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Abstract
The study of evolutionary games on networks has revealed the impact of population structure
on evolutionary dynamics. Unlike the case in well-mixed population where defection is
favored by natural selection, certain types of networks have shown to favor cooperation.
However, most previous research work has been focusing on frequency-based analysis, and
emphasized on the update strategy adopted by each player, and thus generally considered the
group of players with the same strategy as a whole. While it is powerful in deriving analytic
results using this approach, the heterogeneity of players within such groups is effectively
overlooked. In this paper, we attempt to emphasize more on the heterogeneity of players that
comes from the network structure in evolutionary dynamics. Particularly, the prestige of a
player is represented by its centrality, and it is reflected in an adapted payoff function. We
provide several viable centralitymeasures that can be calculated using the adjacencymatrix of
the network. The relation between different centralitymeasures of the invader and the fixation
of cooperation is analyzed via computational simulations. Results show that in the proposed
model, compared to other three centrality measures, invaders with maximum betweenness
centrality have significant advantage in terms of the fixation probability of cooperation, in
both scale-free and small-world networks.
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1 Introduction

The evolution of cooperation has been a long-standing open question in the fields of eco-
nomics, biology, and social science [5,13,21,33]. Evolutionary Game Theory (EGT) since
its birth [28,29], has been developed as one of the most suitable tools in the study of the
emergence of cooperation within a group of selfish players. Traditionally, EGT is studied
mostly under the context of well-mixed populations. Nonetheless, as the study and appli-
cations of network theory have been arising overwhelmingly in the literature as well as
in industry recently, following the seminal work of [23], evolutionary games on networks
start to receive a significant amount of attention from researchers of various disciplines
[1,2,10,11,14,18,22,24–26,30,31]. Specifically, as social networks are oftenmodeled as com-
plex networks such as small-world networks [34] and scale-free networks [7], EGT on
complex networks has also drawn massive research interest in recent years [4,15,27,32].
A considerable amount of the research effort has been extensions of models that exist for
well-mixed populations to the case of populations with spatial structure, especially for sim-
pler spatial structures such as lattice and regular graph [10,23–25,31], and are typically
frequency-based and aim at finding conditions and mechanisms that promotes cooperation
[2,4,15,17].

Moreover, the players are often considered homogeneous, or in other cases the player
heterogeneity is typically reflected by the types or the update strategies of players that are
often exogenous and pre-defined [3,36]. Heterogeneous population was introduced by [26] as
a notion opposed to well-mixed populations, and the heterogeneity only affects the selection
of interacting players but not the payoff of the player involved. [3] discussed the evolutionary
dynamics of a heterogeneous population in the sense that the population is split into several
portions, each of which maintains a distinct updating process. [36]considered the case where
each player is associated with an updating strategy that is selected from a finite set of pre-
defined strategies.

On the other hand, focusingon the influence of network itself, [35] revealed the relationship
between somenetwork characteristics and the distribution of player actions in a specific subset
of game types. Besides, [16] investigated the relation between fixation probability and degree
under weak selection and concluded that a crucial factor affecting the fixation probability
is the degree of the invader. It should be noted that such perspective is rarely highlighted
in the literature where the impact of structural characteristics on evolutionary dynamics is
emphasized. Typically, the heterogeneity of players is described as an exogenous property
instead of a property coming from the network structure, and the study on the affect of such
heterogeneity on the payoffs received by the players is also lacking.

Nonetheless, numerous examples can be found in real-world networks that show impli-
cations of the impact of structural heterogeneity on evolutionary dynamics. For instance, in
social networks an individual with a large amount of links (e.g., followers as in twitter or
facebook) are quite often considered celebrities. The interaction or cooperation between two
celebrities more likely brings greater consequences to themselves compared to the case of
one celebrity and one non-celebrity player or two one non-celebrity players. In this case, the
prestige of player is represented by the number of connections that directly link to it, or its
degree in the network.

In this paper, we attempt to emphasize on the structural heterogeneity of players in evo-
lutionary dynamics. We propose a model for evolutionary games on networks with the help
of adjacency matrix. The heterogeneity of each player inherited from network structure is
characterized by the so-called centrality measures, which can be calculated using adjacency
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matrix. The impact of centrality of invader on evolutionary dynamics is analyzed through
the fixation probability of a single cooperator theoretically as well as in simulations. In
simulation, several different centrality measures are compared under different game types,
network types, and selection strengths. Results show that the fixation probability of coopera-
tion largely depends on the centrality of the invader, regardless of other factors. Additionally,
for each centrality measure the relation between centrality and fixation probability shows a
distinct pattern, and this pattern varies for different network types and game types.

Among the findings, the most notable one is that while using the proposed adapted payoff,
for all three game types we tested (Prisoner’s Dilemma, coexistence game and coordination
game), in both scale-free networks and small-world networks, choosing the player with max-
imum betweenness centrality as invader significantly increases the fixation probability of
cooperation. This not only reveals the important role of structural heterogeneity in evolution-
ary dynamics in complex networks, but also potentially gives us a structural explanation of
how cooperation emerges in human society. Furthermore, it also leads us to possible direc-
tives that can help promote cooperation in various human economical, political and social
networks.

2 Model

Consider a network G = (N , E) with N = {1, . . . , n} being the set of vertices and E being
the set of edges. Each vertex in N represents a player, and each edge in E indicates that the
two linked players can engage in a 2-player symmetric game. We use i j to denote an edge
between i and j for any distinct i, j ∈ N . Then i and j are called neighbors of each other
if the edge i j exists. The set of neighbors of any vertex i ∈ N is denoted Ni , and hence
ni = |Ni | is the degree of i . In this paper, we assume ni > 0 for all i ∈ N , since otherwise
there exist some isolated players that neither have any interaction with any other player, nor
have any impact on the game dynamics.

The adjacency matrix of G, denoted A, is then defined as A = [ai j ] such that

ai j =
{
1, if i j ∈ E,

0, otherwise.

Note thatG is assumed to be simple and undirected, thus aii = 0 for any i ∈ N and ai j = a ji

for any i, j ∈ N .
Consider a 2-player symmetric gamewhere players can be one of two types in S = {C, D},

in which C represents cooperation and D represents defection. A 2 × 2 payoff matrix U is
defined as follows

C D
C uCC uCD

D uDC uDD

where us1s2 represents the payoff a player of type s1 gets playing against a player of type s2,
for s1, s2 ∈ S. Let s : N → S be types of players in N . Particularly, we use si to denote the
type of player i ∈ N .

Traditionally, the payoff that player i receives while playing against another player j is

f ′
i j = ai j usi s j . (1)
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The coefficient ai j here guarantees that they can only interact if they are neighbors. The
accumulated payoff of player i is then

f ′
i =

n∑
j=1

ai j usi s j .

Alternatively, as shown in many real-world instances, the scale of the result of interaction
is usually related to the scale of the entities involved in the interaction. In other words,
interaction between large or powerful entities tends to have amore impactful result, regardless
of the result being positive or negative. Examples of such mechanics can be easily found in
the economic or political world. For instance, the interaction of two large corporations or
political entities will naturally produce larger economic or political consequences compared
to two smaller ones.

Therefore, in order to incorporate player prestige and network structure into games as
well as evolutionary dynamics, each vertex is given a parameter, namely centrality, that is a
measure of importance of vertices within a graph. Generally, centrality can be denoted as

c : N → R.

As the definition of ‘importance’ heavily depends on the actual application, many different
centrality measures have been introduced in the literature for different application purposes
[6,8,9,19,20]. In fact, degree is often considered the conceptually simplest centralitymeasure,
as we can define the degree centrality cd as in the following equation.

cdi = ni for i ∈ N .

Besides degree, in this paper we consider three other centrality measures, betweenness cen-
trality, closeness centrality and eigenvector centrality.

Betweenness centrality cb is defined based on the shortest paths in the graph.

cbi =
∑
j �=i �=k

σ jk(i)

σ jk
for i ∈ N ,

where σ jk is the total number of shortest paths from vertex j to vertex k and σ jk(i) is the
number of those paths that pass through i . Intuitively, betweenness centrality ranks vertices
by the number of shortest paths that pass through each of them.

Closeness centrality cc is defined based on the distance between vertices. The closeness
centrality is then

cci = 1∑
j �=i

di j
for i ∈ N ,

where di j is the distance between i and j and is equal to the edge number of the shortest path
between i and j . As it can be seen from its definition, closeness centrality ranks a vertex by
the distances of the given vertex to all other vertices.

Eigenvector centrality is defined as a vector ce that satisfies

Ace = λ1ce,

where λ1 is the largest eigenvalue of the adjacency matrix A. Generally, a vertex with high
eigenvector centrality means that it is connected to many other vertices who have high
eigenvector centralities.
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Based on centrality c, we propose the following adapted payoff

fi j = ai j ci c j usi s j . (2)

Intuitively, the payoffs of two interacting players not only depend on their types but also
depend on their combined prestige in the formof the product of their centralities.Accordingly,
for each centrality measure, the adapted payoff is denoted by f b, f c, f d , f e, each of which
corresponds to cb, cc, cd , ce, respectively.

As a result, the adapted accumulated payoff of any player i with centrality c is

fi = ci

n∑
j=1

ai j c j usi s j . (3)

In order to distinguish from the adapted payoff, hereafter the payoff defined in (1) is referred
to as the traditional payoff.

In this work, through computational simulation on complex networks, the impact of the
incorporation of centrality on the evolutionary dynamics is evaluated. The performance of
the aforementioned centrality measures is also compared.

3 Imitation Dynamics

In this paper we consider an imitation process, where in each round a focus player is selected
uniformly at random, and its imitation target is selected uniformly at random among its neigh-
bors. The focus player imitates its target with the probability calculated from the following
Fermi function

qi j = 1

1 + e−β( f j− fi )
,

where β ≥ 0 is the selection strength, and fi and f j are calculated using (3). Intuitively, a
player of lower accumulated payoff (or fitness in biological context) tends to imitate a player
of higher accumulated payoff.

Assuming that the underlying network remains unchanged, the state of the evolutionary
game can be described by the vector that consists of types of each player,

s = {si ∈ S : i ∈ N }.
The state space is then denoted by χ = Sn . Hereafter, the two types C and D are assigned
with scalars as S = {0, 1}, where 0 represents D and 1 represents C. Since it is a Moran
process and the transition is time independent, the transition probability between any two
states s, s′ ∈ χ is nonzero only if the Euclidean distance between the two vectors is less than
or equal to 1 as is stated by the following equation

Ps→s′ = 0 if d(s, s′) > 1,

where d(s, s′) is the Euclidean distance between s and s′, i.e.,

d(s, s′) =
√∑

i∈N
(si − s′

i )
2.
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Given a state s ∈ χ , let si be the state where player i switching its type while others remaining
the same, i.e.,

d(s, si ) = 1,

si + sii = 1.

Analogically, 0i is used to denote the state where the type of player i is 1 and all other players
have type 0. The transition probability from s to si can be calculated as

Ps→si = 1

nni

∑
j∈Ni

|si − s j |qi j = 1

nni

∑
j∈N

|si − s j |ai j qi j .

One can then derive the transition probability of a state s to itself as follows.

Ps→s = 1 −
∑
i∈N

Ps→si .

An important note is that, for the states of all defection (0) and all cooperation (1), one has

P1→1 = 1,

P0→0 = 1.

Notably, this process can be described as an absorbingMarkov chain [12]with 2n−2 transient
states and two absorbing states 0 and 1. Hence P is a 2n × 2n transition matrix for the said
absorbing Markov chain. Alternatively, one can write P in the form of

P =
(
Q R
0 Ir

)
,

where Q is a (2n − 2) × (2n − 2) matrix, R is a (2n − 2) × 2 matrix, 0 is a 2× (2n − 2) zero
matrix, and Ir is the 2×2 identity matrix. Specifically, Q contains the transition probabilities
among transient states, R contains the transition probabilities from transient states to the two
absorbing states 0 and 1.

Consequently, the probability of transitioning from the i-th transient state to the j-th
transient state in exactly k steps is the (i, j)-entry of Qk . The fundamental matrix M is
defined as the summation of Qk for all possible k,

M =
∞∑
k=0

Qk = (It − Q)−1,

where It is the (2n − 2) × (2n − 2) identity matrix. The (i, j)-entry of matrix M is the
expected number of times the absorbing Markov chain is in the j-th transient state, given
that the chain started in the i-th transient state.

As we mainly focus on the fixation probability of cooperation, without loss of generality,
we assume that the first n rows/columns of P correspond to the states 01, . . . , 0n , respectively,
and the 2n-th row/column corresponds to the absorbing state 1. One can also rewrite R as

R = (
R0 R1

)
,

where R0 and R1 are column vectors of length 2n − 2 that consists of transition probabilities
from transient states to the two absorbing states 0 and 1, respectively. The fixation probability
of cooperation can then be calculated via the following vector

B1 = MR1.
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The first n elements of B1 corresponds to the fixation probability of cooperation starting with
the states 01, . . . , 0n , respectively. In other words, if player i is chosen as the invader, the
fixation probability, or the probability of the absorbing Markov chain ending in the state of
all cooperation (i.e., 1) is then

pi = B1
i for i ∈ {1, · · · , n}.

As a result, the average fixation probability of cooperation is

p = 1

n

n∑
i=1

B1
i .

In the next section, the fixation probability is evaluated through intensive computational
simulations. We explore whether there is a correspondence between the centrality of the
invader ci and the fixation probability pi , and if yes how does such correspondence change
as different aspects of the evolutionary game change. Besides, as centrality measures are best
at identifying the most important vertices in a network, it is also worth investigating what is
the difference between the average fixation probability of invaders with maximum centrality
(denoted pm hereafter) and average fixation probability p.

4 Simulation Results

We vary six aspects of the evolutionary game in the simulation, including payoff type, game
type, network type, selection strength, network size and centrality scale. Firstly the per-
formances of traditional payoff and adapted payoff are compared briefly. Then we test on
two types of complex networks including scale-free networks and small-world networks.
Three different types of game configuration are considered, including Prisoner’s Dilemma,
coexistence game, and coordination game. Particularly, the utility matrix is set as

C D
C 1 0
D 2 0.8

for Prisoner’s Dilemma,

C D
C 1 1.6
D 2 1

for coexistence game, and

C D
C 2 1.2
D 1.6 2

for coordination game.
Additionally, the model is tested under six different selection strengths including 0.001,

0.01, 0.1, 1, 10 and 100, and in populations of size 100, 300, 500 and 700. More than 104

runs are executed per graph in order to obtain the fixation probability.
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Table 1 Average fixation probability p and fixation probability for the player of maximum centrality pm on
scale-free networks with n = 100 and β = 0.01

centrality Prisoner’s Dilemma coexistence game coordination game

betweenness p 0.0084 0.003 0.0127

pm 0.727 0.291 0.841

closeness p 0.0101 0.0099 0.01

pm 0.0632 0.0617 0.0622

degree p 0.0082 0.0019 0.0133

pm 0.0662 0.0177 0.0934

eigenvalue p 0.01 0.0101 0.01

pm 0.0661 0.0585 0.067

4.1 On Scale-Free Networks

Scale-free networks are generated according to the preferential attachment model proposed
by [7]. The generation process starts with a complete graph ofm0 vertices and then adds one
vertex that connects with m existing vertices until the number of vertices reaches the desired
value. The probability of the new vertex connecting with an “old” vertex is depending on the
number of neighbors the old vertex already has. Hence, it is called the preferential attachment,
as vertices with higher degrees have higher probability to be selected as the neighbors of new
vertex, which in turn will increase their degrees. This results in the phenomenon of “the rich
gets richer”, which eventually leads to the power law distribution of degree in the scale-free
network. In our simulation, we set m0 = 4, m = 2.

Figure 1 shows an example run on one graph that showcases the relation between fixation
probability and centrality of invader on scale-free networks under selection strengthβ = 0.01
and with population size of 100. We study the relation between centrality of the invader and
the fixation probability in different games with traditional payoff and adapted payoff. The
relation between centrality of the invader and the fixation probability shows similar patterns
across all three game types. Rather, the said relation varies as the payoff changes from the
traditional payoff (1) to the adapted payoff (2).

While using traditional payoff, for all four aforementioned centrality measures cb, cc,
cd , ce, the fixation probability and centrality of invader showed a positively linear relationship
approximately. On the other hand, using adapted payoff has yielded a different pattern. For
closeness centrality and eigenvector centrality, the relation between the fixation probability
and centrality of invader remains linear. However, for betweenness centrality and degree, the
fixation probability exhibits an exponential growth with regard to centrality in most cases.

Table 1 displays the average fixation probability p and the fixation probability of the
players of maximum centrality pm on scale-free networks for the adapted payoff with all
four centrality measures. All the data are averaged over test results on 100 different graphs.
For all four cases using adapted payoff, the fixation probability pm is significantly larger than
the average fixation probability p, especially for the cases with betweenness centrality and
degree.

Next we investigate the difference between p and pm under different selection strengths
and population sizes. The result is generally consistent in different settings of selection
strengths and population sizes, as it is shown in Fig. 2. Similar to the example in Fig. 1,
the fixation probability of the players with maximum centrality is significantly higher than
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Fig. 1 Fixation probability and centrality of invader on scale-free networks with n = 100 and β = 0.01 in an
example run. a, c, e are with traditional payoff; b, d, f are with adapted payoff; a, b are results with Prisoner’s
Dilemma; c, d are with coexistence game; e, f are with coordination game; Centrality is normalized between
0 and 1 for all centrality measures

average for all four centrality measures. Nonetheless, with the adapted payoff using between-
ness centrality and degree the gap between p and pm is even larger than thereof closeness
centrality and eigenvector centrality. Moreover, with the adapted payoff using betweenness
centrality and degree, the fixation probability pm maintains at a very high level throughout
all the cases that have been tested.

4.2 On Small-World Networks

Small-world networks used in this paper are generated using the method as described in
[34]. The generation process starts with a ring lattice with each vertex having 2K neighbors,
then for each vertex, it precedes to rewire each of its incident edges according to probability
α ∈ [0, 1]. Here α can also be deemed as the randomness of the generated small-world
network, and α = 1 indicates that a random network is generated. In this paper, K = 3 and
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Fig. 2 Fixation probability under different selection strengths and population sizes on scale-free networks.
a, c, e compare the average fixation probability and the fixation probability of maximum centrality player in
three game types under different selection strengths; b, d, f serve the same purpose but under different network
sizes, where the selection strength is fixed at 0.01. Note that the axes are in logarithmic scale

α = 0.4 is used for the simulation if it is unspecified. Besides, we also run simulations to
see if the rewiring probability α or the average degree 2K has a significant impact on the
fixation probability.

Figure 3 demonstrates the result of an example run on a small-world network. Using
traditional payoff, the relation between fixation probability and centrality of invader is vaguer
comparing to the case of scale-free network. However, in a few cases, an ascending trend of
fixation probability can still be observed when centrality of invader increases. Using adapted
payoff, we obtained similar results to the case of traditional payoff except for the one using
betweenness centrality. Using betweenness centrality, the fixation probability is significantly
higher if the invader has the maximum centrality than in any other case.

This trend is further validated by the follow-up tests on multiple graphs using adapted
payoff, as shown in Table 2.

For betweenness centrality, pm retains its superior performance over the average fixation
probability p. Besides, for eigenvector centrality, pm also holds a slight advantage over
p. Notably, for the adapted payoff using degree as centrality measure, in the test runs we
performed, the invader never succeeded in taking over the network, regardless of its centrality.



622 Dynamic Games and Applications (2021) 11:612–629

0 0.2 0.4 0.6 0.8 1
normalized centrality of invader

0

1

2

3

4

Pr
is

on
er

's
 D

ile
m

m
a

fix
at

io
n 

pr
ob

ab
ilit

y
×10-4

Traditional Payoff

(a)

0 0.2 0.4 0.6 0.8 1
normalized centrality of invader

0

0.2

0.4

0.6

fix
at

io
n 

pr
ob

ab
ilit

y

Adapted Payoff

(b)

0 0.2 0.4 0.6 0.8 1
normalized centrality of invader

0

5

10

C
oe

xi
st

en
ce

 G
am

e

fix
at

io
n 

pr
ob

ab
ilit

y

×10-3 (c)

0 0.2 0.4 0.6 0.8 1
normalized centrality of invader

0

0.05

0.1

0.15

0.2

fix
at

io
n 

pr
ob

ab
ilit

y

(d)

0 0.2 0.4 0.6 0.8 1
normalized centrality of invader

0

5

10

15

C
oo

rd
in

at
io

n 
G

am
e

fix
at

io
n 

pr
ob

ab
ilit

y

×10-3 (e)

0 0.2 0.4 0.6 0.8 1
normalized centrality of invader

0

0.5

1

fix
at

io
n 

pr
ob

ab
ilit

y

(f)

betweenness closeness degree eigenvector

Fig. 3 Fixation probability and centrality of invader on small-world networks with n = 100 and β = 0.01 in
an example run. Same setup is used as for scale-free networks. a, c, e are with traditional payoff; b, d, f are
with adapted payoff; a, b are results with Prisoner’s Dilemma; c, d are with coexistence game; e, f are with
coordination game; centrality is normalized between 0 and 1 for all centrality measures

Table 2 Average fixation probability and fixation probability for the player of maximum centrality on small-
world networks with n = 100 and β = 0.01

centrality Prisoner’s Dilemma coexistence game coordination game

betweenness p 0.0031 0.0085 0.0112

pm 0.307 0.448 0.985

closeness p 0.0101 0.0101 0.0103

pm 0.006 0.008 0.013

degree p 0 0 0

pm 0 0 0

eigenvalue p 0.0093 0.0097 0.0101

pm 0.013 0.013 0.013
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Fig. 4 Fixation probability under different selection strengths and population sizes on small-world networks
with n = 100. a, c, e compare the average fixation probability and the fixation probability of maximum
centrality player in three game types under different selection strengths; b, d, f serve the same purpose but
under different network sizes, where the selection strength is fixed at 0.01

This pattern shifts only when the selection strength increases to a relatively high level, which
is shown in Fig. 4. Other than that, the result is mostly consistent through the changesmade on
selection strength and network size according to Fig. 4. It is worth noting that the decreasing
trend of pm as the network size increases can be deemed reasonable and intuitive, in reference
to the case of well-mixed population.

Additionally, adjusting the rewiring probability α in the construction of small-world net-
works can give us a series of networks that ranging from regular graphs to random graphs.
Thus, it is also interesting to evaluate how the rewiring probability affects the simulation
results. Besides, we also provide simulation results for small-world networks with different
average degrees. Figure 5 shows the simulation results for different rewiring probabilities and
average degrees, where the small-world networks have 100 nodes and selection strength is
fixed at 0.01. Notably, both p and pm remain at a very low level for the three centrality mea-
sures other than betweenness centrality, except for the case of degree centrality with average
degree being 12. Besides, with rewiring probability changing from 0.2 to 0.4, or average
degree changing from 4 to 6, there is a significant increase for the fixation probability of pm
in the case of betweenness centrality in all three game types.
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Fig. 5 Fixation probability under different rewiring probabilities and average degrees on small-world networks
with n = 100. a, c, e compare the average fixation probability and the fixation probability of maximum
centrality player in three game types under different rewiring probabilities, where the average degree is 6; b,
d, f serve the same purpose but under different average degrees, and rewiring probability is fixed at 0.4

4.3 Discussion

To summarize, our simulation attempts to investigate the relationship between centrality of
invaders and fixation probability under imitation dynamics on complex networks from four
different angles, payoff function, centrality measure, game type, and graph type.

Using traditional payoff, the fixation probability of cooperation has a positively linear
relation to the centrality of the invader, in all cases for all four aforementioned centrality
measures and for both scale-free and small-world networks.

Using the proposed adapted payoff, the relation between the fixation probability of coop-
eration and the centrality showed different patterns. For scale-free networks, the fixation
probability of the players of max centrality pm is significantly higher than the average fixa-
tion probability p, for all four centrality measures. Among them, betweenness centrality and
degree have much higher level of fixation probability and the gap between pm and p is much
larger. Such relation holds consistently under different selection strengths and network sizes.

On small-world networks, pm only displays superiority over the average fixation proba-
bility p for betweenness centrality. For other three centrality measures, there is no significant
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Fig. 6 Centrality distribution in a scale-free network with 100 nodes. The red line in each graph indicates the
corresponding average centrality
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Fig. 7 Centrality distribution in a small-world networkwith 100 nodes, rewiring probability of 0.4, and average
degree of 6. The red line in each graph indicates the corresponding average centrality
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Fig. 8 Fixation probability under different scales of normalized centrality on scale-free and small-world
networks with n = 100. a, c, e compare the average fixation probability and the fixation probability of
maximum centrality player in three game types under different scales of normalized centrality on scale-free
networks. Analogously, b, d, f are the results for small-world networks

advantage in choosing players of max centrality as invaders in terms of fixation probability.
Such result is also proved to be generally consistent under different selection strengths and
network sizes, and under most part of the range of rewiring probabilities and average degrees
that has been tested.

The simulation results obtained on scale-free and small-world networks have raised some
questions on the patterns of the difference between p and pm . It is particularly interesting
that why pm is significantly larger than p in the cases of betweenness centrality on both
scale-free networks and small-world networks, and degree centrality on scale-free networks.
One common trait these three cases have is that the absolute values of centrality are larger
than the other cases, and there is a relatively larger disparity between the maximum centrality
and the average centrality, as shown in Figs. 6 and 7.

Therefore, it is worth to compare the previous resultswith the performance of the centrality
measures that are normalized to the same range. Moreover, as the scale of the normalized
centrality may have an impact on the fixation probability as well. Particularly, the centralities
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of nodes in a network are normalized to the range of [0,C], where the maximum centrality
is normalized to C . In this case, we call C the scale of the normalization, and consider three
different scales, 1, 10, 100. The results are presented in Fig. 8. Results show that an increase
in the scale of normalization mostly likely results in an increase of pm . For p, it is only seen
significant increase in the case of coexistence game on small-world networks as the scale
increases. Potentially, it means that only when there is a large difference between maximum
centrality and average centrality, pm would have a dominant advantage over p. Intuitively,
the selected centrality measure should create a sufficiently large disparity between the most
prestigious nodes and the average, to be able boost the fixation probability when they are the
invaders.

5 Conclusion

This paper studied the impact of player heterogeneity from network structure on evolution-
ary dynamics in complex networks. Player heterogeneity is described by centrality measures
which can be calculated using the adjacency matrix of the underlying network. An evolution-
ary game model is proposed which incorporates centrality. Essentially, the model highlights
the effect of player heterogeneity in evolutionary dynamics by proposing an adapted payoff
function that is not only related to the utility matrix but also related to the centrality of its
opponent and itself.

Via computational simulation, we showed that using traditional payoff, the fixation prob-
ability and the centrality of the invading player generally have a positive linear relationship
regardless of which centrality measure is used. However, when using the proposed adapted
payoff that incorporates centrality, results vary for distinct centrality measures and network
types. For closeness centrality and eigenvector centrality on scale-free networks, the results
are similar to the case using traditional payoff. For betweenness centrality and degree on scale-
free networks, the relation between fixation probability and centrality exhibits an exponential
pattern, where the fixation probability of players with maximum betweenness centrality is
significantly higher than the average fixation probability. For small-world networks, the rela-
tion between fixation probability and centrality is not as clear as in the case of scale-free
networks. However, the fixation probability of players with maximum betweenness central-
ity still holds a significant advantage over the average. In order to have a better understanding
of the simulation results, further test on the scale of normalization of the centrality has been
executed. Results show that the increase of the scale of the centrality generally causes the
fixation probability to increase, especially for the fixation probability of the players with
maximum centrality.

The characteristic of complex networks, adapted payoff and imitation dynamics can shed
some light on the emergence of cooperation in human society, or potentially be applied in
real world practices.

It provides a new perspective on how cooperation is formed in society that is composed
mostly of selfish individuals. As most social networks have scale-free or small-world prop-
erty, potentially the heterogeneity from network structure played an important role in the
evolution of cooperation in the said networks, in a way such that the players with high (e.g.,
betweenness) centrality started the trend of cooperation as a result of some external factors,
and the rest of the society just followed through.

Besides, the results might provide valuable directive instructions for the promotion of
cooperation in applications that align with our model. For instance, in certain complex net-
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works (economical or political), if the administrator needs to promote cooperation, then
according to our results one should always prioritize the players with higher centrality. More-
over, if the player with maximum betweenness centrality can be targeted in a scale-free or
small-world network, cooperation is heavily favored by selection assuming other factors are
omitted or insignificant. Knowing that, when one needs to promote cooperation in a social
network, it is generally muchmore beneficial to prioritize the players with maximum central-
ity than some random players, although the centrality measure should be carefully selected
depending on the application, and the disparity represented by the centrality measure should
be sufficiently large.
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