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Abstract
We study a differential game where two players separately control their own dynamics,
pay a running cost, and moreover pay an exit cost (quitting the game) when they leave a
fixed domain. In particular, each player has its own domain and the exit cost consists of
three different exit costs, depending whether either the first player only leaves its domain,
or the second player only leaves its domain, or they both simultaneously leave their own
domain. We prove that, under suitable hypotheses, the lower and upper values are continuous
and are, respectively, the unique viscosity solution of a suitable Dirichlet problem for a
Hamilton–Jacobi–Isaacs equation. The continuity of the values relies on the existence of
suitable non-anticipating strategies respecting the domain constraint. This problem is also
treated in this work.

Keywords Differential games · Exit costs · Dirichlet problems for Hamilton–Jacobi–Isaacs
equations · Viscosity solutions · Uniqueness · Non-anticipating strategies

Mathematics Subject Classification 49N70 · 49L25

1 Introduction

In some quite recent authors’ works (see, for example, Bagagiolo [1], Bagagiolo–Danieli
[3], Bagagiolo–Maggistro [4] and the references therein), some optimal control problems for
systems governed by thermostatic dynamics are studied in the framework of dynamic pro-
gramming methods and viscosity solutions of Hamilton–Jacobi–Bellman (HJB) equations.
By system governed by thermostatic dynamics, here wemean an equation as y′ = f (y, w, α)
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where α is the measurable control and w ∈ {−1, 1} is the output of a hysteretical thermostat
(delayed relay) subject to the evolution of some suitable components of the state variable y.
Hence, the switching evolution of the parameter w is not directly at disposal of the external
controller, but it follows some internal switching rules which are intrinsic to the system. In
[1,3], the value function is proven to be the unique viscosity solution of a suitably coupled
system of HJB equations, where the coupling is given by the boundary conditions in the
regions where the thermostat certainly assumes a constant value (cannot switch). This is
done by splitting the optimal control problem in some problems of exit time kind: in every
space-region where the thermostat is constant, the problem is equivalent to an exit time prob-
lem with unknown exit cost given by the value function itself evaluated in the other region of
constancy for w. Then, an ad hoc fixed point procedure is applied. Hence, a crucial starting
point for such a procedure is a good theory for exit time/exit cost optimal control problems,
in particular for what concerns the identification of the value function as the unique vis-
cosity solution of a Dirichlet problem for HJB equations with suitable boundary conditions.
Fortunately, such a good theory was quite already at disposal.

In [1,3,4] some motivations and applications for studying optimal control problems with
thermostatic dynamics are given. Similar motivations certainly suggest the study of differ-
ential games with thermostatic dynamics. Just think to a pursuit–evasion game between two
cars with automatic gears, where the switching variable(s)wmay represent the position of the
gears.We also point out that such thermostatic dynamics is a special case of a so-called hybrid
dynamics, and we refer to Gromov–Gromova [19], for a recent study of hybrid differential
games in the framework of necessary optimality conditions.

In order to apply to differential games some similar procedures as the ones applied to HJB
for thermostatic optimal control problems, we need a good theory for exit time differential
games.Unfortunately, for differential games, the situation is rather different than fromoptimal
control: differential games problem with exit time and exit costs are not so well studied in
the framework of viscosity solutions for Hamilton–Jacobi equations. Hence, before studying
differential games for systems with thermostatic dynamics we need first, at least, uniqueness
results for some suitable Dirichlet problems for Hamilton–Jacobi–Isaacs (HJI) equations, in
order to be able to identify the (upper and lower) values of the exit time differential game as
the unique viscosity solutions. Up to the knowledge of the authors, this paper may represent
the first attempt of studying an exit time differential games in the framework of viscosity
solutions theory for Isaacs equations with boundary conditions in the viscosity sense. The
possible applications to differential games with thermostatic dynamics will be the subject of
a future work. However, we would like to point out that the differential games with exit time
and exit costs are interesting by themselves, and not only for applications to thermostatic
dynamics. To this purpose, we are going to give an example at the end of the next section.

The studied problem is the following one. We are given the controlled system
⎧
⎨

⎩

X ′(t) = f
(
X(t), α(t)

)
, t > 0,

X(0) = x ∈ ΩX ,

⎧
⎨

⎩

Y ′(t) = g
(
Y (t), β(t)

)
, t > 0,

Y (0) = y ∈ ΩY ,

(1)

with α and β controls, X and Y state variables for the two players, respectively (i.e., for
example, the time-dependent function t �→ X(t) is the solution (trajectory) of the first
system, when the initial point x and the measurable control α are fixed). The closed sets
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ΩX and ΩY (closure of the open ones ΩX and ΩY ) are, respectively, the state space for X
and Y . Denoting by τX and τY the first exit time from Ω X and ΩY , respectively, we define
τ = min{τX , τY } and consider the following integral discounted cost

J (x, y, α, β) =
∫ τ

0
e−λt�(X(t), Y (t), α(t), β(t))dt + e−λτψ(X(τ ), Y (τ )),

where, in particular, the exit cost ψ : ∂(ΩX × ΩY ) → [0,+∞[ is a given function, which is
not required to be continuous but only separately continuous on ∂ΩX ×ΩY , ΩX × ∂ΩY and
∂ΩX × ∂ΩY . Player X wants to minimize the cost, whereas player Y wants to maximize.
The problem has then a pursuit–evasion structure.

The “weak” continuity hypothesis on the exit costψ is assumed in order to take account of
the possible application to the thermostatic case. Indeed, in that case, Ω X and ΩY represent
two regions where the thermostats (one per every player) assume constant values. Hence,
the first exit time represents the first switching time for the thermostat, and so exiting from
∂ΩX × ΩY means that only the thermostat of X switches, exiting from ΩX × ∂ΩY means
that only the thermostat of Y switches and finally exiting from ∂ΩX × ∂ΩY means that both
thermostats switch. In every one of such three cases, the new scenario of the game (which
continues to run after switching) may be completely different and not related to each other.

There are three main points which are going to be treated in this paper:

(a) continuity of the lower and upper values,
(b) derivation of suitable boundary conditions for the corresponding HJI equations,
(c) uniqueness results for those Dirichlet problems, in the sense of viscosity solutions.

We refer the reader to Bardi–Capuzzo Dolcetta [5] for a comprehensive account to vis-
cosity solutions theory and applications to optimal control problems and differential games
(for differential games see also Buckdahn–Cardaliaguet–Quincampoix [13])

Point (a): Sections 3, 4 and 7.
The lower and upper values are, respectively, defined as

V (x, y) = inf
γ

sup
β

J (x, y, γ [β], β),

V (x, y) = sup
ξ

inf
α

J (x, y, α, ξ [α]),

where γ and ξ are non-anticipating strategies in the sense of Elliot–Kalton [16]. They are
functions from the set of controls for one player to the set of controls of the other one, which
do not depend on the future behavior of the control, in the sense that, if two controls coincide
in the time interval [0, t], then their images also coincide in [0, t] (see Definition 1).

At this level, a subpoint a1): state-constraint non-anticipating strategies, must be treated.
After a necessary suitable compatibility assumptions on the exit cost (see (6) and Remark 4),
the main problem concerning the continuity of the values is the existence of suitable “state-
constraint non-anticipating strategies.” Simplifying (see Assumption 2 for more precise
details), this means that, for example, for every non-anticipating strategy γ for player X ,
there exists a non-anticipating strategy γ̃ for X such that, for every control β for Y , the
control γ̃ [β] makes the evolution of X remain inside Ω X as long as β makes the evolution
of Y remaining inside ΩY , and the cost paid by the couple of controls (γ̃ [β], β) is not so
different from the cost paid by the couple (γ [β], β). The difficult here is to construct such a
state-constraint non-anticipating strategy γ̃ . The problem of the construction of a new state-
constraint control that makes the state-constraint be respected and that pays a cost not so
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different from the cost paid by the old control, also occurs in the case of constrained optimal
control problems, where the trajectory is constrained to remain inside a fixed set for all the
times. In Soner [21], starting from any control, a possible construction of a state-constraint
control with such properties is given. The main assumption is the controllability on the
boundary of the set (which we also assume). However, in that paper, the construction of the
state-constraint control is done in an “anticipating” way, that is at time t the new control is
constructed taking also account of the behavior of the old control for suitable times after t . In
particular, starting from two controls that coincide in the time interval [0, t], it may happen
that the two corresponding state-constraint controls actually differ in [0, t] (see Remark 11).
However, in [21], there is no need of non-anticipating properties, because the argument is an
optimal control problem and not a differential game, and this is why the author was not con-
cerned with non-anticipating behaviors. In the case of non-anticipating strategies, a similar
construction as in [21] is forbidden. In the present paper, using the fact that the dynamics of
the two players are decoupled with respect to the space variables and to the controls (see (1)),
and also adding a decoupled feature in the controls for the cost (see (48)), we are able to suit-
ably adapt Soner’s construction in order to get the desired state-constraint non-anticipating
strategy. Such assumptions on decoupled dynamics, at the present moment, seem almost nec-
essary in order to get this kind of results. In Sect. 7 we actually assume a sort of more general
weak decoupling of the dynamics with respect to the controls (see (32)) for at most one of
the two players, and we still get the desired state-constraint non-anticipating strategy for the
player withweakly coupled dynamics. However, that weak decoupling seems to be not imme-
diately suitable for the results of Sects. 5 and 6. The same problem of constructing that kind
of non-anticipating strategy is also studied in Bettiol–Cardaliaguet–Quincampoix [7], where
the decoupled dynamics assumption is also used, and other hypotheses on the running cost
are made. Other studies on constrained trajectories and non-anticipating strategies as well as
on possible relations with optimal control problems and differential games can be found in
Koike [20],Bardi–Koike–Soravia [6],Cardaliaguet–Quincampoix–Saint Pierre [14],Bettiol–
Bressan–Vinter [8,9], Bressan–Facchi [12], Bettiol–Facchi [10], Bettiol–Frankowska–Vinter
[11], and Frankowska–Marchini–Mazzola [18].

Point (b): Section 5.
In that section, using the dynamic programming principle, we prove that V and V are vis-
cosity solutions of the corresponding HJI equation with suitable boundary conditions in the
viscosity sense. As expected, such boundary conditions are determined by the exit costs
on the boundary. However, in our formulation of the differential game, we are considering
different exist costs, depending on which of the two players is exiting (in a state-constraint
framework: which of the two players are violating the constraint). This is an important feature
of a state-constraint differential game, and hence of an exit time differential game. Which
player is in charge in order to respect the constraint? Which player must be penalized when
the constraint is violated? When the dynamics are not decoupled such questions have no evi-
dent answers, they may depend on the particular model under analysis. However, even if the
game has a zero-sum structure (min–max), the definition of the right players’ responsibility
with respect to the constraint is almost always not of that kind. In our case, the dynamics
are decoupled and we have different exit costs and these facts allow to rightly assign the
responsibility of exit from the constraint. The compatibility condition (6) helps to write a
coherent and useful boundary condition for HJI. It says that, on the common boundary, the
exit costs for the maximizing player are not larger than the cost of the minimizing one.
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Point (c): Section 6.
We show uniqueness of V and V as viscosity solution of the corresponding Dirichlet problem
for the upper and lower HJI, respectively. This is done by a rather standard double-variable
technique for proving a comparison result between sub- and supersolutions, where the bound-
ary conditions must be treated in a non-standard way.

2 The Problem

Let ΩX ⊆ R
n and ΩY ⊆ R

m be two open regular sets with n,m positive integers; let
A ⊂ R

n′
, B ⊂ R

m′
be two compact sets; let f : Rn × A → R

n and g : Rm × B → R
m

be two regular functions (i.e., bounded, continuous and Lipschitz continuous with respect
to the state variable (their first entry) uniformly with respect to the control (their second
entry)). We consider the system (1) where α and β are, respectively, the measurable controls
α : [0,+∞[→ A, β : [0,+∞[→ B (i.e., α ∈ A and β ∈ B).

The player X uses the measurable control α and governs the state variable X(t) ∈ R
n .

On the other hand, the player Y uses the measurable control β and governs the state variable
Y (t) ∈ R

m .
We are also given of a suitably regular running cost � : Rn × R

m × A × B → [0,+∞[
(i.e., bounded, continuous and Lipschitz continuous with respect to the state variables (its
first two entries) uniformly with respect to the controls (its second two entries)) and of three
suitably regular exit costs (i.e., bounded and continuous)

ψX : ∂ΩX × ΩY → [0,+∞[,
ψY : ΩX × ∂ΩY → [0,+∞[,
ψXY : ∂ΩX × ∂ΩY → [0,+∞[

which, respectively, represent the costs for the exit of X only (from Ω X ), for the exit of Y
only (from ΩY ) and for the simultaneous exit of X and Y . Finally, we have a discount factor
λ > 0.

Here we collect all such hypotheses, better specifying some of them and some notations.

ΩX ⊆ R
n, ΩY ⊆ R

m have C2 − boundary;
A ⊆ R

n′
, B ⊆ R

m′
are compact; λ > 0

A =
{
α : [0,+∞[→ A

∣
∣
∣α is measurable

}
;

B =
{
β : [0,+∞[→ B

∣
∣
∣β is measurable

}
;

f : Rn × A → R
n, (x, a) �→ f (x, a); g : Rm × B → R

m, (y, b) �→ g(y, b);
� : Rn × R

m × A × B → [0,+∞[, (x, y, a, b) �→ �(x, y, a, b);
ψX : ∂ΩX × ΩY → [0,+∞[, (x, y) �→ ψX (x, y);
ψY : ΩX × ∂ΩY → [0,+∞[, (x, y) �→ ψY (x, y);
ψXY : ∂ΩX × ∂ΩY → [0,+∞[, (x, y) �→ ψXY (x, y);
f , g, �, ψX , ψY , ψXY are continuous and ∃ M > 0 such that ∀(x, y, a, b)

‖ f (x, a)‖, ‖g(y, b)‖, |�(x, y, a, b)|, |ψX (x, y)|, |ψY (x, y)|, |ψXY (x, y)| ≤ M;
∃ L > 0 such that ∀(x1, a), (x2, a), (y1, b), (y2, b)
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‖ f (x1, a) − f (x2, a)‖ ≤ L‖x1 − x2‖, ‖g(y1, b) − g(y2, b)‖ ≤ L‖y1 − y2‖,
|�(x1, y1, a, b) − �(x2, y2, a, b)| ≤ L‖(x1, y1) − (x2, y2)‖; (2)

In (2), ‖ ·‖ stays, time by time, for the corresponding Euclidean norm. Moreover, some of the
hypothesesmay be relaxed, as it is quite common: the Lipschitz continuity of the running cost
� with respect to the space variable may be relaxed to a simple uniform continuity, and the
regularity of the boundaries ofΩX ,ΩY may be relaxed to a suitable piece-wiseC2 regularity
(see, for example, Bagagiolo–Bardi [2] for such relaxation in the context of a constrained
optimal control problem). Finally, in Sect. 7 we are going to relax a little bit the “decoupled”
feature of the dynamics f and g with respect to the controls.

When a control α is fixed, we define the corresponding trajectory of the first system in
(1) as X(·; x, α); similarly, we use the notation Y (·; y, β). We define the first exit time of X
from ΩX as

τX (x, α) = inf
{
t ≥ 0

∣
∣
∣X(t; x, α) /∈ ΩX

}
,

and, similarly, the first exit time of Y from ΩY as

τY (y, β) = inf
{
t ≥ 0

∣
∣
∣Y (t; y, β) /∈ ΩY

}
,

with the convention inf ∅ = +∞.
In the following formulas, we use the notation τ = min{(τX (x, α), τY (y, β)}.We consider

the cost functional J , defined on Ω X × ΩY × A × B,
J (x, y, α, β) =

∫ τ

0
e−λt�(X(t; x, α), Y (t; y, β), α(t), β(t))dt + e−λτψ(X(τ ; x, α), Y (τ ; y, β)),

where

e−λτψ(X(τ ; x, α), Y (τ ; y, β)) =
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

e−λτψX (X(τ ; x, α), Y (τ ; y, β)) if τ = τX (x, α) < τY (y, β) ≤ +∞,

e−λτψY (X(τ ; x, α), Y (τ ; y, β)) if τ = τY (y, β) < τX (x, α) ≤ +∞,

e−λτψXY (X(τ ; x, α), Y (τ ; y, β)) if τ = τX (x, α) = τY (y, β) < +∞
0 if τ = inf{+∞,+∞} = +∞.

The game consists in the fact that player X wants to minimize the cost J and the player
Y wants to maximize J .

Definition 1 i) Let k, k̃ be two nonnegative integers, andU be a set ofmeasurable functions
u : [0,+∞[→ R

k . Amap that sends any u ∈ U to a measurable function ũ : [0,+∞[→
R
k̃ is a “non-anticipating tuning” if, for every u1, u2 ∈ U and for every t ≥ 0, the

following holds

u1 = u2 a.e. in [0, t] �⇒ ũ1 = ũ2 a.e in [0, t].
ii) The “non-anticipating strategies for player X” (respectively, for player Y ) are the ele-

ments of the set

Γ =
{
γ : B → A, β �→ γ [β]

∣
∣
∣ ∀t ≥ 0,

β1 = β2 a. e. in [0, t] �⇒ γ [β1] = γ [β2] a. e. in [0, t]
}
;



Dynamic Games and Applications (2020) 10:297–327 303

(respectively,

χ =
{
ξ : A → B, α �→ ξ [α]

∣
∣
∣ ∀t ≥ 0,

α1 = α2 a. e. in [0, t] �⇒ ξ [α1] = ξ [α2] a. e. in [0, t]
}
)

Note that a non-anticipating strategy for player X is a non-anticipating tuning that sends
measurable controls for player Y to measurable controls for player X . The concept of non-
anticipating tuningwill be used in the next sections. The concept of non-anticipating strategies
is the one introduced by Elliot–Kalton in [16], and it is used for defining the lower and the
upper value functions of the differential game, respectively, as

V (x, y) = inf
γ∈Γ

sup
β∈B

J (x, y, γ [β], β),

V (x, y) = sup
ξ∈χ

inf
α∈A J (x, y, α, ξ [α]).

We say that the game has a value if V (x, y) = V (x, y) for all (x, y) ∈ ΩX × ΩY .
One of the possible interesting motivations/applications of differential games with exit

cost can be seen in the so-called surge tank problem, as described in Vinter–Clark [22], and
in Falugi–Kountouriotis–Vinter [17]. Surge tanks are flow control devices, whose purpose is
to prevent flow rate fluctuations for fluids passing from one process unit to another one. In
[17,22] the authors, using a method given by Dupuis–McEneaney [15], regard the problem
as a differential game, involving dynamics with two players X and Y , where the objective of
the X player is to keep the state within a specified safe region, despite the best efforts of the
Y player to drive the state out of this region. The dynamic equations of an ideal surge tank
are

⎧
⎪⎪⎨

⎪⎪⎩

x1′ = x2
x2′ = −α + β

x1(0) = x10
x2(0) = x20

(3)

where x1 and x2 can be identified with the volume and rate of change of volume of fluid in
the tank, respectively, α is the control which regulates the rate of change of outflow and β is
the disturbance. A possible upper game is given by

supα∈A infβ∈B
(∫ τ

0 |β(t)|2 dt + kτ
)

(4)

where τ denotes the first exit time from a suitable open set. The X player wants to maximize
the cost (to maintain the state in the safe region), whereas Y wants to minimize. Note that here
the dynamics are not decoupled; however, if the disturbance enters the system in a “bounded
manner,” then this case can be cast in the situation assumed in Sect. 7. In [17,22] the authors
are interested in bang-bang controls and in the decomposition of the problem into a collection
of one player optimal control problems.

3 Controllability

In the next section, we are going to give some regularity results and properties of the value
functions. Of course, suitable, but general, hypotheses are needed.

First of all, we assume a controllability hypothesis on the boundaries.
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Assumption 1 For every x ∈ ∂ΩX there exist two constant controls a1, a2 ∈ A such that
f (x, a1) is strictly entering in ΩX and f (x, a2) is strictly entering in R

n\ΩX . That is,
denoted by ηX the outer unit normal to the C2-boundary set ΩX , then f (x, a1) · ηX (x) < 0
and f (x, a2) · ηX (x) > 0. Similarly, for every y ∈ ∂ΩY there exist two constant controls
b1, b2 ∈ B such that g(y, b1) is strictly entering in ΩY and g(y, b2) is strictly entering in
R
m\ΩY .

Such a controllability hypothesis is essential for having the continuity of the value func-
tions. In particular, it is linked to the existence of suitable constrained non-anticipating
strategy. Indeed, the continuity of the value functions for the exit time case presents sim-
ilar features as the case of state-constraint. When we evaluate, for instance, the difference
V (x1, y1)− V (x2, y2) we need, for instance, the possibility of driving the state X(·; ·, x1) in
such a way that it remains inside ΩX until the state X(·; ·, x2) stays inside ΩX . This must
be done in a way such that the variation of the cost is controlled, but the main difficulty here
is the fact that it must be done in a non-anticipating way.

Definition 2 A modulus of continuity is an increasing and continuous function ω :
[0,+∞[→ [0,+∞[ such that ω(0) = 0. Given a function u : R

n → R
m , a modulus

of continuity for u is a modulus of continuity ω such that

‖u(x) − u(y)‖ ≤ ω(‖x − y‖) ∀ x, y.

It is well known that the existence of a modulus of continuity for u is equivalent to the fact
that u is uniformly continuous.

Assumption 2 For every T > 0, for every K ⊆ Ω X × ΩY compact, there exists a modulus
of continuity OT ,K , and:

I) for every (x1, y1), (x2, y2) ∈ K , there exists a non-anticipating tuning β �→ β̃ from B
to itself (i.e., satisfying next point i), that is Definition 1), and there exists a way to associate
γ̃ ∈ Γ to any γ ∈ Γ , such that, for every β, β1, β2 ∈ B, γ ∈ Γ , t ≥ 0, we have

i) β1 = β2 a.e. in [0, t] �⇒ β̃1 = β̃2 a.e. in [0, t],
i i) τX (x1, γ̃ [β]) ≥ τX (x2, γ [β]),
i i i) τY (y2, β̃) ≥ τY (y1, β),

iv) ‖X(τ̃ ; x1, γ̃ [β]) − X(τ̃ ; x2, γ [β])‖≤OT ,K (‖x1 − x2‖),
v) ‖Y (τ̃ ; y1, β) − Y (τ̃ ; y2, β̃)‖≤OT ,K (‖y1 − y2‖),
vi)

∣
∣
∣Jτ̃ (x1, y1, γ̃ [β̃], β) − Jτ̃ (x2, y2, γ [β̃], β̃)

∣
∣
∣

≤OT ,K (‖(x1, y1) − (x2, y2)‖),
where τ̃ = min {τX (x2, γ [β̃]), τY (y1, β), T }, and Jτ̃ is the integral of the discounted running
cost up to the time τ̃ .

II) A similar condition holds reversing the roles of X and Y , γ ∈ Γ and ξ ∈ χ , α ∈ A
and β ∈ B.

Assumption 2 is required in order to guarantee the existence of suitable non-anticipating
strategies and then prove the continuity of the values. We only need trajectories estimates on
compact sets of time because the cost is discounted (the presence of the term e−λt ), see the
proof of Proposition 3. Under our hypotheses, in particular the decoupling of the dynamics,
and the controllability on the boundaries, Assumption 2 holds, as it is proven in Bettiol–
Cardaliaguet–Quincampoix [7]. More precisely, i), iv) and v) are treated in Proposition 3.1
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and of vi) in Proposition 2.3 of [7]. However, note that in [7] such estimates are given for
all times (and not only for compact sets) and indeed they are in a exponential fashion, which
of course implies our uniform estimates on compact sets. On the other hand, conditions
i i) and i i i) just say that the constructed trajectories do not exit before the given ones. In
Sect. 7 we are going to give a different proof of the validity of Assumption 2, modifying, in a
non-anticipating manner, the proof of Soner [21] for the construction of constrained controls.

4 The Lower and the Upper Value Functions

By standard calculations (see, for example, Bardi–Capuzzo Dolcetta [5]), V and V satisfy
the usual dynamic programming principle (DPP). For example, for every t ≥ 0

V (x, y) =
inf
γ∈Γ

sup
β∈B

(∫ τ

0
e−λs�(X(s; x, γ [β]), Y (s; y, β), γ [β](s), β(s))ds

+e−λτV (X(τ ; x, γ [β]), Y (τ ; y, β))
)

(5)

where τ = min{t, τX (x, γ [β]), τY (y, β)}.
We now assume that (see Remark 4 for comments on it)

ψY (x, y) ≤ ψXY (x, y) ≤ ψX (x, y) ∀(x, y) ∈ ∂ΩX × ∂ΩY . (6)

Proposition 3 Given Assumption 1, Assumption 2, hypothesis (6) and hypotheses (2), the
value functions are continuous in Ω X × ΩY .

Proof We only prove the continuity of the lower value V . In particular, we are going to prove
its uniform continuity in every compact set. We proceed by some steps.

(1) Let us fix ε > 0 and take T > 0 such that, for every trajectories and controls enter-
ing the costs,

∫ +∞
T e−λt�dt + e−λTψ ≤ ε, where ψ is any one of the exit costs

ψX , ψY , ψXY . This is possible, independently from the trajectories and controls inside
the costs, because of the boundedness hypotheses (2), and by the fact that the cost is
discounted, i. e. λ > 0.

(2) Let K ⊆ ΩX × ΩY be a compact set (where we are going to prove the uniform
continuity). Take another compact set K ′, with K ⊆ K ′ ⊆ ΩX × ΩY , such that all the
trajectories starting from points of K belong to K ′, for times not greater than T before
they possibly exit fromΩ X andΩY , respectively. That is, for example, X(t; x, α) ∈ K ′
for all t ∈ [0,min{τX (x, α), T }]. Such a compact set exists by the hypotheses (2).

(3) By the compactness of K ′ and by the continuity regularities (2), there exist ζ > 0 and
a modulus of continuity ω such that, for every (x, y) ∈ (∂ΩX × ∂ΩY ) ∩ K ′, taking the
constant controls a2 ∈ A and b2 ∈ B as in the Assumption 1 with respect to x ∈ ∂ΩX

and y ∈ ∂ΩY , respectively, we have the following:

- for every x ′ ∈ ΩX with ‖x − x ′‖ ≤ ζ , the trajectory starting from x ′ with constant
control a2 exits from ΩX in a time interval whose length is less than ω(‖x − x ′‖); for every
y′ ∈ ΩY with ‖y − y′‖ ≤ ζ , the trajectory starting from y′ with constant control b2 exits
from ΩY in a time interval whose length is less than ω(‖y − y′‖).-

This in particular comes, besides the controllability Assumption 1 and the Lipschitz reg-
ularity of the dynamics, from the C2 regularity of the boundaries, which implies that, for
any piece of boundary in a compact set, the signed distance function from the boundary, d ,
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is C2 in a neighborhood of it. Hence, one can argue estimating the signed of the composed
function t �→ d(z(t)) where z is the considered trajectory (see Bardi–Capuzzo Dolcetta [5]
p. 272, for a similar treatment of that function).

(4) LetOT ,K as in Assumption 2 with respect to T and K fixed above, and ω be a modulus
of continuity for ψX , ψY , ψXY in their domains inside K ′. We define, the following
modulus of continuity

ω̃(r) = max{OT ,K (r), (M + 1)ω(OT ,K (r)), ω((M + 1)ω(OT ,K (r)))}
where M is the bound of f , g, � and of the exits costs as in (2), and ω is as in point 3).

(5) Our goal is to show that, there exists δ > 0 such that, for all (x1, y1), (x2, y2) ∈ K with
‖(x1, y1) − (x2, y2)‖ ≤ δ, we have |V (x1, y1) − V (x2, y2)| ≤ 4ε.

(6) In the sequel, we can be concerned with the behavior of the trajectories in the time
interval [0, T ] only. In particular, all the exit time we are going to consider will be
assumed to be less than T . Indeed, by the previous point 1), we are going to perform the
comparison analysis of the costs up to the time T , because, even if the game runs after T ,
then all the costs (the integrated one as well as exit ones) that will be accumulated after
that time, will differ for a quantity not greater than 2ε. Also note that, when the game
run up to the time T , the estimate of the difference of the accumulated running costs
(the integrated ones only) is standard as in the infinite-horizon case (no exit time), see,
for example, Bardi–Capuzzo Dolcetta [5], Chapter VIII Proposition 1.8 and Chapter III
Proposition 2.1. Hence, in the following points, and in particular, in the next formulas
(7) and (9), we will assume, respectively,

0 ≤ τY (y1, β) ≤ T , 0 ≤ τX (x2, γ [β]) ≤ T

(7) Now, take δ > 0 such that ω̃(δ) ≤ ζ and take two arbitrary points (x1, y1), (x2, y2) ∈ K
such that ‖(x1, y1) − (x2, y2)‖ ≤ δ, where ζ is given in point 3). In the sequel, γ̃ , β̃ are
the ones defined in Assumption 2.

(8) Now, we exhibit a suitable non-anticipating tuning (see Definition 1) β �→ β. For every
β ∈ B let us define β ∈ B for t ∈ [0, T ] as

β(t) =
{

β̃(t) if 0 ≤ t ≤ τY (y1, β),

b2 otherwise,
(7)

where b2 ∈ B is as in Assumption 1 with respect to Y (τY (y1, β); y1, β) ∈ ∂ΩY . Hence,
by points 3)–7) and Assumption 2 (points iii) and v)), if we use the control β starting
from y2, then the trajectory exits from ΩY with exit time τY (y2, β) satisfying

0 ≤ τY (y2, β) − τY (y1, β) ≤ ω̃(δ). (8)

In particular, τY (y2, β) is not less than τY (y1, β) because, up to the time τX (y1, β),
starting from y2 and using the control β̃, the trajectory does not exit from ΩY (point iii) of
Assumption 2). Moreover, by point v) of Assumption 2, Y (τY (y1, β); y2, β̃) is sufficiently
close to the boundary (because Y (τY (y1, β); y1, β) ∈ ∂ΩY ), and hence, by point 3), the
trajectory “rapidly” exits from ΩY using the constant control b2, that is (8).

Also note that, being the dynamics bounded by M , it is

‖Y (τY (y2, β); y2, β) − Y (τY (y1, β); y1, β)‖ ≤ ω̃(δ).

Finally, such a construction of β is a non-anticipating tuning. Indeed, if β1 = β2 a. e. in
the time interval [0, T ], then the controls β̃1 and β̃2 are also equal a.e. in [0, T ] by point i)
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of Assumption 2. Moreover, the trajectories Y (·; y1, β1) and Y (·; y1, β2) are also equal in
the time interval [0, t]. Then in the interval [0, t], they possibly generate the same exit time
τY (y1, β1) = τY (y1, β2), and hence, we must have β1 = β2 a.e. in [0, t].
(9) Similarly, as in point 8), starting from a non-anticipating strategy for X γ we define a

new non-anticipating strategy for X , γ :

γ [β](t) =
{

γ̃ [β](t) if 0 ≤ t ≤ τX (x2, γ [β]),
a2 otherwise,

(9)

where a2 ∈ A is as in Assumption 1 with respect to X(τX (x2, γ [β]); x2, γ [β]) ∈ ∂ΩX .
In this case, by Assumption 2 points ii) and iv), and by the previous points of this proof,
we have, as in point 8),

0 ≤ τX (x1, γ [β]) − τX (x2, γ [β]) ≤ ω̃(δ)

‖X(τX (x1, γ [β]); x1, γ [β]) − X(τX (x2, γ [β]); x2, γ [β])‖ ≤ ω̃(δ).
(10)

Note that, by our hypotheses, in particular because γ̃ is a non-anticipating strategy (the
one given by Assumption 2), we have that γ is also a non-anticipating strategy. Moreover,
for every γ ∈ Γ , we also consider the following non-anticipating strategy γ ∈ Γ , defined
as γ [β] = γ [β], for all β ∈ B.

(10) For suitable γ2 ∈ Γ and β1 ∈ B, by definition of infimum and supremum, we have

V (x1, y1) − V (x2, y2) ≤ inf
γ∈Γ

sup
β∈B

J (x1, y1, γ [β], β) − sup
β∈B

J (x2, y2, γ2[β], β) + ε

≤ sup
β∈B

J (x1, y1, γ 2[β], β) − sup
β∈B

J (x2, y2, γ2[β], β) + ε

≤ J (x1, y1, γ 2[β1], β1) − sup
β∈B

J (x2, y2, γ2[β], β) + 2ε

≤ J (x1, y1, γ 2[β1], β1) − J (x2, y2, γ2[β1], β1) + 2ε

= J (x1, y1, γ 2[β1], β1) − J (x2, y2, γ2[β1], β1) + 2ε.

Now, we define τ 12 = min(τX (x2, γ2[β1]), τY (y1, β1)). Hence, we have

V (x1, y1) − V (x2, y2)

≤ Jτ 12(x1, y1, γ 2[β1], β1) + Ψ1 − Jτ 12(x2, y2, γ2[β1], β1) − Ψ2 + 3ε,

where Jτ 12 stays for the integral cost up to the time τ 12, and Ψ1 and Ψ2 stay to indicate
two possible sums of remaining integral cost and discounted exit costs paid by the
trajectories (their explicit formulations will be given in the following points).

By our definition, note that, up to the time τ 12, it is γ 2[β1] = γ̃2[β̃1], γ2[β1] = γ2[β̃1],
and β1 = β̃1. Hence, by Assumption 2 point vi), and by the previous points of this proof, we
have

V (x1, y1) − V (x2, y2) ≤ Ψ1 − Ψ2 + ω̃(δ) + 3ε.

(11) We now analyze Ψ1 − Ψ2. We have some subcases.
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(11a) τ 12 = τX (x2, γ2[β1]) ≤ τX (x1, γ 2[β1]) < τY (y1, β1). Then

Ψ1 =
∫ τX (x1,γ 2[β1])

τ 12

e−λs�ds

+e−λτX (x1,γ 2[β1])ψX (X(τX (x1, γ 2[β1]); x1, γ 2[β1]), Y (τX (x1, γ 2[β1]); y1, β1)),

Ψ2 = e−λτ 12ψX (X(τ 12; x2, γ2[β1]), Y (τ 12; y2, β1))

From this, by the previous points, the uniform continuity of ψX in ΩX ∩ K , and the
definition of ω̃, we get

|Ψ1 − Ψ2| ≤ 2ω̃(δ),

(11b) τ 12 = τX (x2, γ2[β1]) ≤ τY (y1, β1) ≤ τX (x1, γ 2[β1]). Hence, Ψ1 is the integral
of the cost on the interval [τ 12, τY (y1, β1)] (whose length is not greater than ω̃(δ),
(10)), plus the discounted exit cost Ψ̃1, the latter being (respectively, for τY (y1, β1) <

τX (x1, γ 2[β1]) and for τY (y1, β1) = τX (x1, γ 2[β1])):

Ψ̃1 = e−λτY (y1,β1)ψY (X(τY (y1, β1); x1, γ 2[β1]), Y (τY (y1, β1); y1, β1)),

Ψ̃1 = e−λτY (y1,β1)ψXY (X(τY (x1, γ 2[β1]); x1, γ 2[β1]), Y (τY (y1, β1); y1, β1))

Similarly, Ψ2, which has no integral part, is (respectively, for τ 12 = τX (x2, γ2[β1]) <

τY (y2, β1) and for τ 12 = τX (x2, γ2[β1]) = τY (y2, β1))

Ψ2 = e−λτ 12ψX (X(τ 12; x2, γ2[β1]), Y (τ 12; y2, β1)

Ψ2 = e−λτ 12ψXY (X(τ 12; x2, γ2[β1]), Y (τ 12; y2, β1).

Using (6), all the estimates of the previous points, and the uniform continuity in the
compact sets of the exit costs, together with the definition of ω̃, we have

Ψ̃1 ≤ e−λτ 12ψXY (X(τX (x2, γ2[β1]); x2, γ2[β1]), Y (τY (y1, β1); y1, β1)) + ω̃(δ),

Ψ2 ≥ e−λτ 12ψXY (X(τX (x2, γ2[β1]); x2, γ2[β1]), Y (τY (y1, β1); y1, β1)) − ω̃(δ),

from which

|Ψ1 − Ψ2| ≤ 3ω̃(δ).

(11c) The cases τ 12 = τY (y1, β1) ≤ τY (y2, β1) < τX (x2, γ2[β1]) and τ 12 = τY (y1, β1) ≤
τX (x2, γ2[β1]) ≤ τY (y2, β1) are similar to points 11a) and 11b), respectively.

(12) Putting together the points 10) and 11), and reversing the role of (x1, y1) and (x2, y2),
we then get point 5) taking δ sufficiently small. The proof is concluded. ��

Remark 4 Note that,whenever hypothesis (6) is not satisfied, then the continuity is not guaran-
teed. For example, ifψX < ψY on ∂ΩX ×∂ΩY , then, using also the controllability hypothesis
on the boundaries, we can approximate points on ∂ΩX × ∂ΩY by points in ∂ΩX × ΩY and
by points in ΩX × ∂ΩY where, respectively, V ≤ ψX and V ≥ ψY . And this fact makes
immediately fail the continuity of V on points of ∂ΩX × ∂ΩY .
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5 The Lower and the Upper Hamilton–Jacobi–Isaacs Equations and
Boundary Conditions

For every (x, y) ∈ ΩX × ΩY and for every (p, q) ∈ R
n × R

m , we introduce the Upper
Hamiltonian (“·” stays for the scalar product)

UH(x, y, p, q) = min
b∈B max

a∈A
{− f (x, a) · p − g(y, b) · q − �(x, y, a, b)}

and the lower Hamiltonian

LH(x, y, p, q) = max
a∈A

min
b∈B {− f (x, a) · p − g(y, b) · q − �(x, y, a, b)} .

In the sequel, for a function u, ux (x, y) and uy(x, y) will denote the gradient with respect
to x and with respect to y, respectively.

Theorem 5 GivenAssumption 1, regularities (2) and condition (6), the lower value V satisfies
the following (upper) problem in the viscosity sense (here expressed for a generic function
u : ΩX × ΩY → R)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λu(x, y) +UH(x, y, ux (x, y), uy(x, y)) = 0 inΩX × ΩY ,

u = ψX on∂ΩX × ΩY ,

u = ψY onΩX × ∂ΩY ,

u = ψY oru = ψX on∂ΩX × ∂ΩY .

(11)

By solutions in the viscosity sense, we mean the following: let ϕ ∈ C1(ΩX × ΩY ) and
(x0, y0) ∈ ΩX × ΩY , then the following facts i) and ii) hold true:

i) if (x0, y0) is a point of local maximum for u − ϕ, with respect to ΩX × ΩY , then we
have the following four implications (one per every line)

(x0, y0) ∈ ΩX × ΩY ,

(x0, y0) ∈ ∂ΩX × ΩY , u(x0, y0) > ψX (x0, y0),

(x0, y0) ∈ ΩX × ∂ΩY , u(x0, y0) > ψY (x0, y0),

(x0, y0) ∈ ∂ΩX × ∂ΩY , ψX (x0, y0) �= u(x0, y0) > ψY (x0, y0)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

�⇒

λu(x0, y0) +UH(x0, y0, ϕx (x0, y0), ϕy(x0, y0)) ≤ 0;

(12)

ii) if (x0, y0) is a point of local minimum for u − ϕ, with respect to Ω X × ΩY , then we
have the following four implications (one per every line)

(x0, y0) ∈ ΩX × ΩY ,

(x0, y0) ∈ ∂ΩX × ΩY , u(x0, y0) < ψX (x0, y0),

(x0, y0) ∈ ΩX × ∂ΩY , u(x0, y0) < ψY (x0, y0),

(x0, y0) ∈ ∂ΩX × ∂ΩY , ψY (x0, y0) �= u(x0, y0) < ψX (x0, y0)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

�⇒

λu(x0, y0) +UH(x0, y0, ϕx (x0, y0), ϕy(x0, y0)) ≥ 0;

(13)

If u satisfies i), it is said to be a subsolution; if it satisfies ii), it is said to be a supersolution.
The equation in the first line of (11) is called the (upper) Hamilton–Jacobi–Isaacs equation



310 Dynamic Games and Applications (2020) 10:297–327

(or simply Isaacs). The implications given by the second, third and fourth lines of (12)–(13)
represent the boundary conditions in the viscosity sense.

Note that, in the formulation of (11), the intermediate exit cost ψXY does not play any
role. We refer the reader to Remark 8 for more details on this fact.

Remark 6 Under the same hypotheses of Theorem 5, and with the same definitions for solu-
tions and the boundary conditions, the upper value function V is a solution in the viscosity
sense of

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λu(x, y) + LH(x, y, ux (x, y), uy(x, y)) = 0 in ΩX × ΩY ,

u = ψX on ∂ΩX × ΩY ,

u = ψY on ΩX × ∂ΩY ,

u = ψY or u = ψX on ∂ΩX × ∂ΩY .

(14)

Proof of Theorem 5 Let us note that, by our hypothesis of controllability on the boundaries,
we have the following inequalities

V ≤ ψX on ∂ΩX × ΩY , V ≥ ψY on ΩX × ∂ΩY .

This is because both players, from their own boundary, can immediately exit, stopping the
game and paying the corresponding exit cost.
Hence, for the subsolution case, we only need to prove the validity of the Isaacs equation in
ΩX ×ΩY , the boundary condition onΩX ×∂ΩY and the boundary condition on ∂ΩX ×∂ΩY

for only the case ψY < V < ψX . In the same way, for the supersolution case, we only need
to prove the Isaacs equation in ΩX × ΩY , the boundary condition on ∂ΩX × ΩY and the
boundary condition on ∂ΩX × ∂ΩY for only the case ψX > V > ψY . Since the validity of
the Isaacs equation in ΩX × ΩY is standard (see for instance Bardi–Capuzzo Dolcetta [5] p.
438), we only concentrate on the boundary conditions.

SupersolutionLet (x0, y0) ∈ ∂ΩX ×ΩY be ofminimum for V −ϕ, and by absurd hypothesis,
let us suppose that

V (x0, y0) < ψX (x0.y0),

λV (x0, y0) +UH(x0, y0, ϕx (x0, y0), ϕy(x0, y0)) < 0.
(15)

Of course, it is not restrictive to suppose that V (x0, y0) = ϕ(x0, y0) and that λ = 1. Also
using this assumption, we have that, for some ε > 0, and for every (x, y) ∈ B((x0, y0), ε) ∩
ΩX × ΩY (here B((x, y), r) stays for a ball of Rn × R

m with center in (x, y) and radius
r > 0)

ϕ(x, y) +UH(x, y, ϕx (x, y), ϕy(x, y)) ≤ −ε,

V (x, y) ≥ ϕ(x, y).
(16)

Moreover, we can also suppose that y ∈ ΩY for all (x, y) ∈ B((x0, y0), ε). Now, let t > 0
be such that, for every γ ∈ Γ and β ∈ B, (X(s; x, γ [β]), Y (s; y, β)) ∈ B((x0, y0), ε) for
all (x, y) ∈ B((x0, y0), ε/2), for all 0 ≤ s ≤ t . Let us define δ = ε(1− e−t )/2 > 0 and take
γ ∈ Γ such that, by the dynamic programming principle (5), for any β ∈ B (note that it is
τY (y0, β) ≥ t)



Dynamic Games and Applications (2020) 10:297–327 311

V (x0, y0) >

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−δ +
∫ t

0
e−s�(X(s; x0, γ [β]), Y (s; y0, β), γ [β](s), β(s))ds

+e−t V (X(t; x0, γ [β]), Y (t; y0, β))

if t < τX (x0, γ [β]),

−δ +
∫ τX (x0,γ [β])

0
e−s�(X(s; x0, γ [β]), Y (s; y0, β), γ [β](s), β(s))ds

+e−τX (x0,γ [β])ψX (X(τX (x0, γ [β]); x0, γ [β]), Y (τX (x0, γ [β]); y0, β))

if t ≥ τX (x0, γ [β]).
In particular, we can take β ≡ b, with b ∈ B arbitrary. Note that we can certainly suppose
that 0 < t < τX (x0, γ [β]) for all β. Indeed, if not, for three sequences tn → 0+, γn ∈ Γ ,
and βn ∈ B we would have [0, tn] � τX (x0, γn[βn]) → 0+ and (dropping the notations of
the trajectories in the entries)

−δn +
∫ τX

0
e−s�ds + e−τX ψX < V (x0, y0) ≤

∫ τX

0
e−s�ds + e−τX ψX ,

where δn = ε(1 − e−tn )/2. But then, in the limit, this implies V (x0, y0) = ψX (x0, y0),
against our absurd hypothesis (18). Hence, we get, for every b ∈ B, (here, X(·) and Y (·) stay
for the trajectories starting from x0 and y0 with controls γ [b] and b, respectively)
0 = V (x0, y0) − ϕ(x0, y0)

> −δ +
∫ t

0
e−s�(X(s), Y (s), γ [b](s), b)ds + e−t V (X(t), Y (t)) − ϕ(x0, y0)

≥ −δ +
∫ t

0
e−s�(X(s), Y (s), γ [b](s), b)ds + e−tϕ(X(t), Y (t)) − ϕ(x0, y0)

= −δ +
∫ t

0
e−s

(
− ϕ(X(s), Y (s)) +

(ϕx (X(s), Y (S)), ϕy(X(s), Y (s))) · ( f (X(s), γ [b](s)), g(Y (s), b)) +
�(X(s), Y (s), γ [b](s), b)

)
ds

≥ −δ

−
∫ t

0
e−s max

a∈A

(
ϕ − (ϕx , ϕy) · ( f (X , Y , a, b), g(X , Y , a, b)) − �(X , Y , a, b)

)
ds.

In the previous formula, we used (16), the fact that γ [b](s) is almost everywhere an element
of A, and the time derivative of the function s �→ e−sϕ(X(s), Y (s)). By the arbitrariness of
b ∈ B, and by the definitions of the Hamiltonian UH and of δ, we then get the following
contradiction

0 > −δ −
∫ t

0
e−s

(
ϕ +UH

(
X(s), Y (s), ϕx (X(s), Y (s)), ϕy(X(s), Y (s))

))
ds

≥ −δ +
∫ t

0
e−sεds > 0.

Let us now consider the case (x0, y0) ∈ ∂ΩX ×∂ΩY . We only have the caseψY (x0, y0) <

V (x0, y0) < ψX (x0, y0), andwe can again restrict ourselves to the case 0 < t < min{τY , τX },
and then, arguing as before, we get the conclusion.
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SubsolutionWe only treat the case (x0, y0) ∈ ΩX × ∂ΩY of maximum for V − ϕ, the other
cases being similar. Let us take ε, t > 0 and δ > 0 in a similar way as before (changing
the role of ∂ΩX and of ∂ΩY ). For every a ∈ A (and so for every constant strategies γ ≡ a)
we find β ∈ B such that 0 < t < τY (y0, β) independently on a (otherwise we get the
contradiction V (x0, y0) ≤ ψY (x0, y0)) and

V (x0, y0) < δ +
∫ t

0
e−s�(X(s; x0, a), Y (s; y0, β), a, β(s))ds + e−t V (X(t), Y (t)).

Hence, for every a ∈ A, we get

0 = V (x0, y0) − ϕ(x0, y0)

< δ −
∫ t

0
e−s min

b∈b
(
ϕ − (ϕx , ϕy) · ( f (X , Y , a, b), g(X , Y , a, b)) − �(X , Y , a, b)

)
ds,

from which the contradiction (by the arbitrariness of a ∈ A)

0 < δ −
∫ t

0
e−s

(
ϕ +UH

(
X(s), Y (s), ϕx (X(s), Y (s)), ϕy(X(s), Y (s))

))
ds

≤ +δ −
∫ t

0
e−sε < 0.

��

6 Uniqueness

We are going to use the following inner-cone property of the boundaries. There exist two
bounded continuous functions ηX : ΩX → R

n , ηY : ΩY → R
m , and two real positive

continuous functions c, d : Ω X ∪ ΩY →]0,+∞[ such that, for all x ∈ Ω X (respectively,
y ∈ ΩY ) and for all s ∈]0, d(x)] (respectively, s ∈]0, d(y)]),

B(x + sηX (x), c(x)s) ⊆ ΩX , (respectively, B(y + sηY (y), c(y)s) ⊆ ΩY ). (17)

Condition (17) roughly means that at every point there is a small cone with vertex in that
point and contained, besides the vertex, in the interior of the set. Note that this is essentially a
boundary regularity property, and it is certainly satisfied under the C2-regularity hypothesis
(2), where you can take, on the boundary, the unit interior normal as ηX and ηY . Finally, note
that in any compact subset, ηX and ηY can be assumed uniformly continuous, and c and d
just two positive constants.

Theorem 7 Let Assumptions 1, (2) (and hence (17)), and (6) hold. Then the lower value V
(respectively, the upper value function V ) is the unique bounded and continuous function on
ΩX × ΩY which is a solution of (11) (respectively, of (14)) in the viscosity sense.

We are going to only prove uniqueness for (11) among continuous and bounded functions,
from which the theorem follows because V is a continuous and bounded solution in the
viscosity sense. As usual, we prove such a uniqueness result by proving a comparison result
between sub- and supersolutions, and wewill refer to the standard double-variable technique,
and in particular to the “constrained” double-variable technique of Soner (see Bardi–Capuzzo
Dolcetta [5] pp. 278–281) Let u, v : Ω X × ΩY → R be two bounded and continuous sub-
and supersolution, respectively. We are going to prove that u ≤ v on ΩX × ΩY , from which
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the conclusion follows because every solution in the viscosity sense is simultaneously a sub-
and a supersolution.

The standard procedure is as here explained. By contradiction, let us suppose

sup
(x,y)∈ΩX×ΩY

(u(x, y) − v(x, y)) = m > 0, (18)

and try to construct two test functions ϕ1 and ϕ2 such that, for some (x1, y1), (x2, y2) ∈
ΩX × ΩY and some k > 0,

u(x1, y1) − v(x2, y2) > k

u − ϕ1 has a local maximum at (x1, y1)
v − ϕ2 has a local minimum at (x2, y2)

UH(x2, y2, (ϕ2)x , (ϕ2)y) −UH(x1, y1, (ϕ1)x , (ϕ1)y) < k

u(x1, y1) +UH(x1, y1, (ϕ1)x , (ϕ1)y) ≤ 0

v(x2, y2) +UH(x2, y2, (ϕ2)x , (ϕ2)y) ≥ 0.

(19)

We then get the contradiction

k < u(x1, y1) − v(x2, y2) ≤
UH(x2, y2, (ϕ2)x , (ϕ2)y) −UH(x1, y1, (ϕ1)x , (ϕ1)y) < k

(20)

The main ingredients for this procedure are some continuity and uniform continuity prop-
erties satisfiedby theHamiltonianUH (seeBardi–CapuzzoDolcetta [5] p. 443 formula (2.1)),
and the construction of a suitable penalizing function φ̃ : (ΩX × ΩY ) × (ΩX × ΩY ) → R.
Given such a function φ̃, the standard double-variable technique is to consider the function

φ : ((x1, y1), (x2, y2) �→ u(x1, y1) − v(x2, y2) − φ̃((x1, y1), (x2, y2))

and a point of maximum ((x1, y1), (x2, y2)) of it. Such a maximum point gives the candidate
points for the above explained procedure with

ϕ1 : (x1, y1) �→ φ̃((x1, y1), (x2, y2)),

ϕ2 : (x2, y2) �→ −φ̃((x1, y1), (x2, y2)).
(21)

As for the state-constraint optimal control problem, the main difficult is to be able to
guarantee that, in the points (x1, y1), (x2, y2), both equation inequalities hold (the last two
lines of (19)). This is made by a suitable use of the boundary conditions (12),(13), and
by the use of a suitable penalizing term inside φ̃ which avoids (x1, y1), (x2, y2), or some
components of them, to belong to the boundaries.

For this reason, in the following proof, we are mostly going to put in evidence the suitable
penalizing term and the use of the boundary conditions for our particular case of problem
(12), (13), and to refer to Bardi–Capuzzo Dolcetta [5] (pp. 279–280) for the “standard” part
in order to obtain all the lines of (19) and the contradiction (20). The point c) of the proof is
more detailed.

Proof of Theorem 7 Let us assume the absurd hypothesis (18) and take δ > 0 and (x0, y0) ∈
ΩX × ΩY such that the other following absurd hypothesis holds

u(x0, y0) − v(x0, y0) > m − δ ≥ m

2
> 0. (22)

We only treat the boundary case (x0, y0) ∈ ∂(ΩX × ΩY ) and, if (x0, y0) ∈ ∂ΩX × ∂ΩY ,
ψY (x0, y0) < ψX (x0, y0). The other cases are similar or easier. For example, when
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ψY (x0, y0) = ψXY (x0, y0) = ψX (x0, y0), then we are in a sort of continuity case, all exit
costs almost coincide around (x0, y0), and the situation is similar to the one with continuous
datum on the whole boundary.

We take ε > 0 and, for every one of the following cases, we consider a suitable “double-
variable” function φ : (Ω X ×ΩY )× (Ω X ×ΩY ) → R, as here explained. In the following,
ζ is a C1 positive function on R

n × R
m with bounded gradient and such that ζ(x0, y0) = 0

and that ζ → +∞ when ‖(x, y)‖ → +∞, and μ > 0 is a constant whose value will be
fixed later (see Bardi–Capuzzo Dolcetta [5], p. 54, for the use of this kind of functions in the
comparison results in case of an unbounded domain).

a) i) (x0, y0) ∈ ∂ΩX × ΩY and v(x0, y0) < ψX (x0, y0); or ii) (x0, y0) ∈ ΩX × ∂ΩY

and v(x0, y0) < ψY (x0, y0); or iii) (x0, y0) ∈ ∂ΩX × ∂ΩY and ψY (x0, y0) < v(x0, y0) <

ψX (x0, y0); or iv) (x0, y0) ∈ ∂ΩX × ∂ΩY and ψY (x0, y0) �= v(x0, y0) < ψX (x0, y0):

φa((x1, y1), (x2, y2)) = u(x1, y1) − v(x2, y2)

−
∥
∥
∥
∥
x1 − x2

ε
− ηX (x0)

∥
∥
∥
∥

2

− ‖x2 − x0‖2 −
∥
∥
∥
∥
y1 − y2

ε
− ηY (y0)

∥
∥
∥
∥

2

− ‖y2 − y0‖2

−μζ(x1, y1) − μζ(x2, y2).

(23)

b) i) (x0, y0) ∈ ∂ΩX × ΩY and v(x0, y0) ≥ ψX (x0, y0); or ii) (x0, y0) ∈ ΩX × ∂ΩY and
v(x0, y0) ≥ ψY (x0, y0); or iii) (x0, y0) ∈ ∂ΩX × ∂ΩY and v(x0, y0) ≥ ψX (x0, y0):

φb((x1, y1), (x2, y2)) = u(x1, y1) − v(x2, y2)

−
∥
∥
∥
∥
x2 − x1

ε
− ηX (x0)

∥
∥
∥
∥

2

− ‖x1 − x0‖2 −
∥
∥
∥
∥
y2 − y1

ε
− ηY (y0)

∥
∥
∥
∥

2

− ‖y1 − y0‖2

−μζ(x1, y1) − μζ(x2, y2).

(24)

c) (x0, y0) ∈ ∂ΩX × ∂ΩY and v(x0, y0) = ψY (x0, y0):

φc((x1, y1), (x2, y2)) = u(x1, y1) − v(x2, y2)

−
∥
∥
∥
∥
x1 − x2

ε
− ηX (x0)

∥
∥
∥
∥

2

− ‖x2 − x0‖2 −
∥
∥
∥
∥
y2 − y1

ε
− ηY (y0)

∥
∥
∥
∥

2

− ‖y1 − y0‖2

−μζ(x1, y1) − μζ(x2, y2).

(25)

Note the differences: from φa to φb: in all penalizing terms the role of indexes 1 and 2
are mutually exchanged; from φa to φc: in the second penalizing terms the role of indexes 1
and 2 are mutually exchanged. This means that, when performing the usual double-variable
technique for comparison results, for suitable test functions ϕ1 and ϕ2 defined as in (21), in
the case a) we are going to detach maxima for u − ϕ1 (i.e., (x1, y1)) from the boundary; in
the case b) we are going to detach minima for v − ϕ2 (i.e., (x2, y2)) from the boundary; in
the case c) we are going to detach the x-component of the maxima for u − ϕ1 (i.e., x1) and
the y-component of the minima for v −ϕ2 (i.e., y2) from the boundary. We briefly treat some
of the above cases.

In the following C > 0 is a suitable constant and ω is a suitable modulus of continuity,
whose choices are independent from δ and ε (depending on μ only).

Case a). We use the absurd hypothesis (22), the hypothesis on ζ , the penalizing terms
involving ηX and ηY , and the hypothesis (17). Using standard estimates, we have that, at
least for small δ and ε, φa has a maximum point in (Ω X × ΩY ) × (Ω X × ΩY ), let us say
((xε

1, y
ε
1), (x

ε
2, y

ε
2)), and that
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‖xε
1 − xε

2‖, ‖yε
1 − yε

2‖ ≤ Cε,

‖xε
2 − x0‖, ‖yε

2 − y0‖ ≤ √
δ + ω(ε)

∥
∥
∥
∥
x1 − x2

ε
− ηX (x0)

∥
∥
∥
∥ ,

∥
∥
∥
∥
y1 − y2

ε
− ηY (y0)

∥
∥
∥
∥ ≤ √

δ + ω(ε)

(xε
1, y

ε
1) ∈ ΩX × ΩY .

i) For small ε we have (xε
2, y

ε
2) ∈ ΩX ×ΩY and, if xε

2 ∈ ∂ΩX , then v(xε
2, y

ε
2) < ψX (xε

2, y
ε
2).

Hence, both equation inequalities hold in (12) and in (13) for u and v, respectively, when
tested with test functions obtained from φa as in (21). We then get the required contradiction,
because, by the absurd hypothesis (22) and the infinitesimal estimates here above, we get the
first and the fourth lines of (19), just taking μ, δ, ε sufficiently small.
The points ii), iii) and iv) are similarly treated.

b) As before, let ((xε
1, y

ε
1), (x

ε
2 , y

ε
2)) be a point of maximum for φb. In this case, for at

least small δ and ε, it is

‖xε
1 − xε

2‖, ‖yε
1 − yε

2‖ ≤ Cε,

‖xε
1 − x0‖, ‖yε

1 − y0‖ ≤ √
δ + ω(ε)

∥
∥
∥
∥
x2 − x1

ε
− ηX (x0)

∥
∥
∥
∥ ,

∥
∥
∥
∥
y2 − y1

ε
− ηY (y0)

∥
∥
∥
∥ ≤ √

δ + ω(ε)

(xε
2, y

ε
2) ∈ ΩX × ΩY .

i) The hypothesis v(x0, y0) ≥ ψX (x0, y0) and the absurd hypothesis (22) imply
u(x0, y0) > ψX (x0, y0) and so u(xε

1, y
ε
1) > ψX (xε

1, y
ε
1), for small δ and ε. Hence, both

equation inequalities hold in (12) and in (13) for u and v, respectively, when tested with
suitable test functions obtained from φb as in (21). We then get the contradiction as before.
The points ii) and iii) are similarly treated.

c) Again, let ((xε
1, y

ε
1), (x

ε
2, y

ε
2)) be a point of maximum for φc. For at least small δ and

ε, it is

‖xε
1 − xε

2‖, ‖yε
1 − yε

2‖ ≤ Cε,

‖xε
2 − x0‖, ‖yε

1 − y0‖ ≤ √
δ + ω(ε)

∥
∥
∥
∥
x1 − x2

ε
− ηX (x0)

∥
∥
∥
∥ ,

∥
∥
∥
∥
y2 − y1

ε
− ηY (y0)

∥
∥
∥
∥ ≤ √

δ + ω(ε)

xε
1 ∈ ΩX , yε

2 ∈ ΩY .

The hypothesis v(x0, y0) = ψY (x0, y0) and absurd hypothesis (22) imply that, for small δ

and ε, u(xε
1, y

ε
1) > ψY (xε

1, y
ε
1) and v(xε

2, y
ε
2) < ψX (xε

2, y
ε
2).

For a seek of completeness, we show here the calculation for this case. In particular, let
us note that in this case we are not detaching from the boundary both points of maximum
and of minimum, which is in general not possible, but instead we are detaching the first n
components of the point ofmaximum and the secondm components of the point ofminimum.
And this is possible because the domain Ω = ΩX × ΩY ⊂ R

n × R
m is indeed a Cartesian

product. By definition of φc we have

φc((x0, y0), (x0, y0)) = u(x0, y0) − v(x0, y0) − ‖ηX (x0)‖ − ‖ηY (y0)‖ ≥ m − δ − 2M,

where M is a bound for ‖ηX‖ and for ‖ηY ‖ (and also for |u| and |v|, in subsequent calcu-
lations). By the coercivity of ζ and the boundedness of u and v, we get that φc reaches its
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maximum in a point ((xε
1, y

ε
1), (x

ε
2, y

ε
2)) and that there exists two compact subsets (depending

on μ) Kμ
X ⊆ ΩX , K

μ
Y ⊆ ΩY such that ((xε

1, y
ε
1), (x

ε
2, y

ε
2)) ∈ (Kμ

X × KY ) × (Kμ
X × KY ), for

every ε sufficiently small. We can also suppose x0 + εηX (x0) ∈ Kμ
X , y0 + εηY (y0) ∈ Kμ

Y
for all ε > 0 sufficiently small. Let ωμ be a modulus of continuity for both u and v and for
ζ in (Kμ

X ∩ ΩX ) × (×Kμ
Y ∩ ΩY ). We have

φc((x
ε
1, y

ε
1), (x

ε
2, y

ε
2)) ≥ φc((x0 + εηX (x0), y0), (x0, y0 + εηY (y0))

= u(x0 + εηX (x0), y0) − v(x0, y0 + εηY (y0))

−ζ(x0 + εηX (x0), y0) − ζ(x0, y0 + εηY (y0)) ≥ m − δ − 4ωμ(Cε), (26)

where C > 0 is a suitable constant independent from ε. Now, we have the inequalities, for δ

and ε small,

u(xε
1, y

ε
1) − v(xε

2, y
ε
2) ≤ 2M,

0 <
m

2
< u(xε

1, y
ε
1) − v(xε

2, y
ε
2) ≤ m + ωμ(‖(xε

1, y
ε
1) − (xε

2, y
ε
2)‖).

(27)

From the definition of φc and from (26), we get
∥
∥
∥
∥
xε
1 − xε

2

ε
− ηX (x0)

∥
∥
∥
∥

2

+ ‖xε
2 − x0‖2 +

∥
∥
∥
∥
yε
2 − yε

1

ε
− ηY (y0)

∥
∥
∥
∥

2

+ ‖yε
1 − y0‖2

≤ δ + ωμ(‖(xε
1, y

ε
1) − (xε

2, y
ε
2)‖) + 4ωμ(Cε).

(28)

By the boundedness of ωμ, when its argument is the distance of points in Kμ
X × Kμ

Y , and the
boundedness of ηX , ηY , from (28) we get (for another constant independent from ε, and still
denoted by C)

‖xε
1 − xε

2‖ + ‖yε
1 − yε

2‖ ≤ Cε, (29)

which, again by (28) and for another C > 0 independent from ε, gives
∥
∥
∥
∥
xε
1 − xε

2

ε
− ηX (x0)

∥
∥
∥
∥

2

+ ‖xε
2 − x0‖2 +

∥
∥
∥
∥
yε
2 − yε

1

ε
− ηY (y0)

∥
∥
∥
∥

2

+ ‖yε
1 − y0‖2

≤ δ + 5ωμ(Cε).

(30)

By the inward cone hypothesis (17), from (30), in a standard way (Bardi-Capuzzo Dolcetta
[5], p. 280), we get, for sufficiently small δ and ε,

xε
1 ∈ ΩX , yε

2 ∈ ΩY . (31)

Now, sincewe are in the case v(x0, y0) = ψY (x0, y0) < ψX (x0, y0) and since u(x0, y0) >

v(x0, y0), by (29)–(30) we can suppose that

u(xε
1, y

ε
1) > ψY (xε

1, y
ε
1), v(xε

2, y
2
ε ) < ψX (xε

2, y
ε
2).

This, together with (31) and the definition of ((xε
1, y

ε
1), (x

ε
2, y

ε
2)), implies that both equation

inequalities hold, in (xε
1, y

ε
1) for u as in (12) and in (xε

2, y
ε
2) for v as in (13), respectively,

when we take as test functions

ϕ1(x, y) =
∥
∥
∥
∥
x − xε

2

ε
− ηX (x0)

∥
∥
∥
∥

2

+
∥
∥
∥
∥
yε
2 − y

ε
− ηY (y0)

∥
∥
∥
∥

2

+ ‖y − y0‖2 + μζ(x, y)

ϕ2(x, y) = −
∥
∥
∥
∥
xε
1 − x

ε
− ηX (x0)

∥
∥
∥
∥

2

− ‖x − x0‖2 −
∥
∥
∥
∥
y − yε

1

ε
− ηY (y0)

∥
∥
∥
∥

2

− μζ(x, y),
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respectively. We have

∇ϕ1(x
ε
1, y

ε
1)

= μ∇ζ(xε
1, y

ε
1) + 2(0, yε

1 − y0) + 2

ε

(
xε
1 − xε

2

ε
− ηX (x0),

yε
1 − yε

2

ε
− ηY (y0)

)

,

∇ϕ2(x
ε
2, y

ε
2)

= −μ∇ζ(xε
2, y

ε
2) − 2(xε

2 − x0, 0) + 2

ε

(
xε
1 − xε

2

ε
− ηX (x0),

yε
1 − yε

2

ε
− ηY (y0)

)

,

and then, ifμ is sufficiently small, we can conclude in the standardway getting the conclusion
by contradiction to (18). ��
Remark 8 As already remarked, the exit cost ψXY , for simultaneous exit of X and Y , does
not play any role in the formulation of the Dirichlet problem (11). Indeed, it can never happen
that the simultaneous exit cost ψXY is a “good” choice for both players (i.e., an equilibrium)
without being already equal to ψX or to ψY or to V δ

int for some δ > 0 where the latter is
defined as the lower value function restricted to controls β and to non-anticipating strategies
γ which make Y and X remain inside ΩY and ΩX for times in [0, δ], respectively. For
instance, let us suppose that, in a point (x, y) ∈ ∂ΩX × ∂ΩY , we have

ψY < ψXY < min{ψX , V δ
int }.

Then, player II (the maximizing one) has certainly no interest in exit, and so the “really paid
cost” is ψX or V δ

int . A similar conclusion holds for the case

max{ψY , V δ
int } < ψXY < ψX .

In the case that ψXY = V δ
int is a “good choice” for both players, then dynamic programming

leads to the Isaacs equation and so the exit cost ψXY does not really influence the problem.
By the way, even in a strategic static minmax game where two players may independently

choose to “stay” or to “exit” and the first player wants to minimize, if the utility u(exi t, exi t)
stays between the utilitiesu(stay, exi t) ≤ u(exi t, stay), then the choice (exi t, exi t) is never
a Nash equilibrium, whichever u(stay, stay) is.

Remark 9 Since the dynamics are decoupled, in order to have the classical Isaacs’ condition
for the existence of a value of the game (see, for example, Bardi–Capuzzo Dolcetta [5]),
we only need some further hypotheses on the running cost �. The simplest one is that it is
also decoupled with respect to controls (i.e., �(x, y, a, b) = �1(x, y) + �2(a) + �3(b)) . In
this case the two Hamiltonians UH and LH are the same and hence, by uniqueness of the
corresponding Dirichlet problems (11), (14), V = V .

7 On Constrained Non-anticipating Strategies

We give a possible construction of state-constraint non-anticipating tuning as well as non-
anticipating strategies satisfying Assumption 2.We follow Soner’s [21] construction of state-
constraint controls (see also Bardi–Capuzzo Dolcetta [5], pp. 272–274), modifying it in a
non-anticipating way, in order to adapt such a construction to our purposes (see Remark 11).

We are now considering only point I) of Assumption 2, point II) being similar. Note that
point I) is concerning with non-anticipating strategies γ ∈ Γ for player X . With respect to
(2) (and to (1)), we are going to relax a little bit the hypotheses of decoupled dynamics and
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we are going to consider the following hypothesis: the dynamics f , the one for player X , is
affine with respect to the controls (coherently with Bettiol–Cardaliaguet–Quincampoix [7])
and “weakly” depends on the control of Y . This means that (here, f̃ stays for the dynamics
of the first player X )

f̃ : Rn × A × B → R
n, f (x, a, b) = f (x) + a + Db,

A ⊂ R
n, DB ⊆ A are compact sets

(32)

where D ∈ R
n′×m′

is a fixed constant matrix, B is as in (2), and f : Rn → R
n is bounded and

Lipschitz continuous. Note that, the dynamics f̃ then satisfies similar regularity hypotheses
as in (2), in particular, for some M, L > 0 and for all x1, x2 ∈ R

n, a ∈ A, b ∈ B:

‖ f̃ (x, a, b)‖ ≤ M, ‖ f̃ (x1, a, b) − f̃ (x2, a, b)‖ ≤ L‖x1 − x2‖.
The system for the trajectories of the first player is

{
X ′(t) = f (X(t)) + α(t) + Dβ(t)

X(0) = x ∈ ΩX

Remark 10 We point out that here and in what follows, we are assuming such a weak decou-
pling for the dynamics of the player X only. The dynamics g of the player Y will be still
considered decoupled, i.e., depending on the pair (y, b) only, as in (2). In this situation,
we are going to prove that all the hypotheses i)–vi) of item I) only, of Assumption 2, are
satisfied. The fact that the dynamics of the second player is completed decoupled, i. e. it
does not depend on the control of the first player, enters in what follows because β̃ in (37) is
constructed independently on the behavior and on the controls of the first player.

On the other hand, if we assume that the dynamics g is weakly decoupled (similarly to
(32), changing the role of a and b), and we maintain the decoupled feature of f as in (2),
then we can prove that item II) of Assumption 2 is satisfied.

Also note that, the validity of item I) (respectively, item II)) permits to conclude that the
lower value function V (respectively, the upper value function V ) is continuous. However, all
the proofs of the results in Sects. 5 and 6 (as well as the simultaneous validity of both items
I) and II)) hold in the case of decoupling of both f and g as in (2), that is when D = 0 in
(32). The extension of such results to the weak decoupled case may be the subject of future
works.

However, we point out that, in order to get the estimate on the costs, we are going to also
assume a decoupled feature of the running cost with respect to the controls (see (48)).

Assuming (32), we need a modification of the controllability Assumption 1.

Assumption 3 Similarly, as in Assumption 1, we assume here that, for every x ∈ ∂ΩX , there
exist two constant controls a1, a2 ∈ A such that f̃ (x, a1, b) is strictly entering in ΩX and
f̃ (x, a2, b) is strictly entering in Rm\ΩX ∀b ∈ B.

Assuming C2-regularity of ∂ΩX (2), by Assumption 3, by the weak decoupling (32), and
by the Lipschitz continuity of f , for every compact K , there exist ζ > 0 and r > 0 and, for
any x ∈ K ∩ ∂ΩX , there exists a(x) ∈ A such that, for every x ∈ B(x, r) ∩ Ω X ,

inf
b∈B( f (x) + a(x) + Db) · ξ(x) > 0, ( f (x) + a(x)) · ξ(x) ≥ ζ (33)

where ξ(x) is the inward normal unit vector to ΩX at x ∈ ∂ΩX . In what follows, in view
of possible future applications to thermostatically switching systems, we assume that the
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boundaries of ΩX and ΩY are hyperplanes passing through the origin, and that ΩX and ΩY

are just one of the two semi-space defined by the hyperplane. In this way, the unit vector
inward normal ξ is constant on ∂ΩX (as well as on ∂ΩY , in the sequel denoted by the same
letter ξ ). However, everything done here can be easily generalized to the case in which the
boundaries of ΩX and ΩY are finite intersections of hyperplanes not necessarily passing
through the origin (see, for example, what done in Bagagiolo–Bardi [2]). Moreover, it can
be extended to more general regular domains.

Now, we are going to prove that, in the situation described above, all the points i)–vi)
of item I) of Assumption 2 are satisfied. In what follows, we will indicate by K a generic
compact set of the form K = K X × KY , where K X ⊆ ΩX and KY ⊆ ΩY are compact.

i), iii) and v). Take T > 0, and take T ≥ t∗Y > 0 to be fixed later on and y1, y2 ∈ KY ⊆ ΩY

compact, and define

εY = sup
β∈B

(

sup
0≤t≤min{τY (y1,β),t∗Y }

(−ξ · Y (t; y2, β))+
)

, (34)

where (r)+ = max(r , 0) is the positive part, and ξ is the unit internal normal to ΩY . Note
that, since ΩY is a semi-space, the quantity inside the suprema over β is just the maximal
distance from ΩY reached by the trajectory starting from y2 with control β, before that the
trajectory starting from y1 with the same control β exits from ΩY , or the time t∗Y is reached.
However, the presence of the supremum over β makes εY independent from β, and this is
the essential feature for the fact that next formula (37) defines a non-anticipating tuning, as
we are going to explain in the comments after (37) and in Remark 11.

Note that we have the estimate (with C depending only on T , K , and t∗Y )

0 ≤ εY ≤ C(t∗Y )‖y1 − y2‖. (35)

Indeed, for every β and for every 0 ≤ t ≤ min{τY (y1, β), t∗Y }, we have Y (t; y1, β) ∈ ΩY ,
i.e., ξ · Y (t; y1, β) ≥ 0. Then there exists a constant C(t∗Y ) such that

−ξ · Y (t; y2, β) ≤ −ξ · Y (t; y2, β) − (−ξ · Y (t; y1, β))

≤ ‖Y (t; y2, β) − Y (t; y1, β)‖ ≤ C(t∗Y )‖y1 − y2‖,
(36)

and hence, (35) holds.
Now, take β ∈ B, let t0Y ≥ 0 be the first time the trajectory Y (·) := Y (·; y2, β) hits the
boundary ∂ΩY and let b0 ∈ B be such that g(Y (t0Y ), b0) strictly enters in ΩY at Y (t0Y ):
the one given by Assumption 1. Now, let us take kY > 0 and define the measurable control
β̃ ∈ B as

β̃(t) =

⎧
⎪⎨

⎪⎩

β(t) if 0 ≤ t ≤ min{t0Y , t∗Y },
b0 if min{t0Y , t∗Y } ≤ t ≤ min{t0Y , t∗Y } + kY εY ,

β(t − kY εY ) if t ≥ min{t0Y , t∗Y } + kY εY

(37)

By our definition of εY (34) which is independent on β, due to the presence of the supre-
mum over the controls, the construction in (37) is a non-anticipating tuning (see Definition 1,
see also Remark 11 for other comments). This means that, whenever β1 = β2 in [0, t] a.e.,
then also β̃1 = β̃2 in [0, t] a.e., in other words i) holds. Indeed, in such a case, in the time
interval [0, t],β1 andβ2 generate the same trajectoryY starting from y2. If, in the time interval
[0, t] the trajectory Y does not hit the boundary, then, by definition (25), β̃1 = β1 = β2 = β̃2

in [0, t]. If instead the trajectory Y hits the boundary at t0Y ≤ t , then in the interval [0, t0Y [
we still have the equality β̃1 = β̃2, and in the time interval [t0Y , t0Y + kY εY ] ∩ [0, t] (whose
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length by (34) is independent from β1 and β2), we have β̃1 = b0 = β̃2, with b0 given by
Assumption 1 in Y (t0Y ), which is the same for both controls. Finally, in the (possibly empty)
time interval [0, t]\[t0Y , t0Y +kY εY ]wehave β̃1(s) = β1(s−kY εY ) = β2(s−kY εY ) = β̃2(s).

Nowwewant to suitably choose t∗Y and kY such that, for every t ∈ [0, t∗Y ], it isY (t; y2, β̃) ∈
ΩY , at least for t ≤ τY (y1, β). This can be done (independently on β) just following Bardi–
Capuzzo Dolcetta [5] p. 273, with ε given by our εY (a more detailed construction is given
for the similar question in the next point). Repeating the construction for every needed time
interval [nt∗Y , (n + 1)t∗Y ], in order to cover the interval [0, τ̃ ], we get iii). Finally, using (35),
we also get v).

Remark 11 Observe that (34) is different from the one defined by Soner [21] (see also Bardi–
Capuzzo Dolcetta [5], p. 273) since here we are building non-anticipating tuning as well
as non-anticipating strategies, and this feature is guaranteed by the supremum over β in
definition (34). Indeed, in our framework and notations, if we just follow what done in [21],
we would have, for every control β,

ε(β) = sup
0≤t≤min{τY (y1,β),t∗Y }

(−ξ · Y (t; y2, β))+ .

This means that, even if β1 = β2 in [0, t], then they may generate different values of ε(β1)

and ε(β2) because they, and their corresponding trajectories, may differ after the time t . In
particular, it may happen that the trajectories hit the boundary at the same instant 0 ≤ t0Y <

min{τY (y1, β1), τY (y1, β2), t∗Y , t} and that [t0Y , t0Y + kY ε(β1)] ⊂ [t0Y , t0Y + kY ε(β2)] ⊂
[0, t]. Applying (37), we would get two different behavior of β̃1 and β̃2 in [0, t], that is
an anticipating construction: (37) is not more a non-anticipating tuning (see Definition 1).
Considering instead the supremum over all controls β, as we do in (34), makes us to avoid
this behavior because the length of εY does not depend by the single control β.

Of course, as already said in the Introduction, in [21] and [5], the non-anticipating structure
is not taken into consideration because the reference problem is an optimal control problem.
Also observe that the construction (37) is exactly the same as in [21] and [5]. But here, the
non-anticipating feature is given by the definition of εY , which is independent on the single
control.

Finally, observe that we may have εY = 0. By its very definition (22) (do not consider
here t∗Y ), εY = 0 means that, whatever the control β is, the trajectory Y (·; y2, β) does not
exit from ΩY before the trajectory Y (·; y1, β) exits from ΩY . And this is exactly what we
need in our proof of continuity of the value function (i. e. requirement iii) of Assumption 2).
Hence, in this case, we do not need to modify the control: in (37), for every control β, it is
β̃ = β, coherently with the fact that the time interval of length kY εY (where we should make
the modification of β) is just a point (not a true interval).

ii) and iv). Take T > 0, and take T ≥ t∗X to be fixed later on, x1, x2 ∈ K X ⊆ ΩX compact
and define, similarly as for εY ,

εX = sup
γ∈Γ

sup
β∈B

⎛

⎝ sup
0≤t≤min{τX (x2,γ [β̃],β̃),t∗X }

(
−ξ · X(t; x1, γ [β̃], β)

)+
⎞

⎠ , (38)

where ξ is the unit internal normal to ΩX , and β̃ is defined as in (37), with respect to the
previously fixed y1, y2 ∈ KY . In (38) we use both the supremum over β and over γ in order
to build non-anticipating strategies. Note that now, in the notations of the trajectory X and of
the exit time τX we are taking account that the dynamics f is only weakly decoupled (32).
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In particular, in this case, the estimates ii) and iv) of Assumption 2 must be replaced by (see
also point 10) of the proof of Proposition 3)

i i ′) τX (x1, γ̃ [β̃], β) ≥ τX (x2, γ [β̃], β̃),

iv′) ‖X(τ̃ ; x1, γ̃ [β̃], β) − X(τ̃ ; x2, γ [β̃], β̃)‖ ≤ OT ,K (‖x1 − x2‖ + ‖y1 − y2‖)
(39)

We refer to Remark 12 for comments on the simpler case of strongly decoupled
dynamics f .

As before, inside the suprema in (38), the scalar product is the distance from the semi-space
ΩX . In this case we have (with C depending only on T , K , t∗X and t∗Y )

0 ≤ εX ≤ C(‖x1 − x2‖ + ‖y1 − y2‖). (40)

Indeed, for t as in (38) and using (35),

−ξ · X(t; x1, γ [β̃], β) ≤
−ξ · X(t; x1, γ [β̃], β) − (−ξ · X(t; x2, γ [β̃], β̃)) ≤
‖x1 − x2‖ + L

∫ t

0
‖X(s; x1, γ [β̃], β) − X(s; x2, γ [β̃], β̃)‖ds +

∫ t

0
D(β(s) − β̃(s))ds ≤

‖x1 − x2‖ + L
∫ t

0
‖X(s; x1, γ [β̃], β) − X(s; x2, γ [β̃], β̃)ds + C(t∗Y )‖y1 − y2‖

and we conclude by the Gronwall estimate. Note that, in the estimate of the integral of
D(β − β̃), we have used the equality

∫ t

0
D(β(s) − β̃(s))ds

=
∫ t0Y +kY εY

t0Y

D(β(s) − b0)ds +
∫ t

t0Y +kY εY

D(β(s) − β(s − kY εY ))ds

=
∫ t0Y +kY εY

t0Y

D(β(s) − b0)ds −
∫ t0Y +kY εY

t0Y

Dβ(s)ds +
∫ t

t−kY εY

Dβ(s)ds

(41)

Now, take γ ∈ Γ , and we want to construct the strategy γ̃ acting on β̃ (see (39)). Take
β ∈ B and let t0X ≥ 0 be the first time the trajectory X(·; x1, γ [β̃], β) hits the boundary
∂ΩX and let a0 ∈ A be such that f strictly enters in ΩX as in Assumption 3. Now, let us
take kX > 0 and define ˜̃γ : B → A as

˜̃γ [β](t) =

⎧
⎪⎨

⎪⎩

γ [β̃](t) if 0 ≤ t ≤ min{t0X , t∗X },
a0 if min{t0X , t∗X } ≤ t ≤ min{t0X , t∗X } + kXεX ,

γ [β̃](t − kXεX ) if t ≥ min{t0X , t∗X } + kXεX

(42)

Being γ and the tuning β �→ β̃ non-anticipating, by the definition of εX we get that ˜̃γ is
also non-anticipating. We use the following notations, which also give notational coherence
with (38) and (39),

γ̃ [β̃](t) = ˜̃γ [β](t), X(·) = X(·; x1, γ [β̃], β), X̃(·) = X(·; x1, γ̃ [β̃], β).

As before we want to suitably choose t∗X and kX such that, for every t ∈ [0, t∗X ], it is
X̃(t) ∈ ΩX . Of course we are interested in the case t ≤ τX (x2, γ [β̃], β̃). We then prove that

ξ · X̃(t) ≥ 0.
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Again, we follow [5] but, due to presence of both controls (32), we now show some explicit
calculations. Note that if min{t0X , t∗X } = t∗X then γ̃ [β̃] = γ [β̃] and X(t) ∈ ΩX . If instead
min{t0X , t∗X } = t0X then, for 0 ≤ t ≤ t0X , X(t) ∈ ΩX . We consider only the case (the
other one being easier) t0X + kXεX ≤ t ≤ t∗X . Since X(t0X ) = X̃(t0X ) ∈ ∂ΩX and so
X(t0X ) · ξ = X̃(t0X ) · ξ = 0, we have

ξ · X̃(t) =
∫ t0X +kX εX

t0X

( f (X̃(s)) + a0 + Dβ(s)) · ξ ds

+
∫ t

t0X +kX εX

( f (X̃(s)) + γ [β̃](s − kXεX ) + Dβ(s)) · ξ ds. (43)

We estimate the first integral in (43) using (33). Indeed, we first assume t∗X small enough such
that ‖X̃(s) − X(t0X )‖ < r as in (33), for all s ∈ [t0X , t∗X ], which is possible, independently
on the controls and on the points in K , because the dynamics are bounded. Here ζ and r are
as in (33) with respect to K ′, which is a compact set such that any trajectory starting from a
point of K X does not exit from K ′ in the time interval [0, T ].

∫ t0X +kX εX

t0X

( f (X̃(s)) + a0 + Dβ(s)) · ξ ds

≥ ζkXεX +
∫ t0X +kX εX

t0X

Dβ(s) · ξ ds

(44)

The second integral in (43) is estimated as

∫ t

t0X +kX εX

( f (X̃(s)) + γ [β̃](s − kXεX ) + Dβ(s)) · ξ ds

=
∫ t−kX εX

t0X

(

f (X̃(s + kXεX )) + γ [β̃](s)

+Dβ(s + kXεX )

)

· ξ ds ±
∫ t−kX εX

t0X

( f (X(s) + Dβ(s))) · ξ ds

=
∫ t−kX εX

t0X

( f (X(s)) + γ [β̃](s) + Dβ(s)) · ξ ds

+
∫ t−kX εX

t0X

( f (X̃(s + kXεX )) − f (X(s)) + Dβ(s + kXεX ) − Dβ(s)) · ξ ds

≥ (X(t − kXεX ) − X(t0X )) · ξ − MkXεX (eLt
∗
X − 1)

+
∫ t−kX εX

t0X

(Dβ(s + kXεX ) − Dβ(s)) · ξ ds (45)

where in the last inequality (for suitable M, L > 0 depending on f , A, B and D) we have
used the Lipschitz continuity of f , standard estimates on trajectories (coming fromGronwall
inequality), and the fact that the dynamics is affine in the controls (32). In particular, we have
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used the following estimate for s ≥ t0X

|X̃(s + kXεX ) − X(s)| ≤ |X̃(t0X + kXεX ) − X(t0X )|

+
∣
∣
∣
∣
∣

∫ s

t0X

(
f (X̃(τ + kXεX ) − f (X(τ )) + γ̃ [β̃](τ + kXεX ) − γ [β̃](τ )

+Dβ(τ + kXεX ) − Dβ(τ)
)∣
∣
∣dτ

≤ MkXεX + L
∫ s

t0X

|X̃(τ + kXεX ) − X(τ )|dτ,

using also the equality

∫ s

t0X

(Dβ(τ + kXεX ) − Dβ(τ))dτ

=
∫ s

s−kX εX

Dβ(τ + kXεX )dτ −
∫ t0X +kX εX

t0X

Dβ(τ)dτ.} (46)

Adding (44) to (45), and using the definition of εX , we get

ξ · X̃(t) ≥ ζkXεX − εX − MkXεX (eLt
∗
X − 1) +

∫ t

t−kX εX

Dβ(s) · ξds

≥ (ζ − C̃ − M(eLt
∗
X − 1))kXεX − εX

(47)

where C̃ is an upper bound for Db · ξ and ζ − C̃ > 0 by (33). Consequently, if t∗X is

sufficiently small, X̃(t) · ξ ≥ (ζ − C̃)kXεX

2
− εX , and hence, taking kX := 2/(ζ − C̃), we

obtain ξ · X̃(t) ≥ 0. This proves ii), and iv) is proven in a standard way using (40).

Remark 12 Note that t∗X (as well as t∗Y ) only depends, besides the dynamics, on T > 0 and
on the compact set K (via the compact set K ′ such that, any trajectory starting from K , does
not exit from K ′ in the time interval [0, T ]) and not on controls and non-anticipating strategy
in use as well as not on the chosen initial points inside K . Hence, repeating, if necessary,
the procedure a finite number of time, we can cover the whole interval [0, τ̃ ] ⊆ [0, T ] and
obtain the estimates in Assumption 2, where the modulus of continuity OT ,K only depends
on T and K . For example, after the first interval [0, t∗X ], we can consider the points X(t∗X )

and X̃(t∗X ) and repeat all the construction with those points as initial points (and note that,
starting from them, in the time interval [t∗X , T ] we do not exit from K ′).

We point out once again that the problem is an exit time problem, and hence, when a
player firstly exits from its domain, the game stops and what happens after that moment is
not influencing anymore. This is the reason why the constructed non-anticipating strategies,
even if theymap controls on [0,+∞[ to controls on [0,+∞[, are mainly constructed looking
to what happens up to the exit time only. Indeed, after the exit time, controls and strategies
may be arbitrarily defined, for example, in any a-priori constant manner (which is obviously
non-anticipating). Indeed, the cost J does not change if we take controls that coincide up to
the exit time and possibly differ from the exit time on, since it only depends on controls and
strategies used up to exit time. In particular, a similar situation is in Definitions (7) and (9),
where, after the exit time (of the homologous trajectory), the controls are defined in a constant
manner (in that case, in a suitable constant manner, using the outward-pointing control).
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In the case when the dynamics f is also strongly decoupled, as in (2) and in the rest of
the paper, the definition of εX (38) is simply replaced by

εX = sup
γ∈Γ

sup
β∈B

(

sup
0≤t≤min{τX (x2,γ [β]),t∗X }

(−ξ · X(t; x1, γ [β]))+
)

,

the definition of ˜̃γ (42) is replaced by

γ̃ [β](t) =

⎧
⎪⎨

⎪⎩

γ [β](t) if 0 ≤ t ≤ min{t0X , t∗X },
a0 if min{t0X , t∗X } ≤ t ≤ min{t0X , t∗X } + kXεX ,

γ [β](t − kXεX ) if t ≥ min{t0X , t∗X } + kXεX ,

in place of (39) we maintain the corresponding ones ii) and iv) of Assumption 2, and finally,
(40) turns out as depending only on ‖x1 − x2‖.

We finally point out the obvious fact that the estimates iv) and v) of Assumption 2, as well
as iv’) in (39), also hold for all 0 ≤ t ≤ τ̃ .

vi) Now we assume that the dependence of the running cost � on the controls is separated,
that is

�(x, y, a, b) = �1(x, y, a) + �2(x, y, b), ∀(x, y, a, b) ∈ Ω X × ΩY × A × B, (48)

where �1, �2 are continuous, bounded, and Lipschitz continuous in (x, y) uniformly with
respect to a and b, respectively. Note that a similar separated feature is also assumed in
Bettiol–Cardaliaguet–Quincampoix [7].

We have to estimate

|Jτ̃ (x1, y1, γ̃ [β̃], β) − Jτ̃ (x2, y2, γ [β̃], β̃)| (49)

where τ̃ = min(τX (x2, γ [β̃], β̃), τY (y1, β), T ) and Jτ̃ is the integral of the discounted
running cost up to time τ̃ . We will sketch the computation in the case in which τ̃ = T ≥
t∗Y ≥ t0X + kXεX ≥ t0Y + kY εY ≥ t0X ≥ t0Y , since the other cases are similar. The quantity
in (49) is majorized by

∫ t0Y

0

∣
∣
∣�(X(t; x1), Y (t; y1), γ [β̃](t), β(t)) − �(X(t; x2), Y (t; y2), γ [β̃](t), β(t))

∣
∣
∣ dt

+
∫ t0X

t0Y

∣
∣
∣�(X(t; x1), Y (t; y1), γ [β̃](t), β(t)) − �(X(t; x2), Y (t; y2), γ [β̃](t), b0)

∣
∣
∣ dt

+
∫ t0Y +kY εY

t0X

∣
∣
∣�(X(t; x1), Y (t; y1), a0, β(t)) − �(X(t; x2), Y (t; y2), γ [β̃](t), b0)

∣
∣
∣ dt

+
∫ t0X +kX εX

t0Y +kY εY

∣
∣
∣�(X(t; x1), Y (t; y1), a0, β(t))

−�(X(t; x2), Y (t; y2), γ [β̃](t), β(t − kY εY ))
)
dt

∣
∣
∣

+
∣
∣
∣
∣
∣

∫ t∗Y

t0X +kX εX

e−λt
(
�(X(t; x1), Y (t; y1), γ [β̃](t − kXεX ), β(t))

−�(X(t; x2), Y (t; y2), γ [β̃](t), β(t − kY εY ))
)
dt

∣
∣
∣ (50)
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where we used the expressions of β̃ (37) and γ̃ [β̃] (see (42) and four lines below it))
and dropped the notations of the controls in the trajectories X(·; x1) = X(·; x1, γ̃ [β̃], β),
Y (·; y1) = Y (·; y1, β), X(·; x2) = X(·; x2, γ [β̃], β̃), Y (·; y2) = Y (·; y2, β̃). Note that we
passed the absolute value under the integral sign in the first four integrals only. We are going
to use the boundedness and the Lipschitz continuity of � (and of �1, �2), the estimates (35),
(40), and standard estimates on trajectories.

The first integral in (50) is majorized by standard procedure (the difference of the running
costs inside the integral is evaluated in the same control values). The other three integrals can
be easily estimated since the time interval size is small (it is less than kXεX or than kY εY ),
while, using (48), the last integral is majorized by

∣
∣
∣
∣
∣

∫ t∗Y

t0X +kX εX

e−λt
(
�1(X(t; x1), Y (t; y1), γ [β̃](t − kXεX ))

−�1(X(t; x2), Y (t; y2), γ [β̃](t)])
)
dt

∣
∣
∣

+
∣
∣
∣
∣
∣

∫ t∗Y

t0X +kX εX

e−λt
(
�2(X(t; x1), Y (t; y1), β(t))

−�2(X(t; x2), Y (t; y2), β(t − kY εY ))
)
dt

∣
∣
∣ . (51)

Now, using the fact that the dynamics are bounded, the fact that the running costs and the
function t �→ e−λt are bounded and Lipschitz continuous, and the estimates v) of Assump-
tion 2 and iv’) of (39) (see also Remark 12), arguing by a change of variable as in the previous
subsection (see, for example, (41), (46), and also see Bardi–Capuzzo Dolcetta [5] p. 274),
the first integral in (51) is estimated by (here M̃ depends on L , the Lipschitz constant of costs
and dynamics, on M , the bound of costs and dynamics, and on λ, the discount factor)

∣
∣
∣
∣
∣

∫ t∗Y

t0X +kX εX

(
e−λ(t−kX εX )�1(X(t − kXεX ; x1), Y (t − kXεX ; y1), γ [β̃](t − kXεX ))

−e−λt�1(X(t; x2), Y (t; y2), γ [β̃](t)])
)
dt

∣
∣
∣ + M̃T kXεX ≤

(
where we have approximated e−λt�1(X(t; x1), Y (t; y1), γ [β̃](t − kxεX )) by

e−λ(t−kX εX )�1(X(t − kXεX ; x1), Y (t − kXεX ; y1), γ [β̃](t − kXεX )). Now, we
change the variable in the first addendum inside the integral: t = t − kXεX

and then we pass the absolute value under the integral-sign
)

≤
∫ t0X +kX εX

t0X

|�1(X(t; x1), Y (t; y1), γ [β̃](t))|dt

+
∫ t∗Y−kX εX

t0X +kX εX

∣
∣
∣�1(X(t; x1), Y (t; y1), γ [β̃](t)) − �1(X(t; x2), Y (t; y2), γ [β̃](t))

∣
∣
∣ dt

+
∫ t∗Y

t∗Y−kX εX

∣
∣
∣�1(X(t; x2), Y (t; y2), γ [β̃](t))

∣
∣
∣ dt + M̃T kXεX

≤ MkXεX + TOT ,K (‖x1 − x2‖ + ‖y1 − y2‖) + MkXεX + M̃T kXεX

≤ OT ,K (‖x1 − x2‖ + ‖y1 − y2‖),

(52)
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where in the last inequality we have used (40), and the lastOT ,K is an infinitesimal function,
sum of the infinitesimal functions in the line before.We similarly estimate the second integral
in (51).

Again, the estimate only depends on T and K , being independent on controls, strategies,
and starting points in K . Hence, possibly repeating such procedure a finite number of times,
we get the estimate vi) of Assumption 2.

Finally, we point out that hypothesis (48) is used, here above, in order to separately treat
the change of variable in the controls. The extension to the case of non-decoupled cost
�(x, y, a, b) seems to be not obvious. However, we think that (48) may be probably amended
by suitably modifying (37) and (42), but we did not check any details.
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