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Abstract
The analysis of equilibrium points in random games has been of great interest in evolutionary
game theory, with important implications for understanding of complexity in a dynamical
system, such as its behavioural, cultural or biological diversity. The analysis so far has focused
on random games of independent payoff entries. In this paper, we overcome this restrictive
assumption by considering multiplayer two-strategy evolutionary games where the payoff
matrix entries are correlated randomvariables.Using techniques from the randompolynomial
theory, we establish a closed formula for the mean numbers of internal (stable) equilibria.
We then characterise the asymptotic behaviour of this important quantity for large group
sizes and study the effect of the correlation. Our results show that decreasing the correlation
among payoffs (namely, of a strategist for different group compositions) leads to larger mean
numbers of (stable) equilibrium points, suggesting that the system or population behavioural
diversity can be promoted by increasing independence of the payoff entries. Numerical results
are provided to support the obtained analytical results.

Keywords Evolutionary game theory · Multiplayer games · Replicator dynamics · Random
polynomials · Number of equilibria · Random games

1 Introduction

1.1 Motivation

Evolutionary Game Theory (EGT) was originally introduced in 1973 by Maynard Smith
and Price [41] as an application of classical game theory to biological contexts, providing
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explanations for odd animal behaviours in conflict situations. Since then, it has become
one of the most diverse and far reaching theories in biology, finding further applications in
various fields such as ecology, physics, economics and computer science [3,9,34,35,40,45,
49,55]. For example, in economics, it has been used to make predictions in settings where
traditional assumptions about agents’ rationality and knowledge may not be justified [24,
55]. In computer science, EGT has been used extensively to model dynamics and emergent
behaviour in multiagent systems [29,66]. Furthermore, EGT has helped explain the evolution
and emergence of cooperative behaviours in diverse societies, one of themost actively studied
and challenging interdisciplinary problems in science [10,35,45,46].

Similar to the foundational concept of Nash equilibrium in classical game theory [42], the
study of equilibrium points and their stability in EGT has been of significant importance and
extensive research [4,10,12,14,15,27,28,36]. They represent population compositions where
all the strategies have the same average fitness, thus predicting the coexistence of different
strategic behaviours or types in a population. The major body of such EGT literature has
focused on equilibrium properties in EGT for concrete games (i.e. games with well-specified
payoff structures) such as the coordination and the public goods games. For example, the
maximal number of equilibria, the stability and attainability of certain equilibrium points in
concrete games have been well established; see for example [4,11,50,56,62].

In contrast to the equilibrium analysis of concrete games, a recent body of works investi-
gates randomgameswhere individual payoffs obtained from the games are randomly assigned
[10,14,15,25,27,28,36]. This analysis has proven useful to provide answers to generic ques-
tions about a dynamical system such as its overall complexity. Using random games is useful
to model and understand social and biological systems in which very limited information is
available, or where the environment changes so rapidly and frequently that one cannot pre-
dict the payoffs of their inhabitants [20,26,36,39]. Moreover, even when randomly generated
games are not directly representative for real-world scenarios, they are valuable as a null
hypothesis that can be used to sharpen our understanding of what makes real games special
[25]. In general, an important question posed in these works is what is the expected num-
ber, E(d), of internal equilibria in a d-player game. An answer to the question provides
important insights into the understanding of the expected levels of behavioural diversity or
biodiversity one can expect in a dynamical system [27,38,64]. It would allow us to predict
the level of biodiversity in multiplayer interactions, describing the probability of which a
certain state of biodiversity may occur. Moreover, computing E(d) provides useful upper-
bounds for the probability pm that a certain number m of equilibria is attainted, since [36]:
pm ≤ E(d)/m. Of particular interest is such an estimate for the probability of attaining the
maximal of internal equilibria, i.e. pd−1, as in the Feldman–Karlin conjecture [2].

Mathematically, to find internal equilibria in a d-player game with two strategies A and B,
one needs to solve the following polynomial equation for y > 0 (see Eq. 5 and its derivation
in Sect. 2),

P(y) :=
d−1∑

k=0

βk

(
d − 1

k

)
yk = 0, (1)

where βk = ak − bk , with ak and bk being random variables representing the payoff entries
of the game payoff matrix for A and B, respectively. Therefore, calculating E(d) amounts
to the computation of the expected number of positive zeros of the (random) polynomial P .
As will be shown in Sect. 2, the set of positive roots of P is the same as that of the so-called
gain function which is a Bernstein polynomial. Thus, one can gain information about internal
equilibria of a multiplayer game via studying positive roots of Bernstein polynomials. For
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deterministic multiplayer games, this has already been carried out in the literature [48]. One
of the main goals of this paper is to extend this research to random multiplayer games via
studying random polynomials.

In [27,28,36], the authors provide both numerical and analytical results for games with a
small number of players (d ≤ 4), focusing on the probability of attaining a maximal number
of equilibrium points. These works use a direct approach by solving Equation (1), expressing
the positivity of its zeros as domains of conditions for the coefficients and then integrating over
these domains to obtain the corresponding probabilities. However, in general, a polynomial
of degree five or higher is not analytically solvable [1]. Therefore, the direct approach cannot
be generalised to larger d . More recently, in [14,15] the authors introduce a novel method
using techniques from random polynomials to calculate E(d) with an arbitrary d , under the
assumption that the entries of the payoff matrix are independent normal random variables.
More precisely, they derive a computationally implementable formula for E(d) for arbitrary
d and prove the following monotonicity and asymptotic behaviour of E(d):

E(d)

d − 1
is decreasing and lim

d→∞
ln E(d)

ln(d − 1)
= 1

2
. (2)

However, the requirement that the entries of the payoff matrix are independent random vari-
ables is rather restricted frombothmathematical and biological points of view. In evolutionary
game theory, correlations may arise in various scenarios particularly when there are environ-
mental randomness and interaction uncertainty such as in games of cyclic dominance [59],
coevolutionary multigames [58] or when individual contributions are correlated to the sur-
rounding contexts (e.g. due to limited resource) [60], see also recent reviews [16,57] for more
examples. One might expect some strategies to have many similar properties and hence yield
similar results for a given response of the respective opponent [5]. Furthermore, in a multi-
player game (such as the public goods games and their generalisations), a strategy’s payoffs,
which may differ for different group compositions, can be expected to be correlated given a
specific nature of the strategy [30–33,47,64]. Similarly, different strategies’ payoffs may be
correlated given the same group composition. From a mathematical perspective, the study
of real zeros of random polynomials with correlated coefficients has attracted substantial
attention, see e.g. [13,21–23,51].

In this paper, we remove the assumption on the dependence of the coefficients. We will
study the expected number of internal equilibria and its various properties for random evo-
lutionary games in which the entries of the payoff matrix are correlated random variables.

1.2 Summary of Main Results

We now summarise the main results of this paper. More detailed statements will be pre-
sented in the sequel sections. We consider d-player two-strategy random games in which
the coefficients βk (k ∈ {0, . . . , d − 1}) can be correlated random variables, satisfying that
corr(βi , β j ) = r for i �= j and for some 0 ≤ r ≤ 1 (see Lemma 1 about this assumption).

The main result of the paper is the following theorem which provides a formula for the
expected number, E(r , d), of internal equilibria, characterises its asymptotic behaviour and
studies the effect of the correlation.

Theorem 1 (On the expected number of internal equilibria)

(1) (Computational formula for E(r , d))

E(r , d) = 2
∫ 1

0
f (t; r , d) dt, (3)
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where the density function f (t; r , d) is given explicitly in (8).
(2) (Monotonicity of E(r , d) with respect to r) The function r �→ E(r , d) decreases for any

given d.
(3) (Asymptotic behaviour of E(r , d) for large d) We perform formal asymptotic computa-

tions to get

E(r , d)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∼
√
2d−1
2 ∼ O(d1/2) if r = 0,

∼ d1/4(1−r)1/2

2π5/4r1/2
8Γ

(
5
4

)2

√
π

∼ O(d1/4) if 0 < r < 1,

= 0 if r = 1.

(4)

We compare this asymptotic behaviour numerically with the analytical formula obtained
in part 1.

This theorem clearly shows that the correlation r has a significant effect on the expected
number of internal equilibria E(r , d). For sufficiently large d , when r increases from 0
(uncorrelated) to 1 (identical), E(r , d) reduces from O(d1/2) at r = 0, to O(d1/4) for
0 < r < 1 and to 0 at r = 1. This theorem generalises and improves the main results in

[15] for the case r = 0: the asymptotic behaviour, E(r , d) ∼
√
2d−1
2 , is stronger than (2). In

addition, as a by-product of our analysis, we provide an asymptotic formula for the expected
number of real zeros of a random Bernstein polynomial as conjectured in [18], see Sect. 6.7.

1.3 Methodology of the PresentWork

We develop further the connections between EGT and random/deterministic polynomials
theory discovered in [14,15]. The integral representation (3) is derived from the theory of
[19], which provides a general formula for the expected number of real zeros of a random
polynomial in a given domain, and the symmetry of the game, see Theorem 2; the mono-
tonicity and asymptotic behaviour of E(r , d) are obtained by using connections to Legendre
polynomials, which were described in [15], see Theorems 3 and 1.

1.4 Organisation of the Paper

The rest of the paper is organised as follows. In Sect. 2, we recall the replicator dynamics for
multiplayer two-strategy games. In Sect. 3, we prove and numerically validate the first and the
second parts of Theorem 1. Section 4 is devoted to the proof of the last part of Theorem 1 and
its numerical verification. Section 5 provides further discussion, and finally, “Appendix 6”
contains detailed computations and proofs of technical results.

2 Replicator Dynamics

A fundamental model of evolutionary game theory is the replicator dynamics [35,45,63,65,
69], describing that whenever a strategy has a fitness larger than the average fitness of the
population, it is expected to spread. From the replicator dynamics, one then can derive a
polynomial equation that an internal equilibrium of a multiplayer game satisfies . To this end,
we consider an infinitely large population with two strategies, A and B. Let x , 0 ≤ x ≤ 1,
be the frequency of strategy A. The frequency of strategy B is thus (1 − x). The interaction
of the individuals in the population is in randomly selected groups of d participants, that
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is, they play and obtain their fitness from d-player games. The game is defined through a
(d − 1)-dimensional payoff matrix [27], as follows. Let ak (respectively, bk) be the payoff
of an A strategist (respectively, a B strategist) obtained when interacting with a group of
d − 1 other players containing k A strategists (i.e. d − 1− k B strategists). In this paper, we
consider symmetric games where the payoffs do not depend on the ordering of the players.
Asymmetric games will be studied in a forthcoming paper. In the symmetric case, the average
payoffs of A and B are, respectively

πA =
d−1∑

k=0

ak

(
d − 1

k

)
xk(1 − x)d−1−k, πB =

d−1∑

k=0

bk

(
d − 1

k

)
xk(1 − x)d−1−k .

Internal equilibria are those points that satisfy the condition that the fitnesses of both strategies
are the same πA = πB , which gives rise to g(x) = 0 where g(x) is the so-called gain function
given by [6,48]

g(x) =
d−1∑

k=0

βk

(
d − 1

k

)
xk(1 − x)d−1−k,

where βk = ak − bk . Note that this equation can also be derived from the definition of
an evolutionary stable strategy (ESS), see, e.g. [4]. As also discussed in that paper, the
evolutionary solution of the game (such as the set of ESSs or the set of stable rest points of
the replicator dynamics) involves not only finding the roots of the gain function g(x) but also
determining the behaviour of g(x) in the vicinity of such roots. We also refer the reader to
[65,69] and references therein for further discussion on relations between ESSs and game
dynamics. Using the transformation y = x

1−x , with 0 < y < +∞, and dividing g(x) by

(1 − x)d−1, we obtain the following polynomial equation for y

P(y) :=
d−1∑

k=0

βk

(
d − 1

k

)
yk = 0. (5)

As in [14,15,27], we are interested in random games where ak and bk (thus βk), for 0 ≤ k ≤
d −1, are random variables. However, in contrast to these papers where βk are assumed to be
independent, we analyse here a more general case where they are correlated. In particular, we
consider that any pair βi and β j , with 0 ≤ i �= j ≤ d − 1, have a correlation r (0 ≤ r ≤ 1).
In general, r = 0 means βi and β j are independent, while when r = 1 they have a (perfectly)
linear correlation, and the larger r is the stronger they are correlated. It is noteworthy that
this type of dependency between the coefficients is common in the literature on evolutionary
game theory [5,25] as well as random polynomial theory [13,23,51].

The next lemma shows how this assumption arises naturally from simple assumptions
on the game payoff entries. To state the lemma, let cov(X , Y ) and corr(X , Y ) denote the
covariance and correlation between random variables X and Y , respectively; moreover,
var(X) = cov(X , X) denotes the variance of X .

Lemma 1 Suppose that, for 0 ≤ i �= j ≤ d − 1,

– var(ai ) = var(bi ) = η2,
– corr(ai , a j ) = ra, corr(bi , b j ) = rb,
– corr(ai , b j ) = rab, corr(ai , bi ) = r ′

ab.

Then, the correlation between βi and β j , for 1 ≤ i �= j ≤ d − 1, is given by

corr(βi , β j ) = ra + rb − 2rab

2(1 − r ′
ab)

, (6)



Dynamic Games and Applications (2019) 9:458–485 463

which is a constant. Clearly, it increases with ra, rb and r ′
ab while decreasing with rab.

Moreover, if ra + rb = 2rab, then βi and β j are independent. Also, if rab = r ′
ab = 0, i.e.

when payoffs from different strategists are independent, we have: corr(βi , β j ) = ra+rb
2 . If

we further assume that ra = rb = r , then corr(βi , β j ) = r .

Proof See “Appendix 6.1”. ��
The assumptions in Lemma 1mean that a strategist’s payoffs for different group compositions
have a constant correlation, which in general is different from the cross-correlation of payoffs
for different strategists. These assumptions arise naturally for example in a multiplayer game
(such as the public goods games and their generalisations), since a strategist’s payoffs, which
may differ for different group compositions, can be expected to be correlated given a specific
nature of the strategy (e.g. cooperative vs. defective strategies in the public goods games).
These natural assumptions regarding payoffs’ correlations are just to ensure the pairs βi and
β j , 0 ≤ i �= j ≤ d −1, have a constant correlation. Characterising the general case where βi

and β j have varying correlations would be mathematically interesting but is out of the scope
of this paper. We will discuss further this issue particularly for other types of correlations in
Sect. 5.

3 The Expected Number of Internal Equilibria E(r,d)

We consider the case where βk are standard normal random variables but assume that all the
pairs βi and β j , for 0 ≤ i �= j ≤ d − 1, have the same correlation 0 ≤ r ≤ 1 (cf. Lemma 1).

In this section, we study the expected number of internal equilibria E(r , d). The starting
point of the analysis of this section is an improper integral to compute E(r , d) as a direct
application of the Edelman–Kostlan theorem [19], see Lemma 2. We then further simplify
this formula to obtain a more computationally tractable one (see Theorem 2) and then prove
a monotone property of E(r , d) as a function of the correlation r , see Theorem 3.

3.1 Computations of E(r, d)

Lemma 2 Assume that βk are standard normal random variables and that for any i �= j , the
correlation between βi and β j is equal to r for some 0 ≤ r ≤ 1. Then, the expected number
of internal equilibria, E(r , d), in a d-player random game with two strategies is given by

E(r , d) =
∫ ∞

0
f (t; r , d) dt, (7)

where

[π f (t; r , d)]2 =
(1 − r)

∑d−1
i=0 i2

(
d − 1

i

)2

t2(i−1) + r(d − 1)2(1 + t)2(d−2)

(1 − r)
∑d−1

i=0

(
d − 1

i

)2

t2i + r(1 + t)2(d−1)

−

⎡

⎢⎢⎢⎣

(1 − r)
∑d−1

i=0 i

(
d − 1

i

)2

t2i−1 + r(d − 1)(1 + t)2d−3

(1 − r)
∑d−1

i=0

(
d − 1

i

)2

t2i + r(1 + t)2(d−1)

⎤

⎥⎥⎥⎦

2

. (8)
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Proof According to [19] (see also [14,15]), we have

E(r , d) =
∫ ∞

0
f (t; r , d) dt,

where the density function f (t; r , d) is determined by

f (t; r , d) = 1

π

[
∂2

∂x∂ y

(
log v(x)T Cv(y)

)∣∣∣
y=x=t

] 1
2

, (9)

with the covariance matrix C and the vector v given by

Ci j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
d − 1

i

)2

, if i = j

r

(
d − 1

i

)(
d − 1

j

)
, if i �= j .

and v(x) =

⎛

⎜⎜⎜⎝

1
x
...

xd−1

⎞

⎟⎟⎟⎠ . (10)

Let us define

H(x, y) := v(x)T Cv(y)

=
d−1∑

i=0

(
d − 1

i

)2

xi yi + r
d−1∑

i �= j=0

(
d − 1

i

)(
d − 1

j

)
xi y j

= (1 − r)

d−1∑

i=0

(
d − 1

i

)2

xi yi + r

(
d−1∑

i=0

(
d − 1

i

)
xi

)⎛

⎝
d−1∑

j=0

(
d − 1

j

)
y j

⎞

⎠ . (11)

Then, we compute

∂2

∂x∂y
(log v(x)T Cv(y)) = ∂2

∂x∂y
log H(x, y) = ∂2xy H(x, y)

H(x, y)
− ∂x H(x, y)∂y H(x, y)

H(x, y)2
.

Particularly, for y = x = t , we obtain

∂2

∂x∂y
(log v(x)T Cv(y))

∣∣∣
y=x=t

=
(

∂2xy H(x, y)

H(x, y)
− ∂x H(x, y)∂y H(x, y)

H(x, y)2

) ∣∣∣
y=x=t

=
∂2xy H(x, y)

∣∣
y=x=t

H(t, t)
−

(
∂x H(x, y)

∣∣
y=x=t

H(t, t)

)2

.

Using (11),we can compute each termon the right-hand side of the above expression explicitly

H(t, t) = (1 − r)

d−1∑

i=0

(
d − 1

i

)2

t2i + r

(
d−1∑

i=0

(
d − 1

i

)
t i

)2

, (12a)

∂x H(x, y)
∣∣
y=x=t = (1 − r)

d−1∑

i=0

i

(
d − 1

i

)2

t2i−1

+ r

(
d−1∑

i=0

i

(
d − 1

i

)
t i

)⎛

⎝
d−1∑

j=0

(
d − 1

j

)
t j−1

⎞

⎠ , (12b)
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∂2xy H(x, y)
∣∣
y=x=t = (1 − r)

d−1∑

i=0

i2
(

d − 1
i

)2

t2(i−1) + r

(
d−1∑

i=0

i

(
d − 1

i

)
t i−1

)2

. (12c)

We can simplify further the above expressions using the following computations which are
attained from the binomial theorem and its derivatives

(
d−1∑

i=0

(
d − 1

i

)
t i

)2

= (1 + t)2(d−1), (13a)

(
d−1∑

i=0

i

(
d − 1

i

)
t i−1

)2

=
(

d

dt

d−1∑

i=0

(
d − 1

i

)
t i

)2

=
(

d

dt
(1 + t)d−1

)2

= (d − 1)2(1 + t)2(d−2), (13b)
(

d−1∑

i=0

i

(
d − 1

i

)
t i

)⎛

⎝
d−1∑

j=0

(
d − 1

j

)
t j−1

⎞

⎠ = 1

2

d

dt

(
d−1∑

i=0

(
d − 1

i

)
t i

)2

= 1

2

d

dt
(1 + t)2(d−1) = (d − 1)(1 + t)2d−3. (13c)

Substituting (12) and (13) back into (9), we obtain (8) and complete the proof. ��
Next, we will show that, as in the case r = 0 studied in [14,15], the improper integral (7)
can be reduced to a definite integral from 0 to 1. A crucial property enables us to do so is
the symmetry of the strategies. The main result of this section is the following theorem (cf.
Theorem 1–(1)).

Theorem 2 (1) The density function f (t; r , d) satisfies that

f (1/t; r , d) = t2 f (t; r , d). (14)

(2) (Computable formula for E(r , d)). E(r , d) can be computed via

E(r , d) = 2
∫ 1

0
f (t)dt = 2

∫ ∞

1
f (t) dt . (15)

Proof The proof of the first part is lengthy and is given in “Appendix 6.2”. Now, we prove
the second part. We have

E(r , d) =
∫ ∞

0
f (t; r , d) dt =

∫ 1

0
f (t; r , d) dt +

∫ ∞

1
f (t; r , d) dt . (16)

By changing of variables t := 1
s , the first integral on the right-hand side of (16) can be

transformed as
∫ 1

0
f (t; r , d) dt =

∫ ∞

1
f (1/s; r , d)

1

s2
ds =

∫ ∞

1
f (s; r , d) ds, (17)

where we have used (14) to obtain the last equality. The assertion (15) is then followed from
(16) and (17). ��
As in [15], we can interpret the first part of Theorem 2 as a symmetric property of the game.
We recall that t = y

1−y , where y and 1− y are, respectively, the fractions of strategies 1 and
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2. We write the density function f (t; r , d) in terms of y using the change of variable formula
as follows.

f (t; r , d) dt = f
( y

1 − y
; r , d

) 1

(1 − y)2
dy := g(y; r , d) dy,

where

g(y; r , d) := f
( y

1 − y
; r , d

) 1

(1 − y)2
. (18)

The following lemma expresses the symmetry of the strategies. (Swapping the index labels
converts an equilibrium at y to one at 1 − y.)

Corollary 1 The function y �→ g(y; r , d) is symmetric about the line y = 1
2 , i.e.

g(y; r , d) = g(1 − y; r , d). (19)

Proof The equality (19) is a direct consequence of (14). We have

g(1 − y; r , d) = f
(1 − y

y
; r , d

) 1

y2
(14)= f

( y

1 − y
; r , d

) y2

(1 − y)2

1

y2

= f
( y

1 − y
; r , d

) 1

(1 − y)2
= g(y; r , d).

��

3.2 Monotonicity of r �→ E(r, d)

In this section, we study the monotone property of E(r , d) as a function of the correlation r .
The main result of this section is the following theorem on the monotonicity of r �→ E(r , d)

(cf. Theorem 1–(2)).

Theorem 3 The function r �→ f (t; r , d) is decreasing. As a consequence, r �→ E(r , d) is
also decreasing.

Proof We define the following notations:

M1 = M1(t; r , d) =
d−1∑

i=0

(
d − 1

i

)2

t2i , M2 = M2(t; r , d) = (1 + t)2(d−1),

A1 = A1(t; r , d) =
d−1∑

i=0

i2
(

d − 1
i

)2

t2(i−1), A2 = A2(t; r , d) = (d − 1)2(1 + t)2(d−2),

B1 = B1(t; r , d) =
d−1∑

i=0

i

(
d − 1

i

)2

t2i−1, B2 = B2(t; r , d) = (d − 1)(1 + t)2d−3,

M = (1 − r)M1 + r M2, A = (1 − r)A1 + r A2, B = (1 − r)B1 + r B2.

Then, the density function f (t; r , d) in (8) can be written as

(π f (t; r , d))2 = AM − B2

M2 . (20)
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Taking the derivation with respect to r of the right-hand side of (20), we obtain

∂

∂r

(
AM − B2

M2

)

= (A′ M + M ′ A − 2B B ′)M2 − 2(AM − 2B2)M M ′

M4

= (A′ M + M ′ A − 2B B ′)M − 2(AM − B2)M ′

M3

= 2B(B M ′ − B ′ M) − M(AM ′ − M A′)
M3

(∗)= 2B(B1M2 − M1B2) − M(A1M2 − M1 A2)

M3

= 2B
(
B1(1 + t)2(d−1) − M1(d − 1)(1 + t)2d−3

) − M
(

A1(1 + t)2(d−1) − M1(d − 1)2(1 + t)2(d−2)
)

M3

= (1 + t)2d−4
{
2(t + 1)B [B1(1 + t) − M1(d − 1)] − M

[
A1(1 + t)2 − M1(d − 1)2

]}

M3 .

Note that to obtain (*) above we have used the following simplifications

B M ′ − B ′M = [B1 + r(B2 − B1)] (M2 − M1) − (B2 − B1) [M1 + r(M2 − M1)]

= B1(M2 − M1) − (B2 − B1)M1

= B1M2 − M1B2,

and similarly,

AM ′ − A′M = A1M2 − M1A2.

Since M > 0 and according to Proposition 2,

2(t + 1)B
[

B1(1 + t) − M1(d − 1)
]

− M
[

A1(1 + t)2 − M1(d − 1)2
]

≤ 0,

it follows that

∂

∂r

(
AM − B2

M2

)
≤ 0.

The assertion of the theorem is then followed from this and (20). ��
As a consequence, we can derive the monotonicity property of the number of stable

equilibrium points, denoted by SE(r , d). It is based on the following property of stable
equilibria in multiplayer two-strategy evolutionary games, which has been proved in [36,
Theorem 3] for payoff matrices with independent entries. We provide a similar proof below
for matrices with exchangeable payoff entries.We need the following auxiliary lemmawhose
proof is presented in “Appendix 6.3”.

Lemma 3 Let X and Y be two exchangeable random variables, i.e. their joint probability
distribution fX ,Y (x, y) is symmetric, fX ,Y (x, y) = fX ,Y (y, x). Then, Z = X − Y is sym-
metrically distributed about 0, i.e. its probability distribution satisfies fZ (z) = fZ (−z). In
addition, if X and Y are iid, then they are exchangeable.

Theorem 4 Suppose that ak and βk are exchangeable random variables. For d-player evo-
lutionary games with two strategies, the following holds

SE(r , d) = 1

2
E(r , d). (21)
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Proof The replicator equation in this game is given by [27,32]

ẋ = x(1 − x)

d−1∑

k=0

βk
(d−1

k

)
xk(1 − x)d−1−k . (22)

Suppose x∗ ∈ (0, 1) is an internal equilibrium of the system and h(x) is the polynomial on
the right-hand side of the equation. Since x∗ is stable if and only if h′(x∗) < 0 which can be
simplified to [36]

d−1∑

k=1

kβk
(d−1

k

)
y∗k−1

< 0, (23)

where y∗ = x∗
1−x∗ . As a system admits the same set of equilibria if we change the sign of all

βk simultaneously, and for such a change the above inequality would change the direction
(thus the stable equilibrium x∗ would become unstable), all we need to show for the theorem
to hold is that βk has a symmetric density function. This is guaranteed by Lemma 3 since
βk = ak − bk where ak and bk are exchangeable. ��

Corollary 2 Under the assumption of Theorem 4, the expected number of stable equilibrium
points SE(r,d) is a decreasing function with respect to r .

Proof This is a direct consequence of Theorems 3 and 4. ��

3.3 Monotonicity of E(r, d): Numerical Investigation

In this section, we numerically validate the analytical results obtained in the previous section.
In Fig. 1, we plot the functions r �→ E(r , d) for several values of d (left panel) and d �→
E(r , d) for different values of r using formula 7 (right panel). In the panel on the left, we
also show the value of E(r , d) obtained from samplings. That is, we generate 106 samples
of βk(0 ≤ k ≤ d − 1) where βk are normally distributed random variables satisfying that
corr(βi , β j ) = r for 0 ≤ i �= j ≤ d − 1. For each sample, we solve Eq. (5) to obtain the
corresponding number internal equilibria (i.e. the number of positive zeros of the polynomial
equation). By averaging over all the 106 samples, we obtain the probability of observing m
internal equilibria, p̄m , for each 0 ≤ m ≤ d − 1. Finally, the mean or expected number of
internal equilibria is calculated as E(r , d) = ∑d−1

m=0 m · p̄m . The figure shows the agreement
of results obtained from analytical and sampling methods. In addition, it also demonstrates
the decreasing property of r �→ E(r , d), which was proved in Theorem 3. Additionally, we
observe that E(r , d) increases with the group size, d .

Note that to generate correlated normal random variables, we use the following algorithm
that can be found in many textbooks, for instance [43, Section 4.1.8].

Algorithm 5 Generate n correlated Gaussian distributed random variablesY=(Y1, . . . , Yn),
Y ∼ N (μ,�), given the mean vector μ and the covariance matrix �.

Step 1. Generate a vector of uncorrelated Gaussian random variables, Z,
Step 2. Define Y = μ + CZ where C is the square root of � (i.e. CCT = �).

The square root of a matrix can be found using the Cholesky decomposition. These two steps
are easily implemented in Mathematica.
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Fig. 1 (Left) Plot of r �→ E(r , d) for different values of d. The solid lines are generated from analytical
(A) formulas of E(r , d) as defined in Eq. (7). The solid diamonds capture simulation (S) results obtained by
averaging over 106 samples of βk (1 ≤ k ≤ d − 1), where these βk are correlated, normally standard random
variables. To generate correlated random variables, the algorithm described in Algorithm 5 was used. (Right)
Plot of d �→ E(r , d) for different values of r . We observe that E(r , d) decreases with respect to r but increases
with respect to d

4 Asymptotic Behaviour of E(r,d)

4.1 Asymptotic Behaviour of E(r, d): Formal Analytical Computations

In this section we perform formal asymptotic analysis to understand the behaviour of E(r , d)

when d becomes large.

Proposition 1 We have the following asymptotic behaviour of E(r , d) as d → ∞

E(r , d)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∼
√
2d−1
2 if r = 0,

∼ d1/4(1−r)1/2

2π5/4r1/2
8Γ

(
5
4

)2

√
π

if 0 < r < 1,

= 0 if r = 1.

Proof We consider the case r = 1 first. In this case, we have

M(t) = M2(t) = (1 + t)2(d−1), A(t) = A2(t) = (d − 1)2(1 + t)2(d−2),

B(t) = B2(t) = (d − 1)(1 + t)2d−3.

Since A2(t)M2(t) − B2
2 (t) = 0, we obtain f (t; 1, d) = 0. Therefore E(1, d) = 0.

We now deal with the case 0 ≤ r < 1. According to [7, Example 2, page 229], [68], for any
x > 1

Pd(x) = 1√
2dπ

(x + √
x2 − 1)d+1/2

(x2 − 1)1/4
+ O(d−1) as d → ∞.
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Therefore,

M1 = (1 − t2)d−1Pd−1

(
1 + t2

1 − t2

)
∼ 1√

4π(d − 1)t
(1 + t)2d−1,

M ∼ (1 − r)
1√

4π(d − 1)t
(1 + t)2d−1 + r(1 + t)2d−2.

Using the relations between A1, B1 and M1 in (27), we obtain

A ∼ (d − 1)2r(t + 1)2(d−2) + (2d − 1)(t + 1)2d−2

8t
√

π
√

(d − 1)t
− (d − 1)(t + 1)2d−1

16t
√

π((d − 1)t)3/2

+ 1

4

(
(2d − 2)(2d − 1)(t + 1)2d−3

2
√

π
√

(d − 1)t
− (d − 1)(2d − 1)(t + 1)2d−2

2
√

π((d − 1)t)3/2

+ 3(d − 1)2(t + 1)2d−1

8
√

π((d − 1)t)5/2

)
,

B ∼ (d − 1)r(t + 1)2d−3 + 1

2
(1 − r)

(
(2d − 1)(t + 1)2d−2

2
√

π
√

(d − 1)t
− (d − 1)(t + 1)2d−1

4
√

π((d − 1)t)3/2

)
.

Therefore, we get

f 2 = 1

π2

AM − B2

M2

∼ (1 − r)
(
2(1 − 2d)(r − 1)t(t + 1) + √

πr(t(8d + t − 6) + 1)
√

(d − 1)t
)

8π2t2(t + 1)
(
(r − 1)(t + 1) − 2

√
πr

√
(d − 1)t

)2 .

Denote the expression on the right-hand side by f 2a . If r = 0, we have

f 2a = 2(2d − 1)t(t + 1)

8π2t2(t + 1)(t + 1)2
= 2d − 1

4π2t(t + 1)2
,

which means

fa =
√
2d − 1

2π
√

t(t + 1)
.

Therefore

E ∼ Ea := 2
∫ 1

0
fa dt = 2

∫ 1

0

√
2d − 1

2π t1/2(1 + t)
dt =

√
2d − 1

2
= O(d1/2).

It remains to consider the case 0 < r < 1. As the first asymptotic value of E we compute

E1 = 2
∫ 1

0
fa(t) dt . (24)

However, this formula is still not explicit since we need to take square root of fa . Next wewill
offer another explicit approximation. To this end, we will further simplify fa asymptotically.
Because

(
2(1 − 2d)(r − 1)t(t + 1) + √

πr(t(8d + t − 6) + 1)
√

(d − 1)t
)

∼ √
πr t8d

√
dt

and
(
(r − 1)(t + 1) − 2

√
πr

√
(d − 1)t

)2 ∼ 4πr2dt
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we obtain

f 2a = (1 − r)
(
2(1 − 2d)(r − 1)t(t + 1) + √

πr(t(8d + t − 6) + 1)
√

(d − 1)t
)

8π2t2(t + 1)
(
(r − 1)(t + 1) − 2

√
πr

√
(d − 1)t

)2

∼ (1 − r)
√

πr t8d
√
dt

8π2t2(t + 1)4πr2dt
=

√
d(1 − r)

4π5/2r t3/2(t + 1)
,

which implies that

fa ∼ d1/4(1 − r)1/2

2π5/4r1/2t3/4(t + 1)1/2
.

Hence, we obtain another approximation for E(r , d) as follows.

E(r , d) ∼ E2 :=
∫ 1

0

d1/4(1 − r)1/2

2π5/4r1/2t3/4(t + 1)1/2
dt

= d1/4(1 − r)1/2

2π5/4r1/2

∫ 1

0

1

t3/4(t + 1)1/2
dt

= d1/4(1 − r)1/2

2π5/4r1/2

8Γ
(
5
4

)2

√
π

. (25)

��

The formal computations clearly show that the correlation r between the coefficients {β}
significantly influences the expected number of equilibria E(r , d):

E(r , d) =

⎧
⎪⎨

⎪⎩

O(d1/2), if r = 0,

O(d1/4), if 0 < r < 1,

0, if r = 1.

In Sect. 4.2 we will provide numerical verification for our formal computations.

Corollary 3 The expected number of stable equilibrium points SE(r,d) follows the asymptotic
behaviour

SE(r , d) =

⎧
⎪⎨

⎪⎩

O(d1/2), if r = 0,

O(d1/4), if 0 < r < 1,

0, if r = 1.

Proof This is a direct consequence of Theorems 3 and 1. ��

Remark 1 In “Appendix 6.4”, we show the following asymptotic formula for f (1; r , d)

f (1; r , d) ∼ (d − 1)1/4(1 − r)1/2

2
√
2π5/4r1/2

.

It is worth noticing that this asymptotic behaviour is of the same form as that of E(r , d).
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Fig. 2 Plot of E1/E(r , d) (left), and E2/E(r , d) (right). The figure shows that these ratios all converge
to 1 when d becomes large. We also notice that E2 approximates E better when r is close to 1 while E1
approximates E better when r is small

Table 1
∣∣∣ E1

E − 1
∣∣∣ d r

0 0.01 0.1 0.3 0.5 0.8

20 0.119 0.126 0.178 0.305 0.484 1.106

40 0.08 0.086 0.128 0.23 0.373 0.871

120 0.045 0.049 0.08 0.154 0.257 0.616

200 0.034 0.038 0.065 0.129 0.219 0.529

320 0.027 0.03 0.055 0.111 0.19 0.461

440 0.023 0.026 0.049 0.1 0.172 0.421

600 0.019 0.023 0.044 0.091 0.157 0.385

Table 2
∣∣∣ E2

E − 1
∣∣∣ d r

0 0.01 0.1 0.3 0.5 0.8

20 0.119 5.855 1.495 0.745 0.528 0.374

40 0.08 4.587 1.148 0.575 0.409 0.29

120 0.045 3.186 0.782 0.397 0.285 0.203

200 0.034 2.701 0.661 0.338 0.244 0.174

320 0.027 2.322 0.568 0.293 0.212 0.152

440 0.023 2.097 0.514 0.266 0.193 0.138

600 0.019 1.9 0.467 0.243 0.176 0.127

4.2 Asymptotic Behaviour of E(r, d): Numerical Investigation

In this section, we numerically validate the asymptotic behaviour of E(r , d) for large d that
is obtained in the previous section using formal analytical computations. In Fig. 2, Tables 1
and 2 we plot the ratios of the asymptotically approximations of E(r , d) obtained in Sect. 4
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with itself, i.e. E1/E(r , d) and E2/E(r , d), for different values of r and d . We observe
that: for r = 0 the approximation is good; while for 0 < r < 1: E1 (respectively, E2)
approximates E(r , d) better when r is small (respectively, when r is close to 1).

5 Conclusion

In this paper, we have studied the mean value, E(r, d), of the number of internal equilibria
in d-player two-strategy random evolutionary games where the entries of the payoff matrix
are correlated random variables (r is the correlation). We have provided analytical formulas
for E(r, d) and proved that it is decreasing as a function of r . That is, our analysis has
shown that decreasing the correlation among payoff entries leads to larger expected numbers
of (stable) equilibrium points. This suggests that when payoffs obtained by a strategy for
different group compositions are less correlated, it would lead to higher levels of strategic
or behavioural diversity in a population. Thus, one might expect that when strategies behave
conditionally on or even randomly for different group compositions, diversity would be
promoted. Furthermore, we have shown that the asymptotic behaviour of E(r, d) (and thus
also of the mean number of stable equilibrium points, SE(r, d)), i.e. when the group size d is
sufficiently large, is highly sensitive to the correlation value r . Namely,E(r, d) (and SE(r, d))
asymptotically behave in the order of d1/2 for r = 0 (i.e. the payoffs are independent for
different group compositions), of d1/4 for 0 < r < 1 (i.e. non-extreme correlation), and 0
when r = 1 (i.e. the payoffs are perfectly linear). It is also noteworthy that our numerical
results showed that E(r, d) increases with the group size d . In general, our findings might
have important implications for the understanding of social and biological systems given
the important roles of social and biological diversities, e.g. in the evolution of cooperative
behaviour and population fitness distribution [37,47,60].

Moreover, we have explored further connections between EGT and random polynomial
theory initiated in our previous works [14,15]. The random polynomial P obtained from
EGT (cf. (5)) differs from three well-known classes of random polynomials, namely Kac
polynomials, elliptic polynomials and Weyl polynomials, that are investigated intensively
in the literature. We elaborate further this difference in Sect. 6.6. In addition, as will be
explained in Sect. 6.7, the set of positive roots of P is the same as that of a Bernstein random
polynomial. As a result, our work provides an analytical formula and asymptotic behaviour
for the expected number of Bernstein random polynomials proving [18, Conjecture 4.7].
Thus, our work also contributes to the literature of random polynomial theory and to further
its existing connection to EGT.

Although the expected number of internal equilibria providesmacroscopic (average) infor-
mation, to gain deeper insights into amultiplayer game such as possibilities of different states
of biodiversity or themaintenance of biodiversity, it is crucial to analyse the probability distri-
bution of the number of (stable) internal equilibria [27,37,61]. Thus a more subtle questions
is: what is the probability, pm , with 0 ≤ m ≤ d −1, that a d-player two-strategy game attains
m internal equilibria? This question has been addressed for games with a small number of
players [27,36]. We will tackle this more intricate question for arbitrary d in a separate paper
[17]. We expect that our work in this paper as well as in [17] will open up a new exciting
avenue of research in the study of equilibrium properties of random evolutionary games. We
discuss below some directions for future research.

Other types of correlations. In this paper we have assumed that the correlations
corr(βi , β j ) are constants for all pairs i �= j . This is a fairly simple relation. Generally
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corr(βi , β j ) may depend on i and j as showing in Lemma 1. Two interesting cases that
are commonly studied in interacting particle systems are: (a) exponentially decay correla-
tions, corr(βi , β j ) = ρ|i− j | for some 0 < ρ < 1, and (b) algebraically decay correlations,
corr(βi , β j ) = (1+|i − j |)−α for some α > 0. These types of correlations have been studied
in the literature for different types of random polynomials [13,22,53].

Universality phenomena. Recently, in [67] the authors proved, for other classes of random
polynomials (such as Kac polynomials, Weyl polynomials and elliptic polynomials, see
Sect. 6.6), an intriguing universal phenomenon: the asymptotic behaviour of the expected
number of zeros in the non-gaussian case matches that of the gaussian case once one has
performed appropriate normalizations. Further research is demanded to see whether this
universality phenomenon holds true for the random polynomial (1).
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6 Appendix: Detailed Proofs and Computations

This appendix consists of detailed proofs and computations of some lemmas and theorems
in the main text.

6.1 Proof of Lemma 1

We have

cov(βi , β j ) = cov(ai − bi , a j − b j )

= cov(ai , a j ) + cov(bi , b j ) − cov(ai , b j ) − cov(bi , a j )

= raη2 + rbη
2 − 2rabη

2

= (ra + rb − 2rab)η
2.

Similarly,

var(βi ) = var(ai − bi ) = cov(ai − bi , ai − bi ) = 2η2 − 2r ′
abη

2 = 2(1 − r ′
ab)η

2.

Hence, the correlation between βi and β j is

corr(βi , β j ) = cov(βi , β j )√
var(βi )var(β j )

= (ra + rb − 2rab)η
2

2(1 − r ′
ab)η

2 = ra + rb − 2rab

2(1 − r ′
ab)

.

6.2 Proof of Theorem 2–(1)

We prove (14). We recall the following notations that have been used in the proof of Theo-
rem 3.

http://creativecommons.org/licenses/by/4.0/
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M1 = M1(t, d) =
d−1∑

i=0

(
d − 1

i

)2

t2i , M2 = M2(t, d) = (1 + t)2(d−1),

A1 = A1(t, d) =
d−1∑

i=0

i2
(

d − 1
i

)2

t2(i−1), A2 = A2(t, d) = (d − 1)2(1 + t)2(d−2)

B1 = B1(t, d) =
d−1∑

i=0

i

(
d − 1

i

)2

t2i−1, B2 = B2(t, d) = (d − 1)(1 + t)2d−3,

M = M(t; r , d) = (1 − r)M1 + r M2, A = A(t; r , d) = (1 − r)A1 + r A2,

B = B(t; r , d) = (1 − r)B1 + r B2.

Then the density function f (t; r , d) is expressed in terms of M, A and B as (for simplicity
of notation we drop r , d in f in the following)

f (t) = 1

π

√
AM − B2

M
. (26)

Next, we compute f (1/t). According to [15], we have the following relations, where ′ denotes
a derivative with respect to t ,

A1(t) = 1

4t
(t M ′

1(t))
′ = 1

4t
(M ′

1(t) + t M ′′
1 (t)), B1(t) = 1

2
M ′

1(t),

M1(1/t) = t2−2d M1(t),

A1(1/t) = t

4

[
M ′

1(1/t) + 1

t
M ′′

1 (1/t)
]

= 1

4
t4−2d [

4(d − 1)2M1(t) + (5 − 4d)t M ′
1(t) + t2M ′′

1 (t)
]
,

B1(1/t) = 1

2
M ′

1(1/t) = −t3−2d
[
(1 − d)M1(t) + 1

2
t M ′

1(t)

]
. (27)

Using the relations between A1, B1 and M1 in (27), we transform further A1(1/t) and B1(1/t)

A1(1/t) = 1

4
t4−2d

[
4(d − 1)2M1(t) + 4(1 − d)t M ′

1(t) + t(M ′
1(t) + t M ′′

1 (t))
]

= t4−2d
[
4(d − 1)2M1(t) + 4(1 − d)t M ′

1(t) + t2A1(t)
]
,

B1(1/t) = −t3−2d
[
(1 − d)M1(t) + 1

2
t M ′

1(t)

]
= t2−2d

[
(d − 1)M1(t) − t B1(t)

]
.

Using explicit formulas of M2, A2 and B2, we get

M2(1/t) = t2−2d M2(t), A2(1/t) = t4−2d A2(t), B2(1/t) = t3−2d B2(t). (28)

Therefore, we obtain

M(1/t) = (1 − r)M1(1/t) + r M2(1/t)

= t2−2d [(1 − r)M1(t) + r M2(t)] = t2−2d M(t),

A(1/t) = t4−4d
[
(1 − r)

(
(d − 1)2M1(t) + (1 − d)t M ′

1(t) + t2A1(t)
)

+ r A2(t)
]
,

B(1/t) = t3−2d
[
(1 − r)

(
(d − 1)M1(t) − t B1(t)

)
+ r B2(t)

]
,
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M(1/t)A(1/t) = t6−4d
[
(1 − r)2

(
(d − 1)2M1(t) + (1 − d)t M ′

1(t) + t2A1(t)
)

M1(t)

+ r(1 − r)

((
(d − 1)2M1(t) + (1 − d)t M ′

1(t) + t2A1(t)
)

M2(t)

+ A2(t)M1(t)

)
+ r2A2(t)M2(t)

]
,

B(1/t)2 = t6−4d
[
(1 − r)2

(
(d − 1)M1(t) − t B1(t)

)2

+ 2r(1 − r)
(
(d − 1)M1(t) − t B1(t)

)
B2(t) + r2B2(t)

2
]
.

So we have

M(1/t)A(1/t) − B(1/t)2

= t6−4d
[
(1 − r)2

(
(1 − d)t M1(t)M ′

1(t) + t2A1(t)M1(t) + 2(d − 1)M1(t)B1(t)
)

− t2B1(t)
2 + r(1 − r)

(
(d − 1)2M1(t)M2(t) + (1 − d)t M ′

1(t)M2(t)

+ t2A1(t)M2(t) + A2(t)M1(t) − 2
(
(d − 1)M1(t) − t B1(t)

)
B2(t)

)

+ r2(A2(t)M2(t) − B2(t)
2)

]
. (29)

Using the relations (27) and explicit formulas of A2, B2, M2 we get

A2(t)M2(t) − B2
2 (t) = 0,

(1 − d)t M1(t)M ′
1(t) + 2(d − 1)M1(t)B1(t) = (d − 1)M1(t)

[
2B1(t) − M ′

1(t)
]

= 0,

(d − 1)2M1(t)M2(t) + A2(t)M1(t) − 2(d − 1)M1(t)B2(t)

= M1(t)
(
(d − 1)M2(t) + A2(t) − 2(d − 1)B2(t)

)

= t2M1(t)A2(t),

(1 − d)t M ′
1(t)M2(t) + 2t B1(t)B2(t) = 2(1 − d)t B1(t)M2(t) + 2t B1(t)B2(t)

= B1(t)
(
2(1 − d)t M2(t) + 2t B2(t)

)

= −2t2B1(t)B2(t).

Substituting these computations into (29), we obtain

M(1/t)A(1/t) − B(1/t)2

= t8−4d
[
(1 − r)2

(
A1(t)M1(t) − B1(t)

2
)

+ r(1 − r)
(

M1(t)A2(t)

+ M2(t)A1(t) − 2B1(t)B2(t)
)]

= t8−4d
[(

(1 − r)M1(t) + r M2(t)
)(

(1 − r)A1(t) + r A2(t)
)
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−
(
(1 − r)B1(t) + r B2(t)

)2]

= t8−4d
(

M(t)A(t) − B(t)2
)
.

Finally, we get

f (1/t) = 1

π

√
A(1/t)M(1/t) − B(1/t)2

M(1/t)
= 1

π

t4−2d
√

A(t)M(t) − B2(t)

t2−2d M(t)

= 1

π
t2
√

A(t)M(t) − B2(t)

M(t)
= t2 f (t).

6.3 Proof of Lemma 3

The probability distribution, fZ , of Z = X − Y can be found via the joint probability
distribution fX ,Y as

fZ (z) =
∫ ∞

−∞
fX ,Y (x, x − z) dx =

∫ ∞

−∞
fX ,Y (y + z, y) dy.

Therefore, using the symmetry of fX ,Y we get

fZ (−z) =
∫ ∞

−∞
fX ,Y (x, x + z) dx =

∫ ∞

−∞
fX ,Y (x + z, x) dx = fZ (z).

If X and Y are iid with the common probability distribution f , then

fX ,Y (x, y) = f (x) f (y),

which is symmetric with respect to x and y, i.e. X and Y are exchangeable.

6.4 Computations of f(1; r, d)

Substituting t = 1 into expressions of A, B, M at the beginning of the proof of Theorem 2,
we obtain

M(1; r , d) = (1 − r)

d−1∑

k=0

(
d − 1

k

)2

+ r 22(d−1) = (1 − r)

(
2(d − 1)

d − 1

)
+ r 22(d−1),

A(1; r , d) = (1 − r)(d − 1)2M(1; r , d − 1) + r(d − 1)222(d−2)

= (1 − r)(d − 1)2
(
2(d − 2)

d − 2

)
+ r(d − 1)222(d−2),

B(1; r , d) = (1 − r)

d−1∑

k=1

k

(
d − 1

k

)2

+ r(d − 1)22d−3)

= (1 − r)
d − 1

2

(
2(d − 1)

d − 1

)
+ r(d − 1)22d−3.
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Therefore,

AM − B2 = (1 − r)2(d − 1)2
(
2(d − 1)

d − 1

)[(
2(d − 2)

d − 2

)
− 1

4

(
2(d − 1)

d − 1

)]

+ r(1 − r)(d − 1)222(d−2)
[
4

(
2(d − 2)

d − 2

)
+

(
2(d − 1)

d − 1

)
− 2

(
2(d − 1)

d − 1

)]

= (1 − r)2(d − 1)2
(
2(d − 1)

d − 1

)[(
2(d − 2)

d − 2

)
− 1

4

(
2(d − 1)

d − 1

)]

+ r(1 − r)(d − 1)222(d−1)
[(

2(d − 2)
d − 2

)
− 1

4

(
2(d − 1)

d − 1

)]

= (1 − r)(d − 1)2
[(

2(d − 2)
d − 2

)
− 1

4

(
2(d − 1)

d − 1

)]

[
(1 − r)

(
2(d − 1)

d − 1

)
+ r22d−1

]
.

Substituting this expression and that of M into (26), we get

f (1; r , d) = 1

π

√
AM − B2

M

= 1

π
(d − 1)

√
1 − r ×

√√√√√√√

(
2(d − 2)

d − 2

)
− 1

4

(
2(d − 1)

d − 1

)

(1 − r)

(
2(d − 1)

d − 1

)
+ r 22(d−1)

= 1

π
(d − 1)

√
1 − r ×

√√√√√√√

(
2(d − 1)

d − 1

)
1

4(2d−3)

(1 − r)

(
2(d − 1)

d − 1

)
+ r 22(d−1)

= 1

π

d − 1

2
√
2d − 3

√√√√√√√

(1 − r)

(
2(d − 1)

d − 1

)

(1 − r)

(
2(d − 1)

d − 1

)
+ r 22(d−1)

.

If r = 1 then f (1; r , d) = 0. If r < 1 then

f (1; r , d) = 1

π

d − 1

2
√
2d − 3

√
1

1 + α
where α = r

1 − r

22(d−1)
(
2(d − 1)

d − 1

) .

By Stirling formula, we have
(
2n
n

)
∼ 4n

√
πn

for large n.

It implies that for 0 < r < 1 and for large d , α ∼ r
1−r

√
π(d − 1), from which we obtain

f (1; r , d) ∼ 1

π

d − 1

2
√
2d − 3

√
1

1 + r
1−r

√
π(d − 1)

∼ (d − 1)1/4(1 − r)1/2

2
√
2π5/4r1/2

.
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6.5 SomeTechnical Lemmas Used in Proof of Theorem 3

We need the following proposition.

Proposition 2 The following inequality holds

2(t + 1)B
[

B1(1 + t) − M1(d − 1)
]

< M
[

A1(1 + t)2 − M1(d − 1)2
]
. (30)

To prove Proposition 2, we need several auxiliary lemmas. We note that throughout this
section

x = 1 + t2

1 − t2
, 0 < t < 1,

and Pd(z) is the Legendre polynomial of degree d which is defined through the following
recurrent relation

(2d + 1)z Pd(z) = (d + 1)Pd+1(z) + d Pd−1(z); P0(z) = 1, P1(z) = z. (31)

We refer to [15] for more information on the Legendre polynomial and its connections to
evolutionary game theory.

Lemma 4 It holds that

lim
d→∞

Pd(x)

Pd+1(x)
= x −

√
x2 − 1.

Note that x = 1+t2

1−t2
, we can write the above limit as

lim
d→∞

Pd(x)

Pd+1(x)
= 1 − t

1 + t
. (32)

Proof According to [15, Lemma 4], we have

Pd(x)2 ≤ Pd+1(x)Pd−1(x).

Since Pd(x) > 0, we get

x ≥ 1

x
= P0(x)

P1(x)
≥ P1(x)

P2(x)
≥ · · · ≥ Pd−1(x)

Pd(x)
≥ Pd(x)

Pd+1(x)
≥ 0. (33)

Therefore, there exists a function 0 ≤ f (x) ≤ 1
x such that

lim
d→∞

Pd(x)

Pd+1(x)
= f (x).

From the recursive relation (31), we have

(2d + 1)x = (d + 1)
Pd+1(x)

Pd(x)
+ d

Pd−1(x)

Pd(x)
,

which implies that

d + 1

d
=

Pd−1(x)
Pd (x)

− x

x − Pd+1(x)
Pd (x)

.
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Taking the limit d → ∞ both sides, we obtain

1 = f (x) − x

x − 1
f (x)

.

Solving this equation for f (x), requiring that 0 ≤ f (x) ≤ 1
x ≤ x we obtain f (x) =

x − √
x2 − 1. ��

Lemma 5 The following inequalities hold

(1 − t)2 ≤ (1 − t2)
Pd(x)

Pd+1(x)
≤ 1 + t2. (34)

Proof By dividing by 1 − t2, the required inequalities are equivalent to (recalling that 0 <

t < 1)

1 − t

1 + t
≤ Pd(x)

Pd+1(x)
≤ x,

which are true following from (32) and (33). ��
Lemma 6 The following equality holds

2(d − 1)t [B1(1 + t) − M1(d − 1)] = (t − 1)
[
A1(1 + t)2 − M1(d − 1)2

]
. (35)

Proof The stated equality is simplified to

A1(t
2 − 1) + M1(d − 1)2 − 2(d − 1)t B1 = 0. (36)

We use the following results from [15, Lemma 3 & Section 6.2]

A1(t, d) = (d − 1)2M1(t, d − 1) = (d − 1)2(1 − t2)d−2Pd−2(x), (37)

M1 = (1 − t2)d−1Pd−1(x),

B1 = M ′
1

2

= M1

(−t (d − 1)

1 − t2
+ 2t

(1 − t2)2
P ′

d−1

Pd−1
(x)

)

= M1

(−t (d − 1)

1 − t2
+ 2t

(1 − t2)2
(d − 1)(1 − t2)2

4t2

(
1 + t2

1 − t2
− Pd−2(x)

Pd−1(x)

))

= M1

(−t (d − 1)

1 − t2
+ d − 1

2t

(
1 + t2

1 − t2
− Pd−2(x)

Pd−1(x)

))

= (d − 1)

(
− t(1 − t2)d−2Pd−1(x)

+ (1 + t2)(1 − t2)d−2Pd−1(x) − (1 − t2)d−1Pd−2(x)

2t

)
. (38)

Substituting these expressions into the left-hand side of (36), we obtain 0 as required. ��
Lemma 7 The following inequality holds

(t − 1) [B1(1 + t) − M1(d − 1)] ≥ 0, (39)

(t2 − 1)B1 − (d − 1)t M1 ≤ 0, (40)

(t2 − 1)(B2 − B1) − (d − 1)t(M2 − M1) ≤ 0. (41)
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Proof We prove (39) first. Since M1 > 0, (39) is simplified to

(t2 − 1)
B1

M1
− (d − 1)(t − 1) ≥ 0.

Using the relation (38) between B1 and M1, we obtain

(t2 − 1)
B1

M1
− (d − 1)(t − 1)

= (t2 − 1)
M ′

1

2M1
− (d − 1)(t − 1)

= (t2 − 1)

[− t (d − 1)

1 − t2
+ 2t

(1 − t2)2
P ′

d−1

Pd−1

(
1 + t2

1 − t2

)]
− (d − 1)(t − 1)

= (d − 1) + 2t

t2 − 1

P ′
d−1

Pd−1
(x) .

Now using the following relation [15, Eq. (49)]

P ′
d−1(x)

Pd−1(x)
= d − 1

x2 − 1

(
x − Pd−2(x)

Pd−1(x)

)
= (d − 1)(1 − t2)2

4t2

(
1 + t2

1 − t2
− Pd−2(x)

Pd−1(x)

)
, (42)

we obtain

(t2 − 1)
B1

M1
− (d − 1)(t − 1) = (d − 1)

(
1 − 1 + t2

2t
− t2 − 1

2t

Pd−2(x)

Pd−1(x)

)

= −d − 1

2t

[
(1 − t)2 − (1 − t2)

Pd−1

Pd−1
(x)

]

≥ 0,

where the last inequality follows from Lemma 5. This establishes (39).
Next, we prove (40), which can be simplified to

(d − 1)

(
−1 + t2

2t
− t2 − 1

2t

Pd−2(x)

Pd−1(x)

)
≤ 0,

which is in turn equivalent to

(1 − t2)
Pd−2(x)

Pd−1(x)
≤ 1 + t2.

This has been proved in Lemma 5.
Finally, we prove (41). First, we simplify

(t2 − 1)B2 − (d − 1)t M2 = (d − 1)(t2 − 1)(1 + t)2d−3 − (d − 1)t(1 + t)2d−2

= −(d − 1)(1 + t)2d−2.

Thus, (41) is equivalent to

(d − 1)

(
1 + t2

2t
+ t2 − 1

2t

Pd−2(x)

Pd−1(x)
− (1 + t)2d−2

)
≤ 0.

This clearly holds because t ≥ 0 and from the proof of the first inequality we already know
that

1 + t2

2t
+ t2 − 1

2t

Pd−2(x)

Pd−1(x)
− 1 ≤ 0.
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Thus, we finish the proof of the lemma. ��
We are now ready to provide a proof of Proposition 2.

Proof (Proof of Proposition 2) From Lemma 6, since M1, A1and B1 are polynomials (of t)
with integer coefficients, there exists a polynomial S(t) such that

B1(1 + t) − M1(d − 1) = (t − 1)S(t) and A1(1 + t)2 − M1(d − 1)2 = 2(d − 1)t S(t)

If follows from (39) that S(t) ≥ 0. Next, we will prove that

2(t + 1)B1 [B1(1 + t) − M1(d − 1)] ≤ M1
[
A1(1 + t)2 − M1(d − 1)2

]
, (43)

2(t + 1)(B2 − B1) [B1(1 + t) − M1(d − 1)] ≤ (M2 − M1)
[
A1(1 + t)2 − M1(d − 1)2

]
.

(44)

Indeed, these inequalities can be rewritten as

2S(t)
[
(t2 − 1)b1 − (d − 1)t m1

]
< 0,

2S(t)
[
(t2 − 1)(b2 − b1) − (d − 1)t(m2 − m1)

]
< 0,

which hold due to Lemma 7. Multiplying (44) with r > 0 and adding with (43) yield the
assertion of Proposition 2. ��

6.6 Comparison with Known Results for Other Classes of Random Polynomials

The distribution and expected number of real zeros of a random polynomial has been a topic
of intensive research dating back to 1932 with Block and Pólya [8], see for instance the
monograph [13] for a nice exposition and [44,67] for recent results and discussions. The
most general form of a random polynomial is given by

Pd(z) =
d∑

i=0

ci ξi zi , (45)

where ci are deterministic coefficients which may depend on both d and i , and ξi are random
variables. The most three well-known classes of polynomials are

(i) Kac polynomials: ci := 1,
(ii) Weyl (or flat) polynomials: ci := 1

i ! ,

(iii) Elliptic (or binomial) polynomials: ci :=
√(

d
i

)
.

The expected number of real zeros of these polynomials when {ξi } are i.i.d standard normal
variables is, respectively, EK ∼ 2

π
log d , EW ∼ 2

π

√
d and EE = √

d , see, e.g. [67] and
references therein. Random polynomials in which ξi are correlated random variables have
also attracted considerable attention, see, e.g. [13,21–23,51–54] and references therein. Par-
ticularly, when {ξi } satisfy the same assumption as in this paper, it has been shown, in [51]
for the Kac polynomial that EK ∼ 2

π

√
1 − r2 log d , and in [23] for elliptic polynomials that

EE ∼
√

d
2 .

The random polynomial P arising from evolutionary game theory in this paper, see Equa-

tion (1), corresponds to ci =
(

d − 1
i

)
; thus it differs from all the above three classes. In
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Sect. 6.7, we show that a root of P is also a root of the Bernstein polynomial. Therefore,
we also obtain an asymptotic formula for the expected number of real zeros of the random
Bernstein polynomial. We anticipate that evolutionary game theory and random polynomial
theory have deeply undiscovered connections in different scenarios. We shall continue this
development in a forthcoming paper.

6.7 On the Expected Number of Real Zeros of a Random Bernstein Polynomial of
Degree d

Similarly as in [15, Corollary 2], as a by-product of Theorem 1, we obtain an asymptotic
formula for the expected number of real zeros, EB, of a random Bernstein polynomial of
degree d

B(x) =
d∑

k=0

βk

(
d
k

)
xk (1 − x)d−k,

where βk are i.i.d. standard normal distributions. Indeed, by changing of variables y = x
1−x

as in Sect. 2, zeros of B(x) are the same as those of the following random polynomial

B̃(y) =
d∑

k=0

βk

(
d
k

)
yk .

As a consequence ofTheorem1, the expected number of real zeros, EB, of a randomBernstein
polynomial of degree d is given by

EB = 2E(0, d + 1) ∼ √
2d + 1. (46)

This proves Conjecture 4.7 in [18]. Connections between EGT and Bernstein polynomials
have also been discussed in [48].
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