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Abstract
The classical setting of optimal control theory assumes full knowledge of the process dynam-
ics and the costs associated with every control strategy. The problem becomes much harder
if the controller only knows a finite set of possible running cost functions, but has no way
of checking which of these running costs is actually in place. In this paper we address this
challenge for a class of evasive path planning problems on a continuous domain, in which an
evader needs to reach a target while minimizing his exposure to an enemy observer, who is in
turn selecting fromafinite set of known surveillance plans.Our key assumption is that both the
evader and the observer need to commit to their (possibly probabilistic) strategies in advance
and cannot immediately change their actions based on any newly discovered information
about the opponent’s current position. We consider two types of evader behavior: in the first
one, a completely risk-averse evader seeks a trajectory minimizing hisworst-case cumulative
observability, and in the second, the evader is concerned with minimizing the average-case
cumulative observability. The latter version is naturally interpreted as a semi-infinite strate-
gic game, and we provide an efficient method for approximating its Nash equilibrium. The
proposed approach draws on methods from game theory, convex optimization, optimal con-
trol, and multiobjective dynamic programming. We illustrate our algorithm using numerical
examples and discuss the computational complexity, including for the generalized version
with multiple evaders.
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1 Introduction

Path planning is a problem of interest formany communities: traffic engineering, autonomous
driving, robotics, andmilitary. In the classical setting, the path planner is assumed to have full
information about the environment and chooses a pathminimizing some undesirable quantity,
e.g., time-to-target, distance traveled, fuel consumption, or threat exposure. A particular type
of continuous path planning problems is surveillance-evasion applications. In the simplest
scenario, an evader (E) is choosing a path to minimize its exposure to an observer (O) whose
surveillance plan is fixed and fully known to E in advance. This formulation is conveniently
treated in the framework of optimal control theory, reviewed in Sect. 2, with the evader’s
optimal policy recovered by solving a Hamilton–Jacobi–Bellman (HJB) partial differential
equation (PDE). But the real focus of this paper is on path planning under uncertainty, where
E knows the full list of different surveillance plans available to O but does not know which
of them is currently in use.

Thekey assumption of ourmodel is that neitherEnorOcan change their respective strategy
in real time based on the opponent’s discovered position or actions. In practical contexts (e.g.,
in satellite-based surveillance), this restriction might be due to either a delayed analysis of
observations or due to logistical needs of committing to a strategy in advance. As in many
other optimization under uncertainty situations, it is natural for E to treat this as an adversarial
problem—either because the prior statistics on the frequency of use for specific surveillance
plans are unreliable or because O might be actively adjusting these frequencies in response
to E’s routing choices.

In considering each potential path to its destination, E needs to evaluate the trade-offs
in observability with respect to different surveillance plans. This naturally brings us to the
notion of Pareto optimality [23] and the numerical methods developed for multiobjective
optimal control problems [13,18,19,25]. As we show in Sect. 3, the method introduced in
[19] can be used to find the deterministic optimal policy for a completely risk-averse evader
(i.e., minimizing the worst-case observability). Unfortunately, the computational cost of this
approach grows exponentially with the number of surveillance plans available to O. But if
the goal for both players is to optimize the average-case/expected observability, we show that
this can be accomplished by adopting a much more computationally affordable method from
[25], despite its significant drawbacks for generalmultiobjective control problems.Moreover,
we show that if the evader’s average-case optimal strategy is deterministic, then that same
strategy is also worst-case optimal.

For the rest of the paper, we concentrate on the average-case observability formulation
using a semi-infinite zero-sumgame [35] betweenE andO, each of them searching for the best
randomized/mixed strategy—an optimal probability distribution over that player’s available
deterministic/“pure” options. We refer to these as “surveillance-evasion games” (SEGs),
although the same terminology was previously used in the 1960s and 1970s to describe
a very different class of problems, where the evader needs to escape from the observer’s
surveillance zone as quickly as possible [15,20–22]. Aside from this terminological overlap,
those earlier papers have little in common with our context since in them E and O operated
with full information on their opponent’s current state, reacted in real time, and sought optimal
feedback policies recovered by solving Hamilton–Jacobi–Isaacs equations.

In classical (finite zero-sum two-player) strategic games, the Nash equilibrium is typi-
cally obtained using linear programming [26]. But the fact that E’s set of pure strategies is
uncountably infinite makes this approach unusable in our SEGs. Instead, we show how to
compute the Nash equilibrium in Sect. 4 by combining convex optimization with fast numer-
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ical methods for HJB equations. The computational cost of the resulting method scales at
most linearly with the number of surveillance plans. We illustrate this approach on a large
number of examples, with the details of our numerical implementation covered in Sect. 5.

We note that the same ideas are also useful outside of surveillance-evasion context, when-
ever the path planner cannot assess the actually incurred running cost until it reaches the target.
In fact, the same PDEs and semi-infinite zero-sum games can be used to model civilians’
routing choices in war zones and other dangerous environments, minimizing their exposure
to bomb threats.

Our modeling approach is quite general, but to simplify the exposition wewill assume that
the evader is moving in a two-dimensional domain with occluding/impenetrable obstacles,
both the observability and E’s speed are isotropic (i.e., independent of E’s chosen direction
of motion), and all O’s surveillance plans are stationary (i.e., the observer is choosing among
possible stationary locations). This further simplifies the PDE aspect of our problem from a
general HJB to stationary Eikonal equations, the efficient numerical methods for which are
particularly well developed in the last 25years (e.g., [30]).

In Sect. 6, we generalize the problem by considering multiple evaders. We first treat this
as a two-player game between a single observer and a centralized controller of all evaders.
But we also show that the resulting set of strategies is a Nash equilibrium even from the
point of view of individual/selfish evaders. We conclude by discussing further extensions
and limitations of our approach in Sect. 7.

2 Continuous Path Planning

The case where the observer’s strategy is fixed and known can be easily handled by methods
of classical optimal control theory. The goal is to guide an evader (E) from its starting
position xS to its desired target xT while minimizing the “cumulative observability” (also
called “cumulative cost”) along the way through its state space represented by some compact
set � ⊂ R

d
. More precisely, we will suppose that A is a compact set of control values, and

A is the set of E’s admissible controls which are measurable functions a : R �→ A. The
evader’s dynamics are defined by y′

(t) = f ( y(t), a(t)), with the initial state y(0) = x ∈ �.

(Even though E only cares about the optimal trajectory from xS , the method we use encodes
optimal trajectories to xT from all starting positions x.) In all of our numerical examples,
we will assume that E’s state is simply its position, f is its velocity defined on a known
map � that excludes (impenetrable, occluding) obstacles, and E is allowed to travel along
∂� (including the obstacle boundaries). Suppose Ta = min{t ≥ 0 | y(t) = xT } is the
travel-time-through-� associated with this control. A pointwise observability function (also
called cost function) K : � × A �→ R is then defined to reflect O’s surveillance capabilities
for different parts of the domain, taking into account all obstacles/occluders and E’s current
position and direction. The cumulative observability is then defined by integrating K along
a trajectory corresponding to a(·) with initial position x

J (x, a(·)) =
∫ Ta

0
K ( y(t), a(t)) dt, (2.1)

which we will also denote as J (a(·)) when x is clear from the context. As usual in dynamic
programming, the value function is then defined by minimizing the cumulative observability:
u(x) = infa(·) J (x, a(·)), with the infimum taken over controls leading to xT without leaving
� (i.e., Ta < ∞ and y(t) ∈ �,∀t ∈ [0, Ta] along the corresponding trajectory). Under
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suitable “small-time controllability” assumptions [2], it is easy to show that u is locally
Lipschitz on �. If it is also smooth, a Taylor series expansion can be used to show that u
satisfies a static Hamilton–Jacobi–Bellman PDE:

min
a∈A

{K (x, a) + ∇u(x) · f (x, a)} = 0, ∀x ∈ �\{xT }; u(xT ) = 0, (2.2)

with the special treatment at ∂�\{xT }where the minimum is taken over the subset of control
values A that ensure staying inside �.

Unfortunately, the value function u is generically non-smooth, and there usually are
starting positions with multiple optimal trajectories—these are the locations where the char-
acteristics cross and ∇u is undefined. Thus, a classical solution to (2.2) usually does not
exist. The theory of viscosity solutions introduced by Crandall and Lions [11] overcomes
this difficulty by selecting the unique weak solution coinciding with the value function of
the original control problem. Restricting the process dynamics to � is similarly handled by
switching to domain-constrained viscosity solutions [2,33].

To simplify the exposition, we focus on isotropic problems, where the observability K and
the speed of motion f depend only on x. In this case, we choose A = {a ∈ R

d | |a| = 1}
and interpret a as the direction of motion. Then, K (x, a) = K (x) and f (x, a) = f (x)a,
with f encoding the speed of motion through the point x. In this case, the optimal direction
is known analytically: a∗ = −∇u/|∇u| and (2.2) reduces to an Eikonal equation

|∇u(x)| f (x) = K (x), ∀x ∈ �\{xT }; u(xT ) = 0. (2.3)

The characteristics of these static PDEs are precisely the optimal trajectories, which define
the direction of “information flow”. This is quite useful once (2.3) is discretized on a grid
(e.g., substituting upwind divided differences for partial derivatives, while taking u = +∞
for all gridpoints outside of � to enforce the state constraints). The discretization yields a
large coupled system of nonlinear equations. Knowing the characteristic direction for every
gridpoint, one could, in principle, reorder the equations, effectively decoupling this system.
But since the PDE is nonlinear, its characteristic directions are not known in advance. One
path1 to computational efficiency is to determine those characteristic directions simultane-
ously with solving the discretized system, in the spirit of Dijkstra’s classical algorithm for
finding shortest paths on graphs [14]. Two such non-iterative methods (Tsitsiklis’ algorithm
[37] and Sethian’s fast marching method [29]) are applicable to this special isotropic case.
Once (2.3) is solved, the optimal trajectory may be recovered by finding the path orthogonal
to the level curves of u(x). This can be achieved numerically by the steepest descent method
on u(x). An example of the solution of (2.3) is shown in Fig. 1.

3 Multiple Observer Locations and Different Notions of Optimality

Wenow transition to the settingwhere the observer has a choice ofmultiple surveillance plans.
Assuming that the observer remains stationary, this is equivalent to choosing its position from
a fixed set of r locations X = {x̂1, . . . , x̂r } known to the evader. Each location is associated
1 Fast sweeping [39] is another popular approach for gaining efficiency in solving Eikonal equations. We
refer readers to [7,8] for a review of many other “fast” techniques, including the hybrid marching/sweeping
methods that aim to combine the best features of both approaches. Even though our own implementation
is based on fast marching, any of these methods can be used to solve isotropic control problems arising in
subsequent sections. Which one will be faster depends on the domain geometry and the particular pointwise
observability functions.
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Fig. 1 a Observability function K (x) for an observer position (0.5, 0.5). The gray rectangle is an obstacle,
which obstructs the vision of the observer. The shadow zones created by the obstacle can be computed using
the solution of the Eikonal equation (see Sect. 5.1). b Contour plot of the solution of (2.3) for f (x) = 1 and
the cost function in (a). The red diamond is the starting position, the red circle is the target position, and the
green curve is the optimal trajectory, which is orthogonal to the level curves of u(x) and follows a part of the
obstacle boundary. See Sect. 5 for additional information and parameters used (Color figure online)

with a pointwise observability function Ki (x) for an evader moving through x ∈ � and an
observer stationed at x̂i . (Typically, Ki is a decreasing function of |x − x̂i | when x is visible
from x̂i or a small constant σ > 0 if x is in a “shadow zone”; see Sect. 5 for further details.)

This results in r different definitions of the cumulative observabilityJ = [J1, . . . ,Jr
]T for

a particular control. Ideally, a rational evader would prefer a path that minimizes its exposure
to all possible observer locations x̂i . Unfortunately, there usually does not exist a single
control minimizing all Ji ’s simultaneously. This naturally leads us to a notion of Pareto
optimal trajectories and the methods for computing them efficiently. We review two such
methods2 in Sect. 3.1 and explain how they can be used for planning by an evader optimizing
either the worst-case or average-case observability in Sect. 3.2.

3.1 Multiobjective Path Planning

For a fixed starting position x ∈ �, a control a(·) is dominated by a control â(·) if
Ji (x, â(·)) ≤ Ji (x, a(·)) for all i and the inequality is strict for at least one of them. We call
a(·) Pareto optimal if it is not dominated by any other control. In other words, Pareto opti-
mal controls are the ones that cannot be improved with respect to any one criterion without
making them worse with respect to another. The vector of costs associated with each Pareto
optimal control defines a point in Rr and the set of all such points is the Pareto front (PF). In
path planning applications, the PF is typically used to carefully evaluate all trade-offs. (For
example, what is the smallest attainable J1 given the desired upper bounds on J2, . . . ,Jr ?)

2 Here, we describe thesemethods in terms of exposure to different observer’s positions, but both of themwere
introduced for much more general multiobjective control problems. In many applications, it is necessary to
balance completely different criteria, e.g., time vs fuel vsmoney vs threat, etc.Othermethods for approximating
the full PF can be found in [13] and [18].
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Fig. 2 a Convex smooth Pareto front with a point Q corresponding to the worst-case optimal λ = (λ1, λ2) ∈
[0, 1]2. The line perpendicular to λ is tangent to PF at Q. If any part of PF fell below it, the path corresponding
to Q would not be λ-optimal. The dotted line is the central ray (where J1 = J2)). b Non-convex smooth
Pareto front. Points P and R correspond to two different λ-optimal paths. The portion of PF between P and
R (including the worst-case optimal point Q) cannot be found by scalarization. Point S, found as a convex
combination of P and R, is average-case optimal

Mitchell and Sastry developed a method for multiobjective path planning [25] based
on the usual scalarization approach to multiobjective optimization [23]. Let �r = {λ =
(λ1, . . . , λr ) | ∑r

i=1 λi = 1, and all λi ≥ 0}. For each λ ∈ �r , one can define a new

pointwise observability function K λ = ∑r
i=1 λi Ki and a new cumulative observability

function J λ = ∑
i Ji . A weighted cost Eikonal equation

|∇uλ
(x)| f (x) = K λ

(x) (3.1)

is then solved for a fixed λ, providing a control function aλ
(·) satisfying aλ

(·) ∈
argmina(·)∈A J λ

(xS, a(·)). We call such a control function λ-optimal. If λi > 0 for all
i , the obtained λ-optimal control is also guaranteed to be Pareto optimal; see Fig. 2. How-
ever, if at least one λi = 0 and multiple λ-optimal strategies exist for a specific λ, then some
of the λ-optimal strategies may not be Pareto optimal. Such corner cases (illustrated in Fig. 5)
might require additional pruning; alternatively, one can rule out such non-Pareto trajectories
by perturbing λ to ensure that all components are positive.

Additional linear PDEs can be solved simultaneously to compute the individual costs
(J1, . . . ,Jr ) incurred along any λ-optimal trajectory; for example, when f and all Ki ’s are
isotropic, the corresponding linear equations are

∇v
λ
i · ∇uλ = Ki K

λ
/ f 2, (3.2)

where v
λ
i (x) = Ji

(
x, aλ

(·)
)

.

To approximate the PF, this procedure is repeated for a large number of λ ∈ �r . Unfortu-
nately, as shown in Fig. 2, scalarization-based methods can only recover the convex portion
of PF [12]. This is an important drawback since in many optimal control problems, the non-
convex parts of PF are very common and equally important. An alternative approach was
developed in [19] to address this limitation and produce the entire PF for all x ∈ � simulta-
neously. The method is applicable for any number of observer positions, but to simplify the
notation we explain it here for r = 2 only. We expand the state space to �e = � × [0, B]
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and define the new value functionw(x, b) = inf J1(x, a(·)), with the infimum taken over all
controls satisfying J2(x, a(·)) ≤ b. Thus, b is naturally interpreted as the current “budget”
for the secondary criterion. The value function is then recovered by solving an augmented
PDE

min
a∈A

{
K1(x, a) + ∇xw · f (x, a) − K2(x, a)

∂w

∂b

}
= 0. (3.3)

Themethod in [19] uses a first-order accurate semi-Lagrangian discretization [16] to compute
the discontinuous viscosity solution of (3.3) for a range of problems in multi-criterion path
planning. The method was later generalized to treat constraints on reset-renewable resources
[34]. The same approach was also adapted to Probabilistic RoadMap graphs and field tested
on robotic platforms at the United Technologies Research Center [10].

Aside from approximating the entire PF, the key computational advantage is the explicit
causality: since K2 is positive, all characteristics are monotone in b and methods similar to
the explicit “forward marching” in b-direction are applicable (i.e., the system of discretized
equations is trivially de-coupled). Of course, the main drawback of the above idea is the
higher dimensionality of�e. For r observer locations, the scalarization approach [25] requires
solving (r + 1) PDEs on � ⊂ R

d , but the parameter space �r is (r − 1)-dimensional. In
contrast, with w(x, b) there are no parameters, but the computational domain is (d + r − 1)-
dimensional. Several techniques for restricting the computations to a relevant part of�e were
developed in [19], but the computational cost and memory requirements are still significantly
higher than for any (single) HJB solve in �.

3.2 Different Notions of Adversarial Optimality

The Pareto front allows us to answer one version of the surveillance-evasion problem: if the
evader is completely risk-averse, he may choose the worst-case optimal strategy. That is, E
will pick a control aW (·) that minimizes the observability from its “worst” observer position
x̂i :

max
x̂i∈X

Ji (aW (·)) ≤ max
x̂i∈X

Ji (a(·)), ∀a(·) ∈ A.

This corresponds to the version of the problemwhere E is forced to “go first”, withO selecting
themaximizing x̂i ∈ X in response. The following result shows that the intersection of Pareto
front with the “central ray” (i.e., the line where J1 = J2 · · · = Jr ) yields the worst-case
optimal strategy for E:

Theorem 3.1 If a=(·) is a Pareto optimal control satisfying Ji (a=(·)) = J j (a=(·)) for all
i, j ∈ {1, . . . , r}, then a=(·) is also worst-case optimal.

Proof Suppose there exists a′
(·) s.t.

max
x̂i∈X

Ji (a
′
(·)) < max

x̂i∈X
Ji (a=(·)).

Then, for all j we have:

J j (a
′
(·)) ≤ max

x̂i∈X
Ji (a

′
(·)) < max

x̂i∈X
Ji (a=(·)) = J j (a=(·)),

which contradicts the Pareto optimality of a=(·). �
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Fig. 3 aTwoobserver positions and the correspondingobservabilitymaps Ki .bλ
∗-optimal path corresponding

to λ
∗ ≈ (0.30, 0.70) is shown in yellow over the level sets of uλ

∗
. The radii of black disks centered at x̂′

i s
are proportional to the corresponding components of λ

∗. The two best-response trajectories used when O
chooses x̂1 or x̂2 are shown in blue and pink, respectively. The trajectory in yellow is worst-case optimal for
the evader as it is equally observable from both locations. c The convex part of Pareto front (computed using
the scalarization approach) intersects the “central ray” (J1 = J2, shown in red). The worst-case optimal
vector λ

∗ is orthogonal to PF at the point of intersection (in yellow), whose coordinates correspond to the
partial costs of the optimal path. The probability distribution λ

∗, together with the yellow trajectory, form a
Nash equilibrium of the strategic game between the evader and the observer described in Sect. 4. See Sect. 5
for additional information and parameters used (Color figure online)

The corresponding vector of costs J (a=(·)) may lie on the convex portion of PF, as in
Figs. 2a and 3, in which case aW = a= can be found by scalarization [25]. But if J (a=(·))
lies on the non-convex portion of PF, as in Figs. 2b and 4, the computational cost of finding
the evader’s worst-case optimal strategy grows exponentially with r as it involves solving a
nonlinear differential equation in (r + d − 1) dimensions [19]. As it will be shown in Sects.
4–6, the latter scenario is particularly common on domains with obstacles.

Luckily, another interpretation of evader’s objectives proves much more computationally
tractable. Even though a=(·) yields the lowest worst-case observability that E can achieve if
he must choose a single control function deterministically, E might be able to attain an even
lower expected (or average-case) observability if he switches to “mixed policies”, choosing
a probability distribution over a set of Pareto optimal controls. This is illustrated in Fig. 2b:
by choosing probabilistically a path corresponding to the point P and another corresponding
to point R, E obtains a new point S on the central ray, whose expected observability is
lower than for the worst-case optimal Q regardless of O’s selected location. This, of course,
assumes that O’s location is selected without knowing in advance which of the two paths
will be used by E. Indeed, for any single run from xS to xT , the worst-case observability
of this probabilistic policy is based on the worst cases for P and R, which (from the point
of view of a completely risk-averse evader) would make the average-case optimal S inferior
to the worst-case optimal Q. This scenario is fully realized in Fig. 4, where J1(a=(·)) =
J2(a=(·)) ≈ 4.94, the expected observability corresponding to the optimal “probabilistic
mix” of yellow and green trajectories is ≈ 4.83, but the worst case associated with this
mixed policy is J1(yellow) ≈ 6.03.

We note that O could also consider using a mixed strategy. In this case, K λ can be
interpreted as the expected pointwise observabilitywhen using the probability densityλ ∈ �r

over the positionsX . Similarly,J λ
(a(·)) is the expected cumulative observabilitywhen using
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Fig. 4 a Two observer positions and the corresponding observability maps Ki . b Two λ
∗-optimal trajectories

corresponding to λ
∗ ≈ (0.29, 0.71) are shown in yellow and green over the level sets of uλ

∗
. The two

best-response trajectories used when O chooses x̂1 or x̂2 are shown in blue and pink, respectively. The worst-
case optimal trajectory is plotted in gray. c Convex part of the Pareto front (in cyan) computed using the
scalarization approach, and the whole Pareto front (in black) computed using the method in [19]. The convex
part of the Pareto front does not intersect the central ray (shown in red). The worst-case optimal strategy
(in gray) lies on the non-convex part of the Pareto front and thus cannot be computed using scalarization.
The Nash equilibrium pair of strategies consists of using positions x̂1 and x̂2 with probabilities λ

∗ for O
and using the yellow and green trajectories (both of which lie on the convex part of the PF) with probability[
p(yellow), p(green)

] = [0.29, 0.71] for E (see Sect. 4). The latter mixed strategy is average-case optimal
for E. See Sect. 5 for additional information and parameters used (Color figure online)

the control function a(·). Figure 2 shows that when we are interested in the average-case
optimal behavior for both O and E, we only need to consider a convex hull of PF (denoted
co(PF)), and the scalarization is thus adequate. Note that in Figs. 3, 4, and 6, the set co(PF)

was approximated by imposing a fine grid on �r and resolving (3.1) for each sampled λ.

Since we only care about the intersection of co(PF) with the central ray, this procedure is
wasteful—and prohibitively expensive for high r . In the next section, we consider the case
where both E and O optimize the expected/average-case performance by reformulating this
as a semi-infinite strategic zero-sum game. We show that such surveillance-evasion games
(SEGs) can be solved through scalarization combined with convex optimization, without
approximating the (convex hull of the) entire Pareto front.

Remark 3.2 Up till now, our geometric interpretation in Figs. 3, 4, and 6 assumed that either
PF or at least the co(PF) must intersect the central ray. If this is not the case, O will avoid
using some of his positions. For example, Fig. 5 shows the pink and yellow trajectories
corresponding to a1(·) and a2(·), which are optimal with respect to the observer positions x̂1
and x̂2. Since J1(a2(·)) ≤ J2(a2(·)), the E’s worst case for a2(·) is actually the observer
location x̂2. A generalization of this scenario for r > 2 is covered in Theorem 4.2.

4 Surveillance-Evasion Games (SEGs)

In this section, we reformulate the problem of evasive path planning under surveillance
uncertainty as a strategic game. This can model either the actual adversarial interactions
between two players or the risk-averse logic of the evader even if the surveillance patterns
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Fig. 5 a Two observer positions and the corresponding observability maps Ki plotted in logarithmic scale. b

Value function uλ
∗
at λ

∗ = (0, 1). The worst-case optimal strategy for O is the yellow trajectory, but both
the yellow trajectory and the light blue trajectories are λ

∗-optimal. The pink trajectory is the best response
when the observer uses position x̂1. c Pareto front does not intersect the central ray. The worst-case optimal
trajectory is the one point on the Pareto front that is closest to the central ray: the yellow point. The blue
point is λ

∗-optimal, but it is not Pareto optimal as it is dominated by the yellow point. The Nash equilibrium
strategy consists of the position x̂2 for O, and the yellow trajectory for E (see Sect. 4). See Sect. 5 for additional
information and parameters used (Color figure online)
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Fig. 6 a Two observer positions and the corresponding observability maps Ki on a domain with a single
obstacle (shown in gray). b Two λ

∗-optimal trajectories corresponding to λ
∗ ≈ (0.39, 0.61) are shown in

yellow and green over the level sets of uλ
∗
. The two best-response trajectories used when O chooses x̂1 or

x̂2 are shown in blue and pink, respectively. The trajectories in yellow and green are not worst-case optimal
for the evader but are used in E’s mixed Nash equilibrium strategy. c The convex part of the Pareto front
does not intersect the central ray (shown in red). This is the same situation already observed in Fig. 4, but it
is even more common on domains with obstacles. The Nash equilibrium pair of strategies consists of using
positions x̂1 and x̂2 with probabilities λ

∗ for O and using the yellow and green trajectories with probability[
p(yellow), p(green)

] = [0.65, 0.35] for E. See Sect. 5 for additional information and parameters used (Color
figure online)

are not likely to change in response to that evader’s strategy. (The latter case is typically
interpreted as a “game against nature”.)

We assume that the evader is attempting to minimize (while the observer is attempting
to maximize) the total expected observability integrated over E’s trajectories and dependent
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on O’s positions. We further assume that O is aware of E’s initial location xS and its target
location xT but not of the trajectories chosen by E. Similarly, E is aware of the predefined
locations of O, but not of the realized positions chosen by O. This game may be stated
deterministically or stochastically. In the deterministic case, each player chooses a single
pure strategy. That is, the observer chooses a single location x̂i ∈ X and the evader chooses
a single control function a(·) ∈ A. In the probabilistic setting, each player chooses a mixed
strategy, i.e., a probability distribution over the pure strategies. In other words, O chooses
a probability distribution λ ∈ �r over positions and E chooses a probability distribution
θ ∈ �A over control functions. The mixed strategy λ of the observer can be interpreted in
several different ways:

1. O chooses a single position x̂i according to the probability distribution λ before E starts
moving and remains at that position until the end of the round (that is, until E reaches
the target).

2. O can randomly teleport between its positions at any time, and each λi reflects the
proportion of time spent at the corresponding position x̂i .

3. O has a budget of “observation resources”, and λ reflects the fraction of these resources
spent at each location. In this case, Ki reflects the pointwise observability corresponding
to 100% of resources allocated to the position x̂i .

Since we assume that neither player has access to the realization of the opponent’s strategy in
real time, these three interpretations are equivalent (and lead to the same optimal strategies)
in our context. The payoff function of the game is the cumulative expected observability and

can be expressed as P(λ, θ) = Eθ

[
J λ

(a(·))
]
where Eθ [·] denotes the expectation over the

mixed strategy θ .
This SEG is a two-player zero-sum game [26], as each player’s gains or losses are exactly

balanced by the losses or gains of the opponent. Furthermore, it is semi-infinite as the set of
pure strategies forO is a finite number r , whereas the set of pure strategies for E is uncountably
infinite. A central notion of solution for strategic games is a Nash equilibrium [26], a pair
of strategies for which neither player can improve his payoff by unilaterally changing his
strategy. That is, a pair of strategies (λ

∗
, θ

∗
) is a Nash equilibrium if both of the following

conditions hold:
P(λ

∗
, θ

∗
) ≤ P(λ

∗
, θ) for all θ ∈ �A ,

P(λ
∗
, θ

∗
) ≥ P(λ, θ

∗
) for all λ ∈ �r .

(4.1)

A pure strategy Nash equilibrium does not always exist, and therefore, we focus on finding
a mixed strategy Nash equilibrium. In our setting, the minimax theorem for semi-infinite
games [28] assures that a mixed strategy Nash equilibrium (λ

∗
, θ

∗
) exists, that all Nash

equilibria have the same payoff, and that they are attained at the minimax (which is also
equal to the maximin):

P(λ
∗
, θ

∗
) = min

θ∈�A
max
λ∈�r

Eθ

[
J λ

(a(·))
]

= max
λ∈�r

min
θ∈�A

Eθ

[
J λ

(a(·))
]

. (4.2)

Although θ is a probability distribution over the uncountable set �A, there always exists an
optimal mixed strategy θ

∗ which is a mixture of at most r pure strategies, where r is the
maximum number of positions for the observer [28]. In fact, it is easy to show that there will
always exist a Nash equilibrium (λ

∗
, θ

∗
) with the number of pure strategies used in θ

∗ not
exceeding the number of nonzero components in λ

∗
.

In the case of finite two-player zero-sum games, computing the Nash equilibrium is easily
achieved by linear programming. For our SEGs, the challenge in computing a Nash equilib-
rium arises from enumerating the control functions a(·) ∈ A which are part of E’s mixed
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strategy. Indeed, we do not possess a useful parametrization of the set of control functions
A, and our only computational kernel to generate a single λ-optimal control function aλ

(·)
is to solve the weighted cost Eikonal equation in (3.1). For that reason, our solution strategy
to compute the Nash Equilibrium involves two steps:

1. Find an approximate optimal strategy of the observer λ
∗ using convex optimization

(see Sect. 4.1).
2. Find an approximate optimal strategy of the evader θ∗ by generating near-optimal control

functions (see Sect. 4.2).

4.1 Optimal Strategy of the Observer

In order to compute an optimal strategyλ
∗ of the observer,we consider the following problem:

max
λ∈�r

min
a(·)∈AJ λ (

xS, a(·)
) = max

λ∈�r

uλ
(xS) . (4.3)

For any fixed strategy λ for O, the inner minimization represents the optimal response of
player E to that fixed strategy. Therefore, the maximin problem answers the question: what
is the optimal strategy for O given that E gets to observe that strategy and respond? We call
this problem the E-response problem. Note that although E could use a mixed strategy, there
always exists a pure strategy which is optimal. That is:

min
θ∈�A

Eθ

[
J λ

(a(·))
]

= min
a(·)∈AJ λ

(a(·)) . (4.4)

This implies that any optimal λ for (4.3) is also an optimal λ for (4.2). Consequently, the
optimal λ for (4.3) is one half of a Nash equilibrium pair. However, the optimal pair (λ, a(·))
of (4.3) is not a Nash equilibrium, except in a specific situation described in the following
theorem.

Theorem 4.1 Suppose there exists λ= ∈ �r with associated λ=-optimal control function
aλ=(·) which satisfies Ji (a

λ=(·)) = J j (a
λ=(·)) for all i, j ∈ {1, . . . , r}. Then, (λ=, aλ=(·))

is a Nash equilibrium.

Proof The fact that E cannot improve his payoff follows from the definition of aλ= ∈
argmina(·) J λ=(a(·)). O may not improve his payoff either as for all λ,

J λ
(aλ=(·)) =

∑
λiJi (a

λ=(·)) =
∑

λ=,iJi (a
λ=(·)) = J λ=(aλ=(·)) .

�
This situation corresponds to the case when the convex part of the Pareto front intersects
the central ray, such as in the example in Fig. 3. Theorem 3.1 implies that in this case, the
worst-case optimal strategy for E coincides with E’s half of the Nash equilibrium. Note that
in general such a λ= does not have to exist; for example, in Figs. 4 and 6 the convex part of
the Pareto front does not intersect the central ray. In such situations, the worst-case optimal
strategy for E and the Nash equilibrium are different. Moreover, the latter involves a mixed
strategy for E covered in Sect. 4.2.

We nowdirect our attention to solving the E-response problem numerically. Equation (4.3)
may be stated as the following optimization problem:

max
λ

G(λ)
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s.t. λi ≥ 0,
r∑

i=1

λi = 1 . (4.5)

The objective function G(λ) = mina(·)∈A
∑r

i=1 λiJi (a(·)) is concave as it is the point-
wise minimum of linear functions. Furthermore, the vector of individual cumulative costs
J (aλ

(·)), where aλ
(·) ∈ argmina(·)∈A J λ

(a(·)), is a supergradient of G (denoted as

J (aλ
(·)) ∈ ∂G(λ)). A supergradient provides an ascent direction of a concave function,

i.e., w ∈ ∂G(λ) if for all λ̂ ∈ �r ,

G(λ̂) − G(λ) ≤ w
T
(λ̂ − λ) .

The fact that J (aλ
(·)) ∈ ∂G(λ) is seen from the following computation: for any λ̂,

G(λ̂) − G(λ) =
(
min
a∈A

r∑
i=1

λ̂iJi (a(·))
)

−
r∑

i=1

λiJi (a
λ
(·))

≤
r∑

i=1

λ̂iJi (a
λ
(·)) −

r∑
i=1

λiJi (a
λ
(·))

= J (aλ
(·))T (λ̂ − λ) .

Evaluating the vector J (aλ
(·)) can be challenging computationally; we show how this can

be done in Sect. 5.2. Once this ascent direction is known, one still needs to ensure that λ

remains a feasible probability distribution over X , and we use the orthogonal projection
operator 	 : Rr → �r . The operator 	 can be computed in O(r log r) operations [4,38]
as summarized in Algorithm 4.1. The resulting projected supergradient method [3, Chap. 8]
is shown in Algorithm 4.2. The iterates of Algorithm 4.2 for the example from Fig. 6 are
illustrated in Fig. 7.

Algorithm 4.1 Orthogonal projection onto the probability simplex

1: Input λ ∈ R
r

2: Sort λ into u: u1 ≥ u2 ≥ · · · ≥ ur
3: Find ρ = max{1 ≤ j ≤ r : u j + 1

j

(
1 − ∑ j

i=1 ui

)
> 0}

4: τ ← 1
ρ

(
1 − ∑ρ

i=1 ui
)

5: return x s.t. xi = max{λi + τ, 0}, i = 1, . . . , r .

Algorithm 4.2 Projected supergradient method for finding the maximum of G over the set
�r
1: Input Initial guess λ0, stepsizes αk , number of iterations n
2: for k = 0 : (n − 1) do
3: Compute G(λk ) = uλk (xS) and find some g ∈ ∂G(λk )
4: λk+1 ← 	

(
λk + αk g

)
5: end for
6: return argmax

λ∈{
λ0,...,λn

}G(λ)
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Fig. 7 a Convex part of PF and the individual costs of the first six iterates λk of Algorithm 4.2 (with stepsizes
αk = 3

/
k) for the problem shown in Fig. 6. b The λk -optimal trajectories of the first six iterates. We note that

only a few iterates are needed to obtain trajectories which are close to the central ray. Thus, it does not require
computing the whole PF which saves computational time (Color figure online)

4.2 Optimal Strategy of the Evader

Computing the evader’s half of the Nash equilibrium is more challenging due to the fact that
the set of E’s pure strategies, i.e., the set of control functions a(·) leading from the source xS
to the target xT , is uncountably infinite. We propose a heuristic strategy to approximate θ

∗
which relies on two properties of the Nash equilibrium in semi-infinite games:

1. There exists a Nash mixed strategy for E which uses only r pure strategies3 [28].
2. All pure strategies employed with positive probability in the Nash equilibrium have the

same expected payoff, with the expectation taken over the other half of the Nash. In
particular, all control functions used with positive probability in the Nash equilibrium
are λ

∗-optimal.

The following characterization of the Nash equilibrium helps us generate a good candidate
set of λ

∗-optimal trajectories.

Theorem 4.2 Let (λ∗
, θ

∗
) ∈ �r × �A and I = {i | λ

∗
i �= 0}. (λ∗

, θ
∗
) is a Nash equilibrium

if and only if the following three conditions hold:

1. λ
∗ is a constrained maximizer of G(λ) in (4.5),

2. if i ∈ I, then Eθ
∗
[Ji (a(·))

] = G(λ
∗
), and

3. if i /∈ I, then Eθ
∗
[Ji (a(·))

] ≤ G(λ
∗
).

Proof ( ⇒)
Suppose (λ

∗
, θ

∗
) is a Nash equilibrium. Item 1 follows from the minimax theorem for

semi-infinite game and (4.4). Assume Item 2 does not hold, then there must exist i, j ∈ I

3 This result assumes that the set S = {(s1, s2, . . . , sr ) | si = P(x̂i , a(·)); i = 1, 2, . . . , r; a(·) ∈ A} ⊂ R
r

is bounded and co(S) is closed. In our case, S is not bounded for the full set of control functions in A but
becomes bounded if we restrict our attention to Pareto optimal control functions.
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s.t. Eθ
∗
[Ji (a(·))

]
> Eθ

∗
[J j (a(·))

]
. Consider the strategy λ̂ ∈ �r :

λ̂k =

⎧⎪⎨
⎪⎩

λ
∗
i + λ

∗
j if k = i

0 if k = j

λ
∗
k otherwise

.

Then, we have that:

P(λ
∗
, θ

∗
) =

r∑
i=1

λ
∗
i Eθ

∗
[
Ji (a(·))

]
<

r∑
i=1

λ̂iEθ
∗

[
Ji (a(·))

]
= P(λ̂, θ

∗
) .

This contradicts that (λ
∗
, θ

∗
) is a Nash equilibrium, and thus, Item 2 must hold. A similar

argument can be used to demonstrate Item 3: assume there exists i /∈ I withEθ
∗
[Ji (a(·))

]
>

G(λ
∗
). Let j ∈ I and consider the strategy λ̂:

λ̂k =

⎧⎪⎨
⎪⎩

λ
∗
j if k = i

0 if k = j

λ
∗
k otherwise

Once again, this implies that P(λ
∗
, θ

∗
) < P(λ̂, θ

∗
)which contradicts that (λ∗

, θ
∗
) is a Nash

equilibrium.
(⇐) Assume Items 1–3 hold and suppose there exists θ s.t. P(λ

∗
, θ) < P(λ

∗
, θ

∗
), then

there must exist a(·), used with nonzero probability in θ such that:

J λ
∗
(a(·)) < P(λ

∗
, θ

∗
) = G(λ

∗
) .

This contradicts the definition of G(λ
∗
) = argmina(·)∈A J λ

∗
(a(·)). Thus, for all θ ∈ �A

we have that:
P(λ

∗
, θ

∗
) ≤ P(λ

∗
, θ) . (4.6)

From Items 2 and 3, it follows that for all λ ∈ �r :

P(λ
∗
, θ

∗
) =

r∑
i=1

λ
∗
i Eθ

∗
[Ji (a(·))

] ≥
r∑

i=1

λiEθ
∗
[Ji (a(·))

] = P(λ, θ
∗
) . (4.7)

Equations (4.6) and (4.7) imply that (λ∗
, θ

∗
) is a Nash equilibrium. �

Any mix of λ
∗-optimal trajectories forms a λ

∗-optimal strategy for the evader. However,
that mix is part of a Nash equilibrium only if the observer has no incentive to change his
strategy in response. Theorem 4.2 says that this is the case when the θ

∗ defining the mix of
individual observability of λ

∗-optimal trajectories lies on the central ray of the Pareto front
for a reduced problem. That is, the PF for the SEG where the observer has a potentially
smaller number of positions (the ones which are used with positive probability in λ

∗). This
PF is in an s-dimensional criterion space, where s = |I| ≤ r . In Fig. 3, the number of
observer positions is r = 2, and the dimension of the “reduced” problem is also s = 2
since both positions are used with positive probability. In this example, a single λ

∗-optimal
trajectory exists and corresponds to the intersection of the central ray and the convex part
of the PF. In the examples from Figs. 4 and 6, we still have r = 2 and s = 2; however,
there are two λ

∗-optimal trajectories. The Nash mixed strategy for E is thus obtained by
finding a probability distribution (ω1, ω2) ∈ �2 over these two trajectories (a1(·), a2(·))
such that the linear combination of their individual costs lies on the central ray, i.e., such
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Fig. 8 a Two λ
∗-optimal trajectories in pink and blue plotted over the level sets of uλ

∗
(x). The source location

xS is on a shockline of uλ
∗
(x), and the two trajectories have the same expected cumulative observability, but

different individual cumulative observability. b The individual cost function v
λ
∗

1 (x) is discontinuous at the

source xS . The black square is the region displayed on (c). c The individual cost function v
λ
∗

1 (x) zoomed
in around the source and a depiction of the upwind stencil. The stencil (displayed larger for the sake of

visualization) contains a point on either side of the line of discontinuity of v
λ
∗

1 (x) (Color figure online)

that ω1J1(a1(·)) + ω2J1(a2(·)) = ω1J2(a1(·)) + ω2J2(a2(·)). In the example from Fig. 5,
r = 2 and s = 1. The PF of the reduced problem is a single point and thus trivially lies
on the “central ray”, yielding a pure Nash equilibrium strategy for E. In Sect. 5, we show
additional examples with r = 3, s = 3, and r = 6, s = 4. Computationally, Theorem 4.2
means that if we are able to find a set of g λ

∗-optimal control functionsA(λ
∗
) = {a j (·)} j=g

j=1 ,

such that Items 2 and 3 hold for some probability distribution ω ∈ �g , then λ
∗ is O’s optimal

response to ω and we have found a Nash equilibrium pair. Note that the minimum number
of trajectories g needed to form a Nash equilibrium is bounded above by s.

One remaining task is finding such a setA(λ
∗
). Multiple λ

∗-optimal controls only exist if

xS lies on a shockline of u
λ

∗
, where the gradient is undefined (e.g., the limxi→xS ∇u(xi ) can

be different depending on the sequence {xi }i ). Numerically, our approximation of uλ
∗
will

yield a single upwind approximation of ∇uλ
∗
, yielding a single λ

∗-optimal trajectory. As
we show in Fig. 8, multiple optimal trajectories might lie in the same upwind quadrant and
any numerical implementation of gradient descent will find only one of them. (In theory, one
can approximate the other by perturbing xS , but the direction of perturbation is unobvious,
particularly when xS lies on an intersection of multiple shocklines, which is surprisingly
common in this application as we show in further sections.)

This challenge is even more pronounced because Algorithm 4.2 yields an approximate
value of λ

∗, since xS will now be only near a shockline for some perturbed λ
∗
δ = λ

∗ + δλ.
The resulting single λ

∗
δ -optimal control will be a reasonable approximate solution for the

max–min problem, but can be arbitrarily far from the solution to a min–max problem (where
O has a chance to switch to another strategy).

In view of these challenges, we opt for a different approach, where an approximation
to A(λ

∗
) is computed iteratively, by adaptively growing a collection of λ

∗
δ -optimal controls

corresponding to different δλ’s. In some degenerate cases, generating even the first a1(·) ∈
A(λ

∗
)may not be trivial since some λ

∗-optimal control computed by solving the Eikonal will
not be necessarily Pareto optimal. For example, in Fig. 5 two control functions areλ

∗-optimal,
but only one of them is used in the Nash strategy of E as the blue trajectory violates Item
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3. However, both trajectories are indistinguishable from the point of view of the Eikonal

solver since the position x̂1 has zero weight in the weighted observability function K λ
∗
. To

address this issue whenever s < r , we set the weight of the pointwise observability of each
unused position i /∈ I to some small value ε. (Our implementation uses ε = 10−6.) This is
equivalent to seeking the solution of the weighted cost Eikonal equation for some perturbed
λ

∗
δ = (1 − ε)λ

∗ + ε
r−s IIc , where IIc is the characteristic function of the complement of

I. We now turn our attention to finding further perturbations needed to generate λ
∗
δ -optimal

trajectories in order to make Item 2 approximately hold. Our goal is to have

g∑
j=1

ω jJi (a j (·)) = G(λ
∗
) (4.8)

approximately hold for all i ∈ I = {i | λ
∗
i > 0}. Unless this is already true with g = 1 (based

on the previously found a1(·)), we will need to find more λ
∗
δ -optimal controls. Without loss

of generality, assume that I = {1, . . . , s}, and suppose we have already generated a set of k
λ

∗
δ -optimal trajectories Ak = {a1(·), a2(·), . . . , ak(·)}, for some k < g . In order for (4.8) to

approximately hold, we will be increasing k until the norm of residual

R(ω) =

⎡
⎢⎢⎢⎣

G(λ
∗
)

G(λ
∗
)

...

G(λ
∗
)

⎤
⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎣

J1(a1(·)) J1(a2(·)) . . . J1(ak(·))
J2(a1(·)) J2(a2(·)) . . . J2(ak(·))

...
...

. . .
...

Js(a1(·)) Js(a2(·)) . . . Js(ak(·))

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

ω1
ω2
...

ωk

⎤
⎥⎥⎥⎦ (4.9)

falls under a threshold tolR. Assuming the set of trajectoriesAk has already been computed,
the probability distribution ω

k ∈ �k minimizing the norm of this residual ‖R(ω
k
)‖2 can

be found by quadratic programming. The residual vector R(ω
k
) provides information about

which control functions are missing. For example, consider the case where we observe that
a single entry of R(ω

k
) is large and positive, i.e., for some i ∈ I:

k∑
j=1

ω
k
jJi (a j (·)) << G(λ

∗
) .

The characterization in Theorem 4.2 implies thatA(λ
∗
) should include at least one trajectory

much more observable from position x̂i . A λ
∗
δ -optimal trajectory with that property can be

found by perturbing λ to slightly decrease the role of x̂i in O’s chosen strategy. This is

equivalent to resolving the Eikonal with K λ
∗
δ corresponding to λ

∗
δ = 	I

(
λ

∗ − δei
)
where

δ << 1 is chosen adaptively (see Algorithm 5.1), ei is the i-th standard basis vector, and 	I
is the orthogonal projection onto the simplex defined only with elements of I. Once a new
λ

∗
δ -optimal control function has been found, we may solve the quadratic program in (4.9)

again with an additional column and repeat the process until the norm of the residual is
sufficiently small. More generally, a large ‖R(ω)‖ implies that some control functions in
A(λ

∗
) (or some mix of control functions) not in the current set Ak have a high observability

with respect to the positive entries of R(ω) while having a low observability with respect to
the negative entries of R(ω). Thus, we set the perturbation direction to−R(ω) instead of−ei .
Throughout this perturbation step, the entries of λ

∗ associated with the complement I are
held fixed. Our full method for computing an approximate Nash equilibrium is summarized
in Algorithm 4.3.
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This method also has a geometric interpretation in terms of the Pareto front. Whenever
θ

∗ is not a pure strategy, a hyperplane normal to λ
∗ supports PF at multiple points (corre-

sponding to all controls in A(λ
∗
)). However, any generic perturbation of λ

∗ would result
in a hyperplane supporting PF near only one of these points, and the approximation to λ

∗
found by Algorithm 4.2 will correspond to a single optimal trajectory. For example, if we
start with a1(·) corresponding to the yellow point in Fig. 6c (and associated yellow trajectory
in Fig. 6b), then a small tilt (decreasing the role of position x̂1 in O’s plan) will yield a hyper-
plane supporting PF near the green point, allowing us to approximate the green trajectory

in Fig. 6b by solving the weighted cost Eikonal equation with observability function K λ
∗
δ .

Algorithm 4.3 Computing an approximate Nash equilibrium of the SEG.

1: Find λ
∗ using Algorithm 4.2

2: I ← {i | λ
∗
i > tolλ}

3: λ
∗
δ ← (1 − ε)λ

∗ + ε
r−s IIc

4: Find λ
∗
δ -optimal control a1(·) and compute Ji (a1(·)) for all i ∈ I

5: k ← 1,A1 ← {a1(·)}, ω1 ← 1

6: while ‖R(ω
k
)‖ > tolR do

7: λ
∗
δ ← (1 − ε)	I

(
λ
∗ − δR(ω

k
)
)

+ ε
r−s IIc

8: Find λ
∗
δ -optimal control ak+1(·) and compute Ji (ak+1(·)) for all i ∈ I

9: Ak+1 ← Ak ∪ {ak (·)}
10: ω

k+1 ← argmin
ω
k+1∈�k+1

‖R(ω
k+1

)‖2
11: k ← k + 1
12: end while
13: return λ

∗, Ak , ωk

5 Numerical Matters

In this section, we detail the implementation of our algorithm and present the additional
numerical results. All algorithms were implemented in C++ and compiled with icpc version
16.0 on aMacBook Pro (16GBRAMand an Intel Core i7 processor with four 2.5GHz cores).
The code is available online at https://github.com/eikonal-equation/Stationary_SEG. Our
implementation relies on data structures and methods from Boost, Eigen, and QuadProg++
libraries.

5.1 Functions, Parameters, Methods

All of our examples are posed on the domain � = [0, 1]2 with the possible exclusion
of obstacles. All figures are based on computations on a uniform Cartesian grid of size
n×n = 501×501 (with the grid spacing h = 1/500). To simplify the discussion, we always
use a constant speed function f (x) = 1 though any inhomogeneous speed can be similarly
handled by solving the Eikonal equation (2.3).

https://github.com/eikonal-equation/Stationary_SEG
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The pointwise observability functions are defined as

Ki (x) =
{

σ, if x is in a shadow zone of x̂i ;
K̂ (|x − x̂i |) + σ, otherwise.

We set σ = 0.1 and K̂ (r) = (ρr2+0.1)−1 with ρ = 1 in all examples except in Fig. 5 (where
we set ρ = 30 simply to improve the visualization). The visibility of each gridpoint with
respect to each observer position is precomputed and stored, but the Ki values are computed
on the fly as needed.

The shadow zones for each observer are precomputed as follows. For each observer
location x̂i , two distance functions are computed: Di

0(x) and Di
(x). The first is the distance

between x̂i and x when the obstacles are absent, while the second is that distance when
obstacles are present. These distance functions can be computed by imposing the boundary
conditions Di

0(x̂i ) = Di
(x̂i ) = 0 and then solving two Eikonal equations [30]:
∣∣∇Di

0(x)
∣∣ = 1,

∣∣∇Di
(x)

∣∣ = Obs(x), (5.1)

with Obs(x) set to ∞ inside the obstacles and 1 otherwise. The shadow zone of x̂i is charac-
terized by Di

> Di
0. But due to numerical errors in their approximation, we use a threshold

value τ = 10−3h (where h is the grid spacing) and specify that x is in this shadow zone
whenever Di

(x) > Di
0(x) + τ.

The perturbation stepsize δ in Algorithm 4.3 is chosen adaptively using Algorithm 5.1.
The goal of the adaptive strategy is to find the smallest perturbation δ necessary to obtain an
additional λ∗

δ -optimal control function ak+1(·).

Algorithm 5.1 Adaptive strategy for choosing δ to generate ak+1(·)
1: δ ← δ0

2: λ
∗
δ ← (1 − ε)	I

(
λ
∗ − δR(ω

k
)
)

+ ε
r−s IIc

3: Compute a λ
∗
δ -optimal control function â(·)

4: while ‖J (â(·)) − J (a j (·))‖2 < tolδ for any j ∈ {1, . . . k} do
5: δ ← 2δ
6: λ

∗
δ ← (1 − ε)	I

(
λ
∗ − δR(ω

k
)
)

+ ε
r−s IIc

7: Compute λ
∗
δ -optimal control function â(·)

8: end while
9: ak+1(·) ← â(·)

The initialization used in our implementation is δ0 = 10−4, and the tolerance is set to
tolδ = 10−2‖J (â(·))‖2. The stepsize rule used in the supergradient iteration inAlgorithm4.2
is αk = 1

/
(k‖J (aλ0(·))‖), the initial guess λ0 is a uniform distribution on A, and the

tolerance criteria on the residual and the near 0 entries used in Algorithm 4.3 are tolR =
10−3G(λ

∗
) and tolλ = 5 · 10−3, respectively. The quadratic programming problem in (4.9)

is solved using the library QuadProg++.

5.2 Computation of Individual Costs

Running Algorithm 4.2 requires computing the vector of individual observability
J (xS, a

λ
(·)). This problem is exactly the one solved by the scalarization approach described
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in Sect. 3.1. Therefore, it can in principle be done by solving the Eikonal equation in (2.3)
with cost function K λ and associated linear equations in (3.2), i.e., G(λ) = uλ

(xS) and
Ji (xS, a

λ
(·)) = v

λ
i (xS). However, this technique has a severe drawback for this particular

application: at the optimal λ∗, vλ
∗

i is often discontinuous at xS . For example, in Fig. 8b, the
upwind stencil containing the two λ

∗-optimal trajectories contains a point on either side of

the discontinuity line of v
λ

∗
1 (which is the shockline of uλ

∗
). As a result, the value of v

λ
∗

1 (xS)

is updated by interpolating the discontinuous function v
λ

∗
1 across the line of discontinuity.

This effect happens when multiple trajectories are λ
∗-optimal. Each of these trajectories

has the same expected cumulative observability J λ
∗ = ∑

i λ
∗
i Ji , but different individual

observability Ji . This issue leads to a large numerical error when using v
λ
i (xS) to estimate

the supergradient in Algorithm 4.2, causing poor convergence of the method. Instead, we
use the following process to compute the individual costs: first, we solve the weighted cost
Eikonal equation (3.1) to obtain uλ for a fixed λ, and then, we trace the path y(t) using a
gradient descent method on the value function uλ and numerically estimate the integrals:

Ji (xS, a
λ
(·)) =

∫ T
aλ

0
Ki ( y(t), a

λ
(t)) dt, i = 1, . . . , r .

5.3 Additional Experiments and Error Metrics

We present two additional examples that include a higher number of observer plans. In Fig. 9,
we show an example where the mixed strategy Nash equilibrium consists of a distribution
over three strategies for both the evader and the observer. Figure 9 shows the value function

uλ
∗
at the optimal λ∗. We observe that three shocklines of the value function uλ

∗
meet at the

source location xS , which implies that four trajectories are optimal starting from this location.
However, the minimax theorem for infinite games assures that only three pure strategies are
necessary to form a Nash equilibrium. Using Algorithm 4.3, we find an approximate Nash
equilibrium which uses a mix of such three trajectories.

In Fig. 10, we show a maze-like example where the observer may choose among six
possible positions. Using Algorithm 4.3, we determine that at the approximate Nash equilib-
rium, only four positions are used with positive probability by O, and E uses four different
trajectories which are displayed in Fig. 10.

In order to test the performance of Algorithm 4.3, we consider three error metrics:

1. The optimization error in G(λ) arises from several effects: the discretization error of the
Eikonal solver, the discretization error of the path tracing and path integral evaluation,
and the early stopping of the supergradient iterations. To generate the “ground truth”, we
performed the same computation on a finer grid of size of n = 2001 × 2001 (i.e., we
consider a grid with 16 times more unknowns) and run the supergradient iteration until
we observe stagnation in the objective function value of the iterates. We approximate the
relative error in our computations on a 501 × 501 grid as:

Erel
[
G(λ

∗
)
] = ∣∣G501(λ

∗
501) − G2001(λ

∗
2001)

∣∣ /
G501(λ

∗
501) .

2. The observer’s regret estimates how much the observer could improve his payoff by
unilaterally deviating from our approximate Nash equilibrium. (Recall that, if the approx-
imate Nash equilibrium were exact, the observer would not be able to increase his payoff
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Fig. 9 Computed Nash equilibrium for a situation where a mix of three pure strategies is necessary for each

player. The value function uλ
∗
with three near-λ∗-optimal trajectories in pink, blue, and yellow. Part of the

pink is obstructed by the blue and green path. The optimal strategy for O is λ
∗ = [

p(x1), p(x2), p(x3)
] =

[0.34, 0.32, 0.34], and the optimal strategy for E consists of three trajectories used with probability ω
∗ =[

p(blue), p(yellow), p(pink)
] = [0.40, 0.20, 0.40]. In this example, the pink and yellow λ

∗-optimal trajec-
tories initially coincide near xS , and hence, one cannot find both of them by perturbing the initial position xS
(Color figure online)

Fig. 10 Computed Nash
equilibrium for a maze-like

example. The value function uλ
∗

and four near-λ∗-optimal
trajectories in pink, blue, yellow
and green. The approximate Nash
equilibrium strategy for O is

λ
∗ = [

p(x̂i )
]i=6
i=1 =

[0.174, 0.301, 0.452, 0.073, 0, 0].
The approximate Nash
equilibrium strategy for E uses
four trajectories with probability
ω

∗ = [
p(pink), p(yellow),

p(blue), p(green)
] =

[0.246, 0.461, 0.144, 0.149]
(Color figure online)

at all.) We quantify this error using the normalized residual in (4.9), i.e.,

Observer’s regret = ‖R(ω)‖2
/ (|I|G(λ

∗
)
)

.

3. The evader’s regret estimates howmuch the evader could improve his payoff by unilater-
ally deviating from our approximate Nash equilibrium. This corresponds to how far from
λ

∗-optimal are the controls produced by Algorithm 4.3. Recall that the control function
a1(·) is (up to numerical errors) λ

∗-optimal, whereas ak(·) for k ≥ 2 are (λ
∗ + δλ)-

optimal. We report the maximum relative error in λ
∗ cumulative observability of the
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Table 1 Table of timing and error metrics

Figure 3 Figure 5 Figure 6 Figure 9 Figure 10

Number of it. of Algorithm 4.2 100 100 100 300 400

Total CPU time (seconds) 61 61 69 198 321

Erel

[
G(λ

∗
)
]

1 · 10−3 1 · 10−3 9 · 10−4 1 · 10−3 3 · 10−4

Observer’s regret 1 · 10−4 0 3 · 10−4 4 · 10−6 1 · 10−4

Evader’s regret 0 0 2 · 10−3 2 · 10−3 2 · 10−2

The error metrics are described in the main body of the text

(λ
∗ + δλ)-optimal trajectories, that is:

Evader’s regret = max
k

∣∣∣J λ
∗
(a1(·)) − J λ

∗
(ak(·))

∣∣∣ /J λ
∗
(a1(·))

These error metrics are reported in Table 1 along with timing metrics for each example
presented in the paper.

6 Extension to Groups of Evaders

We now consider an extension of the surveillance-evasion game to a game which involves
a team of q evaders. Each evader El chooses a trajectory leading him from his own source
location xlS to a target location x

l
T , according to his own speed function f l(x). The pointwise

observability function K λ is shared for all evaders and depends only on the strategy λ of the
observer. This induces q different cumulative observability functions J l,λ

(xlS, a
l
(·)) defined

as in (2.1) and q different value functions ul,λ which are solutions of Eikonal equations with
q different boundary conditions.

In this version of the game, we assume that a central organizer for evaders faces off
against the observer. The goal of that central organizer is to minimize the weighted sum
of evaders’ cumulative expected observabilities. The weights {wl}l=q

l=1 in the sum reflect the
relative importance of each evader. We further assume that the central organizer and the
observer agree on that relative importance, making this a two player zero-sum game with a
payoff function defined by:

P(λ, {θ l}ql=1) =
l=q∑
l=1

wlEθ
l

[
J l,λ

(xlS, a
l
(·))

]
. (6.1)

Although we focus on a zero-sum two player game, we note that its Nash equilibrium(
λ

∗
, {θ l}l=q

l=1

)
must also be among Nash equilibria of a different (q + 1)-player game: the

one, where each of the q evaders is selfishly minimizing their own cumulative observability
J l,λ

(xlS, al(·)), while the observer still attempts to maximize the crowd-wide observability
in (6.1). This property follows from two simple facts:

1. The observer’s payoff is the same in both versions of the game and thus cannot be
improved unilaterally in a (q + 1) player game.

2. In the Nash equilibrium for the two-player game, the central organizer would only ask
each evader to assign positive probabilities to their λ

∗-optimal trajectories. (Otherwise,
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Fig. 11 Computed approximate Nash equilibrium for a group of two evaders. The approximate Nash equilib-
rium pair of strategies is λ

∗ for O, and a single λ
∗-optimal trajectory for each evader. a The value function

u1,λ
∗
for λ

∗ = [0.35, 0.65] of evader 1, and the λ
∗-optimal trajectories for evader 1 shown in pink. b The

value function u2,λ
∗
for the same λ

∗ of evader 2, and his λ
∗-optimal trajectory shown in blue (Color figure

online)

the weighted sum in (6.1) could be improved.) Thus, they would also be maximizing
their individual payoffs.

In this new setting, Theorem 4.2 holds and the observer’s half of the Nash equilibrium
may be found by maximizing the concave function:

Gq
(λ) = min

al (·)

l=q∑
l=1

wlJ λ
(xlS, a

l
(·)) . (6.2)

The function Gq
(λ) and its supergradients may be evaluated in a similar way to Sect. 5.2,

but require q solves of the Eikonal equation with different boundary conditions and speed
functions, and the numerical evaluation of q × r path integrals. However, we note that if all
evaders have the same speed function and share the same target location (or, alternatively,
share the same source location), only a single Eikonal equation solve is in fact required.
With minor modifications, Algorithm 4.3 may be also applied to solve this version of the
problem. For each perturbation of λ

∗, a set of q control functions is generated on line 8
of Algorithm 4.3, with one control function found for each evader. Although we obtain a new
set of q control functions for each perturbation, some of the control functions for specific
evaders may be essentially the same as those already obtained from previous perturbations.
We address this in post-processing, by pruning the output of modified Algorithm 4.3 to
identify distinct trajectories for each evader.

We show the numerical results for two test problemswith q = 2 equally important evaders
(i.e., w1 = w2) in each of them. An example presented in Fig. 11 uses the same obstacle
and the same r = 2 possible observer locations already used in Fig. 6. At the approximate
Nash equilibrium found using Algorithm 4.3, the observer uses these two locations with
probabilities λ

∗ = (0.35, 0.65) and the central controller directs both evaders to use pure
policies: deterministically choose pink and blue trajectories to their respective targets. Even
though the first evader’s starting position and destination are also the same as in Fig. 6, his
(and the observer’s) optimal strategies are quite different here due to the second evader’s
participation.
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Fig. 12 Computed approximate Nash equilibrium for a maze-like example with two evaders. a The value

function u1,λ
∗
of evader 1, and two near-λ∗-optimal trajectories for evader plotted in pink and blue. b The

value function u2,λ
∗
of evader 2, and two near-λ∗-optimal trajectories for evader 2 plotted in yellow and green.

The approximate Nash equilibrium (λ
∗
, θ

∗
) is λ

∗ = [
p(x̂i )

] = [0.168, 0.0455, 0.364, 0, 0, 0.422], and θ
∗

consists of a mixed strategy for the group of evaders. The mixed strategy of evader 1 is
[
p(pink), p(blue)

] =
[0.85, 0.15], and the mixed strategy for evader 2 is

[
p(yellow), p(green)

] = [0.89, 0.11] (Color figure online)

Table 2 Table of running times
and errors for examples with
multiple evaders

Figure 11 Figure 12

Number of it. of Algorithm 4.2 353 300

Total CPU time (seconds) 631 594

Erel

[
G(λ

∗
)
]

5 · 10−4 7 · 10−3

Observer’s regret 5 · 10−4 1 · 10−3

Evader’s regret 5 · 10−3 1 · 10−2

In a maze-like example presented in Fig. 12, O can choose among six possible locations,
but his optimal mixed strategy λ

∗ uses only four of them. Algorithm 4.3 yields three sets of
two near-λ∗-optimal trajectories which form an approximate Nash equilibrium, but they only
contain two distinct trajectories for each of the evaders. We report timing and error metrics
for these two examples in Table 2.

7 Conclusion

We have considered an adversarial path planning problem, where the goal is to minimize
the cumulative exposure/observability to a hostile observer. The current position of the latter
is unknown, but the full list of possible positions is assumed to be available in advance.
The key assumption of our model is that neither the evader (E) nor the enemy observer
(O) can adjust their plan in real time based on the opponent’s state and actions. Instead,
both of them are required to choose their (possibly randomized) strategies in advance. We
discussed two versions of this problem; in the first one, a completely risk-averse evader
attempts tominimize hisworst-case cumulative observability.We showed that this version can
be solved using previously developedmethods formultiobjective path planning.However, the
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solution is prohibitively computationally expensivewhenOhas a large number of surveillance
plans to choose from. In the second version, the subject of optimization is the E’s expected
cumulative observability on its way to the target.Wemodeled this as a zero-sum surveillance-
evasion game (SEG) between two players: E (the minimizer) and O (the maximizer). We then
presented an algorithm combining ideas from continuous optimal control, the scalarization
approach formultiobjective optimization, and convex optimizationwhich allows us to quickly
compute an approximate Nash equilibrium of this semi-infinite strategic game. Finally, we
showed that this algorithm extends to solve a similar problem involving a group of multiple
evaders controlled by a central planner. The presented algorithm displays at most linear
scaling in the number of observation plans, but further speedup techniqueswould be desirable;
the computational bottleneck (numerically solving the Eikonal equation) could be alleviated
with domain restriction methods [9] and factoring approaches [27].

Although this paper focused on isotropic problems, the anisotropic observer case could
be treated in a similar fashion. (In practice, the pointwise observability might depend on
the angle between the evader’s direction of motion and the observer’s line of sight.) This
generalization will have to rely on fast numerical methods developed for anisotropic HJB
PDEs, e.g., [1,24,31,36]. In a follow-up paper [6], we show that time-dependent observation
plans (e.g., different patrol routes) can be similarly treated by solving λ-parametrized finite-
horizonoptimal control problemswith numericalmethods for time-dependentHJBequations,
e.g., [16,32].

We note that the computational cost of our algorithm increases quickly with the number of
evaders considered. The case involving a large number of selfish evaders could be covered by
considering the evolution of a time-dependent density of observers and treating the problem
using mean field games [5,17]. Another possible extension would be to consider a group
of observers choosing among a larger set of surveillance plans. In that situation, the set
of pure strategies of the observers could increase exponentially, but we anticipate that the
computational cost will growmuch slower since the number of required Eikonal solveswould
not increase.
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