

−i

)
+ ci u

m−1
i

+pE

{
max

(
0,−

(
γ − ωm−1

i

))}
+ hE

{
max

(
0, γ − ωm−1

i

)}

= Km−1(um−1
−i ) + ci

(
γ − xm−1

i

)
+ hEm−1

h (γ ) + pEm−1
s (γ ).

Applying operator d
dγ to function Gm−1

i (γ, ūm−i ), we have

d

dγ
Gm−1

i (γ, ūm−i ) := Gm−1
i

(
γ + 1, ūm−i

) − Gm−1
i

(
γ, ūm−i

)

= ci + hΦm−1
ω [γ ] − p

(
1 − Φm−1

ω [γ ]) +
∑∞

ω=0

[
vmi (γ + 1 − ω, ·) − vmi (γ − ω, ·)]φm−1

ω .
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Fig. 1 A qualitative plot of
functions GN−1

i (·) and vN−1
i (·)

obtained from (14) and (15),
respectively

Hence, the order-up-to level Sm−1
i is the optimal γ , which is obtained from solving

Sm−1
i = argmin

γ

{
γ | ci + hΦm−1

ω [γ ] − p
(
1 − Φm−1

ω [γ ])

+
∑∞

ω=0

[
vmi (γ + 1 − ω, ·) − vmi (γ − ω, ·)] φm−1

ω ≥ 0
}

.

To obtain sm−1
i , let us consider the cost of not reordering, which is given by

−ci x
m−1
i + Gm−1

i

(
xm−1
i , ūm−i

)

= hEh

(
xm−1
i

)
+ pEs(x

m−1
i ) +

∑∞
ω=0

vmi

(
xm−1
i − ω, ūm−i

)
φm−1

ω .

Then, we have

sm−1
i := arg min

xm−1
i

{
xm−1
i | − ci x

m−1
i + Gm−1

i (xm−1
i , ūm−i )

+
∑∞

ω=0
vmi (xm−1

i − ω, ūm−i )φ
m−1
ω

≤ Km−1(um−1
−i ) − ci S

m−1
i + Gm−1

i (Sm−1
i , ūm−i )

+
∑∞

ω=0
vmi (Sm−1

i − ω, ūm−i )φ
m−1
ω

}
.

The above can be rewritten as

sm−1
i := arg min

xm−1
i

{
xm−1
i | hEh(x

m−1
i ) + pEs(x

m−1
i )

+
∑∞

ω=0
vmi (xm−1

i − ω, ūm−i )φ
m−1
ω

≤ Km−1(um−1
−i ) − ci (S

m−1
i − xm−1

i )

+hEh(S
m−1
i ) + pEs(S

m−1
i )

+
∑∞

ω=0
vmi (Sm−1

i − ω, ūm−i )φ
m−1
ω

}
.

Thus by induction backwards in time, we have proved Theorem 1. ��
We can reinterpret the (s, S)-like strategies as threshold strategies on the number of active

retailers. The result is that all Nash equilibrium strategies have the threshold structure (4).
In the following result on a single-stage inventory game (where we have dropped index

t), we reinterpret a threshold on the inventory level as a threshold on the number of “active
retailers”.
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Fig. 2 A qualitative plot of functions GN−2
i (·) and vN−2

i (·) obtained from (17) and (18), respectively

Theorem 2 For each inventory level xi , there exists a threshold li ∈ {1, 2, . . . , n}, such that
the replenishment strategy

μi (xi , a) =
{
Si − xi , if a ≥ li ,

0, if a < li ,
(19)

is a Nash equilibrium for the single-stage formulation of the inventory game. For the sake of
simplicity, we have dropped dependence on time.

Proof From Theorem 1, if N = 1, we have a unique multi-period strategy (si , Si ). This
means that the retailers make decisions according to

ui = μi (xi ) =
{
Si − xi , if xi < si ,

0, if xi ≥ si .
(20)

Note that from Gi (si ) = Gi (Si ) + ( Ka ) we have that si depends on the number of active
players a. Now, for given xi , the idea is to find li as the minimum number of active players
such that the cost of replenishing does not exceed the cost of not replenishing. This can be
expressed by the minimization below (in a single-stage optimization, we can drop the second
argument ūt+1

−i from Gi (., .))

li = mina=1,...,n

{
a|Gi (xi ) ≥ Gi (si ), Gi (si ) = Gi (Si ) + (K/a)

}
. (21)

Strategy (20) implies (19) once we compute li from (21) for fixed xi .

In solving (21), we distinguish three cases.

– The inventory level is “low,” namely, xi < si . Then, the optimal decision is “replenish”
independently of a. Actually, the minimization (21) returns li = 1 and as it always holds
a ≥ li we have μi (xi , a) = Si − xi .

– The inventory level is “high,” namely xi ≥ si . Then, the optimal decision is “do not
replenish.” Indeed, the minimization (21) is infeasible. With a little abuse of notation,
we can take li = n + 1 so that it always holds a < li and therefore also μi (xi , a) = 0.

– The inventory level verifies si ≤ xi ≤ si . To see this, note that the computation of li as in
(21) leads to 1 ≤ li ≤ n. Then, if a ≥ li from (21), we have xi < si which substituted in
(20) returns μi (xi , a) = Si − xi . Differently if a < li from (21), we have xi ≥ si which,
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again, substituted in (20) returns μi (xi , a) = 0. The obtained strategy for μi (xi , a) is in
accordance with (19), and this concludes the proof. ��

5 Single-Stage Coordination

In this section, we specialize our results to the case of single-stage game. In particular, we
provide explicit expressions for the two thresholds, as a function of the probability distribution
function which determines the stochastic demand.

Let us start by noting that in the single-stage game function Gt
i (y

t
i , ū

t+1∼N−1
−i ) does not

depend on ūN
−i and therefore, we simply write Gt

i (y
t
i ):

Gt
i

(
yti

) = cyti + pE
{
max

(
0,− (

yti − ωt
i

))} + hE
{
max

(
0, yti − ωt

i

)}
. (22)

Then, we have for the value function

vti
(
xti , ū

t
−i

) = −ci x
t
i + min

yti ≥xti

[
K t (ut−i

) + Gt
i

(
yti

)
,Gt

i

(
xti

)]
. (23)

To obtain Sti , consider the cost of reordering, which is given by

K t (ut−i

) − ci x
t
i + Gt

i (γ )

= K t (ut−i

) + ci u
t
i + pE{max

(
0,− (

γ − ωt
i

))}
+hE{max

(
0, γ − ωt

i

)}
= K t (ut−i

) + ci
(
γ − xti

)

+pE{max(0,−(γ − ωt
i ))} + hE{max

(
0, γ − ωt

i

)}
= K t (ut−i ) + ci

(
γ − xti

) + hEh(γ ) + pEs(γ ).

Let the discrete difference operator be given, d
dS and let us apply such an operator to

function

Gt
i (γ ) = ci (γ − xti ) + h

∑γ

ω=0
(γ − ω)φt

ω
︸ ︷︷ ︸

Eh(γ )

+p
∑∞

ω=γ+1
(ω − γ )φt

ω

︸ ︷︷ ︸
Es (γ )

.

By applying the difference operator to function Gt
i (γ ), we then have

d

dγ
Gt

i (γ ) := Gt
i (γ + 1) − Gt

i (γ )

= ci
(
γ + 1 − xti

) + h
∑γ+1

ω=0
(γ + 1 − ω)φt

ω

+p
∑∞

ω=γ+2
(ω − γ − 1)φt

ω

− ci (γ − xti ) − h
∑γ

ω=0
(γ − ω)φt

ω − p
∑∞

ω=γ+1
(ω − γ )φt

ω.
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Further derivations yield

d

dγ
Gt

i (γ ) = ci
(
γ + 1 − xti

) + h
[∑γ

ω=0
(γ − ω)φt

ω +
∑γ

ω=0
φt

ω

]

+p
[∑∞

ω=γ+1
(ω − γ )φt

ω −
∑∞

ω=γ+1
φt

ω

]
− ci

(
γ − xti

)

−h
∑γ

ω=0
(γ − ω)φt

ω − p
∑∞

ω=γ+1
(ω − γ )φt

ω

= ci + h
∑γ

ω=0
φt

ω − p
∑∞

ω=γ+1
φt

ω

= ci + hΦ t
ω[γ ] − p

(
1 − Φ t

ω[γ ]) .

In the above, we have used the following equalities

∑γ+1

ω=0
(γ + 1 − ω)φt

ω =
∑γ

ω=0
(γ + 1 − ω)φt

ω

=
∑γ

ω=0
(γ − ω)φt

ω +
∑γ

ω=0
φt

ω,

∑∞
ω=γ+2

(ω − γ − 1)φt
ω =

∑∞
ω=γ+1

(ω − γ − 1)φt
ω

=
∑∞

ω=γ+1
(ω − γ )φt

ω −
∑∞

ω=γ+1
φt

ω. (24)

The order-up-to level Sti is the optimal γ , which is obtained from solving

min
γ

{γ | d

dγ
Gt

i (γ ) ≥ 0}
= min

γ
{γ | ci + hΦ t

ω[γ ] − p(1 − Φ t
ω[γ ]) ≥ 0}.

From the above, we then obtain

Sti = argmin
γ

{
γ | Φ t

ω[γ ] ≥ −ci + p

h + p

}
. (25)

To obtain sti , let us consider the cost of not reordering, which is given by

− ci x
t
i + Gt

i

(
xti

) = pE{max
(
0,− (

xti − ωt
i

))}
+ hE{max

(
0, xti − ωt

i

)}
= hEh

(
xti

) + pEs
(
xti

)
. (26)

From the above, we then obtain

sti := argminxti
{
xti | − ci xti + Gt

i

(
xti

) ≤ K t
(
ut−i

) − ci Sti + Gt
i

(
Sti

)}
.

In particular, we have

sti := argmin
xti

{
xti | hEh

(
xti

) + pEs(x
t
i )

≤ K t (ut−i

) + ci
(
Sti − xti

) + hEh
(
Sti

) + pEs
(
Sti

)}
. (27)

Equations (25) and (27) represent explicit expressions for the two thresholds and fully charac-
terize then the reordering strategy once the probability distribution of the stochastic demand
is given.
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Once thresholds are obtained, we implement the control uti which is given by

uti = μ(xt ) =
{
Sti − xt , if xt < sti ,
0, if xt ≥ sti .

(28)

The resulting dynamics is then

xt+1
i =

{
Sti − ωt

i , if xti < sti ,
xti − ωt , if xti ≥ sti .

(29)

6 Numerical Analysis

We consider an example where the demandωt ∈ Ω := {0, 1, 2} and is uniformly distributed,
namely after introducing the notation φω to indicate the probability that ωt = ω, we have
φω = 1

3 for ω = 0, 1, 2.
Assume that the proportional purchase cost is c = 1, the shortage cost is p = 10, and the

holding cost is h = 2. In the case of single stage optimization, we have that the order up to
level is given by

S = argmin
γ

{
γ | Φ t

ω[γ ] ≥ −c + p

h + p

}
.

From the above, we obtain S = 2. Indeed for γ = 2, we have

Φ t
ω[2] = 1 ≥ −c + p

h + p
= 3

4
.

Differently, for γ = 1 it holds

Φ t
ω[1] = 2

3
�

−c + p

h + p
= 3

4
,

and therefore

S = argmin
γ

{
γ | Φ t

ω[γ ] ≥ −c + p

h + p

}
= 2.

As for the reorder level s, we have

s := argmin
x

{
x | hEh(x) + pEs(x)

≤ K t + c(S − x) + hEh(S) + pEs(S)
}
.

We show next that we have s = 1. Actually, for x = 1 we obtain

hEh(1) + pEs(1) = h
1

3
+ p

1

3
= 4

≤ K t + c + hEh(2) + pEs(2)

= K t + c + hEh(2) = K t + 3,

which is satisfied by any K t ≥ 1.
For x = 0, we have

hEh(0) + pEs(0) = pEs(0) = 10

� K t + 2c + hEh(2) + pEs(2)
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Fig. 3 Time plot of the
microscopic dynamics of a single
player
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= K t + 2c + hEh(2) = K t + 4,

which is satisfied by any K t < 6. For any K t < 6, we then have

s := argminx
{
x | hEh(x) + pEs(x)

≤ K t + c(S − x) + hEh(S) + pEs(S)
}

= 1.

We can conclude then that for any K t such that 1 ≤ K t < 6 we have the reorder level s = 1
and the order-up-to level S = 2.

Then, from (29) themicroscopic dynamics is defined in the bounded support {−1, 0, 1, 2},
namely xt ∈ {−1, 0, 1, 2} for all t ≥ 0 and is given by

xt+1 =
{
2 − ωt , if xt = −1, 0,
xt − ωt , if xt = 1, 2.

(30)

Figure 3 displays the time plot of the microscopic dynamics for a single player. In other
words, the plot shows the inventory level (the state) of a player. The player’s inventory is
for most of the time in state 0 and 1, which is in accordance with the greater values of the
distribution in those states.

In the following example, we consider a larger instance involving five agents, where the
demand of each agent wt ∈ Ω := {0, 1, . . . , 20} and is uniformly distributed.
Assume the same purchase, shortage, and holding costs as in the previous example and
consider a transportation cost K = 120, which will be divided among the active agents at
each time t ∈ [0, 50].

Figure 4 shows the relation between the inventory levels and the transportation costs that
each player is willing to pay in case of reordering as well as the minimum number of active
agents in case of replenishment for any inventory level. It is possible to see that the inventory
has an inverse relation with the transportation cost and an increase relation with the number
of active agents. This means that if the inventory level of agent i is higher, the agent is willing
to pay less in case of reordering and hence, it is expected to require a large number of active
agents to coordinate with.

The last two figures (Figs. 5, 6) display the inventory level of the five players over time.
In Fig. 5, it is possible to see the moment in time when it is most convenient that the players
coordinate for replenishment. On the other hand, Fig. 6 exhibits the relation of the inventory
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Fig. 4 Transportation cost intervals and active agents at each positive inventory level

0 5 10 15 20 25 30 35 40 45 50
-20

0

20
S
s

0 5 10 15 20 25 30 35 40 45 50
-20

0

20
S
s

0 5 10 15 20 25 30 35 40 45 50
-20

0

20

In
ve

nt
or

y 
po

si
tio

n

S
s

0 5 10 15 20 25 30 35 40 45 50
-20

0

20
S
s

0 5 10 15 20 25 30 35 40 45 50

Time

-20

0

20
S
s

Inventory
Threshold

Fig. 5 Time plot of the microscopic dynamics of 5 players
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level and the number of active agents at each time. It is clear that the agents reorder when
its inventory level is lower or equal to the threshold s, which also depends on the number of
active agents, and they reorder up to the upper threshold S = 15.

7 Conclusions and FutureWorks

We first developed an abstraction in the form of a dynamic coordination game model where
each player’s dynamics is a scalar inventory model characterized by a controlled input and
an uncontrolled output. The players have to pay a share of the activation cost to control their
dynamics at a given time. First, we showed that if the retailers are rational players, then they
benefit from using threshold strategies where the threshold is on the number of active players.
We then turned to obtain an explicit expressions for the lower and upper thresholds under
specific circumstances. A main key direction for future works is to explore the feasibility
of the proposed coordination scheme in multi-vector energy systems (heat, gas, power) with
special focus on coalitional bidding in decentralized energy trade. The ultimate goal is to
investigate the benefits of aggregating independent wind power producers.
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