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Abstract
In an interconnected society, social networks grow through formation of strategic con-
nections based on the hierarchy within the social network. Often, the hierarchy becomes
self-reinforcing and the observed valuations of the individuals in the hierarchy become dis-
connected from the corresponding fundamentals.Wepropose a networkmodel to characterize
the disconnect between the observed and fundamental valuations of entities, where the dif-
ference is a function of the linkages across the entities. In a growing social network, new
entrants come at every point of time and offer connections to the incumbents based on the
observed valuations. Individuals care only about their ranks in the hierarchy of observed
valuation. With myopic individuals, network grows in equilibrium, but the associated hier-
archy becomes unstable. However, with farsighted individuals, the network growth process
is hierarchy-preserving and depending on the structure of seed network, the process may be
completely halted by individuals who have incentives to preserve hierarchy. These twomech-
anisms taken together provide a comprehensive characterization of valuation in a growing
inter-connected, hierarchical society. We illustrate an application of the model by analyzing
the Indian board interlocking network. Our model enables us to find the hierarchy of the
board members’ network and to identify the dispersion in magnitude of network externalities
across directors.
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1 Introduction

In the current global economy and society, many entities are interdependent and possess
intertwined structures. Corporate networks, political networks, and scientific collaboration
networks are some of themost prominent examples of interdependence. These networks have
two important features. One, there is an internal hierarchy of the nodes in the network based
on the ordering of observable influences of the nodes. Typically, not all nodes are equally
important in the network. Two, linkages across nodes are often strategic in nature, which in
turn, frequently makes the hierarchy self-reinforcing. Once a hierarchy appears, it is often
preserved even with regular addition of newer individuals to the network.

In this paper, we focus on two questions. First, how does a network grow with strategic
individuals who decide about whom to connect to by using an observable metric of influence
of the existing individuals? Second, under what conditions the hierarchy is preserved during
the growth process? We propose that the individuals derive values from linkages with other
influential entities apart from their fundamental valuations. Thus, the observed valuation
of individuals in the network becomes disconnected from the corresponding fundamentals,
leading to a wedge between the two. Since the new entrants considers only the observed
valuation, the hierarchy itself becomes disconnected from the fundamentals and influential
individuals retain influence solely by being connected to other influential individuals.

Economically, there are many quantifiable examples of such interdependence across enti-
ties and separation from fundamentals. Consider a neighborhoodwhere houses can be rented.
When rent of a house goes up, it pulls the housing rent in the same neighborhood.1 Peer effects
are very significant in corporate decision-making process. Acharya and Pedraza [2] showed
that excess trading due to peer benchmarking of the institutional investors occurs to a signifi-
cant extent. Interdependence can be clearly seen in case of corporate executive compensation.
One well-established observation is that the compensation is a function of the hierarchy and
hence, it does not necessarily reflect marginal productivity.2 Before 1980s, the companies
used to fix the salaries of the top executives with respect to the salary distribution within the
companies. A major change occurred in the subsequent period and the companies started
moving from internal equity to external equity. Faulkender and Yang [21] summarized the
finding that “After controlling for industry, size, visibility, CEO responsibility, and talent
flows, we find that firms appear to select highly paid peers to justify their CEO compensation
and this effect is stronger in firms where the compensation peer group is smaller …”. Liu
and Sun [33] stated that the prevailing attitude is that in presence of relative wealth concern,
executives’ pays should not fall behind the peers. Hochberg et al. [28] showed in the same
vein that the social networks of the executives matter for compensation and in particular,
along with the number of connections, identities of the connections also matter. DeMarzo
andKaniel [16] analyzed such keeping up with the Joneses behavior to formulate contracts on
relative compensation for the corporate executives. Additionally, Horton et al. [29] showed
that compensation is positively associated with how central is the individual in the corpo-

1 Autor et al. [3] for example, shows that the unanticipated elimination of rent controls in Cambridge, MA in
1995, led to a sharp price appreciation in the decontrolled housing units. Interestingly, the effect also spilled
over to never-controlled units as well, which were in geographic proximity. In fact, the authors had shown
that a larger portion of the total property valuation appreciation comes from the indirect effect on the never-
controlled units and the appreciation was far more than can be explained by the observed increase in residential
investment.
2 A simple example is that presidents are chosen from pools of vice presidents in corporate board rooms. In
such cases, compensation increases by a significant margin overnight, but productivity does not. There is a
large literature on efficiency of the relevant compensation schemes, starting with a very influential paper by
Lazear and Rosen [32].
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Fig. 1 Network externalities in terms of eigenvector centrality. aA linear unweighted and undirected network,
symmetric around node D. Nodes C and E are equally central. b An edge is formed and as a result E is more
central than C

rate network. Thus the empirical literature suggests that interdependence, notably size and
the nature of connections, plays a substantial role in determining valuation of the economic
entities in a non-trivial way.

We propose a model of valuation in an interdependent economy where valuation can be
derived from fundamentals as well as the interdependence (peer effect or network effect).
This model helps us to analyze the relative contribution of fundamentals and the network
effect. In particular, the model provides a clean characterization of how the architecture of
a given network affect the valuation of the individuals. Consequently, we can uniquely pin
down the network externalities in the form of one individual’s indirect impact on another
individual.

To suitably model the network effect, we need an index of influence which can accurately
capture the network externality. We propose that eigenvector centrality is an appropriate
measure to do that. Consider panel (a) in Fig. 1. It shows a symmetric network with seven
nodes (A, . . . , G). We note that C and E are equally central.3 Suppose now, node D and F
connects with each other. It can be shown that E now becomes more central than C in terms
of eigenvector centrality, while neither of them participate in the network growth process.
Thus, the measure of eigenvector centrality can efficiently capture the network externality
where evolution in one part of the network can non-trivially affect the rest of the network.

Following the literature, we adopt a linear framework to analytically model interdepen-
dence. Brioschi et al. [12] introduced a static, linear model of firm-to-firm connections, which
has been used in the recent times by several authors.Notably, Elliott et al. [20] used that frame-
work to study contagion in financial networks. The fact that such interdependence leads to
the separation of book value from market value is a well-known phenomenon. Brioschi et al.
[12] as well as Fedenia et al. [22] emphasize such inflation (see also [20]).

We treat the linear dependence model as a building block to study the dynamic network
growth process.We show that the eigenvector centrality provides a uniqueway to characterize
the hierarchy of the individuals in the network and we can rank individuals in terms of their
relative influence due to their position in the hierarchy, with the aid of centrality measure.
Given that individuals are rank-conscious, we show that a new entrantwould like to connect to
the individual with the highest centrality as it gives themaximum centrality to the entrant, and
then work downwards according to relative centrality. With a sequence of entrants entering
the economy and making connections, the network grows. Strategically, the individuals can
be backward-looking as well as forward-looking. We show that they would not be backward-
looking in the sense that they would not retrospectively analyze whether an earlier decision

3 In Sect. 2 we will provide a formal definition of centrality. Here, we can imagine centrality to represent the
degree of influence of nodes in the network.



436 Dynamic Games and Applications (2021) 11:433–462

was wrong and alter that decision. There is no incentive to do this in equilibrium as it can
only worsen the relative ranking in the hierarchy of individuals.

The key question is whether the network growth process preserves the hierarchy or not?
Our model readily delivers the result that with myopic individuals (only one attempt to form
links), the hierarchy changes very frequently. However, with farsighted individuals who
can make multiple attempts, we show that the network growth process can be halted. The
network architecture plays a big role in determining the growth process (or lack thereof) with
farsighted individuals.

The intuition is that in the first case, the entrant makes only one offer to the incumbents and
it is hit-or-miss for the incumbents. Myopic individuals would think that by forming linkages
they can increase their relative ranking unequivocally. But when everyone does that, the new
entrant emerges as the new winner and dismantles the existing hierarchy. In this case, the
network grows in size maximally fast as every potential entrant becomes part of the network
and the hierarchy becomes extremely unstable as the incumbents do not cooperate with
each other. However, when we introduce farsightedness, the incumbents take into account
the possibility that even though a link formation can provide higher payoffs temporarily,
eventually it might lead to loss in rank as other players also respond; in such a scenario, they
can maintain status quo and the hierarchy becomes stable. We show that architecture of the
network affects growth process with farsighted individuals. If there are multiple identically
ranked individuals in the top or middle of the hierarchy, typically they block the network
growth process in equilibrium.

A corollary of the model is that higher density of connections reduces the inequality
of influence across individuals. The intuition is as follows. Here valuation depends on the
nature of influential connections and hence, if the density of connections in the network
increases, then the individuals lose uniqueness of having access to influential connections.
Thus with higher density of connections (an extreme example is a complete graph) the
individuals’ influences are equalized whereas with sparseness (an extreme example is star
network) inequality increases.

Since the whole idea is based on analyzing hierarchy in a network, we need an unique
and unambiguous definition of centrality, which is useful to extract hierarchy from a given
network. In the paper, we use eigenvector centrality to constitute a hierarchy in the network.
Our choice is based on a very influential result derived in Ballester et al. [5], which showed
that in the context of linear-quadratic games, the pure strategy Nash equilibrium profile
is proportional to the corresponding Bonacich centrality,4 which is related to eigenvector
centrality. They indicated that their framework can be extended to a two-level game (with an
intra-period and an inter-period game), where the intra-period game is defined by their main
result that Nash equilibrium is identical to the centralities in a given network, and the inter-
period game can deal with the network formation mechanism due to players deciding to stay
in or drop out of the network. In this paper, we are precisely doing that by defining a network
formation game where the players follow their equilibrium solution in the intra-period game
(the first stage) and based on the hierarchy thus created, they play a network formation game
where every period there is a new entrant. Since the result linking Nash equilibrium with
Bonacich centrality of a given network is already well established, we keep the result only
in the background and describe it in “Appendix”. Our main focus is on the inter-period game
of network formation and growth.

4 In this paper, we utilize the term Katz–Bonacich centrality to denote the same, following the textbook
definition given in Newman [38].
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After describing the network growth process, we analyze impact of the evolved network
on the valuation of individuals. Because of the interdependence in valuation, we show that a
wedge emerges between the fundamental valuation and the market valuation. This leads to
two kinds of network effect. One, it generates a networkmultiplier in valuation over and above
the fundamentals. Two, this gives rise to spill-over effects where one individual contributing
more in real terms causes his neighbors to benefit because of the interdependence in valuation,
without any actual contributions on their parts.

Finally, we illustrate the mechanics of our model by analyzing Indian board interlocking
network. Board interlocking network is a bipartite network where there are two sets of nodes,
directors and companies.We create a one-sided projection to get the directors’ network,where
they are connected if they sit on at least one common board. Empirically, the formation of
such interlocking board membership network has been analyzed in details (see for example
[26]).5 The model easily delivers the hierarchy or the pecking order from the directors’
network and characterizes the spillover effects of a shock to any director in the network.

The literature analyzing games on network is extensive. There are multiple definitions and
concepts of equilibrium in network formation games [9]. Starting with the paper by Ballester
et al. [5], there is now a sizeable literature that has emphasized the connection between
centrality and Nash equilibrium (Bloch et al. [10] provides a comprehensive summary of
different types of centrality measures). We note that there is also a complementary literature
that connects the concept of centrality with competitive equilibrium.6 Belowwe discuss some
features of our model in the context of relevant literature.

First, our model is deterministic and we introduce a payoff function that is a function of
ranks in the hierarchy and relative influence within the network. The deterministic nature of
the game differentiates our paper from literature on stochastic network formation games (see
Pin and Rogers [39] for a review). On the other hand, Bala and Goyal [4] presented one of the
key models in the literature on deterministic network formation. They introduced costly link
formation in a potentially directed network game and analyzed the corresponding stability,
growth and efficiency. This structure has been followed in the later literature as well (see,
e.g., [24]). A typical description of this kind of models would include an utility function of
the agents which depend on local effects, e.g., the cost and benefit of a link between two
nodes will directly affect only the concerned nodes. In contrast, our model explicitly features
a payoff function that is dependent on the structure of the whole network. Referring to Fig. 1,
the payoffs of nodes might drastically change due to a link formation, even if they do not
participate in that. This network externality is reminiscent of general equilibrium effects in
networks (seen for example inR&Dgameswhere the effects of investment into link formation
by a pair of firms is not contained only to that firm and its neighbors; see, e.g., [25]). Also,
the payoff function in our case is step-wise linear in the rank of players in the hierarchy, a
property which becomes very useful in defining the equilibrium. We are not aware of any
other paper that uses a similar payoff function.

Second, this paper proposes the possibility thatwith farsighted players, the network growth
processmight completely stop. Therefore, it provides an explanation ofwhy itmay be difficult

5 There is a vast literature on the statistical analysis of such large-scale social network (see for example an
analysis of the US and Italian firms by Battiston and Catanzaro [7], exclusively Italian firms by Bargigli and
Giannetti [6], German firms by Raddant et al. [40]) and their interplay with financial decision-making (see,
for example„ [43]).
6 We do not pursue the link with market equilibrium here. Ghiglino and Goyal [23] for example provides a
link between centrality and equilibrium prices and consumption in an exchange economy. Interested readers
can refer to Goyal [24] for a review on the network description various economic (both micro and macro) and
financial phenomena.
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to change hierarchy in an organization. The result that farsighted players may completely
stop the network growth process, relates to interest groups, club goods and entry barrier [45].
The literature on farsighted individuals’ behavior in network games is quite large (see e.g.
[18,19,27,30,35]). There are two differentiating features of our definition of farsightedness:
Players in our model consider the future evolution of not creating a link as well in his future
payoff (as opposed to considering only the effects due to creating a link), and the stability
here is defined in terms of incorporating the new entrant in the network with incumbents (as
opposed to only within the network of incumbents).

Third, we do not assume a cost of link formation. The reason is that with a cost of link
formation, the network growth might be halted whenever the cost of growth becomes larger
than the benefit. Therefore, we consider the extreme case and show that even when the cost
of link formation is zero, the network growth might be halted. At this stage, it is important
to point out a paper which is very closely related to the core idea of our modeling approach.
In Neligh [37], the author investigated how timing of entry in a network might influence the
evolution of centralities of the nodes in the network. This paper is experimental in nature,
which in turn builds on a theoretical model where the agents face a cost of link formation
and derives benefit out of closeness centrality. The paper characterizes a behavioral trait of
players who exhibit ‘vie for dominance’. Our theoretical model explicitly differs in the zero
cost setting along with eigenvector centrality driven payoffs and rank-ordering-based utility.

Fourth, we relate our model to macroeconomic fluctuations and characterize the network
multiplier as a function of business cycles. There are models of networks that relate to
macroeconomic phenomena (see Goyal [24] for a detailed review of such models). A series
of models in this stream of the literature are non-strategic in nature (a canonical example
is Acemoglu et al. [1] which also utilizes the link between network topology of production
linkages and market structure) whereas players in our model are strategic. There are models
with strategic players engaging in transactions with macroeconomic implications: e.g., in
labor markets (e.g. [13]), in financial markets (e.g., [14]) and goods market (e.g., [23]). Our
model complements this literature by linking the effects of business cycles on the disconnect
between fundamental valuation and observed valuation. Elliott et al. [20] used a very similar
framework of book valuation and market valuation, and studied effects of financial shock
propagation on a static and fixed network. Although we have borrowed the decomposition
of final valuation into own effects and peer effects following their work, our model involves
strategic individuals utilizing the network structure to play games and thereby changing the
network structure itself. Finally, we apply our theoretical model to a real world dataset on
directors’ network to demonstrate its applicability. Although studies are abound on corporate
networks, they are almost exclusively empirical in nature (see Borgatti and Foster [11] for a
comprehensive review of the associated sociological theories), whereas our paper provides a
link to the strategic behavior of the players and correspondingmacroeconomic consequences.

Structure of the paper is as follows. In Sect. 2, we introduce the basic model and analyze
the connection between network structure and valuation. We introduce the network growth
process in Sect. 3. A network growth process with myopic agents leads to a complete graph.
Section 4 describes the growth process with farsighted individuals. We show that depending
on the network structure, the growth process might be completely halted or there might be
scope for partial growth. Given the network structure, we quantify the network effects in
the form of network multiplier as well as spillover effects in Sect. 5. Then we analyze the
implications of the model in the context of Indian elite corporate network in Sect. 6. Section
7 concludes.
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2 Interdependence in Observed Valuation

First, we define a network of individuals as follows.

Definition 1 (Network) A static network N is defined as a collection of nodes or vertices and
edges connecting them, N = (n, {γi j }i, j∈n ). The edges are binary: γi j ∈ {0, 1}. If there
exists at least one path i.e. sequence of edges in the network across all pairs of nodes, then
we call such a network connected. The degree sequence of N is given as {di }i∈n and the set
of edges is denoted by E = {γi j }i, j∈n . We denote the corresponding adjacency matrix by Γ .

Time is discrete, t = 0, 1, 2, . . .. A dynamic network is given by Nt = (nt , {γi j t }i, j∈nt );
in short, Nt = (nt , Et ) where the network’s connectivity structure at time t is given by
Et = {γi j t }i, j∈nt where γi j t ∈ {0, 1}.7 We consider a symmetric network, i.e.,

γi j t = γ j i t for all i, j ∈ nt and t . (1)

We imagine that there are nt granular strategic individuals in the economy at a generic time
point t . Each individual is indexed by i ∈ nt .8

The starting point of our analysis is that the observed valuations are interdependent:9

Vit = (1 − ωt )πi t
︸ ︷︷ ︸

fundamentals

+ωt

∑

j∈nt
γi j t V jt

︸ ︷︷ ︸

network effect

, (2)

where ωt denotes the network coefficient and nt is the set of entities at time t . In Eq. 2,
the fundamentals {πi }i∈nt are exogenously given. Given the relative weight ω, the valuation
{Vit }i∈nt can be expressed as a function of the network structure and the fundamentals. We
can rewrite Eq. 2 without the time subscript as

V = β + ωΓ V (3)

where β is a column vector and captures the fundamentals.
Before proceeding further, we need some definitions that will be used throughout the

paper.

Definition 2 (Eigenvector centrality) Eigenvector centrality {e} is defined as the dominant
right eigenvector of the adjacency matrix Γ . Since the eigenvector is not unique due to scale
factors, we normalize the elements of the vector {e} so that sum of the elements is 1. We will
denote the dominant eigenvalue by λmax.

Definition 3 (Katz–Bonacich centrality) Katz–Bonacich centrality for a given network with
a symmetric adjacency matrix Γ , is defined as a vector eK B such that

eK B(ω) = (I − ωΓ )−1β, (4)

7 Therefore, this network is unweighted. A connection either exists or not. Also, there is no self-loop, i.e.,
γi i t = 0 for all i ∈ nt and t . Finally, one can have an alternative representation of the edges in terms of pairs
of nodes it connects. However, here we will explicitly utilize the description through adjacency matrix as that
will help us to economize on notations.
8 We will denote the cardinality of set nt by nt .
9 In “Appendix 8.1” we provide a standard game with linear quadratic payoff functions that give rise to such
interdependent valuation [5,31]. This framework constitutes the stage game and we use it to motivate the intra-
period actions where given the network structure, players optimize their action profiles. The main influential
result from Ballester et al. [5] is that given a network structure, the action profile in the Nash equilibrium in a
linear quadratic setup is the same as the Katz–Bonacich centrality. Our focus in the main text of the paper is
on the inter-period game where the players decide on their connectivities, which leads to network formation.
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whereω is an exogenous constant, β is a column vector and I is an identity matrix. Under the
condition that ω < 1/λmax (λmax being the highest eigenvalue of Γ ), the centrality measure
is well-defined.

In other words, the Katz–Bonancich centrality is exactly the same as V solving Eq. 2. Next,
we define hierarchy over the centrality vector V .

Definition 4 (Hierarchy) Given a network N, hierarchy HΓ is an ordered vector {hi }i=1,...,n

where hi ∈ {1, . . . , n} such that Vhi > Vh j if hi < h j for all i, j ∈ {1, 2, . . . , n}. The
ordered vector h denotes ranking of the nodes, which produces the hierarchy in the network.
Additionally, we will assume that in case of a tie between s nodes (with ns number of nodes
having higher centralities), then all of the s nodes will have the same rank (ns+1) and the
next node in term of ranking will have a rank of ns + 1 + s.

It is important to note the specific scheme of ranking used in this is paper. We assume in the
hierarchical ordering that the number of players above a given player matters for ranking.
Therefore, the ranking is not purely ordinal. For example, in a three players’ world, if the
centralities are 0.4, 0.3, 0.3, then the rankingwould be 1, 2, 2; but if the centralities are 0.4, 0.4,
0.3, then the ranking would be 1, 1, 3. The specific mode of the ranking scheme is important
for the result stated afterward in this paper. In “Appendix 8.5”, we provide an example where
a purely ordinal ranking scheme would lead to different network growth process. Briefly,
the chief reason for adopting this ranking scheme is that a ranking scheme which takes into
account howmany players are above a given player, stops the network growth in certain cases
whereas a purely ordinal ranking does not lead to a complete halt in the process. Since in this
paper we want to analyze the cases where the network growth might be completely halted,
we focus on the relevant ranking scheme.

2.1 Network Coefficient!

From Eq. 2, we note that the unspecified parameter is ω. The first question we address is how
to endogenize the weight ω for a connected network? In general, we can choose arbitrary
weights for ω ∈ [0, 1]. However, we make two assumptions about ω.

Assumption 1 The relative weight ω is a function of the architecture of the network N =
(n, E).

From the empirical literature discussed earlier, we note that the network effect is the strongest
for small number of competitors (see e.g. [21]). This observation leads to the following
assumption.

Assumption 2 Relative weight ω should endogenously decrease as the network size n
increases.

We claim that one good candidate for ω is the inverse of the dominant eigenvalue λmax of
the adjacency matrix of Γ . More formally, we state the following proposition.

Proposition 1 Given a connected networkN, the relative weightω proportional to the inverse
of the dominant eigenvalue of the network N satisfies Assumptions 1 and 2 if the proportion-
ality constant θ < 1.

Proof See “Appendix 8.2”. ��
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We need to make one more assumption to uniquely pin down the hierarchy H based on
network N.

Assumption 3 βi = β̄ for all i ∈ n where β̄ is a constant.

Under Assumption 3 and if θ → 1 from below, ω = θ/λmax → 1/λmax. Now, we state
a proposition that uniquely pins down a hierarchy. We show that the hierarchies implied by
valuation and eigenvector centrality, are identical in the limit.

Proposition 2 Consider a network N. Let nodes i and j (for all i and j) have valuation Vi
and Vj following Eq. 2, and eigenvector centrality of ei and e j . Then under Assumption 3
and if θ → 1 from below, Vi ≥ Vj implies ei ≥ e j and vice versa. Hence, the implied
hierarchies are identical.

Proof This result is a straightforward application of Corrollary 1 of Theorem 5.1 from Benzi
andKlymko [8] which states that asω → 1

λmax
(converges from below), the ranking produced

by eK B(ω) converges to that produced by e. ��

In the rest of the paper, we assume that ω = θ
λmax

.

2.2 Valuation on a Static Network

Let us assume a connected graphN with n nodes. The first result deals with the interpolation
between the duopoly and competitive limits.

Theorem 1 The valuation (V ) through network effect is the maximum for n = 2. As the
number of the individuals (n) increases, the network effect decreases monotonically. In a
fully connected network of n individuals, asymptotically (n → ∞) valuation depends only
on fundamentals (π).

Proof As per Eq. 2, the valuation of the i th individual can be written as

Vi = (1 − ω)πi + ω
∑

j∈n
γi j V j (5)

without the time subscript.
There are three claims in the theorem, which we prove in three parts. First, we note

that for a complete graph (all elements of the adjacency matrix = 1 except the diagonal) of
size n, the dominant eigenvalue is n − 1. Thus the first claim of the theorem follows from
Proposition 1. In proof of Proposition 1, we have noted that if the network expands, then
λmax monotonically increase, implying that ω correspondingly decreases. Thus the second
claim is proved. Finally, we observe that for a complete graph

lim
n→∞ ω = lim

n→∞
θ

n − 1
= 0. (6)

This completes the proof. ��
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3 Strategic Network Formation

So far we have characterized the valuations on a static network. Now we introduce a scheme
for dynamic network formation. Time t is discrete. At every point of time t , the network is
defined as Nt = (nt , Et ), and there is a potential entrant who can make at most nt number
of connections (one with each incumbent). Thus the number of potential connections will
change over time (as opposed to a fixed number of connections; see e.g. [36]). Given a certain
network Nt , the entrant wants to enter the network by forming links with the incumbents.
The entrant’s goal is to maximize his ranking in the social hierarchy. Accordingly, he would
choose who to connect to and make offers for connection. If the receiver of an offer agrees
to connect, then they form a link, else the entrant moves to the next best choice.10

Wemake an assumption that reservation values for the individuals are zero, i.e., individuals
derive zero values from outside opportunities (by not participating in the network growth
process).

Assumption 4 The reservation values for all individuals are zeros. Only the seed network
can grow (e.g., seed network might have endowments of complementary assets).

Example 1 As an illustrative example, the seed network may represent incumbent members
in a club. All other players want to enter the club, but in our model, they cannot create a new
club on their own.

The interpretation of the assumption in real world production process can be envisaged in
the context of labor and capital. Let us assume that capital is held by only the players in
the seed network. If we consider that for generating the values {V }, workers need access to
physical capital stock (we can think of white-collar workers in a financial firm where the
physical infra-structure is important for most kinds of operations) which they would lose if
they do not become a part of the organization. Technically, this assumption is important as it
allows us to study the network growth process exclusively without considering possibilities
that some groups of individuals might form a coalition and leave the parent network.

Here we define the game in the following way. There are nt individuals in Nt at a generic
time point t . The individuals’ payoffs are defined as a function of their rank in the hierarchy
defined by the eigenvector centrality11 obtained from Nt . The entrant’s strategy is to offer
connections to the incumbents. The incumbents’ strategies are to either accept or reject after
evaluating the offer. Formally, we make the following the assumption which provides a
lexicographic preference of the players over hierarchy and centrality.

Assumption 5 (Rank-consciousness) Payoff of a player is an increasing function of the rel-
ative ranks in the hierarchy H and conditional on being in the same rank, payoff increases
in centrality (sum of centralities of all incumbents is normalized to 1). In the following, we
will use eigenvector centrality for rank-ordering.

Individuals are rank-conscious, and hence, they are interested in their rank (ordinality) in
terms of centrality. This assumption is natural as people may care about whether they are
more influential than their competitors or not, rather than computing exactly howmuch more
influence do they yield over their competitors. Therefore, a connection is formed only when
ranks improve of both the entrant and the incumbent in the hierarchy. But conditional on

10 If no one in Nt accepts the offers, then no connections are made and the potential entrant cannot enter.
11 We note from Proposition 2 that asymptotically the observed valuation and eigenvector centrality give rise
to the same hierarchy.
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being in the same rank, if creating a new link gives them higher centrality compared to the
previous scenario, then they will create the link (even if that does not increase the rank). This
assumption is required for tie-breaking scenarios. Without making this assumption, we get
into situations where the players can potentially create links without affecting their ranks and
the network can grow, but the players would not do that if their payoffs are solely dependent
on the ranking. By making this assumption, we can avoid such scenarios.

Given that there is only one possible entrant every point of time t , we can denote the
existing network by Nt and the entrant by index t . Since the entrant makes a series of offers
to the existing nodes in Nt , the network structure evolves if any connection is formed within
each t . To keep track of that, we use a notation Nti where i = 1, . . . , nt where nt is the
number of incumbents at time t .

The network growth process is defined as follows:

Step 1 Start from a seed network Nt = Nt,0 at time point t .
Step 2 A new individual comes in who attempts to sequentially make connections with

incumbents startingwith themost influential incumbent. The process continues across
all existing incumbents in Nt in the sequence of the associated hierarchy HΓt . The
associated network can be denoted by Nt,i where i = 1, . . . , nt .

Step 3 After all decisions are made about formation of the links,12 the entrant becomes
either an incumbent (if at least one link is formed) or remains an outsider and drops
off from the system (if no links are formed). Time proceeds by one unit and a new
entrant appears. Then we go back to the first step above at time point t + 1 with
network Nt+1 = Nt+1,0.

3.1 Myopia and Instability in Hierarchy

Before getting to the farsighted network formation,we first discuss briefly the network growth
process withmyopia and the corresponding instability of the associated hierarchy. Intuitively,
here the players always want to connect to more agents if possible, since higher number of
connections increases payoff of the players. At the same time, the players would also like
to increase their relative ranks by connecting to the central players. Therefore, this system
has a direct parallel to the model studied by Ballester et al. [5] and the same result can be
derived here that the network will eventually tend towards a complete graph. Note that since
a complete graph has no non-trivial hierarchy, the present model will display disappearance
of hierarchy. Clearly this is an unrealistic scenario. König et al. [31] avoid this scenario
by introducing stochastic decay in links with variable rates and random choice of players
who can update their links, resulting in stochastically stable graph that generates nested split
graphs. Here we pursue a different goal and show that if the players are farsighted, then
the network growth process might halt. Thus our framework provides a theory of stability
of hierarchy and stasis in network growth process, as opposed to the literature on dynamic
process leading to growth in the network.

Although the following results are very similar to the results discussed in Ballester et al.
[5] and König et al. [31], we formally present the case with myopic players so that it becomes
easier to compare with the farsighted case. All proofs of the results with myopic players are
in “Appendix 8.3”. Let us first define myopia in terms of players evaluating their ranks in a
ceteris paribus condition, i.e., they do not consider future evolution of the network which
can potentially affect their rank.

12 We discuss in Sect. 4 what kind of connections can be formed in equilibrium. As we will see, not all
possible connections will materialize if the players are farsighted.
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Assumption 6 (Myopia) Individuals evaluate each offer myopically in the sense that if rank
(weakly) increases immediately after an offer to form a link is accepted, then the individuals
accept it. In other words, the individual evaluates the offer in a ceteris paribus condition.

Given the above mechanism and the assumption that the individuals’ payoffs are defined
over their relative ranks, we can show that all new entrants will be accommodated in the
network.

Theorem 2 All new entrants will be accepted in the existing network with at least one con-
nection.

Proof See “Appendix 8.3”. ��
Theorem 3 Consider a network N with monotonic ranking of centralities V1 ≥ V2 ≥
V3 . . . ≥ Vn (without loss of generality). A new node m would connect to the existing n
nodes in sequence 1, 2, . . . , n given by their hierarchy H and eventually would become
weakly more central than the earlier most central node, under the condition that when node
i connects to node m with lesser centrality (without loss of generality), the relative ranking
between i and m does not change.

Proof See “Appendix 8.3”. ��
The intuition for the above result is simply that creating a link will not reduce centrality

(Ballester et al. [5]; see the discussion in p. 702, König et al. [31]). Clearly, the assumption
of myopia is extreme in that the players are not taking into account that their competing
players in the network might respond to their actions if the actions hurt the rankings of the
competitors. The way they can respond is simply by connecting to the entrant in an attempt
to increase their own ranks. We see from Theorem 3 that such cases might lead to worse
outcome for every incumbent. In the next section, we relax the assumption of myopia and
show that if the players recognize this reaction from the competitors, then the network growth
might completely stop and the hierarchy would be preserved.

4 Farsighted Network: Stability of Hierarchy

We assume that the entrant can repeatedly make offers to the incumbents, and stops only
when no new edges are formed. Imagine that the network is denoted by Nt0 with nt nodes.
The entrant makes a series of offers from node 1 to nt . If any offer is accepted and an edge is
formed, then the entrant again starts making a series of offers from node 1 to nt . This process
stops when during one round of making offers, no edges are formed.

By introducing the repeated structure, we show that a fear of punishment can be supported
in equilibrium, which would lead to cases where the fear of losing rank in the next round,
would induce the individuals to not exploit themyopic gain arising out ofmaking connections.
Thus, such a mechanism might even lead to complete halt of the growth process where no
edges are formed at all.

Let us use the notation Ntiρ to denote the network at time t (with entrant indexed by t)
making offers of incumbent i ∈ nt in round ρ.

Assumption 7 (Farsightedness) Individuals are farsighted in the sense that the i th incumbent
evaluates the offer made by entrant t in round ρ (ρ = 1, 2, 3 . . . ) knowing that if any edge
has been formed in round ρ, then the other incumbents (if they have not made a link with
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the entrant yet) can consider creating a link with the entrant and game advances to round
ρ + 1. After all decisions have been made by the incumbents regarding forming the links
with entrant t , then a new entrant appears in time t + 1.

Here we note that farsightedness of incumbents in period t is defined to be applicable only
within period t’s offers of link formation (ρ = 1, 2, 3 . . . ) Period t’s incumbents do not
think about entrants the future period (t + 1, t + 2 and so forth). We will first define the
concept of equilibrium with farsighted individuals.

Definition 5 The network reaches a pure strategyNash equilibrium for entrant t whenNtiρ =
Nti(ρ+1) ∀ i ∈ nt , i.e., no willing incumbent is left to create a new link after all possible
offers and counter-offers.

Themain insight is that with farsightedness, individualswould be unwilling to break status
quowhen there are multiple individuals in the same rank and with the formation of new edges
the entrant can be more influential than them. Let the existing centrality of nodes in Γt be
given by (without loss of generalization) V1 ≥ V2 ≥ · · · ≥ Vn such that the individuals
can be partitioned into k groups (k ≤ n) with ranking r1 ≥ r2 ≥ · · · ≥ rk . As an example,
consider individuals i and j with identical rank k > 1. Also assume that if the entrant can
make connections to both of them, then they would be pushed to rank k + 1. Then there is
no incentive for them to unilaterally deviate to form a link. Say individual i deviates. The
formation of a link gives individual i a temporary gain in ranking over j in round ρ, but
then the game is extended to round ρ + 1 and the individual j forms a connection which is
relatively beneficial for j given that i has already deviated. But this pushes both individuals
i and j to rank k + 1.

Then we have the following result.

Proposition 3 A sufficient condition for the farsighted network growth would be that the
ranking of the nodes in the seed graph is weakly preserved in the new graph.

Proof If the network hierarchy does not change due to the new connections, then players do
not have any incentive to halt the growth process. ��

Figures 2 and 3 provides two examples of growth with farsighted players. A star-shaped
networks grows into another star-shaped network which reinforces the hierarchy and a com-
plete network grows into another complete network which preserves the absence of hierarchy
(everyone is equally central). Below, we explain these two cases in details.

Example 2 [Star network with farsighted players (Fig. 2)] Figure 2 considers a possible
growth process for a star network. Panel (a) shows that a new entrant appears and connects
with the central node (panel (b)). We will show that this is a stable graph (panel (b)). Say
one of the peripheral nodes breaks status quo and makes a connection which temporarily
improves its rank. But then all peripheral nodes will make connections, making the entrant
more central than all of the peripheral nodes. Thus none of the peripheral nodes connect.

Example 3 [Complete networkwith farsighted players (Fig. 3)] In the other extreme, consider
a complete graph where all nodes are equally influential. We see that the entrant can connect
to all nodes and lead to another complete graph where no individual is losing rank in the
hierarchy.

However, the main result we derive with farsighted players is that such a network may not
grow at all. The players can simply preserve the existing hierarchy and never accept a new
entrant. Below we give two examples of that (Figs. 4, 5).
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Fig. 2 Growth process of a star graph with farsighted individuals. The entrant player connects only with the
hub (the central node) and a star graph evolves into another star graph by reinforcing the prevailing hierarchy

Fig. 3 Growth process of complete graph with farsighted individuals. A complete graph evolves into another
complete graph and hence, the hierarchy is preserved

Fig. 4 Absence of growth with farsighted individuals. This graph preserves hierarchy and does not grow at
all

Example 4 [No growth with farsighted players (Fig. 4)] The most interesting case is that this
process can lead to a complete stop of the growth process. The entrant can make offers to
either the central nodes (there are two of them) or the peripheral nodes (there are four of
them). We will show that no connections will be made here. Table 1 provides the eigenvector
centralities along with ranks in the hierarchy under different possible scenarios.

Initially, both the core nodes are ranked 1 while all the peripheral nodes are ranked 3.
Since there are only two types of nodes in the given seed network on the basis of hierarchy,
we only need to consider two cases to exhaust all possible cases of network evolution. The
new node would make its first edge with either a core node or a periphery node. Below we
analyze both the cases:
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Fig. 5 Partial growth with farsighted individuals. This graph preserves hierarchy and does not grow after
attaining symmetry

• Core nodes: In the initial configuration, the centralities and the corresponding rank is
given in Table 1, column titled Original. If one core node (say, node 1) makes an edge
with the new node. This will not change the hierarchy of node 1. But it changes the rank
of node 2 from 1 to 2. Thus, node 2 would also form an edge with the new node. This
puts back node 2 at the same hierarchy with node 1 i.e. rank 1 (column Core connects
in Table 1). The new node is now ranked 2 as it is connected with two core nodes but has
no peripheral nodes connected with it, pushing peripheral nodes to rank 4. For peripheral
nodes it’s weakly dominating to connect with the new node as it would increase the
centrality (but not the rank; see column All nodes connect in Table 1). This would put
the new node at rank 1 while pulling the two core nodes down to rank 2. Hence, a
farsighted core node takes this into account and will not connect with the new node to
begin with.

• Peripheral nodes: Again we start from the initial configuration with the centralities and
the corresponding rank as given in Table 1, column titled Original. Without loss of
generalization, suppose periphery node 3 connects with the new node. It can be checked
that this will not change the rank of core nodes but all other periphery nodes will have
a rank of 4 (nodes 1, 2 and 3 will dominate them). This would lead to the new node
forming edges with all of the peripheral nodes (column Periphery connects in Table 1).
This pushes all the peripheral nodes down to rank 4, while the new node goes to rank
1. No matter whatever edges are formed with the core nodes after this, the periphery
nodes rank would still be 4 which is worse than their original rank 3 (column Original
in Table 1). A farsighted periphery node would take this into account and will not form
an edge with the new node.

This leads to no edges being formed with the new node in Fig. 4.

Example 5 [Partial growthwith farsighted players (Fig. 5)]Anextensionof the above example
shows that in asymmetric networks, growth might occur partially. The network will grow till
symmetry is attained and then stops. A detailed explanation is as follows.

In Table 2, we have provided the centralities along with the rankings under alternate
scenarios. Note that the initial ranking of nodes: Node 1 has rank 1, node 2 has rank 2, nodes
4 and 5 have rank 3 and node 3 has rank 5 (columnOriginal in Table 2). Since there are four
types of nodes in the given seed network on the basis of hierarchy, we need to consider four
cases to exhaust all possible cases of network evolution.

• Node 1: Let’s assume node 1 connects with the new node (column Node 1 connects in
Table 2). This would lead to two changes in the hierarchy. Rank of node 1 does not change
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Table 1 Eigenvector centrality along with ranks (within parentheses) of the nodes in Fig. 4 under alternate
scenarios

Nodes Original Core connects Periphery connects All nodes connect

1 0.2500 (1) 0.2303 (1) 0.1511 (2) 0.1712 (2)

2 0.2500 (1) 0.2303 (1) 0.1511 (2) 0.1712 (2)

3 0.1250 (3) 0.0899 (4) 0.1271 (4) 0.1096 (4)

4 0.1250 (3) 0.0899 (4) 0.1271 (4) 0.1096 (4)

5 0.1250 (3) 0.0899 (4) 0.1271 (4) 0.1096 (4)

6 0.1250 (3) 0.0899 (4) 0.1271 (4) 0.1096 (4)

7 0 (7) 0.1798 (3) 0.1895 (1) 0.2192 (1)

No connections will be formed with the new node (see text for a complete proof)

and rank of node 3 is pushed down to 6 and nodes 4, 5 and 6 have the same centrality. But
the fall in rank of node 3 would provide incentive to node 3 to connect to the new node.
This leads to a fall in rank of node 4 and 5 as new node becomes more central than them
by gaining a new link. This would lead to 4 and 5 connecting with node 6 leading to fall
in rank of node 2. As node 2 also now connects with the new node. Thus we arrive at
column All nodes connect in Table 2. This leads to loss of rank for node 1. A farsighted
node 1 will take this into account and will not form an edge with the new node.

• Node 2: Suppose node 2 connects with the new node (column Node 2 connects in
Table 2). Node 1 stays at rank 1. Rank of node 2 improves to 1. Rank of node 3 improves
to 3 while 4 and 5 still have rank 3. Now let us consider the following cases:

– Suppose node 1 connects with the new node, this would result in fall of rank for nodes
3, 4 and 5. Therefore, they would also connect with the new node to increase their
centralities, resulting in columnAll nodes connect in Table 2. This reduces node 1’s
rank. Therefore, a farsighted node 1 will not connect with the new node after node 2
has made a connection with the new node.

– Nodes 4 or 5 will not form an edge with the new node. If either of them makes a
connection, then the other one will also do it. Then node 3 loses rank and therefore
it would also make a connection. But then node 1 would lose its rank. In order to
increase centrality, then it makes a connection to the new node leading to columnAll
nodes connect in Table 2, where all incumbents are worse off.

– Suppose node 3 connects with the new node. This would result in node 2 becoming
rank 1 and ranks of node 4 and 5 fall to 5. Thus, nodes 1, 4 and 5 would form edges
with node 6, resulting in a fall of rank for node 3 to 6 (All nodes connect in Table 2).
A farsighted node 3 will take this into account and not form an edge with node 6.

Thus, no edges are formedwith the new node after node 2 forms an edgewith it. Resulting
in panel (b) of Fig. 5.

• Node 3: Suppose node 3 forms an edge with the new node. This would result in two
cases:

– Noother node connectswith the newnode: In that case the newnode is only connected
with node 3, which results in a rank of new node is 6. While in the previous case
when the new node makes its first connection with node 2 it has rank 3 and that is
an equilibrium. A farsighted new node would take this into account and form its first
edge with node 2.
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– At least one other node connectswith the newnode (other than node 2, we have shown
above that if node 2 connects, then 3 would not connect): In that case, all remaining
nodes have incentive to form a link and given that node 2 would form a link, forming
no other links would be beneficial. Therefore, node 3 would not connect.

• Nodes 4 and 5 (symmetric): Suppose node 5 connects with the new node. This would
lead to fall in rank of node 4 which will result in node 4 connecting with the new node.
This step leads to fall in rank of node 3 (initially it has rank 5 in column Original in
Table 2), which leads to forming an edge with the new node. Then nodes 1 and 6 become
symmetric. Thus to increase centrality 1will form a linkwith 6. Then node 2will increase
centrality by connecting with node 6 leading to column All nodes connect in Table 2.
A farsighted node 5 will take this into account and will not form an edge with the new
node.

This leads to new node only connecting with node 2.

5 Valuation in Network Organizations

In this section, we analyze the model of valuation in a hierarchical organization. To fix ideas,
we consider a networkN of fixed size n. The observed valuation depends on two components,
fundamental valuation and the network effect. In this context, one can call the first term profit
alignment and the second term, peer effect. Let us consider the valuation equation for a given
network N:

Vi = (1 − ω)πi
︸ ︷︷ ︸

profit alignment

+ω
∑

i∈n
γi j V j

︸ ︷︷ ︸

peer effect

. (7)

In matrix form, it can be rewritten as

V = (1 − ω)πI + ωΓ V , (8)

where I is a column vector unit all elements equal to 1. Therefore, the valuation can be solved
as

V = (I − ωΓ )−1(1 − ω)πI. (9)

Valuation V is also known as Katz centrality13 if πi = π for all i ∈ n (see, for example
[46]). Note that if the individuals have different fundamentals πi , then it is not particularly
surprising that the valuations would also differ across individuals. Our basic point is that even
with the same fundamentals, there can be spread in valuation and the spread is a function of
the difference in the hierarchical positions.

Equation 9 also provides an explanation for the requirement of θ < 1 while defining the
relative weight ω = θ

λmax
. Note that given the solution to the valuation equation (Eq. 9),we

have det(I − ωΓ ) = 0. To have V < ∞, we need ω < 1
λmax

. We will also show that the
assumption θ < 1 will also allow the network multiplier to be greater than one in magnitude.

Before analyzing the network effects, here we provide a lower bound for the valuation in
a network organization. Note that Assumption 4 already provides a bound of zero. However,
we can provide tighter and more intuitive bound.

13 The weight parameter ω works as attenuation factor in case of Katz centrality.
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Proposition 4 If the valuation is determined by Eq. 7, then for every individual i ∈ n , the
valuation has a lower bound of (1 − ω)πi , i.e.,

Vi ≥ (1 − ω)πi for all i ∈ n and ω ∈ [0, 1]. (10)

Proof We have to show that the additive second term in Eq. 7 is weakly positive. Suppose
not. In that case, there would be at least one i ∈ n such that

ω
∑

i∈n
γi j V j < 0. (11)

For this to hold true, there has to be at least one individual j ∈ n such that Vj < 0. Recall
from the Eq. 9 that

V = (I − ωΓ )−1(1 − ω)πI. (12)

According to Proposition 1, the weight ω < 1
λmax

. We can apply Theorem I ∗ and I I I ∗ by

Debreu and Hernstein [15] to show that (I − ωΓ )−1 is well-defined and all elements of the
resultant matrix are weakly positive.14 Given π > 0, it follows that

Vi > 0 for all i ∈ n. (13)

This provides a contradiction to the statement that Vj < 0. Hence proved that Vi ≥ (1−ω)πi

for all i ∈ n. ��

5.1 Quantifying the Disconnect

Given the above framework, we can find the total observed value V = ∑

i Vi and the
fundamental value 
 = ∑

j π j of all individuals i ∈ n in a network N.

Definition 6 (Network multiplier) The network multiplier is defined asM = V


.

Next, we define spill-over effects that arise due to linkages.

Definition 7 (Spill-over effect) We define the spill-over effect as the indirect impact on val-
uation of j due to change in fundamental valuation of i : si j = δVi

δπ j
.

The key message that we are utilizing from Elliott et al. [20] (which in turn builds on
Brioschi et al. [12] and Fedenia et al. [22]) is that the book value of an entity can be decom-
posed into its primitives (what we call fundamentals) and the network effects on the valuation.
As Elliott et al. [20] described, the market valuations become a multiplier of the primitives,
where the multiplier depends on the structure of the network linkages. Therefore, the book
value (what we have termed as observed value) is more that the primitive value (what we
have termed as fundamental value). The interpretation of the multiplier is that it quantifies
the wedge between total observed value and the total fundamental value. It is an aggregate
measure of the wedge between the two sets of valuation.

We note that the disconnect of
∑

i Vi from
∑

j π j is captured by the network multiplier
M . Given a network Γ , if M > 1 then we can infer that the observed value is inflated.
From Proposition 4, we can readily infer that

∑

i Vi ≥ (1 − ω)
∑

i πi . However having the
multiplierM > 1 is a stronger result. Below, we provide proofs thatM > 1 for three basic
types of networks.

14 Another way to think about it is that Proposition 4 requires us to show that Katz centrality is well defined.
Dequiedt and Zenou [17] analyzes this issue in further details.
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5.1.1 Complete Graph

Consider a complete graph Γ of n nodes. The valuation equation is given by

Vi = (1 − ω)πi + ω
∑

j �=i

V j ∀ i ∈ n . (14)

The network multiplier is given by (see “Appendix 8.4” for complete calculation)

Mcomplete =
(

1 − θ
n−1

)

1 − θ
> 1. (15)

5.1.2 Star Graph

Consider a star graph with n − 1 peripheral nodes. The valuation equation is given by

Vi = (1 − ω)πi + ω
∑

j �=i

V j ∀ i ∈ n . (16)

The network multiplier is given by (see “Appendix 8.4” for complete calculation)

Mstar = (n + 2ω(n − 1))(1 − ω)

n(1 − ω2(n − 1))
> 1. (17)

5.1.3 Linear Graph

Consider a linear graph with n nodes. The valuation equation is given by

Vi = (1 − ω)πi + ω
∑

j �=i

V j ∀ i ∈ n . (18)

The network multiplier is given by (see “Appendix 8.4” for complete calculation; for a closed
form solution, we assume n → ∞)

Mlinear = 1 − ω

1 − 2ω
> 1. (19)

6 Application: Hierarchy in the Indian Board Network

In this section, we present an empirical application of the model and its consequences. We
have gathered data on the Indian board interlock for the year 2016. The company-director
network is a bipartite network between companies and its board of directors. Each of the
companies has a board of directors. A pair of companies can have a director interlock if they
share one director, i.e., one director serves both the companies. Similarly, a pair of directors
are connected if they sit on the board of the same company. The directors’ network is an
unweighted and undirected network, making it appropriate for our analysis.

Figure 6 shows part of the the giant component15 of the directors’ network in India in
2016.Therewere total around9000directors.We extract the giant component for our analysis,
which has 6453 directors. Panel (a) shows a small part (142 directors) of the giant component

15 The giant component refers to the largest connected component in the network.
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Fig. 6 Examples: Visual depiction of the Indian board directorship network. a Connected cluster of 142
directors in 2016. b Connected cluster of 1544 directors in 2016

for visualization purpose. Panel (b) shows a larger connected component (subset of the full
giant component) with 1544 directors. We have not shown the full giant component as the
nodes becomes visually inseparable.

Figure 7 (Panel (a)) shows the imputed valuation V by applying Eq. 7 with πi = 1 and
θ = 0.99 (Γ is matched to the actual interlocking network). Clearly, there is a large number
of directors who are very close to each other in the hierarchy whereas there are a few who are
significantly more important than the rest (indicated by the spikes).We conduct the following
counterfactual experiments to explain the mechanism.
Effects of Business Cycles The first experiment is that all individuals have a boost in their
corresponding fundamentalsπi by the samemultiplier f > 1. As the solution to the valuation
equation shows (Eq. 9), valuation of all individuals would be exactly multiplied by f .
Spill-Over EffectsWe have already defined spillover effect of the i th individual’s fundamen-
tals on the j th individual’s valuation, si j = δVj

δπi
. Here we consider a summary measure of

aggregate spill-over effect of the individual i as si = ∑

j si j . The aggregate response is mea-

sured as s̃i =
(∑

j V j,spillover−∑

j V j

N

)

which approximates si , across all directors. Numerically,

we see that s̃i/s̃ j for all pairs (i, j) very closely mimics the ratio Vi/Vj of the corresponding
pair.
Network Multiplier We compute the network multiplier (following Eq. 9) over three sets of
data for a given θ .16 We consider connected subgraphs of the giant component of the director
network (first two are shown in Fig. 6, panels (a) and (b)). With 142 nodes (Fig. 6, panel (a)),
the network multiplier is 6.35. With 1544 nodes (Fig. 6, panel (a)), the network multiplier is
2.65. For the giant component (6453 nodes; not shown in this paper), the network multiplier
≈ 1.89. The results clearly show that the network multiplier decays as the size of the network
grows. This is reconcilable with Theorem 1 which states that as the network grows in size,
the network effect diminishes.

16 We have assumed θ = 0.99 for numerical calculations; the estimates will change for different values of the
parameter. The goal of the exercise is to show how the network multiplier changes as the size of the network
changes for a given θ .
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Fig. 7 aDirector valuation (6453 directors who belong to the giant component of the Indian corporate network
(2016)) according to the model. We have set πi = 1 for all i ∈ {1, . . . , 6453}. b Scatterplot of director
valuation Vi versus degree centrality di

Finally, we also show that high degree centrality is not a necessary condition for superstar
effect. Figure 7 (Panel (b)) shows that the directors with the highest valuation do not necessar-
ily have high degree. This simple observation demonstrates that the number of connections
may not matter much, what matters is the identity of the neighbors. On a related note, the
correlation coefficient between the valuation Vi implied by Eq. 9 and the number of board
directorships held, is 0.25 (based on the giant component of the Indian corporate network
in 2016). Such a low value of the estimate shows that number of connections is not a very
robust indicator of true influences of the nodes in a network.

7 Summary and Conclusion

In this paper, we present amodel of strategic growth in an interconnected society. The network
of individuals creates a hierarchy based on observed valuation where new entrants want to
maximize their own position in the hierarchy by strategically linking with incumbents with
higher values. In our model, individuals’ utility is dependent on hierarchy and going higher
in the hierarchy gives more utility. Individuals being strategic, respond to incentive of letting
newcomers in only when it is in their incentive to do so, i.e., only when their own ranking will
improve. We show that the hierarchy induces a disconnect between observed valuation of
individuals and their corresponding fundamentals. Thus alongwith themechanism to capture
the dispersion in hierarchy, the network growth process provides a detailed characterization
of the static as well as the dynamic nature of the network effects. In this context, it is useful to
note that there has been empirical research on how status differential across a hierarchymight
influence creation of negative ties [42]. It would be interesting to generalize the hierarchy
game presented in this paper further to incorporate such features.

We use a linear interaction model with strategic individuals and use its property that
eigenvector centrality provides a very useful way to model hierarchy in the linear model as
it mathematically relates to the architecture of the network. Based on existing results in the
spectral graph theory, we have comprehensively characterized the network growth process
as an outcome of a game between entrants and incumbents, based on the observed valua-
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tion. Through the valuation mechanism, we quantify the disconnect between the observed
valuation and the fundamentals as a function of the network architecture.

Our model provides important insights into organizational dynamics. With myopic indi-
viduals, network grows very fast and the hierarchies are quite unstable. On the other hand,
results are exactly the opposite with farsighted individuals. The hierarchy is maintained and
the network growth process can be halted depending on the topological characteristics of the
pre-existing network. This has important consequences for the associated network effects.We
focus on two phenomena. One, the divergence between observed valuation and fundamentals.
Two, the spill-over effects from one node to its neighbors, both directly and indirectly. Both
of them quantitatively depend on the architecture of the network.

We illustrate the framework with an application to a large-scale network-based organiza-
tional structure, namely the Indian board interlocking network. This is a bipartite network
between two sets of entities: companies and directors. We take a one-dimensional projec-
tion of the network to create a interlocking network of directors where an edge between
two directors indicate that they sit on common boards of at least one company. This kind of
social networks undergoes a strategic growth process and a large literature indicates that such
interlocks do have substantial economic and financial consequences across companies. By
applying our model, we find out the full hierarchy in the interlocking network and identify
which directors hold the key positions. Then we conduct a series of numerical experiments
to analyze the effects of shocks (common as well as idiosyncratic) to their fundamentals on
the valuation of the network.

We note that there is a defining feature of our model and its conclusions. The whole
mechanism depends on the idea that players make attempts to enter in a hierarchy by making
connections based on perceived influence of the incumbents. In real-world interactions, it
is difficult to keep track of individual meetings and interactions to justify the mechanism.
However, there are business card companies with machine-readable business cards that keep
track of business card exchanges.17 A future direction of this work would be to extend and
validate (or modify) our theory based on empirical data on such pairwise meetings.

Finally, the valuation framework has significant policy implications. As themodel embeds
network growth process in the valuation mechanism, we can analyze the static as well as the
dynamic responses of rupture or growth in the network. We can comprehensively charac-
terize direct as well as indirect spill-over effects. This is important for evaluating effect of
organizational structure on economic and financial variables, and vice versa.

8 Appendix

8.1 Intra-period Setup: Linear-Quadratic Payoff Functions

Tomodel the stage game or the intra-period game, we posit a standard linear-quadratic game.
The i th individual has a fundamental valuation πi and they have strategic complementarities.
The utility function is given by [5,31]

Uit = (1 − ωt )πi t Vit − 1

2
V 2
i t + ωt Vit

∑

j∈nt
γi j t V jt , (20)

17 In a personal communication with social networks researchers from a Japanese business card company, we
came to know that indeed there is a large number of meetings with two participants with extreme differences
in eigenvector centrality. However, the data is not available in the public domain.
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where {Vit }i∈nt is the action profile of the agents. Solving the problem in equilibrium (max-
imizing with respect to Vit ) given the connections {γi j t }, we get a linear network model18 of
observed valuation V :

Vit = (1 − ωt )πi t
︸ ︷︷ ︸

fundamentals

+ωt

∑

j∈nt
γi j t V jt

︸ ︷︷ ︸

network effect

, (21)

where ω denotes the network coefficient and nt is the set of entities at time t . Following
Ballester et al. [5], we can substitute the first order conditions back in the utility functions to
show that at the equilibrium,

U∗
i = 1

2
(V ∗

i )2. (22)

Therefore, in equilibrium utility is monotonically increasing in the action profile. This is a
very useful result for us because given this result, the hierarchy defined over the equilibrium
action profile V ∗ is the same as the one defined over utility U∗ in equilibrium.

8.2 Proof of Proposition 1

Proof Consider a static network N. From the spectral theory of graphs, we know that (see,
e.g., [34])

max{E(d),
√

dmax} ≤ λmax ≤ dmax, (23)

where λmax is the dominant eigenvalue, E(d) is the average degree and dmax is the maxi-
mum degree. Note that for a connected network, E(d) ≥ 1. Assuming θ is the constant of
proportionality and θ ∈ (0, 1), we get

ω = θ/λmax

≤ 1. (24)

Thus for a generic network N, ω ∈ [0, 1] and its value depends on the adjacency matrix Γ

of N. Therefore, it satisfies Assumption 1.
Next, we show that this choice of ω also satisfies Assumption 2. We have to analyze

how ω changes as the network size increases. We use a result from spectral graph theory
[44]. ��

Theorem 4 Let A be a symmetric matrix with largest eigenvalue Aλmax . Let B be the matrix
obtained by removing the last row and column from A, and let Bλmax be the largest eigenvalue
of B. Then,

Aλmax ≥ Bλmax . (25)

Therefore by increasing size of the graph with symmetric connections, λmax monotonically
(weakly) increases. This implies ω decreases as n increases. Therefore, it satisfies Assump-
tion 2 as well. ��
18 Elliott et al. [20] have used a static variant of the linear valuation equations to describe firm to firm
connections via cross-holding in assets.
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8.3 Proofs of Sect. 3.1

8.3.1 Proof of Theorem 2

Proof The adjacency matrix for a graph of n nodes be Γ0 = [γi j ]i, j∈n . Let us assume that
a new node m comes up and offers an edge to the top node in hierarchy. Let us denote that
node by node 1. The entrant has no outside option and hence, formation of an edge is always
rank-improving. Interestingly, we will show that node 1 always accepts that edge as it can
never decrease node 1’s rank. Note that the new adjacency matrix is

Γ1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

γ11 γ12 γ13 . . . γ1n 1
γ21 γ22 γ23 . . . γ2n 0
γ31 γ32 γ33 . . . γ3n 0
...

...
...

. . .
...

...

γn1 γn2 γn3 . . . γnn 0
1 0 0 . . . 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Therefore, the new eigenvector centrality V ′ solves the equation

Γ1V
′ = λ′

maxV
′ (26)

where V ′ = [V ′
1, V ′

2, . . . , V ′
n, V ′

m]Tr is a column vector. Therefore, Eq. 26 gives us V
′
1 =

λ
′
maxV

′
m . Note that

λ′
max > 1 (27)

for a graph which has average degree more than 1 [34]; we have also used the same argument
in Proposition 1). Therefore, we conclude

V ′
1 > V ′

m (28)

i.e., node 1 does not lose its rank with respect to the new entrant m. Node 1 cannot lose its
rank with respect to any of the other incumbents by having a new connection. Therefore,
node 1 will connect to node m. ��

8.3.2 Proof of Theorem 3

Proof We know from Theorem 2 that node 1 accepts the incoming individual m. We have
to show that after forming that connection, m would like to connect to 2 and 2 would also
like to connect to him. By induction, everyone forms connections with the new individual
m. Intuitively, Ballester et al. [5] showed that V is increasing in the number of links. Thus
all individuals have incentives to accept offers to form links. But we have to also show that
their ranks are not negatively impacted by the link formation mechanism.

First, we prove that forming a connection between a pair of nodes cannot reduce ranks of
that pair of nodes. We note that by forming an edge between any generic pair {i, j}, the edge
weights γi j and γ j i increases from 0 to 1. Now we appeal to the Theorem 1 in Roy et al.
[41] (in particular, see corollary 1) which shows that by adding a row vector {ai }i∈n (where
a(i) > 0 and a( j) = 0 for j ∈ n\i) to an n × n real irreducible nonnegative matrix Γ , the
element vi of the dominant eigenvector strictly increases in ratio with respect to the rest of
the elements {v j } j∈n\i . Note that forming an edge between the pair {i, j} in a symmetric
matrix leads to Γi j and Γ j i to be converted into 1 from 0. This operation can be interpreted
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as adding a row vector of zeros with 1 in the j th entry (0, 0, 0, . . . , 1 ,. . ., 0) to the i th row
of matrix Γ and adding a row vector of zeros with 1 in the i th entry (0, 0, 0, . . . , 1, . . . , 0)
to the j th row of matrix Γ . Formally, the first row is {a j } j∈n (where a( j) > 0 and a(k) = 0
for k ∈ n\k) and {ai }i∈n (where a(i) > 0 and a(k) = 0 for k ∈ n\i). Thus by applying
Theorem 1 in Roy et al. [41], both the nodes {i, j} are better off in terms of centrality with
respect to all other nodes k such that k ∈ n\{i, j}. Therefore, forming a connection between
nodes i and j will not reduce rank for i and j with respect to the rest of the nodes n\{i, j}.

This step leaves out one scenario where node i connects to a lesser central node j (for
a generic pair of nodes i and j) and the relative ranking between i and j is not preserved.
We incorporate it as a condition and as stated in the theorem, if such a case appears, then
the link would not be formed as node i would not form a link where it loses rank. However,
in numerical experimentations we could not find a case where that happens and in all cases,
ranking is preserved after formation of the link.

Next, we have to show that the new entrant (after connecting to all incumbents), would
now weakly dominate all the pre-existing incumbents. In order to do that we first write down
the eigenvector centrality of the entrant m as

Vm = λ−1
max

∑

i∈n
γimVi . (29)

Since the entrant m forms a connection with all incumbents i ∈ n , γim = 1 for all i ∈ n . For
any incumbent j ∈ n , the valuation would be

Vj = λ−1
max

∑

i∈n j

γi j Vi , (30)

where the neighborhood of the j th node n j ⊆ n (since some links may be non-existent).
Therefore, Vm ≥ Vj for all j ∈ n .

This completes the proof. ��

8.4 Proofs of Sect. 5.1

8.4.1 Complete Graph

Here we compute the network multiplier for a complete graph N of n nodes. The valuation
equation is given by

Vi = (1 − ω)πi + ω
∑

j �=i

V j ∀ i ∈ n . (31)

Therefore the total valuation is
∑

i∈n
Vi = (1 − ω)

∑

i

πi + ω
∑

i

∑

j �=i

V j

= (1 − ω)
∑

i

πi + ω(n − 1)
∑

i

Vi . (32)

Solving for the total valuation, we get

∑

i∈n
Vi = (1 − ω)

∑

i πi

1 − ω(n − 1)
. (33)
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Therefore, the network multiplier is given by

Mcomplete =
∑

i Vi
∑

i πi

= (1 − ω)

1 − ω(n − 1)

= (1 − θ
n−1 )

1 − θ
(since λmax = n − 1)

> 1 (since θ < 1). (34)

8.4.2 Star Graph

We compute the networkmultiplier for a star graphwith n−1 peripheral nodes. The valuation
equation is given by

Vi = (1 − ω)πi + ω
∑

j �=i

V j ∀ i ∈ n . (35)

If node 1 is at the center, then (for i �= 1)

Vi = (1 − ω)πi + ωV1. (36)

Combining the above two equations, we get

V1 = (1 − ω)π1 + ω

(

(1 − ω)
∑

j �=1

π j + ω(n − 1)V1

)

= (1 − ω)π1 + ω((1 − ω)
∑

j �=1 π j )

1 − ω2(n − 1)
. (37)

Therefore, the total valuation is given by
∑

i

Vi = (1 − ω)
∑

j �=1

π j + V1(1 + (n − 1)ω). (38)

Note that for a star graph, λmax = √
n − 1. Hence, the network multiplier is given by

Mstar =
∑

i Vi
∑

i πi

= (1 − ω)
∑

j �=1 π j + V1(1 + (n − 1)ω)
∑

i πi

= (n + 2ω(n − 1))(1 − ω)

n(1 − ω2(n − 1))
(πi = π for all i)

> 1. (39)

8.4.3 Linear Graph

We compute the network multiplier for a linear graph with n nodes. The valuation equation
is given by

Vi = (1 − ω)πi + ω
∑

j �=i

V j ∀ i ∈ n . (40)
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Table 3 Eigenvector centrality
along with ranks (within
parentheses; the first one
represents the ranking assumed in
the paper, second one represents
an alternate ranking) of the nodes

Nodes Original Node 1 connects All nodes connect

1 0.4142 (1, 1) 0.3660 (1, 1) 0.2808 (1, 1)

2 0.2929 (2,2) 0.2113 (2, 2) 0.2192 (3, 2)

3 0.2929 (2, 2) 0.2113 (2, 2) 0.2192 (3, 2)

4 0 (4, 3) 0.2113 (2, 2) 0.2808 (1, 1)

Under the first ranking scheme, only node 1 would connect to the new
node. Under the alternative ranking scheme, nodes 1, 2 and 3 would
connect with the new node, leading to a new network

To simplify the calculation, we solve the model in the limit. If n → ∞,

Vi = (1 − ω)πi + ω(Vi−1 + Vi+1) ∀i . (41)

Summing over all i and using symmetry across all nodes, we get the total valuation as

∑

i

Vi = (1 − ω)
∑

i

πi + 2ω
∑

i

Vi

=

(

∑

i πi

)

(1 − ω)

1 − 2ω
. (42)

Hence, the network multiplier is given by

Mlinear =
∑

i Vi
∑

i πi

= 1 − ω

1 − 2ω
> 1. (43)

8.5 Ranking SchemeMatters for Network Growth

Here we show the usefulness of the ranking scheme we assumed. To give an example, if we
have three nodes with centralities 0.4, 0.4 and 0.2, then our ranking scheme would assign
ranks 1, 1, 3 to the three nodes. One can possibly imagine a closely related ranking scheme
that will assign 1, 1, 2. The difference between our preferred ranking scheme and the alternate
one is that our ranking scheme is not purely ordinal, how many players are more influential
than a given player matters for the rank of that given player. Below we show that the two
ranking schemes can lead to very different types of network growth. In Table 3, we consider
a linear network of three nodes (numbered as 2, 1, 3 from left to right for a horizontal linear
network of 3 nodes) and the 4th node is the entrant. In Table 4, we consider a linear network
of three nodes (numbered as 4, 2, 1, 3, 5 from left to right for a horizontal linear network
of 5 nodes) and the 6th node is the entrant. The key take away is that the growth processes
would be quite different under two schemes. See the captions for a complete description of
the resulting growth process.
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Table 4 Eigenvector centrality along with ranks (within parentheses; the first one represents the ranking
assumed in the paper, second one represents an alternate ranking) of the nodes

Nodes Original Node 1 connects Nodes 1, 4 and 5 connect All nodes connect

1 0.2679 (1, 1) 0.2729 (1, 1) 0.2071 (1, 1) 0.1774 (2, 2)

2 0.2321 (2, 2) 0.1930 (2, 2) 0.1464 (3, 2) 0.1675 (3, 3)

3 0.2321 (2, 2) 0.1930 (2, 2) 0.1464 (3, 2) 0.1675 (3, 3)

4 0.1340 (4, 3) 0.0999 (5, 4) 0.1464 (3, 2) 0.1254 (5, 4)

5 0.1340 (4, 3) 0.0999 (5, 4) 0.1464 (3, 2) 0.1254 (5, 4)

6 0 (6, 4) 0.1413 (4, 3) 0.2071 (1, 1) 0.2368 (1, 1)

Under the first ranking scheme, node 1 would not connect to the new node. Under the alternative ranking
scheme, nodes 1, 4 and 5 would connect with the new node, leading to a new network
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