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Abstract
The paper deals with a control problem for a dynamical system under disturbances. Amotion
of the system is considered on a finite interval of time and described by a nonlinear ordinary
differential equation. The control is aimed atminimization of a given quality index. In addition
to geometric constraints on the control and disturbance, it is supposed that the disturbance
satisfies a compact functional constraint. Namely, all disturbance realizations that can happen
in the system belong to some unknown set that is compact in the space L1. Within the game-
theoretical approach, the problem of optimizing the guaranteed result of the control is studied.
For solving this problem, we propose a new construction of the optimal control strategy. In
the linear-convex case, this strategy can be numerically realized on the basis of the upper
convex hulls method. Examples are considered. Results of numerical simulations are given.

Keywords Control problem · Disturbances · Functional constraint · Optimal guaranteed
result · Optimal strategy · Reconstruction · Numerical method

1 Introduction

The paper deals with a control problem for a dynamical system under disturbances. Amotion
of the system is considered on a finite interval of time and described by a nonlinear ordinary
differential equation. The admissible values of the control and disturbance are subject to
geometric constraints. The control is aimed at minimization of a given quality index. Within
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the game-theoretical approach [5–7,18], we study the problem of optimizing the guaranteed
result of the control.

In addition to the standard formulation of the guarantee optimization problem, we suppose
that the disturbance satisfies a compact functional constraint. According to [8] (see also
[2,16,17]), it means that all disturbance realizations that can happen in the system belong to
some unknown set that is compact in the space L1. This notion of a functional constraint is
quite general and can be used in order to formalize an additional available information about
the properties of the possible disturbance realizations as functions of time. However, it should
be noted that this type of functional constraints substantially differs from the situation when
the specific set of the possible disturbance realizations is given. The guarantee optimization
problem in the latter case seems to be more complicated problem than the one studied in the
paper.

The considered control problem under the functional constraint on the disturbance is
formulated in the class of control strategies with full memory (see, e.g., [5,7,8]). The corre-
sponding value of the optimal guaranteed result is introduced. The main result of the paper
is a new construction of the optimal control strategy. This strategy can be considered as a
control procedure with a guide. The proximity between the motions of the original system
and guide is provided by the technique of dynamic reconstruction of the disturbance based
on the ideas from [10]. The quality of the control process is attained due to the use of the
optimal counter-strategy with full memory in the guide. Furthermore, we consider also a
particular case of the problem when the right-hand side of the dynamic equation satisfies
a certain additional condition [2,13,17], which allows to simplify the construction of the
optimal strategy.

The proposed new construction of the optimal control strategymakes it possible to develop
numericalmethods for solving the guarantee optimization problems under consideration. The
main difficulty here is to construct the optimal counter-strategy used in the guide. However,
in the so-called linear-convex case, this can be done efficiently, for example, by applying the
upper convex hulls method [1,4] (see also [9]). We consider some examples, which are close
to pursuit–evasion games, and present the results of numerical simulations.

The paper is organized as follows. In Sect. 2, we give the informal statement of the
guarantee optimization problem under the functional constraint on the disturbance. In Sect. 3,
to emphasize the differences that arise in the mathematical statement of the problem because
of the presence of this additional constraint, we consider the standard statements of guarantee
optimization problem without functional constraints. The mathematical statement of the
problem with the functional constraint on the disturbance is given in Sect. 4. In Sect. 5, we
propose a new construction of the optimal control strategy with full memory. The proof of
the corresponding result is given in Sect. 6. Section 7 is devoted to the particular case when
the construction of the optimal control strategy can be simplified. Examples are considered
in Sect. 8.

2 Statement of the Problem

In this section, we give the informal statement of a guarantee optimization problem under
a functional constraint on the disturbance. A dynamical system and a quality index under
consideration are described. The notion of a functional constraint on the disturbance is intro-
duced. The strict mathematical statement of the problem is given in Sect. 4.
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2.1 Dynamical System and Quality Index

We consider a dynamical system which motion is described by the following differential
equation:

dx(t)

dt
= f (t, x(t), u(t), v(t)), t ∈ T := [t0, ϑ],

x(t) ∈ R
n, u(t) ∈ P ⊂ R

p, v(t) ∈ Q ⊂ R
q ,

(1)

with the initial condition

x(t0) = x0, x0 ∈ B(R0) :=
{
x ∈ R

n : ‖x‖ ≤ R0
}
. (2)

Here t is the time, x is the state vector, u is the control vector, v is the disturbance vector;
t0 and ϑ are the initial and terminal times; P and Q are known compact sets; x0 is the initial
state of the system; R0 > 0 is a fixed number; the symbol ‖ · ‖ denotes the Euclidian norm
of a vector.

It is assumed that the function f : T × R
n × P × Q → R

n has the following properties:
f is continuous; for any compact set D ⊂ R

n , there exists a number L > 0 such that

‖ f (t, x, u, v) − f (t, x ′, u, v)‖ ≤ L‖x − x ′‖, t ∈ T , x, x ′ ∈ D, u ∈ P, v ∈ Q;
and, moreover, there exists a number a > 0 such that

‖ f (t, x, u, v)‖ ≤ a(1 + ‖x‖), t ∈ T , x ∈ R
n, u ∈ P, v ∈ Q.

We assume that the segment T = [t0, ϑ] is equipped with the Lebesgue measure. By
admissible realizations u(·) of the control and v(·) of the disturbance, we mean measurable
functions u : T → P and v : T → Q. The sets of all such realizations are denoted by
U and V , respectively. One can show that, due to the properties of the function f , for any
initial state x0 ∈ B(R0) and any admissible realizations u(·) ∈ U and v(·) ∈ V , there exists
a unique motion x(·) = x(·; x0, u(·), v(·)) of system (1) that is an absolutely continuous
function x : T → R

n that satisfies initial condition (2) and, together with the realizations
u(·) and v(·), satisfies Eq. (1) for almost all t ∈ T . Moreover, one can choose (see, e.g., [7,
pp. 8,14,15]) a number R > 0 such that, for any motion x(·) = x(·; x0, u(·), v(·)) of system
(1), generated from any initial state x0 ∈ B(R0) by any realization u(·) ∈ U and v(·) ∈ V ,
the following inclusions are valid:

x(t) ∈ B(R) := {
x ∈ R

n : ‖x‖ ≤ R
}
, t ∈ T . (3)

Let quality of a motion x(·) of system (1) be evaluated by the index

γ = σ(x(·)), (4)

where the function σ : C(T , R
n) → R is continuous.

The goal of the control is to minimize the value γ of quality index (4). Since there are
unknown disturbances acting in system (1), when we pose and solve this control problem, in
accordance with the guaranteed result principle (see, e.g., [3,5–7,18]), we should take into
account that, in the worst case, the disturbances may be aimed at maximization of γ .

2.2 Functional Constraint on the Disturbance

According to (1), for any time t ∈ T , the value of the disturbance v(t) satisfies the inclusion
v(t) ∈ Q. Constraints of this kind are called geometric (or instantaneous). In the present
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paper, the case is consideredwhen the disturbance satisfies an additional functional constraint
imposed not on the instantaneous values v(t), but on the realization v(·) as a whole.

By a functional constraint on the disturbance, we mean a family of subsets V ⊂ 2V such
that

V =
⋃

V∈V
V . (5)

We say that the disturbance satisfies the functional constraintV if there exists a setV ∈ V such
that every disturbance realization v(·) that can happen in system (1) satisfies the inclusion
v(·) ∈ V . Thus, it is assumed that, when forming control actions, we know only the constraint
V, but the specific set V ∈ V is not given. This notion of a functional constraint is quite
general and can be used in order to formalize an additional information about the structure
and properties of the possible disturbance realizations. A functional constraint V is called
compact if it consists of compact in L1(T , R

q) subsets V ⊂ V . Let us give some typical
examples when an additional information about the disturbance can be formalized with the
help of such a functional constraint:

1. It is known that every disturbance realization v(·) is a piecewise constant function with
a fixed number l ∈ N ∪ {0} of possible discontinuity points; however, this number l is
unknown.

2. It is known that every disturbance realization v(·) is a continuous function with a fixed
modulus of continuity ω; however, this modulus ω is unknown.

3. It is known that every realization v(·) is generated by a Carathéodory function W :
T × R

n → Q such that v(t) = W (t, x(t)), t ∈ T ; however, this function W is unknown
(see, e.g., [14]).

In the paper, we consider a guarantee optimization problem for system (1), initial condition
(2) and quality index (4) in the case when the disturbance satisfies a compact functional
constraint V. In order to emphasize the differences that arise in the mathematical statement
of the problem due to the presence of this additional constraint, in the next section we give
the standard statements of guarantee optimization problem (1), (2) and (4) without functional
constraints.

3 Guarantee OptimizationWithout Functional Constraints

The mathematical statement of guarantee optimization problem (1), (2) and (4) depends on
the way of forming the control actions. In this section, we consider three types of control
strategies: quasi-strategies, counter-strategies and strategies with full memory. For each of
these types, the corresponding value of the optimal guaranteed result is introduced. The
comparison between these values is given.

3.1 Quasi-Strategies

The notion of a quasi-strategy, originating from works [11,12], formalizes one of the most
general ways of forming the control actions in real time without using information about
future. In the paper, by a quasi-strategy, we mean a function α : V → U with the following
property of nonanticipation: if, for any time t ∈ T and any realizations v(·), v′(·) ∈ V ,
the equality v(τ) = v′(τ ) is valid for almost all τ ∈ [t0, t], then the corresponding images
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u(·) = α(v(·)) and u′(·) = α(v′(·)) satisfy the equality u(τ ) = u′(τ ) for almost all τ ∈ [t0, t].
The set of all quasi-strategies is denoted by QS.

For any initial state x0 ∈ B(R0), the value of the optimal guaranteed result in the class of
quasi-strategies is defined as follows:

Γ 0
QS(x0) := inf

α∈QS
sup

v(·)∈V
σ
(
x
(·; x0, α(v(·)), v(·))

)
. (6)

Note that any control procedure that forms the current value u(t) on the basis of the
information about the initial state x0 and the history of the disturbance actions v(·)|[t0,t]
(including the current value v(t)) can be considered as a quasi-strategy. Therefore, any such
control procedure cannot guarantee the value of quality index (4) less than Γ 0

QS(x0). It is
known that the quasi-strategies are a convenient tool in theoretical constructions, but they
are impractical in real control problems.

3.2 Counter-Strategies with Full Memory

In the paper, we use the following definition of a counter-strategy (with full memory), which
goes back to the constructions from [6,8]. LetΔ be a partition of the time segment T = [t0, ϑ]
by times τi , i ∈ 0...nΔ, i.e.,

Δ = {
τi : τ0 = t0, τi−1 < τi , i ∈ 1...nΔ, τnΔ = ϑ

}
.

The set of all such partitions is denoted by ΔT . By a counter-control (with full memory) on

the partition Δ, we mean a family U
Δ = (U

Δ

i )i∈0...(nΔ−1) of mappings

U
Δ

i : C([t0, τi ], R
n) → B(Q, P), i ∈ 0...(nΔ − 1),

where B(Q, P) is the set of all Borel measurable functions from Q to P . Respectively, a

counter-strategy is a family U = (U
Δ
)Δ∈ΔT of counter-controls defined for every partition

Δ ∈ ΔT . The set of all counter-strategies is denoted by CS.
Let x0 ∈ B(R0) andU = (U

Δ
)Δ∈ΔT ∈ CS. For any partition Δ ∈ ΔT , the corresponding

counter-control U
Δ = (U

Δ

i )i∈0...(nΔ−1) in a pair with a disturbance realization v(·) ∈ V
forms in system (1) a control realization u(·) by the following step-by-step feedback rule:

u(t) = U
Δ

i (x(·)|[t0,τi ])
(
v(t)

)
, t ∈ [τi , τi+1), i ∈ 0...(nΔ − 1), (7)

where x(·)|[t0,τi ] is the motion history realized up to the time τi . Note that, since the function

U
Δ

i (x(·)|[t0,τi ]) is Borel measurable, the obtained control realization is admissible, i.e., u(·) ∈
U . Thus, from the initial state x0, the counter-control U

Δ
in a pair with the disturbance

realization v(·) uniquely generates the system motion, denoted by x(·) = x(·; x0,UΔ
, v(·)).

For the counter-strategy U, the value of the guaranteed result is defined as follows:

ΓCS(x0;U) := lim
δ↓0 sup

Δ∈ΔT :D(�)≤δ

sup
v(·)∈V

σ
(
x
(·; x0,UΔ

, v(·))
)
. (8)

Here and below,we denote byD(�) := maxi∈1...nΔ(τi −τi−1) the diameter of the partitionΔ.
Respectively, the optimal guaranteed result in the class of counter-strategies is the following
value:

Γ 0
CS(x0) := inf

U∈CS
ΓCS(x0;U). (9)
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Note that, according to the results of [6,7], for any number ζ > 0, there exists a ζ -optimal
counter-strategy U∗ ∈ CS such that, for any initial state x0 ∈ B(R0), we have

ΓCS(x0;U∗) ≤ Γ 0
CS(x0) + ζ. (10)

Due to the necessity of the direct measurement of the current value of the disturbance
v(t), the use of the counter-strategies is also quite complicated in practice.

3.3 Strategies with Full Memory

In accordance with [8], by analogy with the introduced above class of counter-strategies, we
define the class of strategies (with full memory) in the following way. By a control (with full
memory) on a partition Δ = (τi )i∈0...nΔ ∈ ΔT , we mean a family UΔ := (UΔ

i )i∈0...(nΔ−1) of
mappings

UΔ
i : C([t0, τi ], R

n) → U |[τi ,τi+1), i ∈ 0...(nΔ − 1),

where the set U |[τi ,τi+1) consists of the restrictions on [τi , τi+1) of all the functions u(·) ∈ U .
A strategy is a family U = (UΔ)Δ∈ΔT of controls defined for every partition Δ ∈ ΔT . The
set of all strategies is denoted by S.

Let x0 ∈ B(R0) and U = (UΔ)Δ∈ΔT ∈ S. For any partition Δ ∈ ΔT , the corresponding
control UΔ = (UΔ

i )i∈0...(nΔ−1) in a pair with a disturbance realization v(·) ∈ V forms in
system (1) a control realization u(·) by the following step-by-step feedback rule:

u(t) = UΔ
i (x(·)|[t0,τi ])(t), t ∈ [τi , τi+1), i ∈ 0...(nΔ − 1).

Thus, from the initial state x0, the control UΔ in a pair with the disturbance realization v(·)
uniquely generates the system motion, denoted by x(·) = x(·; x0,UΔ, v(·)). The value of
the guaranteed result of the strategy U and the value of the optimal guaranteed result in the
class of strategies are defined as follows:

ΓS(x0;U) := lim
δ↓0 sup

Δ∈ΔT :D(�)≤δ

sup
v(·)∈V

σ
(
x
(·; x0,UΔ, v(·))

)
, (11)

Γ 0
S (x0) := inf

U∈S ΓS(x0;U). (12)

Note that, when using strategies, there is no need in any information about the disturbance.
It makes this way of forming the control actions more preferable in comparison with the
quasi-strategies and counter-strategies.

3.4 Comparison of Optimal Guaranteed Results

The following relations between the values of optimal guaranteed results (6), (9) and (12)
are valid:

Γ 0
QS(x0) = Γ 0

CS(x0), Γ 0
QS(x0) ≤ Γ 0

S (x0), x0 ∈ B(R0). (13)

The equality in (13) is derived from the results of [6, §§28, 29] [see also [5, §9]]. The
inequality in (13) is a straightforward consequence of the given definitions. Note that this
inequality can be strict, and a sufficient condition for the equality is the equilibrium condition
in a small game (see, e.g., [7, p. 8]) or, in another terminology, the Isaacs’ condition [3]:

min
u∈P

max
v∈Q 〈s, f (t, x, u, v)〉 = max

v∈Q min
u∈P

〈s, f (t, x, u, v)〉,
t ∈ T , x ∈ R

n, s ∈ R
n,

(14)
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where the symbol 〈·, ·〉 denotes the inner product of vectors. Thus, the result Γ 0
QS(x0) can

always be guaranteedwith the help of the counter-strategies, but, in general, without condition
(14), cannot be guaranteed with the help of the strategies.

Another situation when the optimal guaranteed results in the classes QS and S coincide
regardless of condition (14) is described in the paper and related to compact functional
constraints on the disturbance.

4 Guarantee Optimization Under a Functional Constraint on the
Disturbance

In this section, for system (1), initial condition (2) and quality index (4), we define the value
of the optimal guaranteed result in the class of strategies S in the case when the disturbance
satisfies a compact functional constraint V. In accordance with the informal statement of the
problem (see Sect. 2.2), the presence of the functional constraint V leads to the fact that, in
definition (11) of the guaranteed result, we split the operation of taking the upper bound over
all disturbance realizations v(·) ∈ V into two parts. Firstly, inside, the upper bound is taken
only over disturbance realizations v(·) from a set V ∈ V, and, after that, outside, the upper
bound is taken over the sets V ∈ V.

Let us note that, for any initial state x0 ∈ B(R0), we can define the value of the optimal
guaranteed result in the class of quasi-strategies QS under the functional constraint V as
follows:

Γ 0
QS(x0 | V) := inf

α∈QS
sup
V∈V

sup
v(·)∈V

σ
(
x
(·; x0, α(v(·)), v(·))

)
. (15)

However, due to (5), (6) and (15), we have

Γ 0
QS(x0 | V) = Γ 0

QS(x0). (16)

Therefore, the optimal guaranteed result in the class of quasi-strategies does not depend on
the presence of the functional constraints.

Further, let us define the value of the guaranteed result of a strategy U = (UΔ)Δ∈ΔT ∈ S
under the functional constraint V and the corresponding value of the optimal guaranteed
result in the class of strategies S under the functional constraint V in the following way:

ΓS(x0;U | V) := sup
V∈V

lim
δ↓0 sup

Δ∈ΔT :D(�)≤δ

sup
v(·)∈V

σ
(
x
(·; x0,UΔ, v(·))

)
,

Γ 0
S (x0 | V) := inf

U∈S ΓS(x0;U | V). (17)

According to [17], for any compact functional constraint V, the following equality holds:

Γ 0
S (x0 | V) = Γ 0

QS(x0 | V), x0 ∈ B(R0).

Hence, due to (16), when the disturbance satisfies a compact functional constraint V, the
optimal guaranteed result Γ 0

QS(x0) in the class of quasi-strategiesQS can be guaranteed with
the help of the strategies with full memory. Thus, the considered in the paper guarantee
optimization problem in the class of strategies S under the functional constraint V can be
formulated as follows. For any number ζ > 0, we should find a strategy U∗ ∈ S such that,
for any initial state x0 ∈ B(R0), the following inequality is valid:

ΓS(x0;U∗ | V) ≤ Γ 0
QS(x0) + ζ. (18)

The main contribution of the paper is a new construction of this ζ -optimal strategy U∗.



Dynamic Games and Applications (2019) 9:700–723 707

5 Construction of Optimal Strategy

Let ε ∈ (0, 1) be an accuracy parameter. Let us define a strategy Uε = (UΔ
ε )Δ∈ΔT ∈ S such

that it satisfies inequality (18) for any sufficiently small values of ε. Let us introduce the
necessary notations and constructions.

According to (10) and (13), let us fix an ε-optimal counter-strategyUε = (U
Δ

ε )Δ∈ΔT ∈ CS
such that

ΓCS(x0;Uε) ≤ Γ 0
QS(x0) + ε, x0 ∈ B(R0). (19)

For the compact set P , which determines the geometric constraint on the control (see (1)),
let us choose an ε–net (uε

j ) j∈1...nε ⊂ P :
max
u∈P

min
j∈1...nε

‖u − uε
j‖ ≤ ε. (20)

At first, it is convenient to define the control UΔ
ε = (UΔ

εi )i∈0...(nΔ−1) only for partitions
Δ ∈ ΔT that satisfy the following condition:

D(�) ≤ 3d(�), (21)

where d(�) = mini∈1...nΔ(τi − τi−1) is the inner diameter of the partitionΔ. Let us consider
the auxiliary times

τ ′
i := τi − εd(�), τ ′

i j := τ ′
i + j(τi − τ ′

i )

nε

, j ∈ 0...nε, i ∈ 1...(nΔ − 1). (22)

Note that, since ε ∈ (0, 1), the following inclusions are valid:

τ ′
i j ∈ (τi−1, τi ], i ∈ 1...(nΔ − 1), j ∈ 0...nε.

For any i ∈ 0...(nΔ − 1) and any function x (i)(·) ∈ C([t0, τi ], R
n), let us choose a vector

νi (x (i)(·)) such that

νi (x
(i)(·)) ∈

⎧
⎨

⎩

Q, i = 0,

argmin
v∈Q

max
j∈1...nε

∥∥di j (x (i)(·)) − f (τi , x (i)(τi ), uε
j , v)

∥∥, i ∈ 1...(nΔ − 1),

(23)
where, for i ∈ 1...(nΔ − 1) and j ∈ 1...nε , we denote by di j (x (i)(·)) the divided difference

di j (x
(i)(·)) := x (i)(τ ′

i j ) − x (i)(τ ′
i( j−1))

τ ′
i j − τ ′

i( j−1)
. (24)

Before proceeding to the formal definition of the controlUΔ
ε on the partitionΔ, let us describe

it as a control procedure with a guide.

5.1 Optimal Control with a Guide

The control UΔ
ε on the partition Δ can be treated as a control procedure with a guide (see,

e.g., [7, §8.2]). A motion of the guide is considered as an auxiliary motion y(·) of system (1).
We suppose that this motion y(·) satisfies the same initial condition y(t0) = x0 as the motion
x(·) of the original system, and we denote by u(·) ∈ U and v(·) ∈ V the corresponding
control and “disturbance” realizations that determine this motion y(·). Thus, according to
the introduced notations, we have y(·) = x(·; x0, u(·), v(·)). Note that, according to choice
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(3) of the number R, for any such auxiliary motion y(·), the inclusions y(t) ∈ B(R), t ∈ T ,
are valid.

Let us describe this control procedure. In order to choose the “disturbance” v(·) in the
guide, when forming the control u(·) in the original system, we use the series of the test
control actions uε

j , j ∈ 1...nε , on the small part [τ ′
i+1, τi+1) of every step [τi , τi+1) of the

partition Δ. By the observations of the corresponding reactions of the original system to
these test controls, as in the theory of inverse problem of dynamics (see, e.g., [10]), we
choose “on the fly” the “disturbance” v(·) in the guide that in a some sense approximates the
disturbance v(·) acting in the original system. After that, by the found approximation v(·),
we choose the control u(·) in the guide according to the fixed ε-optimal counter-control U

Δ

ε .
Finally, the constructed control u(·) is used in the original system on the current step of the
partition except for the “test” part [τ ′

i+1, τi+1). Under a suitable choice of the parameters
(see Lemma 1), the obtained motion x(·) of the original system is close to the constructed
ε-optimal motion y(·) of the guide.

Thus, we consider the following step-by-step procedure of forming a control realization
u(·) ∈ U in the original system and piecewise constant realizations u(·) and v(·) of the form

u(t) = ui ∈ P, v(t) = vi ∈ Q, t ∈ [τi , τi+1), i ∈ 0...(nΔ − 1), (25)

in the guide. For any i ∈ 0...(nΔ − 1), let x(·)|[t0,τi ] and y(·)|[t0,τi ] be, respectively, the
histories of the motions of the original system and guide realized up to the time τi . “Recon-
structing” the disturbances acting in the original system on the interval [τi−1, τi ), we set

vi = νi
(
x(·)|[t0,τi ]

)
. (26)

Using the fixed counter-controlU
Δ

ε = (U
Δ

εi )i∈0...(nΔ−1) in the guide, according to (7), we put

ui = U
Δ

εi

(
y(·)|[t0,τi ]

)
(vi ). (27)

After that, we define

u(t) =
{
ui , t ∈ [τi , τ ′

i+1),

uε
j , t ∈ [τ ′

(i+1)( j−1), τ
′
(i+1) j ), j ∈ 1...nε,

(28)

where uε
j are the elements of the chosen ε-net.

An illustration to the described control procedure with the guide is given in Fig. 1.

5.2 Optimal Control Strategy with Full Memory

The control procedure with guide (26)–(28) is formalized as the control with full memory
UΔ

ε = (UΔ
εi )i∈0...(nΔ−1) on the partition Δ as follows. Let i ∈ 0...(nΔ − 1) and x (i)(·) ∈

C([t0, τi ], R
n). Set

v(t) = νk
(
x (i)(·)|[t0,τk ]

)
, t ∈ [τk, τk+1), k ∈ 0...i . (29)

Consider the auxiliary motion y(i)(t) := x(t; x0,UΔ

ε , v(·)), t ∈ [t0, τi ], of system (1) and
put

UΔ
εi

(
x (i)(·))(t) :=

{
U

Δ

εi

(
y(i)(·))(v(τi )), t ∈ [τi , τ ′

i+1),

uε
j , t ∈ [τ ′

(i+1)( j−1), τ
′
(i+1) j ), j ∈ 1...nε.

(30)
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τ ′
i0τ ′

i1 . . .τi τ ′
(i+1)0τ ′

(i+1)1 . . .τi+1

v̄i
x(·, uε

j , v(·))
y(·, ūi(v̄i), v̄i)

x(·, ūi(v̄i), v(·))

system
guide

Fig. 1 The scheme of the strategy Uε

Thus, the controlwith fullmemoryUΔ
ε is defined for any partitionΔ that satisfies condition

(21). Let a partition Δ = (τi )i∈0...nΔ do not satisfy this condition. Then, firstly, we “thin”
this partition to a partition Δ∗ ∈ ΔT , Δ∗ ⊂ Δ, satisfying (21). This can always be done, for
instance, as follows:

Δ∗ :=
{
τ ∗
0 := t0, τ

∗
nΔ∗ := ϑ,

τ ∗
i :=argmin{τ ∈ Δ : τ ≥ i2D(�)}, i ∈ N, i ≤ (ϑ − t0)/(2D(�))

}
.

Note that this “thinned” partition satisfies the condition

D(�∗) ≤ 3D(�). (31)

After that, the control UΔ
ε is defined with the help of the control UΔ∗

ε for the corresponding
“thinned” partition by ignoring the times τi ∈ Δ \ Δ∗. Note that, according to this defini-
tion, for any initial state x0 ∈ B(R0) and any disturbance realization v(·) ∈ V , we have
x(·; x0,UΔ

ε , v(·)) = x(·; x0,UΔ∗
ε , v(·)).

Hence, the strategy Uε = (UΔ
ε )Δ∈ΔT is completely defined.

Theorem 1 Let V be a compact functional constraint on the disturbance. Then, for any
number ζ > 0, there exists a number ε∗ ∈ (0, 1) such that, for any initial state x0 ∈ B(R0)

and any number ε ∈ (0, ε∗], the strategy with full memory Uε ∈ S, defined by relations (29),
(30), satisfies the inequality

ΓS(x0;Uε | V) ≤ Γ 0
QS(x0) + ζ. (32)

The proof of the theorem is given in the next section.
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6 Proof of Theorem 1

The basis of the proof of Theorem 1 constitutes the following lemma, which is also of
independent interest.

Lemma 1 For any number ξ > 0, there exists a number ε∗ ∈ (0, 1) such that, for any number
ε ∈ (0, ε∗] and any set V ⊂ V compact in L1(T , R

q), we can specify a number δ∗ > 0 such
that, for any initial state x0 ∈ B(R0) and any satisfying (21) partition Δ ∈ ΔT with the
diameter D(�) ≤ δ∗, the following statement holds. Let the motions x(·) and y(·) of system
(1) be generated from the initial state x0 by realizations u(·), v(·) and u(·), v(·), respectively.
Let the inclusion v(·) ∈ V be valid and these realizations satisfy relations (25) and (26),
(28) for i ∈ 0...(nΔ − 1). Then the following inequality holds:

‖x(t) − y(t)‖ ≤ ξ, t ∈ T . (33)

Before proving the lemma, let us introduce the necessary notations. Due to the properties
of the function f from the right-hand side of Eq. (1) and compactness of the sets T , B(R),
P and Q, we choose numbers κ > 0 and L > 0 such that, for any t ∈ T , x ∈ B(R), u ∈ P
and v ∈ Q, we have

‖ f (t, x, u, v)‖ ≤ κ, ‖ f (t, x, u, v) − f (t, x ′, u, v)‖ ≤ L‖x − x ′‖. (34)

Let us denote

μt (δ) := max
{
‖ f (t, x, u, v) − f (t ′, x, u, v)‖ :

t, t ′ ∈ T , x ∈ B(R), u ∈ P, v ∈ Q, |t − t ′| ≤ δ
}
,

μu(δ) := max
{
‖ f (t, x, u, v) − f (t, x, u′, v)‖ :

t ∈ T , x ∈ B(R), u, u′ ∈ P, v ∈ Q, ‖u − u′‖ ≤ δ
}
,

μv(δ) := max
{
‖ f (t, x, u, v) − f (t, x, u, v′)‖ :

t ∈ T , x ∈ B(R), u ∈ P, v, v′ ∈ Q, ‖v − v′‖ ≤ δ
}
,

ψ(δ) := μt (δ) + Lκδ, δ > 0.

Note that these functions μt (δ), μu(δ), μv(δ) and ψ(δ) are nondecreasing and tend to zero
when δ ↓ 0. Note also that, for any motion x(·) of system (1) generated from an initial state
x0 ∈ B(R0) by realizations u(·) ∈ U and v(·) ∈ V , the inequality

∥∥ f (t, x(t), u, v) − f (t ′, x(t ′), u, v′)
∥∥ ≤ ψ(|t − t ′|) + μv(‖v − v′‖) (35)

holds for any t, t ′ ∈ T , u ∈ P and v, v′ ∈ Q.

Proof of Lemma 1 Fix a number ξ > 0 and choose a number ξ∗ > 0 from the condition

ξ∗ exp(L(ϑ − t0)) ≤ ξ. (36)

Let a number ε∗ ∈ (0, 1) be such that

2(ϑ − t0)(ε∗κ + μu(ε∗)) ≤ ξ∗/3. (37)

Fix a number ε ∈ (0, ε∗] and a set V ⊂ V compact in L1(T , R
q). Taking into account [2,

Assertion 3], one can specify a number δ1 > 0 such that, for any δ ∈ (0, δ1] and any function
v(·) ∈ V , the following inequality holds:

∫

T

1

4δ

∫ s+2δ

s−2δ
μv

(‖v(s) − v(τ)‖) dτ ds ≤ εξ∗
72nε

. (38)
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Here and below, it is assumed that v(t) = 0 for t /∈ T . Further, choose a number δ2 > 0 such
that

2κδ2 + 2(ϑ − t0)
(
2μt (2δ2) + 3Lκδ2

) ≤ ξ∗/3. (39)

Put δ∗ = min{δ1, δ2} > 0. Let us show that the assertion of the lemma holds for the chosen
parameters.

In accordance with the statement of the lemma, let us assume that an initial state x0 ∈
B(R0), a partition Δ ∈ ΔT , realizations u(·), v(·) and u(·), v(·), and the corresponding
motions x(·) and y(·) of system (1) are fixed. Let δ := D(�) ≤ δ∗. Let us estimate the value
‖x(t) − y(t)‖ for t ∈ T . Since the motions x(·) and y(·) are generated from the same initial
state, we have

‖x(t) − y(t)‖ =
∥∥∥∥

∫ t

t0

(
f (s, x(s), u(s), v(s)) − f (s, y(s), u(s), v(s))

)
ds

∥∥∥∥.

In the right-hand side, we add and subtract under the integral sign the quantities
f (s, x(s), u(s), v(s)) and f (s, x(s), u(s), v(s)) (we continue the estimate):

≤
∥∥∥∥

∫ t

t0

(
f (s, x(s), u(s), v(s)) − f (s, x(s), u(s), v(s))

)
ds

∥∥∥∥

+
∥∥∥∥

∫ t

t0

(
f (s, x(s), u(s), v(s)) − f (s, x(s), u(s), v(s))

)
ds

∥∥∥∥

+
∥∥∥∥

∫ t

t0

(
f (s, x(s), u(s), v(s)) − f (s, y(s), u(s), v(s))

)
ds

∥∥∥∥

:= I1 + I2 + I3. (40)

Let us estimate the integral I1 in (40). Due to (22), (25) and (28), the measure of the set E
that consists of all points t ∈ T such that u(t) �= u(t) does not exceed ε(ϑ − t0). Therefore,
applying (34), we obtain

I1 ≤
∫

E
‖ f (s, x(s), u(s), v(s)) − f (s, x(s), u(s), v(s))‖ ds ≤ 2κε(ϑ − t0). (41)

Let us estimate I2 in (40). By the definition of ε-net (see (20)), we derive

‖ f (s, x(s), u(s), v(s)) − f (s, x(s), u(s), v(s))‖
≤ max

j∈1...nε

∥∥∥ f (s, x(s), uε
j , v(s)) − f (s, x(s), uε

j , v(s))
∥∥∥ + 2μu(ε). (42)

Let i ∈ 1...(nΔ − 1), j ∈ 1...nε and s ∈ [τi , τi+1). We have
∥∥∥ f (s, x(s), uε

j , v(s)) − f (s, x(s), uε
j , v(s))

∥∥∥

≤
∥∥∥ f (s, x(s), uε

j , v(s)) − di j (x(·))
∥∥∥ +

∥∥∥di j (x(·)) − f (s, x(s), uε
j , v(s))

∥∥∥ . (43)

Let us estimate the first term from the right-hand side of this inequality. Since, due to (24)
and (30), the equality u(τ ) = uε

j holds for τ ∈ [τ ′
i( j−1), τ

′
i j ), we get

∥∥∥∥ f (s, x(s), uε
j , v(s)) − x(τ ′

i j ) − x(τ ′
i( j−1))

τ ′
i j − τ ′

i( j−1)

∥∥∥∥

=
∥∥∥∥

∫ τ ′
i j

τ ′
i( j−1)

f (s, x(s), uε
j , v(s)) − f (τ, x(τ ), uε

j , v(τ ))

τ ′
i j − τ ′

i( j−1)
dτ

∥∥∥∥



712 Dynamic Games and Applications (2019) 9:700–723

≤
∫ τ ′

i j

τ ′
i( j−1)

ψ(s − τ) + μv(‖v(s) − v(τ)‖)
τ ′
i j − τ ′

i( j−1)
dτ

≤ ψ(2δ) + nε

εd(�)

∫ s+2δ

s−2δ
μv(‖v(s) − v(τ)‖) dτ. (44)

For the second term from the right-hand side of (43), taking into account (23), (26) and the
inclusion s ∈ [τi , τi+1), we derive

max
j∈1...nε

‖di j (x(·)) − f (s, x(s), uε
j , v(s))‖

= max
j∈1...nε

‖di j (x(·)) − f (s, x(s), uε
j , vi (τi ))‖

≤ max
j∈1...nε

‖di j (x(·)) − f (τi , x(τi ), u
ε
j , vi (τi ))‖ + ψ(δ)

≤ max
j∈1...nε

‖di j (x(·)) − f (τi , x(τi ), u
ε
j , v(s))‖ + ψ(δ)

≤ max
j∈1...nε

‖di j (x(·)) − f (s, x(s), uε
j , v(s))‖ + 2ψ(δ)

≤ ψ(2δ) + 2ψ(δ) + nε

εd(�)

∫ s+2δ

s−2δ
μv(‖v(s) − v(τ)‖) dτ. (45)

From (42)–(45), adding the estimate of difference (43) on the interval [τ0, τ1], we obtain
I2 ≤ 2κδ + 2(ϑ − t0)

(
ψ(2δ) + ψ(δ) + μu(ε)

)

+ 2nε

εd(�)

∫

T

∫ s+2δ

s−2δ
μv(‖v(s) − v(τ)‖) dτ ds. (46)

For the integral I3 in (40), according to (34), we have

I3 ≤
∫ t

t0
L‖x(s) − y(s)‖ ds. (47)

Thus, from estimates (41), (46) and (47), for any t ∈ T , we derive

‖x(t) − y(t)‖
≤

∫ t

t0
L‖x(s) − y(s)‖ ds + 2κδ + 2(ϑ − t0)

(
κε + ψ(2δ) + ψ(δ) + μu(ε)

)

+ 2nε

εd(�)

∫

T

∫ s+2δ

s−2δ
μv(‖v(s) − v(τ)‖) dτ ds

≤
∫ t

t0
L‖x(s) − y(s)‖ ds + 2κδ + 2(ϑ − t0)

(
κε + μu(ε) + 3Lκδ + 2μt (2δ)

)

+ sup
v′(·)∈V

{
6nε

εδ

∫

T

∫ s+2δ

s−2δ
μv(‖v′(s) − v′(τ )‖) dτ ds

}

:=
∫ t

t0
L‖x(s) − y(s)‖ ds + Ψ (ε, δ).

Due to choice (37)–(39) of ε and Δ, we have Ψ (ε, δ) ≤ ξ∗. Then, applying the Bellman–
Gronwall lemma,wededuce‖x(t)−y(t)‖ ≤ ξ∗ exp (L(ϑ − t0)), t ∈ T . Therefore, according
to (36), inequality (33) holds. Lemma 1 is proved. ��
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Proof of Theorem 1 Fix a compact functional constraint on the disturbance V and a number
ζ > 0. Let us consider the set D̃ ⊂ C(T , R

n) that consists of all functions x(·) such that
‖x(t)‖ ≤ R, ‖x(t) − x(t ′)‖ ≤ κ|t − t ′|, t, t ′ ∈ T ,

where R and κ are taken from (3) and (34). Note that the set D̃ is compact. Hence, since the
function σ from quality index (4) is continuous, there exists a number ξ > 0 such that, for
any functions x(·), y(·) ∈ D̃, if ‖x(t) − y(t)‖ ≤ ξ , t ∈ T , then

|σ(x(·)) − σ(y(·))| ≤ ζ/3.

By this number ξ , let us choose a number ε∗ > 0 according to Lemma 1, and put ε∗ =
min{ε∗, ζ/3}. Let us prove that the assertion of the theorem holds for this value ε∗.

Fix an initial state x0 ∈ B(R0) and a number ε ∈ (0, ε∗]. According to (8) and (19), there
exists a number δ̃ > 0 such that, for any partition Δ ∈ ΔT , D(�) ≤ δ̃, and any disturbance
realization v(·) ∈ V , we have

σ
(
x
(·; x0,UΔ

ε , v(·))
)

≤ ΓCS(x0;Uε) + ζ/3 ≤ Γ 0
QS(x0) + 2ζ/3. (48)

Fix a set V ∈ V. Let δ∗ be chosen by ε and V according to Lemma 1. Put δ∗ = min{δ∗, δ̃}.
Let a partition Δ ∈ ΔT be such that D(�) ≤ δ∗/3. We assume that Δ satisfies condition
(21). Otherwise, we replace Δ by the “thinned” partition Δ∗ (see Sect. 5.2). In any case, we
have a partition that satisfies condition (21) and has the diameter not exceeding the value of
δ∗ (see (31)).

Let v(·) ∈ V and x(·) = x(·; x0,UΔ
ε , v(·)). Let y(·) be the corresponding motion of

the guide. According to (27), we have y(·) = x(·; x0,UΔ

ε , v(·)) for some v(·) ∈ V , and,
therefore, due to (48), we obtain

σ(y(·)) ≤ Γ 0
QS(x0) + 2ζ/3.

Furthermore, by the choice of δ∗, we have ‖x(t) − y(t)‖ ≤ ξ , t ∈ T . Hence, due to the
choice of ξ , since x(·), y(·) ∈ D̃, we deduce

σ(x(·)) ≤ σ(y(·)) + ζ/3.

Thus, we have shown that, for any set V ∈ V, there exists a number δ∗ > 0 such that, for
any partition Δ ∈ ΔT , D(�) ≤ δ∗, and any disturbance realization v(·) ∈ V , the following
inequality holds:

σ
(
x
(·; x0,UΔ

ε , v(·))
)

≤ Γ 0
QS(x0) + ζ.

From this fact, taking into account definition (17), we conclude the validity of inequality
(32). Theorem 1 is proved. ��

Let us give some remarks concerning Theorem 1 and Lemma 1.

1. For the guarantee optimization problem under a functional constraint on the disturbance,
Lemma 1 can be considered as an analog of the estimates from [7, §2.3], which play a
key role in establishing the properties of the extremal shift strategies.

2. Although the construction of the strategy Uε and estimate (32) of its optimality are
independent on a set V ∈ V (and even on a constraint V), according to Lemma 1, to
provide inequality (33) for a given number ξ > 0, a partition Δ should be chosen on the
basis of the specific set V .
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3. Coefficient “3” in condition (21) can be replaced by any other number from [1,∞).
This coefficient can only affect the rate of convergence of the guaranteed result of the
corresponding strategy to the optimal guaranteed result when the parameters ε andD(�)

are decreasing to zero.

7 Reduction of the Disturbance Reconstruction Problem

In numerical realization of the optimal strategy Uε , the rapid growth when ε ↓ 0 of the
dimension of disturbance reconstruction problem (23), (26) can cause difficulties. However,
it is known that when the function f from (1) satisfies Property 1 (see [2]), to reconstruct
the disturbance, it is sufficient to use any single value of the control instead of the series of
“test” controls as in the general case. Therefore, we can simply use the previous step control
value. The rest construction of the optimal control strategy remains the same.

Property 1 For any t ∈ T , x ∈ B(R) and v, v′ ∈ Q, if the equality

f (t, x, u, v) = f (t, x, u, v′)

holds for some value u = u′ ∈ P , then this equality holds for any value u ∈ P .

Note that Property 1 is valid for any function f that is injective with respect to v ∈ Q for
any fixed t ∈ T , x ∈ B(R) and u ∈ P . Another example is given by the following particular
case of system (1):

dx(t)

dt
= f̄ (t, x(t), u(t)) + ḡ(t, x(t), u(t))h̄(t, x(t), v(t)), (49)

where f̄ : T × R
n × P → R

n , h̄ : T × R
n × Q → R

m , and ḡ maps T × R
n × P into

the space of (n × m)-matrices. Property 1 holds for system (49) if the kernel of the linear
operator ḡ(t, x, u) : R

m → R
n does not depend on u ∈ P for any t ∈ T , x ∈ B(R). Note

also that Property 1, formulated in different terms, is considered in [13,15].
Let us define a strategy with full memory ÛΔ

ε := (ÛΔ
εi )i∈0...(nΔ−1) for any value of the

accuracy parameter ε ∈ (0, 1). Let a partition Δ ∈ ΔT satisfy condition (21). Since, instead
of the series of “test” controls, we now use only the previous step control, in accordance with
(22), we put

nε = 1, τ ′
i0 = τ ′

i = τi−1, τ ′
i1 = τi , i ∈ 1...(nΔ − 1),

and, therefore, due to (23) and (24), we define

ν̂i (x
(i)(·)) ∈

⎧
⎨

⎩

Q, i = 0,

argmin
v∈Q

∥∥di1(x (i)(·)) − f (τi , x (i)(τi ), ui−1, v)
∥∥ , i ∈ 1...(nΔ − 1), (50)

where

di1(x
(i)(·)) = x (i)(τi ) − x (i)(τi−1)

τi − τi−1
.

By analogy with Sect. 5.1, we consider the following control procedure with the guide.
We define a piecewise constant control realization

u(t) = ui ∈ P, t ∈ [τi , τi+1), i ∈ 0...(nΔ − 1), (51)
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τi−1 τi τi+1

v̄i

y(·, ūi(v̄i), v̄i)

x(·, ūi(v̄i), v(·))

system
guide

Fig. 2 The scheme of the strategy Ûε

in the original system and realizations u(·) and v(·) of form (25) in the guide according to
the following rule:

vi := ν̂i
(
x(·)|[t0,τi ]

)
, (52)

ui = U
Δ

εi

(
y(·)|[t0,τi ]

)
(vi ), (53)

ui = ui , (54)

where U
Δ

ε = (U
Δ

εi )i∈0...(nΔ−1) is fixed ε-optimal counter-control (19), and y(·) is the corre-
sponding motion of the guide.

Thus, by analogy with Sect. 5.2, the control ÛΔ = (ÛΔ
εi )i∈0...(nΔ−1) on the partition Δ is

defined by

ÛΔ
εi

(
x (i)(·))(t) := U

Δ

εi

(
y(i)(·))(v(τi )), t ∈ [τi , τi+1), i ∈ 0...(nΔ − 1), (55)

where

v(t) = ν̂k
(
x (i)(·)|[t0,τk ]

)
, t ∈ [τk, τk+1), k ∈ 0...i,

y(i)(t) = x
(
t; x0,UΔ

ε , v(·)), t ∈ [t0, τi ]. (56)

As usual, if a partitionΔ ∈ ΔT does not satisfy condition (21), then we should use the control
ÛΔ∗

ε on the corresponding “thinned” partition Δ∗.
An illustration to the described in this section control procedure with the guide is given

in Fig. 2.
Note also that the strategy Ûε differs from theoneproposed in [2,13]. This newconstruction

follows naturally from the general case (see Sect. 5) and has better convergence estimates.

Theorem 2 Let system (1) satisfy Property 1. Let V be a compact functional constraint on
the disturbance. Then, for any number ζ > 0, there exists a number ε∗ ∈ (0, 1) such that,
for any initial state x0 ∈ B(R0) and any number ε ∈ (0, ε∗], the strategy with full memory
Ûε ∈ S, defined by relations (56), (55), satisfies the inequality
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ΓS(x0; Ûε | V) ≤ Γ 0
QS(x0) + ζ.

Theorem 2 is proved by the same scheme as Theorem 1, but the following lemma is used
instead of Lemma 1. This lemma establishes a suitable estimate of the closeness between the
motions of the original system and guide when Property 1 is satisfied and control procedure
(52)–(54) is used.

Lemma 2 Let system (1) satisfy Property 1. Then, for any number ξ > 0 and any set V ⊂ V
compact in L1(T , R

q), we can specify a number δ∗ > 0 such that, for any initial state
x0 ∈ B(R0) and any satisfying (21) partition Δ ∈ ΔT with the diameter D(�) ≤ δ∗, the
following statement holds. Let the motions x(·) and y(·) of system (1) be generated from the
initial state x0 by realizations u(·), v(·) and u(·), v(·), respectively. Let the inclusion v(·) ∈ V
be valid and these realizations satisfy relations (25), (51) and (52), (54) for i ∈ 0...(nΔ − 1).
Then the following inequality holds:

‖x(t) − y(t)‖ ≤ ξ, t ∈ T . (57)

In the proof of the lemma, we use the notation:

μuv(δ) := max
{
‖ f (t, x, u, v) − f (t, x, u, v′)‖ :

t ∈ T , x ∈ B(R), u, u′ ∈ P, v, v′ ∈ Q, ‖ f (t, x, u′, v) − f (t, x, u′, v′)‖ ≤ δ
}
.

Note that, the inequality

‖ f (t, x, u, v) − f (t, x, u, v′)‖ ≤ μuv

(‖ f (t, x, u′, v) − f (t, x, u′, v′)‖) (58)

holds for any t ∈ T , x ∈ B(R), u, u′ ∈ P and v, v′ ∈ Q. Furthermore, if Property 1 is
satisfied, then, according to [2, Assertion 1], we have

lim
δ↓0 μuv(δ) = 0. (59)

Proof of Lemma 2 Fix a number ξ > 0 and a set V ⊂ V compact in L1(T , R
q). Choose a

number ξ∗ > 0 from condition (36). Taking into account [2, Assertions 2, 3] and (59), one
can specify a number δ∗ > 0 such that, for any number δ ∈ (0, δ∗] and any function v(·) ∈ V ,
the following inequality holds:

2κδ +
∫

T
μuv

(
4ψ(2δ) + 6

δ

∫ s+2δ

s−2δ
μv(‖v(s) − v(τ)‖) dτ

)
ds ≤ ξ∗. (60)

Let us show that the assertion of the lemma holds for this value δ∗.
In accordance with the statement of the lemma, let us assume that an initial state x0 ∈

B(R0), a partition Δ ∈ ΔT , realizations u(·), v(·) and u(·), v(·), and the corresponding
motions x(·) and y(·) of system (1) are fixed. Let δ := D(�) ≤ δ∗. Let us estimate the value
‖x(t) − y(t)‖ for t ∈ T . In view of (25), (51) and (54), we have

‖x(t) − y(t)‖ =
∥∥∥∥

∫ t

t0

(
f (s, x(s), u(s), v(s)) − f (s, y(s), u(s), v(s))

)
ds

∥∥∥∥.

In the right-hand side,we add and subtract under the integral sign the quantity f (s, x(s), u(s),
v(s)) (we continue the estimate):

≤
∥∥∥∥

∫ t

t0

(
f (s, x(s), u(s), v(s)) − f (s, x(s), u(s), v(s))

)
ds

∥∥∥∥

+
∥∥∥∥

∫ t

t0

(
f (s, x(s), u(s), v(s)) − f (s, y(s), u(s), v(s))

)
ds

∥∥∥∥ := I1 + I2. (61)
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Let us estimate I1 in (61). Let i ∈ 1...(nΔ − 1) and s ∈ [τi , τi+1). We have

‖ f (s, x(s), ui−1, v(s)) − f (s, x(s), ui−1, v(s))‖
≤ ‖ f (s, x(s), ui−1, v(s)) − di1(x(·))‖ + ‖di1(x(·)) − f (s, x(s), ui−1, v(s))‖ . (62)

Let us estimate the first term in the right-hand side of this inequality. Due to (35), we obtain

∥∥∥∥ f (s, x(s), ui−1, v(s)) − x(τi ) − x(τi−1)

τi − τi−1

∥∥∥∥

=
∥∥∥∥

∫ τi

τi−1

f (s, x(s), ui−1, v(s)) − f (τ, x(τ ), ui−1, v(τ ))

τi − τi−1
dτ

∥∥∥∥

≤
∫ τi

τi−1

ψ(s − τ) + μv(‖v(s) − v(τ)‖)
τi − τi−1

dτ

≤ ψ(2δ) + 1

d(�)

∫ s+2δ

s−2δ
μv(‖v(s) − v(τ)‖) dτ

≤ ψ(2δ) + 3

δ

∫ s+2δ

s−2δ
μv(‖v(s) − v(τ)‖) dτ. (63)

For the second term in the right-hand side of (62), taking into account (50), (52) and the
inclusion s ∈ [τi , τi+1), we derive

‖di1(x(·)) − f (s, x(s), ui−1, v(s))‖
= ‖di1(x(·)) − f (s, x(s), ui−1, v(τi ))‖
≤ ‖di1(x(·)) − f (τi , x(τi ), ui−1, v(τi ))‖ + ψ(δ)

≤ ‖di1(x(·)) − f (τi , x(τi ), ui−1, v(s))‖ + ψ(δ)

≤ ‖di1(x(·)) − f (s, x(s), ui−1, v(s))‖ + 2ψ(δ)

≤ 3ψ(2δ) + 3

δ

∫ s+2δ

s−2δ
μv(‖v(s) − v(τ)‖) dτ. (64)

From (62)–(64), we obtain

‖ f (s, x(s), ui−1, v(s)) − f (s, x(s), ui−1, v(s))‖
≤ 4ψ(2δ) + 6

δ

∫ s+2δ

s−2δ
μv(‖v(s) − v(τ)‖) dτ.

Therefore, due to (34) and (58), we deduce

I1 ≤ 2κδ +
∫

T
μuv

(
4ψ(2δ) + 6

δ

∫ s+2δ

s−2δ
μv(‖v(s) − v(τ)‖) dτ

)
ds. (65)

For the integral I2 in (61), using (34), we obtain

I2 ≤
∫ t

t0
L‖x(s) − y(s)‖ ds. (66)
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According to (61), (65) and (66), we have

‖x(t) − y(t)‖ ≤
∫ t

t0
L‖x(s) − y(s)‖ ds

+ 2κδ + sup
v′(·)∈V

{ ∫

T
μuv

(
4ψ(2δ) + 6

δ

∫ s+2δ

s−2δ
μv(‖v′(s) − v′(τ )‖) dτ

)
ds

}

:=
∫ t

t0
L‖x(s) − y(s)‖ ds + Φ(δ).

Due to choice (60) ofΔ, we getΦ(δ) ≤ ξ∗. Then, applying theBellman–Gronwall lemma,we
deduce ‖x(t) − y(t)‖ ≤ ξ∗ exp (L(ϑ − t0)), t ∈ T . Therefore, according to (36), inequality
(57) holds. Lemma 2 is proved. ��

8 Examples

In this section, we give examples illustrating the availability for numerical realization of the
proposed in the paper (see Sects. 5 and 7) solution of the guarantee optimization problem for
system (1), initial condition (2) and quality index (4) under a compact functional constraint
on the disturbance V. The most difficult part in this solution is to construct the ε-optimal
counter-strategy with full memory Uε . With few exceptions, optimal strategies in guarantee
optimization problems (differential games) are hard to calculate. However, there are some
classes of the problems for which effective procedures are known for calculating the value
of the optimal guaranteed result (the game value) and, as a consequence, for constructing the
corresponding optimal strategies. For example, in the so-called linear-convex case, we can
apply the upper convex hulls method [1,4] (see also [9]). We use this method in Examples 2
and 3.

Example 1 The first example shows that Property 1 is essential in Lemma 2 and Theorem 2.
Let a motion of a dynamical system be described by the equation

dx(t)

dt
= u(t)v(t), t ∈ [0, 1], x(t) ∈ R, u(t) ∈ {0, 1}, v(t) ∈ {−1, 1}, (67)

with the initial condition x(0) = 0, and let γ = x(1) be a quality index. Note that system
(67) does not satisfy Property 1. In this problem, the optimal guaranteed result in the class
of quasi-strategies (6) is Γ 0

QS(0) = 0, and the counter-strategy U0(v) = 0 for v = 1 and

U0(v) = 1 for v = −1 is optimal. Suppose that a set V from a compact functional constraint
V consists of the only one function v(t) = 1, t ∈ [0, 1]. We consider a partitionΔ of the time
interval [0, 1] with the constant step δ = D(�) and define piecewise constant realizations
u(·), u(·) and v(·) by the following rule:

ui = ui =
{
1, if i is even,

0, otherwise,
vi =

{
−1, if i is even,

1, otherwise,
i ∈ 0...(nΔ − 1).

One can verify that such u(·), u(·) and v(·) satisfy relations (52)–(54). Substituting the
realizations u(·) and v(·) into system (67), we obtain

γ = x(1) ≥ 1/2 − δ/2.

Thus, in this problem, the control procedure with guide (52)–(54), and, therefore, strategy
Ûε (55), (56), does not guarantee for the quality index γ the value Γ 0

QS(0). So, the assertion
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of Theorem 2 does not hold in this example. The analysis of the corresponding motion of the
guide shows that the assertion of Lemma 2 does not hold here either.

Example 2 Let a motion of a dynamical system be described by the equations
⎧
⎪⎨

⎪⎩

dx1(t)

dt
= u1(t)(v1(t) + v2(t)), t ∈ [0, 2],

dx2(t)

dt
= u2(t)v1(t)v2(t), x(t) = (

x1(t), x2(t)
) ∈ R

2,

(68)

and the initial condition x(0) = (0, 0). Let the geometric constraints on the control and
disturbance have the form

P := {
(u1, u2) ∈ R

2 : 0.5 ≤ |ui | ≤ 1.5, i = 1, 2
}
,

Q := {
(v1, v2) ∈ R

2 : 1 ≤ v21 + v22 ≤ 4
}
.

Table 1 The results of the numerical simulation in Example 2

δ 0.05 0.01 0.002 0.0004

γ 4.1289 1.7502 1.4791 1.4694

‖x(·) − y(·)‖ 3.1970 0.9695 0.1657 0.0361

In bold, we mark the results illustrated in Figs. 3 and 4
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Fig. 3 Example 2. The motions of the system and guide: δ = 0.01
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Fig. 4 Example 2. The motions of the system and guide: δ = 0.0004

Let us consider the quality index

γ :=
√

(x1(1) − 2)2 + (x2(1) − 1)2 + x21 (2) + (x2(2) + 2)2). (69)

Note that the right-hand side of system (68) is not injective with respect to v = (v1, v2).
But since the system is of form (49), and the corresponding kernel is constant and equal to
{(0, 0)}, system (68) satisfies Property 1. Moreover, one can show that system (68) does not
satisfy condition (14).

Let a set V from a compact functional constraint on the disturbance V consist of all
functions from [0, 2] to Q that are piecewise constant on the partition of [0, 2] with the
constant step 0.05. So, the number of possible switchings of the disturbance is not greater
than 40. Note that, for the chosen Q, the set V is compact in L1([0, 2], R

2).
In simulation below we use the strategy with full memory Ûε described in Sect. 7. We

construct the corresponding ε-optimal counter-strategyUε and the value of the optimal guar-
anteed result Γ 0

QS(0, 0) on the basis of the upper convex hulls method. Furthermore, we
simulate disturbance realizations on the basis of the optimal counter-strategy of the distur-
bance (the second player), which is also constructed by the upper convex hulls method. The
step δ of the partition Δ used in the corresponding control with full memory ÛΔ

ε we vary
within the set {0.05, 0.01, 0.002, 0.0004}.

For the value of optimal guaranteed result in the class of strategies with full memory under
the compact functional constraint V, we obtain

Γ 0
S (0, 0 | V) = Γ 0

QS(0, 0) ≈ 2.8760.
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Table 2 The results of the numerical simulation in Example 3

δ 0.05 0.01 0.002 0.0004

γ 5.7575 1.8410 1.7109 1.7389

‖x(·) − y(·)‖ 4.4871 0.5631 0.1739 0.0486

In bold, we mark the results illustrated in Figs. 5 and 6
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Fig. 5 Example 3. The motions of the system and guide: δ = 0.01

The results of the numerical simulation are presented in Table 1, where δ is the step of the
partition Δ; ‖x(·) − y(·)‖ is the maximal distance between the motions of the system x(·)
and the guide y(·); γ is the realized value of quality index (69). The motions of the system
and guide for δ = 0.01 and δ = 0.0004 are shown in Figs. 3 and 4, respectively.

Example 3 Let us consider the same guarantee optimization problem as in Example 2 but
with the geometrical constraints

P := {
u ∈ R

2 : u ∈ {(−1.1), (−1, 0), (1, 0), (1,−1)}},
Q := {

(v1, v2) ∈ R
2 : |v1|, |v2| ∈ {0.5, 2}}.

One can show that Property 1 is not fulfilled in this case. Therefore, in the numerical simu-
lations, we use the strategy with full memory Uε described in Sect. 5. In (20), we put nε = 4
and choose the whole set P as its ε-net. In (22), we choose ε = 0.01.

For the corresponding value of the optimal guaranteed result, we obtain

Γ 0
S (0, 0 | V) = Γ 0

QS(0, 0) ≈ 2.8359.
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Fig. 6 Example 3. The motions of the system and guide: δ = 0.0004

The results of the numerical simulation are presented in Table 2. The motions of the system
and guide for δ = 0.01 and δ = 0.0004 are shown in Figs. 5 and 6, respectively.
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