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Abstract This work deals with a class of discrete-time zero-sum Markov games under a
discounted optimality criterion with random state-actions-dependent discount factors of the
form α̃(xn, an, bn, ξn+1), where xn, an, bn , and ξn+1 are the state, the actions of players, and a
random disturbance at time n, respectively, taking values in Borel spaces. Assuming possibly
unbounded payoff, we prove the existence of a value of the game as well as a stationary pair
of optimal strategies.
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1 Introduction

The paper deals with a class of discrete-time zero-sum discounted Markov games with non-
constant discount factors of the form

α̃(xn, an, bn, ξn+1), (1)
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where xn is the state of the game, an and bn represent the actions of players 1 and 2, respec-
tively, at time n, and {ξn} is a sequence of independent and identically distributed random
variables with common distribution θ representing a random disturbance at each time. The
one-stage payoff (or utility) r(xn, an, bn) accumulates in an infinite horizon by means of the
functional

E

[ ∞∑
n=0

n−1∏
k=0

α̃(xk, ak, bk, ξk+1)r(xn, an, bn)

]
, (2)

which defines the total expected discounted payoff with random discount factors depending
on the state and the actions. Thus, in this scenario, our main objective is to prove the existence
of a value of the game and a pair of optimal strategies.

Among the optimality criteria to study zero-sum and nonzero-sum Markov games, the
discounted payoff with a constant discount factor is the best understood. It has been analyzed
under several approaches, for instance, dynamic programming via the Shapley’s equation,
linear programming, estimation, and control procedures (see, e.g., [9,18–20,24–28,36,37]
), and Nash equilibrium [5,13,31]. Moreover, its main applications are in economic and
financialmodelswhere the discount factor is a function of the interest rate.Hence, considering
a constant discount factor could be restrictive in problems where such an interest rate is
random. It is in these situationswhere the need arises to consider a function as (1) representing
the discount factor.

Even though the usual applications of the discounted criterion is in economic and financial
models, there are other problemswhere a discount factor as (1) appears naturally. For instance,
consider a game that is played as follows. At stage n, when the game is in state xn and once
the players choose the actions (an, bn), player 2 pays r(xn, an, bn) to player 1. Then, there
is a positive probability the game stops which is influenced by (xn, an, bn), otherwise the
game moves to a new state xn+1 according to a transition law, and the process is repeated.
Under these circumstances, the performance of the zero-sum game is measured by the total
expected payoff criterion with a random horizon τ of the form

E

[
τ∑

n=0

r(xn, an, bn)

]
. (3)

However, we prove that (3) can be written as (2) with

α̃(xn, an, bn, ξn+1) := 1 − γ (xn, an, bn),

where γ (xn, an, bn) is the probability the game stops at stage n.

Another example with random state-actions-dependent discount factors is the following
zero-sum semi-Markov game. Let {ξn} be a sequence of independent and identically dis-
tributed random variables with exponential distribution representing the sojourn (or holding)
times. In addition, let γ (xn, an, bn) be the discount factor imposed at stage n. Then, by defin-
ing α̃(xn, an, bn, ξn+1) := exp(−γ (xn, an, bn)ξn+1), the total expected discounted payoff
takes the form (2).

Typically, the existence of optimal strategies in zero-sum Markov games is studied via
Shapley’s equation. Such an approach has the advantage that it allows to apply the nice
contractive properties of the minimax (maximin) operator. In our case, since the discount
factor is a nonconstant function α̃which explicitly depends on the randomdisturbance process
{ξn}, it is not possible to obtain, at least directly, a Shapley-like equation. To obtain the
advantages that such an equation entails, we first need to establish a representation of the
performance index related to (2) in terms of the commondistribution θ of the randomvariables
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{ξn}. However, due to measurability issues, such a representation is only possible when the
players are restricted to use Markov strategies, not arbitrary strategies (see Proposition 2).
Taking into account this fact, we then prove the sufficiency of Markov (stationary) strategies
in the sense that if a pair of stationary strategies is optimal with respect to the Markov
strategies, so is with respect to all strategies (see Proposition 1). It is worth remarking that
this fact is a well-known result in zero-sum games under the standard discounted criterion
(see, e.g., [21,30]). In our game model, from the fact that the discount factor is a function of
the game process {(xn, an, bn, ξn+1)}, such a result is not a direct consequence from [21],
and therefore, some modifications should be made. Hence, for completeness of our work, we
have included its proof. Once ensured the sufficiency of Markov strategies, we establish, in
Theorem 1, the existence of a value of the game and an optimal pair of stationary strategies.

Problems with nonconstant discount factors have been extensively studied for Markov
decision processes fromseveral point of views (see, e.g., [3,8,10–12,23,34,38]). In particular,
control processes with random state-action-dependent discount factors are analyzed in [23],
which is close to our context. Nonetheless, in addition to the usual difficulties of dealing with
stochastic games, proving Proposition 1 requires different arguments from those followed in
the single-controller case.

The paper is organized as follows. In Sect. 2 we present the game model we deal with.
Next, in Sect. 3 we introduce the optimality criterion and the main properties related with
the sufficiency of Markov strategies. The existence of the value of the game and the pair
of optimal strategies is established in Sect. 4, whereas the proofs are remitted to Sect. 6. In
order to illustrate our results, in Sect. 5 we present some examples with nonconstant discount
factors. The first one is a financial model where the discount factor is function of a random
interest rate. Next we present an example of a game with random horizon and nondiscounted
payoff criterion which is equivalent to a game where the discount factor is a state-actions-
dependent function representing the probability of continuing the game. The third example is
a semi-Markov game where the payoffs are exponentially discounted according to a random
state-actions-dependent discount factor. We also present some insights into the fulfillment of
our hypotheses.

Notation As usual, N (respectively N0) denotes the set of positive (resp. nonnegative) inte-
gers. On the other hand, given a Borel space X (that is, a Borel subset of a complete and
separable metric space) its Borel sigma-algebra is denoted by B(X), and “measurable”, for
either sets or functions, means “Borel measurable”. Let X and Y be Borel spaces. Then a
stochastic kernel γ (dx | y) on X given Y is a function such that γ (· | y) is a probability
measure on X for each fixed y ∈ Y, and γ (B | ·) is a measurable function on Y for each fixed
B ∈ B(X) . The space of probability measures on X is denoted by P(X), which is endowed
with the weak topology. In addition, we denote by P(X | Y ) the family of stochastic kernels
on X given Y.

2 The Game Model

A zero-sum Markov game model with random state-actions-dependent discount factors is
defined by the collection

GM := (X, A, B,KA,KB, S, Q, α̃, r), (4)
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satisfying the following conditions. The state space X and the action sets A and B for players
1 and 2, respectively, as well as the discount factors disturbance space S, are assumed to
be Borel spaces. The constraint sets KA and KB are Borel subsets of X × A and X × B,

respectively. For each x ∈ X, the x-sections

A(x) := {a ∈ A : (x, a) ∈ KA}
and

B(x) := {b ∈ B : (x, a) ∈ KB}
represent the admissible actions or controls sets for players 1 and 2, respectively, and the set

K = {(x, a, b) : x ∈ X, a ∈ A(x), b ∈ B(x)}
of admissible state-actions triplets is a Borel subset of X × A × B. The transition law
Q(·|x, a, b) is a stochastic kernel on X given K, and α̃ : K × S → (0, 1) is a measur-
able function which gives the discount factor α̃(xn, an, bn, ξn+1) at stage n ∈ N, where {ξn}
is a sequence of independent and identically distributed (i.i.d.) random variables defined on
the probability space (Ω,F, P) taking values in S with common distribution θ ∈ P(S). That
is

θ(S) = P(ξn ∈ S), S ∈ B(S), n ∈ N.

Finally, r(· · · ) is a real-valued measurable function onK that represents the one-stage payoff
function.

The game is played as follows.At the initial state x0 ∈ X, the players independently choose
actions a0 ∈ A(x0) and b0 ∈ B(x0).Then player 1 receives a payoff r(x0, a0, b0) from player
2, and the game jumps to a new state x1 according to the transition law Q(·|x0, a0, b0), and the
random disturbance ξ1 comes in. Once the system is in state x1, the players select actions a1 ∈
A(x1) and b1 ∈ B(x1) and player 1 receives a discounted payoff α̃(x0, a0, b0, ξ1)r(x1, a1, b1)
from player 2. Next the system moves to a state x2, and the process is repeated over and over
again. In general, at stage n ∈ N, player 1 receives from player 2 a discounted payoff of the
form

Γ̃nr(xn, an, bn) (5)

where

Γ̃n :=
n−1∏
k=0

α̃(xk, ak, bk, ξk+1) if n ∈ N, and Γ̃0 = 1. (6)

Thus, the goal of player 1 (player 2, resp.) is to maximize (minimize, resp.) the total expected
discounted payoff defined by the accumulation of the one-stage payoffs (5) over an infinite
horizon.

The actions chosen by players at each stage are selected by rules known as strategies
which are defined as follows.

Let H0 := X and Hn := K×S × Hn−1 for n ∈ N. For each n ∈ N0, an element hn ∈ Hn

takes the form
hn := (x0, a0, b0, s1, . . . , xn−1, an−1, bn−1, sn, xn),

which represents the history of the game up to time n. A strategy for player 1 is a sequence
π1 = {π1

n } of stochastic kernels π1
n ∈ P(A|Ht ) such that π1

n (A(xn)|hn) = 1 for every
hn ∈ Hn, n ∈ N0. We denote by Π1 the family of all strategies for player 1.

For each x ∈ X, let A(x) := P(A(x)) and B(x) := P(B(x)). We denote by Φ1 the
class of all stochastic kernels ϕ1 ∈ P(A|X) such that ϕ1(·|x) ∈ A(x), x ∈ X, and by Φ2
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the class of all stochastic kernels ϕ2 ∈ P(B|X) such that ϕ2(·|x) ∈ B(x), x ∈ X. Hence,
a strategy π1 = {π1

n } ∈ Π1 is called a Markov strategy if there exists ϕ1
n ∈ Φ1 such that

π1
n (·|hn) = ϕ1

n(·|xn) for every hn, n ∈ N0. The class of all Markov strategies for player 1 is
denoted by Π1

M . Now, a Markov strategy is called stationary if ϕ1
n = ϕ1 for every n ∈ N0

and some stochastic kernel ϕ1 in Φ1. The set of stationary strategies for player 1 is denoted
by Π1

S . The sets Π2, Π2
M , and Π2

S corresponding to player 2 are defined similarly.
According to the previous definitions, and by using a standard convention, a Markov

strategy ϕi ∈ Π i
M takes the form ϕi = {

ϕi
0, ϕ

i
1, . . .

} =: {
ϕi
n

}
, for i = 1, 2. In particular, for

stationary strategies, we have ϕi = {
ϕi , ϕi , . . .

} = {
ϕi

}
.

The game process. Let (Ω ′,F ′) be themeasurable space consisting of the sample spaceΩ ′ =
(K×S)∞ and its product σ -algebraF ′.Following standard arguments (see, e.g., [6]), we have
that for each pair of strategies (π1, π2) ∈ Π1 ×Π2 and initial state x0 = x ∈ X, there exists

a unique probability measure Pπ1,π2

x and a stochastic process {(xn, an, bn, ξn+1)}, where xn,
an, bn, and ξn+1 represent the state, the actions of players, and the random disturbance in
the discount factor, respectively, at stage n ∈ N0, satisfying

Pπ1,π2

x [x0 ∈ X ] = δx (X), X ∈ B(X); (7)

Pπ1,π2

x [an ∈ A, bn ∈ B|hn] = π1
n (A|hn) π2

n (B|hn) , A ∈ B(A), B ∈ B(B); (8)
Pπ1,π2

x

[
xn+1 ∈ X |hn, an, bn, ξn+1

] = Q (X |xn, an, bn) , X ∈ B(X); (9)

Pπ1,π2

x

[
ξn+1 ∈ S|hn, an, bn

] = θ(S), S ∈ B(S), (10)

where δx (·) is the Dirac measure concentrated at x . We denote by Eπ1,π2

x the expectation

operator with respect to Pπ1,π2

x . The stochastic process {xn} defined on (Ω ′,F ′, Pπ1,π2

x ) is
called game process.

3 The Optimality Criterion

According to (5) and (6), given the initial state x0 = x ∈ X and a pair of strategies
(π1, π2) ∈ Π1 × Π2, the total expected discounted payoff—with random state-actions-
dependent discount factors—is defined as

Ṽ (x, π1, π2) := Eπ1,π2

x

[ ∞∑
n=0

Γ̃nr(xn, an, bn)

]
. (11)

The lower and the upper value of the game are

L(x) := sup
π1∈Π1

inf
π2∈Π2

Ṽ (x, π1, π2) and U (x) := inf
π2∈Π2

sup
π1∈Π1

Ṽ (x, π1, π2),

respectively, for each initial state x ∈ X. Of course, U (·) ≥ L(·); however, if U (·) = L(·)
holds, then the common function is called the value of the game and is denoted by V ∗(·).

Suppose the game has a value V ∗. A strategy π1∗ ∈ Π1 is said to be optimal for player 1
if

V ∗(x) = inf
π2∈Π2

Ṽ (x, π1∗ , π2), x ∈ X.
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Similarly, a strategy π2∗ ∈ Π2 is said to be optimal for the player 2 if

V ∗(x) = sup
π1∈Π1

Ṽ (x, π1, π2∗ ), x ∈ X.

Hence, the pair (π1∗ , π2∗ ) is called an optimal pair of strategies. Observe that (π1∗ , π2∗ ) ∈
Π1 × Π2 is an optimal pair if and only if

Ṽ (x, π1, π2∗ ) ≤ Ṽ (x, π1∗ , π2∗ ) ≤ Ṽ (x, π1∗ , π2), ∀(π1, π2) ∈ Π1 × Π2, x ∈ X. (12)

An important fact in our analysis on the existence of a value of the game is the sufficiency
of Markov strategies in the following sense.

Proposition 1 Let (ϕ1∗, ϕ2∗) ∈ Π1
S × Π2

S be an optimal pair with respect to the Markov
strategies, i.e.,

Ṽ (x, ϕ1, ϕ2∗) ≤ Ṽ (x, ϕ1∗, ϕ2∗) ≤ Ṽ (x, ϕ1∗, ϕ2), ∀(ϕ1, ϕ2) ∈ Π1
M × Π2

M , x ∈ X. (13)

Then (ϕ1∗, ϕ2∗) is an optimal pair with respect to all strategies, i.e., (12) holds.

By virtue of Proposition 1 we can restrict our study to the set of Markov strategies.
Furthermore, over theMarkov strategies, we can express the performance index (11) in terms
of the distribution of the discount factor random disturbance θ . We proceed to establish this
fact in a precise way.

We define the mean discount factor function αθ : K → (0, 1) as

αθ (x, a, b) :=
∫
S
α̃(x, a, b, s)θ(ds), (x, a, b) ∈ K, (14)

and denote

Γn =
n−1∏
k=0

αθ (xk, ak, bk) if n ∈ N, and Γ0 = 1. (15)

For each pair of strategies (π1, π2) ∈ Π1 × Π2 and initial state x ∈ X, we define

V (x, π1, π2) := Eπ1,π2

x

[ ∞∑
n=0

Γnr(xn, an, bn)

]
. (16)

Proposition 2 For each initial state x ∈ X and pair of strategies (ϕ1, ϕ2) ∈ Π1
M × Π2

M,

V (x, ϕ1, ϕ2) = Ṽ (x, ϕ1, ϕ2). (17)

4 Existence of Optimal Strategies

To ease notation, the probability measures ϕ1(·|x) ∈ A(x) and ϕ2(·|x) ∈ B(x), x ∈ X, are
written ϕi (x) = ϕi (·|x), i = 1, 2. In addition, for a measurable function u : K → R,

u(x, ϕ1, ϕ2) = u(x, ϕ1(x), ϕ2(x)) :=
∫
B(x)

∫
A(x)

u(x, a, b)ϕ1(da|x)ϕ2(db|x). (18)

For instance, for x ∈ X, we have

r(x, ϕ1, ϕ2) :=
∫
B(x)

∫
A(x)

r(x, a, b)ϕ1(da|x)ϕ2(db|x),
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and

Q(X |x, ϕ1, ϕ2) :=
∫
B(x)

∫
A(x)

Q(X |x, a, b)ϕ1(da|x)ϕ2(db|x), X ∈ B(X).

The existence of a value of the game as well as a pair of optimal strategies is analyzed under
the following conditions.

Assumption 1 The game model (4) satisfies the following:
(a) For each x ∈ X, the sets A(x) and B(x) are compact.
(b) For each (x, a, b) ∈ K, r(x, ·, b) is upper semicontinuous (usc) on A(x), and r(x, a, ·) is
lower semicontinuous (lsc) on B(x). Moreover, there exists a constant r0 > 0 and a function
W : X → [1,∞) such that

|r(x, a, b)| ≤ r0W (x), (19)

and the functions ∫
X
W (y)Q(dy|x, ·, b) and

∫
X
W (y)Q(dy|x, a, ·) (20)

are continuous on A(x) and B(x), respectively.
(c) For each (x, a, b) ∈ K and each bounded measurable function u on X, the functions∫

X
u(y)Q(dy|x, ·, b) and

∫
X
u(y)Q(dy|x, a, ·)

are continuous on A(x) and B(x), respectively.
(d) The function α̃(x, a, b, s) is continuous on K × S, and

α∗ := sup
(x,a,b)∈K

αθ (x, a, b) < 1. (21)

(e) There exists a positive constant β such that 1 ≤ β < (α∗)−1, and for every (x, a, b) ∈ K∫
X

W (y)Q(dy | x, a, b) ≤ βW (x). (22)

For each measurable function u : X → R, we define the W -norm as

||u||W := sup
x∈X

|u(x)|
W (x)

,

and let BW be Banach space of all real-valued measurable functions defined on X with finite
W -norm. It is easy to prove that under Assumption 1, the Shapley operator

Tu(x) := inf
ϕ2∈B(x)

sup
ϕ1∈A(x)

T̂ (u, x, ϕ1, ϕ2), x ∈ X, (23)

maps BW into itself, where

T̂ (u, x, a, b) := r(x, a, b) + αθ (x, a, b)
∫

X
u(y)Q(dy|x, a, b), (x, a, b) ∈ K. (24)

Moreover, as will be established later, the interchange of inf and sup in (23) holds.
We now state our main results as follows.

Theorem 1 Suppose that Assumption 1 holds. Then

(a) the game GM (4) has a value V ∗ ∈ BW ,
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(b) the value V ∗ is the unique function in BW such that T V ∗ = V ∗, and
(c) there exist ϕ1∗(x) ∈ A(x) and ϕ2∗ ∈ B(x) such that

V ∗(x) = T̂ (V ∗, x, ϕ1∗, ϕ2∗) (25)

= max
ϕ1∈A(x)

T̂ (V ∗, x, ϕ1, ϕ2∗) (26)

= min
ϕ2∈B(x)

T̂ (V ∗, x, ϕ1∗, ϕ2), ∀x ∈ X. (27)

In addition, the stationary strategies ϕ1∗ = {
ϕ1∗

} ∈ Π1
S and ϕ2∗ = {

ϕ2∗
} ∈ Π2

S form an optimal
pair of strategies respect to the Markov strategies. Hence, from Proposition 1,

(
ϕ1∗, ϕ2∗

)
is an

optimal pair of strategies for the game GM.

5 Examples

In order to illustrate the theory developed above, we present two classes of examples. In the
first one, Examples 1–3, we describe the potential applications of indices with nonconstant
discount factors. Specifically, inExample 1wepresent an application of this kindof optimality
criteria in games involving monetary units in which the discount factor is a function of
a random interest rate and/or inflation rate, and in Examples 2 and 3, the state-actions-
dependent discount factors appear in a natural manner. Finally, Examples 4 and 5, which
constitute the second class, are devoted to illustrate the assumptions imposed on the game
model.

Example 1 (Monetary payoffs) Consider the gamemodel (4). In general, r is a utility function
which represents the preferences over the outcomes (x, a, b) in K, and so money is not
necessarily involved ([22, p. 9] or [32, p. 13]). In this example, we assume that r(x, a, b) is
indeed measured in monetary units. Let

α̃(x, a, b, ξ) = 1

1 + ρ − ξ
,

where ρ > 0 is the (constant) nominal interest rate and ξ represents the inflation rate between
two consecutive periods; thus ρ − ξ is the real interest rate which is random. Assume that ξ
takes values in S = [s, s], with 0 < s < s < ρ. Hence, Assumption 1 (d) trivially follows
since

α∗ = 1

1 + ρ − s
< 1.

Example 2 (A nondiscounted payoff game with random horizon) In Sect. 2 we described
how the discounted game with infinite horizon is played. Let us consider the game model

(X, A, B,KA,KB, Q, α, r) (28)

with the following alternative playing where the horizon is random. For simplicity, we
are not considering the disturbance space S. At state xn , players 1 and 2 choose actions
(an, bn) and respectively receive r(xn, an, bn) and −r(xn, an, bn), then with probability
1−α(xn, an, bn) the game stops; otherwise, the systemmoves to another state xn+1 according
to Q(· | xn, an, bn), where the nondiscounted payoff r(xn+1, an+1, bn+1) is determined by
the actions (an+1, bn+1). We assume that there is γ ∈ (0, 1) such that 1−α(xn, an, bn) ≥ γ .
Thus

α∗ := sup
(x,a,b)∈K

α(x, a, b) ≤ 1 − γ < 1.
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Wewill show that the total expected payoff in this game takes the form (16). For this purpose,
let x∗ and (a∗, b∗) be artificial state and actions. We define the game model

GM∗ = (X∗, A∗, B∗,KA∗ ,KB∗ , Q∗, r∗)

where X∗ = X ∪ {x∗}, A∗ = A ∪ {a∗}, B∗ = B ∪ {b∗}, and the corresponding x-sections
are the sets

A∗(x) :=
{ {a∗} i f x = x∗,
A(x) i f x ∈ X;

B∗(x) :=
{ {b∗} i f x = x∗,
B(x) i f x ∈ X;

The transition law Q∗ among the states in X∗ is a stochastic kernel on X∗ given the set

K
∗ := {

(x, a, b) : x ∈ X∗, a ∈ A∗(x), b ∈ B∗(x)
}

defined as follows: For (x, a, b) ∈ K,

Q∗(D | x, a, b) := α(x, a, b)Q(D | x, a, b), D ∈ B(X),

Q∗({x∗} | x, a, b) := 1 − α(x, a, b),

Q∗({x∗} | x∗, a∗, b∗) := 1.

Finally, the payoff function r∗ : K∗ → R is given by

r∗(x, a, b) :=
{
r(x, a, b) if (x, a, b) ∈ K,

0 if (x, a, b) = (x∗, a∗, b∗).

On the other hand, let (Ω ′,F ′) be the measurable space associated with the game model
GM∗ (see Sect. 2) and define the first passage time τ : Ω ′ → N0 ∪ {+∞} as

τ(x0, a0, b0, . . .) := inf{n ∈ N0 : xn = x∗},
where, as usual, inf ∅ = +∞. For each pair of strategies (ϕ1, ϕ2) ∈ Π1

M × Π2
M and initial

state x ∈ X, the total expected payoff with random horizon τ takes the form

Vτ (x, ϕ
1, ϕ2) := Eϕ1,ϕ2

x

τ∑
n=0

r(xn, an, bn). (29)

Then a straightforward calculation shows that the performance index (29) can be written as a
performance index with state-actions-dependent discount factors. Specifically, by following
similar arguments as the proof of Proposition 2, it is possible to prove the equality

Vτ (x, ϕ
1, ϕ2) = V (x, ϕ1, ϕ2) = Eϕ1,ϕ2

x

∞∑
n=0

n−1∏
k=0

α(xk, ak, bk)r
∗(xn, an, bn).

Hence, provided that Assumption 1 holds, the game (28) with random horizon has a value
and there exists a pair of optimal stationary strategies due to Theorem 1.

This game model with random horizon is in the spirit of Shapley’s [35] seminal paper
where finite stochastic games were introduced. Similar games but considering continuous
and bounded payoff functions in the performance index (16) and countable state space were
studied by Rieder [33]. On the other hand, Markov decision models with random horizon and
Borel spaces have also been studied under several settings (see, for instance, [2,4]); however,
such control processes are assumed to be stopped with constant probability. Therefore, our
example generalizes many results in the existing literature.
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Example 3 (A semi-Markov game) Consider a zero-sum semi-Markov game (see, e.g., [17,
20,24]) where the sojourn (or holding) times ξ1, ξ2, . . . are i.i.d. random variables with
common exponential distribution with parameter λ > 0. Suppose that the discount factor is
a continuous function γ : K →(d,∞) where d > 0. Then the expected discounted payoff is

V̄ (x, π1, π2) := Eπ1,π2

x

[
r(x0, a0, b0) +

∞∑
n=1

n−1∏
k=0

e−γ (xk ,ak ,bk )ξk+1r(xn, an, bn)

]
.

If we define the function α̃ : K × S → (0, 1) as

α̃(x, a, b, ξ) = e−γ (x,a,b)ξ ,

where S = (0,∞), then the performance index V̄ takes the form (16). In addition, observe
that α̃ is continuous on K × S, and for all (x, a, b),

αθ (x, a, b) = λ

∫ ∞

0
e−γ (x,a,b)se−λsds = λ

λ + γ (x, a, b)
<

λ

λ + d
.

Thus

α∗ <
λ

λ + d
< 1. (30)

To the best of our knowledge, semi-Markov models with state-action-dependent discount
factors have been considered only for decision processes in [15,16].

We conclude by presenting some insights into the fulfillment of continuity andW -growth
conditions imposed in Assumption 1. Such conditions are standard in the literature (see, e.g.,
[14,18,20,24–26]) and satisfied by several zero-sum game models.

As stated in [14, Appendix C], Assumption 1(c) holds if the transition kernel Q onX given
K has a continuous density q(y|x, a, b) in (x, a, b) ∈ K with respect to a σ -finite measure
m on X, that is

Q (X |x, a, b) =
∫
X
q(y|x, a, b)m(dy), X ∈ B(X), (x, a, b) ∈ K.

Furthermore, Assumption 1(c) also holds for games that evolve on X = R according to
noise-additive difference equations of the form

xn+1 = G(xn, an, bn) + wn, n ∈ N0,

with A = B = R, where G is a continuous function and {wn} is a sequence of i.i.d. random
variables with continuous density g on R. In this case the kernel Q takes the form

Q (X |x, a, b) =
∫
R

IX [G(x, a, b) + w] g(w)dw,

where IX (·) stands for the indicator function of the set X ∈ B(X).

In general, the conditions related to the weighted function W are easier to illustrate in
difference-equation game models as we show in the following examples.

Example 4 (A linear quadratic game (see [7])) Consider a game whose dynamics is defined
by the linear equation

xn+1 = xn + an + bn + wn, n ∈ N0,
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where X = A = B = R and {wn} is a sequence of i.i.d. random variables with standard
normal distribution

g(w) := 1√
2π

exp

(
−w2

2

)
, w ∈ R.

We assume that the admissible action sets are A(x) = B(x) = [−|x |/2, |x |/2]. In addition,
the one-stage payoff r is a quadratic function such that

|r(x, a, b)| ≤ r0(x
2 + 1),

for some positive constant r0.
Since the dynamics is defined by a continuous noise-additive function and g is a continuous

density, from [14,AppendixC],Assumption 1(c) holds.Moreover, ifwe takeW (x) := x2+1,
by applying the same arguments, the continuity of the functions defined in (20) follows.

On the other hand, for all (x, a, b) ∈ K,∫
R

W (y)Q(dy|x, a, b) =
∫
R

[(x + a + b + w)2 + 1] 1√
2π

exp

(
−w2

2

)
dw

=
∫
R

(x + a + b + w)2
1√
2π

exp

(
−w2

2

)
dw + 1

=
∫
R

y2
1√
2π

exp

(
− (y − (x + a + b))2

2

)
dy + 1

= (x + a + b)2 + 2 ≤ 4x2 + 2 ≤ 4W (x).

Hence, Assumption 1 (d) and (e) are satisfied with β = 4 and any continuous function such
that α̃(x, a, b, s) < 1

4 .

Example 5 (A semi-Markov storage system) We consider a storage system with controlled
input/output, whose evolution is as follows. At time Tn when an amount of certain product
M > 0 accumulates for admission in the system, player 1 selects an action a ∈ [a∗, 1] =: A,

a∗ ∈ (0, 1), representing the portion of M to be admitted. In addition, there is a continuous
consumption of the admitted product which is controlled by the player 2 by selecting b ∈
[b∗, b∗] =: B (0 < b∗ < b∗) which represents the consumption rate per unit time. Thus,
if xn ∈ X := [0,∞) is the stock level, an and bn are the decisions of players 1 and 2,
respectively, at the time of the nth decision epoch Tn, the process {xn} can be modeled as a
semi-Markov game evolving according to the equation

xn+1 = (xn + anM − bnξn+1)
+

with holding times ξn+1 := Tn+1 − Tn . In the context of Example 3, we suppose that {ξn}
is a sequence of i.i.d. random variables, exponentially distributed with parameter λ > 0.
Moreover, the discount factor is a continuous function γ : K → (d,∞) where d > 0. It is
reasonable to assume that

b∗E(ξ) < b∗E(ξ) = b∗

λ
< M. (31)

Let Ψ be the moment generating function of the random variable M − b∗ξ , that is:

Ψ (t) = E[exp(t (M − b∗ξ))] = λ exp(Mt)

b∗t + λ
.

Then, computing the derivative Ψ ′ and using the fact that b∗ < Mλ (see (31)), it is easy to
prove that Ψ ′(t) > 0, t > 0. Moreover, taking the constant d > λ, from the continuity of Ψ

and because Ψ (0) = 1, there exists λ∗ > 0 such that
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β0 := Ψ (λ∗) = d

λ
. (32)

Nowwe assume that the one-stage payoff r is an arbitrary function satisfyingAssumption 1(b)
such that

|r(x, a, b)| ≤ r0e
λ∗x ,

for some constant r0 > 0.Hence, definingW (x) := eλ∗x , relation (19) is satisfied.Moreover,
for (x, a, b) ∈ K,∫

X
eλ∗y Q(dy|x, a, b) =

∫ ∞

0
eλ∗(x+aM−bs)+λe−λsds

= P[x + aM − bξ ≤ 0] + eλ∗x
∫ ∞

0
eλ∗(M−bs)λe−λsds

≤ 1 + W (x)E[eλ∗(M−b∗ξ)]
≤ (β0 + 1)W (x).

Hence, combining (30) and (32), we obtain

1 < β0 + 1 = d

λ
+ 1 = λ + d

λ
< (α∗)−1,

and defining β := β0 + r̄ , Assumptions 1(d), (e) are satisfied.
Finally, to verify Assumption 1(c), let u be a boundedmeasurable function onX and ρ(a,b)

be the density of the random variable aM − bδ, for every fixed a ∈ A and b ∈ B. Observe
that

ρ(a,b)(y) = 1

b
λe

−λ
(
aM−y

b

)
, −∞ < y ≤ aM,

and therefore, for each y ∈ R, (a, b) 
−→ ρ(a,b)(y) is continuous function on A × B. Hence,∫
X
u(y)Q(dy | x, a, b) =

∫ ∞

0
u[(x + y)+]ρ(a,b)(y)dy

= u(0)
∫ −x

−∞
ρ(a,b)(y)dy +

∫ ∞

−x
u(x + y)ρ(a,b)(y)dy

= u(0)
∫ −x

−∞
ρ(a,b)(y)dy +

∫ ∞

0
u(y)ρ(a,b)(y − x)dy.

Thus by Scheffé’s Theorem,

(a, b) 
−→
∫
X
u(y)Q(dy | x, a, b)

defines a continuous function on A × B, which proves that Assumption 1(c) holds. Similarly
is shown the continuity of the functions in (20).

6 Proofs

6.1 Proof of Proposition 1

The proof is a consequence of the following facts.
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Let us fix ϕ2 ∈ Π2
S . Define the stochastic kernel Qϕ2 on X given KA as

Qϕ2(X |x, a) :=
∫

B
Q(X |x, a, b)ϕ2(db|x), X ∈ B(X), (33)

rϕ2 : KA 
−→ R and α̃ϕ2 : KA × S → (0, 1) are the measurable functions defined as

rϕ2(x, a) :=
∫

B
r(x, a, b)ϕ2(db|x), (34)

α̃ϕ2(x, a, s) :=
∫

B
α̃(x, a, b, s)ϕ2(db|x). (35)

In addition, let π1 ∈ Π1 be an arbitrary strategy, and for x ∈ X, we define the performance
index

Ṽϕ2(x, π1) := Eπ1

x

[ ∞∑
n=0

Γ̃ ϕ2

n rϕ2(xn, an)

]
, (36)

where

Γ̃ ϕ2

n =
n−1∏
k=0

α̃ϕ2(xk, ak, ξk+1), Γ̃
ϕ2

0 = 1,

and Eπ1

x is the expectation operator with respect to the probability measure Pπ1

x ≡ Pπ1,ϕ2

x

induced by (π1, ϕ2) ∈ Π1×Π2
S and x0 = x .Then, from (7)–(10), Pπ1

x satisfies the following
properties:

Pπ1

x [x0 ∈ X ] = δx (X), X ∈ B(X); (37)

Pπ1

x [an ∈ A|hn] = Pπ1

x [an ∈ A, bn ∈ B|hn]
= π1

n (A|hn) ϕ2
n (B|xn)

= π1
n (A|hn) , A ∈ B(A); (38)

Pπ1

x

[
xn+1 ∈ X |hn, an, bn, ξn+1

] = Qϕ2 (X |xn, an) , X ∈ B(X); (39)

Pπ1

x

[
ξn+1 ∈ S|hn, an, bn

] = θ(S), S ∈ B(S). (40)

Similarly, for a fixed ϕ1 ∈ Π1
S , define Qϕ1 , rϕ1 , α̃ϕ1 and the performance index

Ṽϕ1(x, π2) := Eπ2

x

[ ∞∑
n=0

Γ̃ ϕ1

n rϕ1(xn, bn)

]
, π2 ∈ Π2, x ∈ X, (41)

where

Γ̃ ϕ1

n =
n−1∏
k=0

α̃ϕ1(xk, bk, ξk+1), Γ̃
ϕ1

0 = 1.

The next result is an adaptation of [23, Lemma 15] to our context. The proof follows by
applying similar arguments and making the appropriate changes.

Lemma 1 For each x ∈ X, ϕ2 ∈ Π2
S , and π1 ∈ Π1 there exists ϕ1 ∈ Π1

M such that

Ṽϕ2(x, π1) = Ṽϕ2(x, ϕ1). (42)
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Remark 1 Let us fix ϕ1 ∈ Π1
S . Then we can also prove that for each π2 ∈ Π2 there exists

ϕ2 ∈ Π2
M such that

Ṽϕ1(x, π2) = Ṽϕ1(x, ϕ2), x ∈ X, (43)

where Ṽϕ1 is the performance index defined in (41).

Lemma 2 (a) For each π1 ∈ Π1 and ϕ2 ∈ Π2
S , there exists ϕ1 ∈ Π1

M such that

Ṽ (x, π1, ϕ2) = Ṽ (x, ϕ1, ϕ2), x ∈ X. (44)

(b) For each π2 ∈ Π2 and ϕ1 ∈ Π1
S , there exists ϕ2 ∈ Π2

M such that

Ṽ (x, ϕ1, π2) = Ṽ (x, ϕ1, ϕ2), x ∈ X. (45)

Proof Let π1 ∈ Π1 and ϕ2 ∈ Π2
S be arbitrary strategies and consider the corresponding

performance index Ṽϕ2(x, π1), x ∈ X. From Lemma 1, there exists ϕ1 ∈ Π1
M such that

Ṽϕ2(x, π1) = Ṽϕ2(x, ϕ1), x ∈ X. Hence, to obtain (44), it is enough to prove

Ṽϕ2(x, π1) = Ṽ (x, π1, ϕ2), x ∈ X, (46)

which is obtained by comparing the corresponding terms in the sums (36) and (11).
Indeed, for the first term, from (34)

Eπ1

x rϕ2(x0, a0) =
∫

A
rϕ2(x, a0)π

1
0 (da0|x)

=
∫

A

∫
B
r(x, a0, b0)ϕ

2
0(db0|x)π1

0 (da0|x)

= Eπ1,ϕ2

x r(x0, a0, b0).

Furthermore, from (35)

Eπ1

x Γ̃
ϕ2

1 rϕ2 (x1, a1) = Eπ1

x α̃ϕ2 (x0, a0, ξ1)rϕ2 (x1, a1)

=
∫

A×S×X×A

α̃ϕ2 (x, a0, ξ1)rϕ2 (x1, a1)π
1
1 (da1|h1)

Qϕ2 (dx1|x0, a0)θ(dξ1)π
1
0 (da0|x)

=
∫

A×B×S×X×A×B

α̃(x, a0, b0, ξ1)r(x1, a1, b1)

ϕ2
1(db1|x)π1

1 (da1|h1)Q(dx1|x0, a0, b0)θ(dξ1)ϕ
2
0(db0|x)π1

0 (da0|x)
= Eπ1,ϕ2

x α̃(x0, a0, b0, ξ1)r(x1, a1, b1)

= Eπ1,ϕ2

x Γ̃1r(x1, a1, b1).

An induction argument shows that

Eπ1

x Γ̃ ϕ2

n rϕ2(xn, an) = Eπ1,ϕ2

x Γ̃nr(xn, an, bn), ∀n ∈ N0.

Hence, from (36) and (11), we obtain (46).
Part (b) is proved similarly. ��
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Proof of Proposition 1 Let (ϕ1∗, ϕ2∗) ∈ Π1
S ×Π2

S be a pair that satisfies (13). From Lemma 2,
we have, for each ϕ2 ∈ Π2

S ,

max
π1∈Π1

Ṽ (x, π1, ϕ2) = max
ϕ1∈Π1

M

Ṽ (x, ϕ1, ϕ2), x ∈ X, (47)

and for each ϕ1 ∈ Π1
S

min
π2∈Π2

Ṽ (x, ϕ1, π2) = min
ϕ2∈Π2

M

Ṽ (x, ϕ1, ϕ2), x ∈ X. (48)

Now, from (13) and (47)

Ṽ (x, ϕ1∗, ϕ2∗) ≥ max
ϕ1∈Π1

M

Ṽ (x, ϕ1, ϕ2∗)

= max
π1∈Π1

Ṽ (x, π1, ϕ2∗)

≥ Ṽ (x, π1, ϕ2∗), ∀π1 ∈ Π1, x ∈ X. (49)

Similarly, from (13) and (48)

Ṽ (x, ϕ1∗, ϕ2∗) ≤ min
ϕ2∈Π2

M

Ṽ (x, ϕ1∗, ϕ2)

= min
π2∈Π2

Ṽ (x, ϕ1∗, π2)

≤ Ṽ (x, ϕ1∗, π2), ∀π2 ∈ Π2, x ∈ X. (50)

Therefore, (49) and (50) yield the desired inequality (12). This completes the proof of the
proposition. ��
6.2 Proof of Proposition 2

Proof The proof follows by applying similar arguments as those in the proof of Lemma 2.
For instance, observe that for each x ∈ X and (ϕ1, ϕ2) ∈ Π1

M × Π2
M , from (14)

Eϕ1,ϕ2

x Γ̃1r(x1, a1, b1) = Eϕ1,ϕ2

x α̃(x0, a0, b0, ξ1)r(x1, a1, b1)

=
∫

A×B×S×X×A×B

α̃(x0, a0, b0, ξ1)r(x1, a1, b1)

ϕ2
1(db1|x1)ϕ1

1(da1|x1)Q(dx1|x0, a0, b0)θ(dξ1)ϕ
2
0(db0|x)ϕ1

0(da0|x)
=

∫
A×B

∫
S

α̃(x0, a0, b0, ξ1)θ(dξ1)
∫
X

∫
A×B

r(x1, a1, b1)

ϕ2
1(db1|x1)ϕ1

1(da1|x1)Q(dx1|x0, a0, b0)ϕ2
0(db0|x)ϕ1

0(da0|x)
= Eϕ1,ϕ2

x αθ (x0, a0, b0)r(x1, a1, b1)

= Eϕ1,ϕ2

x Γ1r(x1, a1, b1).

It is shown, by induction, that

Eϕ1,ϕ2

x Γ̃nr(xn, an, bn) = Eϕ1,ϕ2

x Γnr(xn, an, bn), ∀n ∈ N0.

Therefore, from (11) and (16), we get (17). ��
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6.3 Proof of Theorem 1

Before presenting the proof, we establish some important facts on minimax theorems and
the W -norm, as well as the Shapley operator (23). All these facts are summarized in the
following remark.

Remark 2 (a) Provided that Assumption 1 holds, for u ∈ BW and (x, a, b) ∈ K, T̂ (u, x, ·, b)
is usc on A(x) and T̂ (u, x, a, ·) is lsc on B(x). Hence, by applying well-known properties of
weak convergence of measures on the sets A(x) and B(x) (see, e.g., Theorem 2.8.1 in [1]),
we can prove that the function T̂ (u, x, ·, ϕ2) is usc on A(x) while T̂ (u, x, ϕ1, ·) is lsc on
B(x). In addition, since T̂ (u, x, ϕ1, ϕ2) is concave in ϕ1 and convex in ϕ2, the well-known
Fan’s Minimax Theorem implies that we can interchange inf and sup in (23), i.e.,

Tu(x) = sup
ϕ1∈A(x)

inf
ϕ2∈B(x)

T̂ (u, x, ϕ1(x), ϕ2(x)), x ∈ X. (51)

(b) Moreover, suitable measurable selection theorems yield the existence of ϕ1∗ ∈ A(x)
and ϕ2∗ ∈ B(x) such that (see, e.g., Lemma 4.3 in [29])

Tu(x) = T̂ (u, x, ϕ1∗(x), ϕ2∗(x))

= max
ϕ1∈A(x)

T̂ (u, x, ϕ1, ϕ2∗) = min
ϕ2∈B(x)

T̂ (u, x, ϕ1∗, ϕ2), x ∈ X.

(c) For u, v ∈ BW , (21)–(23) and properties of the W -norm imply

|Tu(x) − T v(x)| ≤ sup
a∈A(x)

sup
b∈B(x)

αθ (x, a, b)
∫
X

|u (y) − v (y)| Q(dy | x, a, b)

≤ α∗ ‖u − v‖W sup
a∈A(x)

sup
b∈B(x)

∫
X

W (y)Q(dy | x, a, b)

≤ α∗β ‖u − v‖W W (x),

which in turn yields
‖Tu − T v‖W ≤ α∗β ‖u − v‖W .

Hence, T is a contraction operator on BW with modulus α∗β < 1. Similarly, the operator

Tϕ1ϕ2u(x) := T̂ (u, x, ϕ1(x), ϕ2(x)), x ∈ X, (52)

defined for a pair of stationary strategies (ϕ1, ϕ2) ∈ Π1
S × Π2

S , is a contraction operator on
BW with modulus α∗β.

(d) Thus, there exist unique fixed points v and vϕ1ϕ2 in BW of operators T and Tϕ1ϕ2 ,
respectively, that is

T v(x) = v(x) and Tϕ1ϕ2vϕ1ϕ2(x) = vϕ1ϕ2(x), x ∈ X. (53)

(e) Finally, we also apply the following properties of the weighted functionW . From (22),
for each x ∈ X,

(
π1, π2

) ∈ Π1 × Π2, and n ∈ N0,

Eπ1,π2

x

[
W (xn+1)

] ≤ βEπ1,π2

x [W (xn)] .
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Iteration of this inequality yields

Eπ1,π2

x

[
W (xn+1)

] ≤ βn+1W (x) , x ∈ X, n ∈ N0. (54)

Furthermore, from (54) and (15), for each u ∈ BW , x ∈ X,
(
π1, π2

) ∈ Π1 × Π2, and
n ∈ N0, ∣∣∣Eπ1,π2

x Γnu(xn)
∣∣∣ ≤ (

α∗)n ‖u‖W Eπ1,π2

x [W (xn)]

≤ (
βα∗)n ‖u‖W W (x) .

Therefore,
lim
n→∞ Eπ1,π2

x Γnu(xn) = 0, x ∈ X,
(
π1, π2) ∈ Π1 × Π2. (55)

Proof of Theorem 1 From (23) and (51)

v(x) = T v(x) = sup
ϕ1∈A(x)

inf
ϕ2∈B(x)

T̂ (v, x, ϕ1(x), ϕ2(x))

= inf
ϕ2∈B(x)

sup
ϕ1∈A(x)

T̂ (v, x, ϕ1(x), ϕ2(x)), x ∈ X,

where v is the fixed point of T (see Remark 2 (d)). In addition, from Remark 2 (b), there
exists a pair of stationary strategies (ϕ1∗, ϕ2∗) ∈ Π1

S × Π2
S such that

v(x) = T̂ (v, x, ϕ1∗(x), ϕ2∗(x)) = Tϕ1∗ϕ2∗ v(x) (56)

= max
ϕ1∈A(x)

T̂ (v, x, ϕ1(x), ϕ2∗(x)) (57)

= min
ϕ2∈B(x)

T̂ (u, x, ϕ1∗(x), ϕ2(x)), x ∈ X. (58)

On the other hand, V (·, ϕ1∗, ϕ2∗) is the unique fixed point of Tϕ1∗ϕ2∗ belonging to BW , i.e.,

vϕ1∗ϕ2∗ (·) = V (·, ϕ1∗, ϕ2∗). (59)

Indeed, from (53), (24), and (52)

vϕ1∗ϕ2∗ (x) =
∫
B

∫
A

[
r(x, a, b) + αθ (x, a, b)

∫
X

vϕ1∗ϕ2∗ (y)Q(dy|x, a, b)

]
ϕ1∗(da|x)ϕ2∗(db|x),

for every x in X. Iterating this equation, we obtain

vϕ1∗ϕ2∗ (x) = E
ϕ1∗ ,ϕ2∗
x

m−1∑
n=0

Γnr(xn, an, bn) + E
ϕ1∗ ,ϕ2∗
x Γmvϕ1∗ϕ2∗ (xm).

Now, letting m → ∞, from (55) and (16 ), we obtain (59).
Since V (·, ϕ1∗, ϕ2∗) is the unique fixed point of Tϕ1∗ϕ2∗ , (56) implies that v(x) =

V (x, ϕ1∗, ϕ2∗), x ∈ X. Therefore, considering (57) and (58), Theorem 1 will be proved if
we show that

V (x, ϕ1, ϕ2∗) ≤ V (x, ϕ1∗, ϕ2∗) ≤ V (x, ϕ1∗, ϕ2), ∀(ϕ1, ϕ2) ∈ Π1
M × Π2

M , x ∈ X. (60)
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To prove the first inequality in (60), let ϕ1 ∈ Π1
M be an arbitrary Markov strategy for player

1. Then, for all n ∈ N,

E
ϕ1,ϕ2∗
x

[
Γn+1V (xn+1, ϕ

1∗, ϕ2∗)|hn, an, bn
] = Γn+1E

ϕ1,ϕ2∗
x

[
V (xn+1, ϕ

1∗, ϕ2∗)|hn, an, bn
]

= Γn+1

∫
X

V (y, ϕ1∗, ϕ2∗)Q(dy|xn, ϕ1
n , ϕ

2∗)

= Γn

⎧⎨
⎩αθ (xn, ϕ

1
n , ϕ

2∗)

∫
X

V (y, ϕ1∗, ϕ2∗)Q(dy|xn, ϕ1
n , ϕ

2∗)

+ r(xn, ϕ
1
n , ϕ

2∗) − r(xn, ϕ
1
n , ϕ

2∗)

⎫⎬
⎭

≤ Γn

{
sup

ϕ1∈B(x)
T̂ (v, xn, ϕ

1(xn), ϕ
2∗(xn)) − r(xn, ϕ

1
n , ϕ

2∗)

}

= Γn
{
v(xn) − r(xn, ϕ

1
n , ϕ

2∗)
}

= Γn
{
V (xn, ϕ

1∗, ϕ2∗) − r(xn, ϕ
1
n , ϕ

2∗)
}
, (61)

where the last two equalities come from (56) and (57). Now, from (61), for all n ∈ N,

ΓnV (xn, ϕ
1∗, ϕ2∗) − E

ϕ1,ϕ2∗
x

[
Γn+1V (xn+1, ϕ

1∗, ϕ2∗)|hn, an, bn
] ≥ Γnr(xn, ϕ

1
n , ϕ

2∗),

which, by taking expectation E
ϕ1,ϕ2∗
x and adding over n = 0, 1, . . . ,m − 1, m > 0, implies

V (x, ϕ1∗, ϕ2∗) − E
ϕ1,ϕ2∗
x

[
Γm+1V (xm+1, ϕ

1∗, ϕ2∗)
] ≥ E

ϕ1,ϕ2∗
x

m−1∑
n=0

Γnr(xn, an, bn).

Letting m → ∞, from (16) and (55), we get

V (x, ϕ1∗, ϕ2∗) ≥ V (x, ϕ1, ϕ2∗), x ∈ X,

that is, the first inequality in (60) holds. The second inequality is proved similarly. Hence,
the proof of Theorem 1 is completed. ��
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18. Jaśkiewicz A, Nowak AS (2006) Zero-sum ergodic stochastic games with Feller transition probabilities.
SIAM J Control Optim 45(3):773–789

19. Krausz A, Rieder U (1997) Markov games with incomplete information. Math Methods Oper Res
46(2):263–279

20. Luque-Vásquez F (2002) Zero-sum semi-Markov games in Borel spaces: discounted and average payoff.
Bol Soc Mat Mexicana 8:227–241

21. Maitra A, Parthasarathy T (1970) On stochastic games. J Optim Theory Appl 5(4):289–300
22. Maschler M, Solan E, Zamir S (2013) Game theory. Cambridge University Press, Cambridge
23. Minjárez-Sosa JA (2015) Markov control models with unknown random state-action-dependent discount

factors. Top 23(3):743–772
24. Minjárez-Sosa JA, Luque-Vásquez F (2008) Two person zero-sum semi-Markov games with unknown

holding times distribution on one side: a discounted payoff criterion. Appl Math Optim 57(3):289–305
25. Minjárez-Sosa JA, Vega-Amaya O (2009) Asymptotically optimal strategies for adaptive zero-sum dis-

counted Markov games. SIAM J Control Optim 48(3):1405–1421
26. Minjárez-Sosa JA, Vega-Amaya O (2013) Optimal strategies for adaptive zero-sum average Markov

games. J Math Anal Appl 402(1):44–56
27. Neyman A, Sorin S (2003) Stochastic games and applications, vol 570. Kluwer, Dordrecht
28. Nowak AS (1984) On zero-sum stochastic games with general state space. I. Prob Math Stat 4(1):13–32
29. Nowak AS (1985) Measurable selection theorems for minimax stochastic optimization problems. SIAM

J Control Optim 23(3):466–476
30. Nowak AS (1987) Nonrandomized strategy equilibria in noncooperative stochastic games with additive

transition and reward structure. J Optim Theory Appl 52(3):429–441
31. Nowak AS, Szajowski K (1999) Nonzero-sum stochastic games. In: Stochastic and differential games.

Annals of the international society of dynamic games, vol 4, chap 7. Springer, Berlin, pp 297–342
32. Osborne MJ, Rubinstein A (1994) A course in game theory. MIT Press, Cambridge
33. Rieder U (1991) Non-cooperative dynamic games with general utility functions. In: Raghavan TES,

Ferguson TS, Parthasarathy T, Vrieze OJ (eds) Stochastic games and related topics, theory and decision
library, vol 7. Springer, Berlin, pp 161–174

34. Schäl M (1975) Conditions for optimality in dynamic programming and for the limit of n-stage optimal
policies to be optimal. Probab Theory Rel Fields 32(3):179–196

35. Shapley LS (1953) Stochastic games. Proc Natl Acad Sci USA 39(10):1095–1100
36. Shimkin N, Shwartz A (1995) Asymptotically efficient adaptive strategies in repeated games. Part I:

certainty equivalence strategies. Math Oper Res 20(3):743–767
37. Shimkin N, Shwartz A (1996) Asymptotically efficient adaptive strategies in repeated games. Part II:

asymptotic optimality. Math Oper Res 21(2):487–512
38. Wei Q, Guo X (2011) Markov decision processes with state-dependent discount factors and unbounded

rewards/costs. Oper Res Lett 39(5):369–374


	Zero-Sum Markov Games with Random State-Actions-Dependent Discount Factors: Existence  of Optimal Strategies
	Abstract
	1 Introduction
	2 The Game Model
	3 The Optimality Criterion
	4 Existence of Optimal Strategies
	5 Examples
	6 Proofs
	6.1 Proof of Proposition 1
	6.2 Proof of Proposition 2
	6.3 Proof of Theorem 1

	References




