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Abstract This paper develops a coevolutionary model of social coordination and matching
in which agents are embedded in an arbitrary fixed network and are matched in pairs to
play a coordination game. In each period, based on payoff comparison with their neighbors,
agents decide whether to imitate their neighbors’ actions and whether to end their present
partnerships. Inertia exists in action revision and partnership updating. Each agent can exit a
partnership unilaterally. All separated agents are randomly matched in pairs at the beginning
of the next period. Occasionally, agents make mistakes in action revision and partnership
updating. When the size of the society is large, in the long run, all agents will play the
Pareto-efficient action for a particular subset of networks.
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1 Introduction

Many day-to-day economic interactions occur between total strangers. These types of inter-
actions include consumer-to-consumer electronic commerce, peer-to-peer lending and loans,
trading goods in online communities, peer-to-peer file-sharing and online real-time multi-
player games. However, individuals can learn from their friends’ experiences to help them
make “correct” or “informed” decisions.
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For example, individuals typically have family members, friends, colleagues, business
partners and neighbors (collectively referred to as friends) in the real world. Individuals
may participate in online real-time multi-player games against anonymous players and face
decisions concerning the amount of effort to put in andwhether to continue playing, especially
if they are playing in a team role. By communicating with friends, an individual can find out
how much effort to devote and determine whether it is worthwhile to continue playing.

The present paper aims to capture these particular phenomena and develops a coevolu-
tionary model of social coordination and matching in networks in which agents interact with
strangers and learn from neighbors.

Formally, we consider an even number of agents embedded in an arbitrary, fixed network.
Agents arematched in pairs to play a 2×2 coordination gamewhere there is a conflict between
Pareto-efficiency and risk dominance. In each period, three things, which are assumed to
be independent, occur. First, all separated agents are randomly matched in pairs. Any two
separated agents are matched to each other with strictly positive probability. Second, with
a strictly positive probability, if each agent’s payoff is strictly less than the maximum of all
neighbors’ payoffs, the agent will imitate the action choice of the most successful neighbor.
Third, with a strictly positive probability, when each agent performs strictly worse than the
most successful neighbor, the agent will exit the present partnership. A single member can
end any partnership unilaterally. Occasionally, agents make mistakes in action revision and
partnership updating, and the noise rates in these two processes may be different.

First, we explore the convergence of unperturbed dynamics. With probability one, the
unperturbed dynamics will converge to one of the limit states. The underlying intuition is
as follows. For simplicity, consider a connected network. Assume that there are only two
agents in a partnership choosing the Pareto-efficient action; these two agents receive the
highest possible payoff. If there is a unique neighbor of the initial two players of the Pareto-
efficient action, then with strictly positive probability, the unique neighbor switches to the
Pareto-efficient action and is matched to a player of the risk-dominant action, regardless
of whether she has an opportunity for partnership updating. Note that the conflict between
Pareto-efficiency and risk dominance implies that the payoff of an agent who chooses the
Pareto-efficient action and plays against an agent choosing the risk-dominant action is lowest.
The unique neighbor of the initial two players of the Pareto-efficient action receives the
lowest possible payoff. As a result, the Pareto-efficient action fails to spread to any other
agent. Now, we consider the case in which the initial two players of the Pareto-efficient
action have two or more neighbors. With strictly positive probability, two neighbors of the
initial two players of the Pareto-efficient action choose the Pareto-efficient action and exit
from the present partnership. These neighbors they will be matched to each other in the next
period. Following this logic, the Pareto-efficient action may spread to the entire population.
The case of the complete network falls into the second case. The logic of the contagion of
the Pareto-efficient action can be generalized to certain networks that are not complete, in
which a concept of widely connected networks is introduced to identify a particular subset
of these networks.

Next, we identify the stochastically stable states of perturbed dynamics when the network
is connected and the population size is large. If the network is widely connected, only the
limit states where all agents choose the Pareto-efficient action are stochastically stable. The
underlying intuition is as follows.When the network iswidely connected, in any limit state, all
agents play the same action. Consider the transition from a limit state where all agents choose
the risk-dominant action to one where all agents choose the Pareto-efficient action. Assume
that two agents in a partnership switch from the risk-dominant action to the Pareto-efficient
action by mistake. As an implication of wide connectedness, two mutants have two or more
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neighbors. With positive probability, in the next period, the neighbors of the mutants choose
the Pareto-efficient action and are matched to each other if possible. Following this logic, the
Pareto-efficient action will spread to the entire population. The discussion also suggests that
to induce the reverse transition, for each partnership, one member should mutate to choose
the risk-dominant action. As a result, when the population size is larger than six, in the long
run, all agents will choose the Pareto-efficient action. In addition, we introduce an example
in which all agents are distributed along a line. The line is not widely connected. In this
example, there exist polymorphic-action limit states. When partnership mutation is much
more likely than action mutation, only the limit states where all agents choose the Pareto-
efficient action are stochastically stable. When partnership mutation has the same frequency
as action mutation, only the limit states where all agents choose the risk-dominant action are
stochastically stable.

Our paper contributes to the literature on learning dynamics in local interaction games.1

Many existing papers model strategy revision as myopic best response and show the emer-
gence of the risk-dominant convention [2,7,8,11,27]. However, there also exists another
strand of research in which strategy revision is modeled as imitation. Eshel et al. [14] assume
that agents are situated around a circle and play Prisoner’s Dilemma with their two imme-
diate neighbors. They find that imitation of actions with the highest average payoffs might
help individuals reach a cooperative outcome. Alós-Ferrer and Weidenholzer [1] assume
that agents are situated around a circle and play a coordination game with their neighbors,
not necessarily two immediate ones. They show that if interactions are neither global nor
limited to the immediate neighbors, the Pareto-efficient convention can be uniquely selected
provided that agents follow imitation rules. Although Alós-Ferrer andWeidenholzer [3] con-
sider a coordination game and Alós-Ferrer and Weidenholzer [4] consider a minimum-effort
game, they both assume that agents located within an arbitrary fixed network can observe
the strategies and performances of agents beyond their interaction neighborhoods and imi-
tate the most successful choices. Using this assumption, they derive sufficient conditions for
the efficient convention to be unique selected. Cui [9] studies the case where agents located
within an arbitrary, fixed network play a coordination game with their neighbors and imitate
the strategies of their better-performing neighbors. For each agent, if one neighbor’s pay-
off from a specific interaction exceeds her average payoff per interaction, the neighbor is
perceived as better performing. He shows that if each agent’s neighborhood is large, in the
long run, all agents will choose the Pareto-efficient action. Cui and Wang [10] investigate
the situation where in each period, a small proportion of agents located within an arbitrary
fixed network are randomly chosen to play a minimum-effort game. The agents learn from
their own and neighbors’ experiences and imitate the most successful choices. They show
that if each agent’s neighborhood is large, in the long run, all agents choose the highest effort
level. As a complement, when agents are located within an arbitrary, fixed network, both the
present paper and Khan [25] show that (random) matching and imitation might help agents
reach the Pareto-efficient convention.

Furthermore, our paper is related to the literature on randommatching in learning dynam-
ics in games. In the seminal paper of Robson and Vega-Redondo [29], a fixed even number
of agents are randomly matched in pairs, once every period, to play a coordination game and
then choose the strategy with the highest (random) average payoff. They then show that the
Pareto-efficient convention is selected. Both the present paper and Khan [25] extend Robson
andVega-Redondo [29] by assuming that agents are locatedwithin an arbitrary, fixed network
in which agents can only observe the action choices and payoffs of neighbors. Although both

1 For a more detailed discussion, see [17,34].
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papers assume that (1) the observation network is fixed and the interaction network varies and
(2) agents use imitation rules to revise actions, this paper is distinguished from Khan [25] by
introducing (bounded) rationality into the evolution of the interaction network. In Khan [25],
in each period, all agents are randomly matched in pairs; that is, the updating of the interac-
tion network is totally random and does not take into account agents’ (bounded) rationality.
By contrast, in our setting, each partnership will survive unless some member has a neigh-
bor performing strictly better than herself, and only the separated agents will be randomly
matched at the beginning of the next period. Because of this difference, in Khan [25, the
proof of Proposition 1], the Pareto- efficient action can spread from two matched agents to
the entire population, and there does not exist any polymorphic-action limit state; by contrast,
in our paper, there may exist polymorphic-action limit states when the network is not widely
connected.

In addition, our paper also contributes to the literature on the coevolution of games and
networks in which individuals choose interaction partners in addition to the action.2 The great
majority of existing papers model action revision as the myopic best response [18,19,21,31–
33]. However, there exists another strand of research. In Fosco andMengel [15], agents learn
about action choices and link choices by imitating the successful behavior of others. The
present paper falls into this second strand. In particular, we assume that based on payoff
comparison with neighbors, agents decide whether to imitate neighbors’ action choices and
whether to maintain their present partnerships.

The rest of this paper is organized as follows. Section 2 introduces the basic building blocks
of the model. Section 3 studies the convergence of the unperturbed dynamics and introduces
the definition ofwide connectedness to exclude the polymorphic-action component. Section 4
examines the stochastic stability of the perturbed dynamics inwidely connected networks and
introduces an example (the line) to show that when the network is not widely connected, there
exist polymorphic-action limit states, and the stochastically stable states may be different.
Section 5 explores the properties of widely connected networks. Section 6 concludes.

2 Model

2.1 The Base Game

The base game is a symmetric 2 × 2 coordination game G. Each player has two actions, A
and B. Let u(x, x

′
) > 0 be the payoff of a player choosing action x given that the other

player is choosing action x
′
. The payoff function is represented by the following table:

A B
A a, a c, d
B d, c b, b

where a > d , b > c, a > b and b + d > a + c. Hence, G has two strict Nash equilibria,
(A, A) and (B, B), where (A, A) is Pareto efficient and (B, B) is risk-dominant. In addition,
it is assumed that b > d . Thus, an A-player (a B-player) always strictly prefers to interact
with an A-player (a B-player). In summary, we have a > b > d > c > 0, where d > c
follows from b + d > a + c.

2 For a more detailed discussion, see Jackson and Zenou [23]. One branch of research assumes that each
agent moves across several locations or markets and interacts with all others in the same location or market
[5,6,13,16,28,30].
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The game G can be normalized as

A B
A 1, 1 0, α
B α, 0 β, β

where α = (d−c)/(a−c) and β = (b−c)/(a−c). We have 1 > β > α > 0 and α+β > 1.

2.2 Local Observation

Let N = {1, . . . , n} be the set of agents where n ≥ 4 is an even number. For any i, j ∈ N,
the relationship between them is captured by a binary variable, gi j ∈ {0, 1}. If i and j
are able to observe each other’s action and payoff in the last period, gi j = 1; otherwise,
gi j = 0. Although each agent always knows her action and payoff, for clarity, it is assumed
that gii = 0. Thus, g = {(gi j )i, j∈N} defines an undirected graph and is referred to as an
observation network over N.

For any agent i ∈ N, the neighborhood N (i) = { j ∈ N : gi j = 1} is the set of agents
with whom mutual observation exists. Assume that N (i) �= ∅ for any i ∈ N. Each element
in N (i) is called a neighbor. The neighborhood size d(i) is the cardinality of N (i); that is,
d(i) = |N (i)|. The notion of neighborhood can be extended as follows. For any nonempty
proper subset N

′ ⊂ N, N (N
′
) = { j ∈ N\N′ : ∃i ∈ N

′
such that gi j = 1}.

For any i, j ∈ N, a path from i to j is a sequence of distinct elements (i1, . . . , iL) satisfying
i = i1, giL j = 1 and gil il+1 = 1 for any 1 ≤ l ≤ (L − 1). When i = j , a circular path is
defined. For any N

′ ⊂ N, N
′ �= ∅, the subgraph (

N
′
, (gi j )i, j∈N′

)
is a component if (1) for

any i, j ∈ N
′
, i �= j , there is a path from i to j and (2) there is no strict superset N

′′
of

N
′
such that (1) holds. Let c denote a component. Let C denote the set of components. The

network g is connected if C is a singleton. The network g is complete if gi j = 1 for any two
distinct agents i, j ∈ N.

2.3 Matching

The following definition describes how agents are matched in pairs.

Definition 1 (Matching) The set of unordered pairs m = {(i, j) : i, j ∈ N and i �= j}
defines a matching over N if for any i ∈ N, there exists only one agent j ∈ N such that
(i, j) ∈ m holds.

Any pair (i, j) ∈ m will be referred to as a partnership, where agent j will be referred to
as the partner of agent i under the matching m. Let mi be i’s partner under m. The matching
m defines a function fm : N → N by setting fm(i) = mi for any i ∈ N. The function fm is
a one-to-one correspondence, and fm( fm(i)) = i for any i ∈ N. Let M denote the set of all
possible matchings over N.3

2.4 Imitation Dynamics and Endogenous Matching

Time is discrete; i.e., t = 0, 1, 2, . . .. In each period t , each agent i commits to an action
ai (t) ∈ {A, B}. Let a(t) = (a1(t), . . . , an(t)) denote the action profile. All agents are
matched in pairs to play the game G, where the matching is m(t). By interacting with her

3 The cardinality of the set M is (n − 1) × (n − 3) × · · · × 3 × 1 = (n − 1)!!.
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partner mi (t), agent i receives a payoff u(ai (t), ami (t)(t)). In each period t , three things,
which are assumed to be independent, occur.

First, all separated agents are randomlymatched in pairs. Suppose that each of the possible
ways of pairing up all separated agents is chosen with strictly positive probability.

Second,with commonprobability (1−p), each agent i receives an opportunity to revise her
action. The probability p, 0 < p < 1, is an indicator of action inertia. Having the opportunity
of action revision, if i’s payoff is strictly less than the maximum of all neighbors’ payoffs, i
will switch to the action choice of the most successful neighbor in period t + 1; otherwise, i
continues to play ai (t). Formally,

ai (t + 1) =
{
ai (t) if i ∈ arg max

k∈N (i)∪{i} u(ak(t), amk (t)(t))

a j0(t) otherwise

where j0 ∈ argmaxk∈N (i) u(ak(t), amk (t)(t)). Note that 0 < α < β < 1. This definition
implies that if there are two or more elements in argmaxk∈N (i)∪{i} u(ak(t), amk (t)(t)), these
agents choose the same action.

Third,with commonprobability (1−q), each agent i updates her partnership.Theprobabil-
ity q , 0 < q < 1, is an indicator of partnership inertia. Having the opportunity of partnership
updating, if u(ai (t), ami (t)(t)) ≥ maxk∈N (i) u(ak(t), amk (t)(t)), i is satisfied with the status
quo; otherwise, i is dissatisfied. For any partnership (i,mi (t)) ∈ m(t), one member’s dissat-
isfaction can end the partnership and can leave both i and mi (t) separated. Thus, to repeat a
partnership, when each member has the opportunity of partnership updating, she must have
no discontent.

The behavioral rule deserves a brief discussion. There exists inertia in action revision and
partnership updating, and whether to revise an action and whether to update the partnership
are mutually independent. Thus, agent i may only have the opportunity to revise her action
or may only have the opportunity to update her partnership. Furthermore, agents are assumed
to be boundedly rational. If u(ai (t), ami (t)(t)) ≥ maxk∈N (i) u(ak(t), amk (t)(t)), agent i will
neither alter the action nor update the partnership; otherwise, i will imitate the action choice
of the most successful neighbor or exit from the present partnership. When the opportunity
of partnership updating is available, each agent updates the partnership following the rule
outlined, regardless of whether she has already altered the action. In addition, to repeat
the present partnership, mutual consent of both members is required. In other words, either
member can break up a partnership unilaterally. The partnership-updating mechanism is
analogous to the rule of link formation and deletion in the definition of pairwise stability
given by Jackson and Wolinsky [22].

The action-revision and partnership-updating process defines a Markov chain {S(t)}t∈N
over Ω = ( ∏

i∈N{A, B}) × M. We call this process unperturbed dynamics. An absorbing
set is a minimal subset of Ω such that once the dynamics reaches the set, the probability of
leaving it is zero. An absorbing state is an element that forms a singleton absorbing set. Let
Ω̄ be a union of one or more absorbing sets. The basin of attraction D(Ω̄) is the set of states
from which the unperturbed dynamics will converge to Ω̄ with probability one.

There exist multiple absorbing sets. For instance, for any m ∈ M,

((A, . . . , A︸ ︷︷ ︸
n

),m) or ((B, . . . , B︸ ︷︷ ︸
n

),m)

is an absorbing state. In fact, given that all agents choose the same action, each agent receives
an identical payoff and is satisfied with the status quo. Neither her action nor her partnership
will be altered.
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To select among all likely absorbing sets, we introduce random noises to identify the long-
run equilibria [11,24,35]. Suppose that in each period t , when receiving the opportunity of
action revision or partnership updating,

• agent i makes mistakes in action revision with probability ε ∈ (0, 1);
• agent i makes mistakes in partnership updating with probability ελ, λ > 0;
• these two processes (of making mistakes) are independent, and random noises are inde-

pendent across agents and periods.

In the case of action-revision mutation, any element in {A, B} is randomly chosen with
strictly positive probability. In the case of partnership-updating mutation, the partnership is
broken despite both agents being satisfied with the partnership, or the relationship survives
despite one or both agents being unsatisfied. The parameter λ measures the likelihood of
partnership-updating mutation relative to that of action-revision mutation. The lower λ is,
the more likely that the partnership mutation will occur. This behavior gives rise to perturbed
dynamics {Sε(t)}t∈N. For any ε ∈ (0, 1), the Markov chain {Sε(t)}t∈N is irreducible and has
a unique invariant distributionμε . A state s ∈ Ω is stochastically stable if limε→0 με(s) > 0.
Let Ω∗ denote the set of all stochastically stable states.

Jackson and Watts [21] model partner choice and action choice as independent processes
where only one link may be changed in each period. Furthermore, action-revision mutation
occurs with probability ε, and link-updating mutation occurs with probability γ , where it is
assumed that γ = f ε for some f > 0. Thus, action-revision mutation and link-updating
mutation vanish at the same rate. As in Jackson and Watts [21], in our model, action revision
and partner updating are two independent processes. However, when λ < 1, partnership-
updating mutation vanishes at a lower rate than action-revision mutation; when λ = 1,
partnership-updating mutation and action-revision mutation vanish at the same rate; when
λ > 1, partnership-updating mutation vanishes at a higher rate than action-revision mutation.

3 Convergence of the Unperturbed Dynamics

In this section, we examine the convergence of the unperturbed dynamics. First, we show that
the unperturbed dynamics always converges to a limit statewhere (1)no agent has an incentive
to alter her action; (2) at most one A-agent (B-agent) wants to update her partnership; and
(3) there exists at most one component such that both actions coexist. Second, we identify a
particular class of networks such that for each limit state the coexistence of both actions in
any component is impossible.

3.1 General Networks

Consider a component c of the network g. For any s ∈ Ω and a ∈ {A, B}, let Ia(s, c) be
the set of a-players in c who are motivated to switch to the other action. Let Pa(s, c) be the
set of a-players in c who are willing to continue to choose action a but are dissatisfied with
their present partners. Recall that in the game G, 0 < α < β < 1. We have i ∈ IA(s, c) if
and only if i plays the game G with a B-player and receives a payoff of 0 and one neighbor
plays action B, while any neighbor who plays A also gets a payoff of 0. Formally,

IA(s, c) = {i ∈ c : ai = A and ami = B; ∃ j0 ∈ N (i) a j0 = B;
∀ j ∈ N (i) a j = B or am j = B}. (1)
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Fig. 1 Illustration of Ia(·, ·) and
Pa(·, ·) for any a ∈ {A, B}: (1)
each node represents an agent;
(2) each solid line indicates a
link, whereas a dotted line
indicates that two end-agents are
matched to each other; and (3) a
blank (gray) node indicates that
the agent plays action A (B)

We have i ∈ IB(s, c) if and only if one neighbor plays A and receives a payoff of 1. Formally,

IB(s, c) = {i ∈ c : ai = B and ∃ j0 ∈ N (i) a j0 = am j0
= A}. (2)

Following from the discussion immediately after the behavioral rule, i ∈ Pa(s, c) if and
only if the partner plays the other action and one neighbor receives a payoff of u(a, a) and
is the most successful among all agents in N (i). Formally,

PA(s, c) = {i ∈ c : ai = A and ami = B; ∃ j0 ∈ N (i) a j0 = am j0
= A} (3)

and

PB(s, c) = {i ∈ c : ai = B, ami = A; ∃ j0 ∈ N (i) a j0 = am j0
= B;

∀ j ∈ N (i) a j = B or am j = B}. (4)

The following example clarifies the definitions of Ia(·, ·) and Pa(·, ·) for any a ∈ {A, B}.
Example 1 Assume that N = {1, . . . , 8} and the network g is given by gi(i+1) = 1 for any
1 ≤ i ≤ 7 and g18=1. Thus, g is a circle. Consider the state s illustrated by Fig. 1 where 1
and 2 play action B and are matched to each other, 5 and 6 play action A and are matched to
each other, and A-players 3 and 7 are matched to B-players 4 and 8. Each agent in {3, 4, 7, 8}
receives a strictly lower payoff than some neighbor. Either of 7 and 8 plays the same action
as the most successful neighbor and is not motivated to alter the action. As a result,

IA(s, c) = {3}, IB(s, c) = {4}, PA(s, c) = {7} and PB(s, c) = {8}.
The following theorem explores the convergence of the unperturbed dynamics. The proof

is provided in “Appendix”.

Theorem 1 The unperturbed dynamics {S(t)}t∈N will converge to one of the limit states with
probability one. The state s = (

a,m
) ∈ Ω is a limit state if and only if

1. IA(s, c) = IB(s, c) = ∅ for any c ∈ C and
∑

c∈C |Pa(s, c)| ≤ 1 for all a ∈ {A, B};
2. there is at most one component cAB such that both actions are played by its members

where if cAB exists, |PA(s, cAB)| = 1.

The unperturbed dynamics will converge to one of the limit states with certainty. Assume
that there are only two A-players, i0 and j0, gi0 j0 = 0, and that they arematched to each other.
Any agent in N (i0) (N ( j0)) receives a strictly lower payoff than i0 ( j0) and is motivated to
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Fig. 2 Illustration of two limit states

switch from B to A and end the present partnership. In the next period, with strictly positive
probability, all agents in N (i0) ∪ N ( j0) play A and are matched to each other if possible.
Following this logic, the Pareto-efficient action A can spread from i0 and j0 to others. When
| ∪i∈{i0, j0}

({i} ∪ N (i)
)| is odd, one A-player i1 is matched to a B-player j1. Furthermore, if

N (∪i∈{i0, j0}
({i}∪N (i)

)
) is a singleton consisting of j1, A fails to spread from i1 to j1. Then,

a polymorphic-action limit state is reached. In addition, for any a ∈ {A, B}, the number of
a-players who are discontent with their present partners never exceeds one; otherwise, these
a-players will be matched to each other.

When the polymorphic-action component cAB exists, there are two distinct agents i0 and
j0 in cAB , gi0 j0 = 1, such that i0 is an A-player and j0 is a B-player. As a B-player, j0
receives a payoff of α or β that is strictly less than 1. Agent i0 is matched to a B-player and
receives a payoff of zero, which is strictly less than α or β; otherwise, j0 is motivated to
alter the action. This implies that i0 is the unique A-player who is motivated to exit from the
present partnership. Note that i0 is not motivated to change her action. Therefore, for agent
i0, one neighbor plays A and is matched to an A-player. That is, the number of A-players is
greater than three.

As an illustration, the following example presents two limit states where for one of them,
there is a polymorphic-action component.

Example 2 Assume that the network g consists of two components:

c1 = ({1, 2, 3, 4, 5}, g12 = g23 = g34 = g45 = 1
)
,

c2 = ({6, 7, 8}, g67 = g78 = 1
)
.

Figure 2 illustrates two limit states in g. In the left panel, all members in each component
choose the same action. Only agent 3 is motivated to end the present partnership because she
receives a lower payoff than one neighbor 4. In the right panel, c1 is the polymorphic-action
component. Due to the poor performance of agent 2, the Pareto-efficient action A fails to
spread to all members of c1. However, 2 has no incentive to alter action because the most
successful neighbor 1 chooses A. Only 2 and 3 are willing to end the present partnerships.
Following the partnership-updating mechanism, they continue to be matched.

3.2 Wide Connectedness

When the network g is complete, there is no polymorphic-action limit state. If both actions
coexist, the discussion following Theorem 1 implies that there exist two A-players, denoted
by i0 and j0, who are matched to each other. Note that a link exists between any two distinct
agents. Each B-player has one neighbor i0 or j0 who receives the highest possible payoff by
choosing A and is motivated to switch to A. This yields a contradiction.

A fascinating question that arises is whether this conclusion can be extended to more
general networks? Fortunately, a positive answer can be given. We now present a particular
class of networks that exclude polymorphic-action limit states.
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Definition 2 (Wide connectedness) A component c = (
N

′
, (gi j )i, j∈N′

)
is widely connected

if either |N′ | = 2 or for any proper subset N
′′ ⊂ N

′
, N (N

′ \N′′
) is not a singleton when

N
′′ ≥ 2. The network g is widely connected if g is connected and the unique component is

widely connected.

Consider a component c = (
N

′
, (gi j )i, j∈N′

)
where |N′ | ≥ 3. Informally, wide connect-

edness implies that for any partition {N′
1,N

′
2} of N

′
, when |N′

1| ≥ 2, there are at least two
agents in N

′
1 who have at least one link with agents in N

′
2. Formally,

∑

i∈N′
1

max
j∈N′

2

gi j ≥ 2.

Furthermore, when N
′
1 = N

′ \{i} for any i ∈ N
′
, wide connectedness implies that i has at

least two neighbors.
The following example shows that the circle is widely connected.

Example 3 Assume that agents are spatially distributed around a circle. Formally, for any
agent i ∈ N = {1, . . . , n}, N (i) = {i − 1, i + 1} where i ± 1 is understood as modulo n.
As an illustration, see Fig. 1. This network is widely connected. For any nonempty proper
subset N

′ ⊂ N, N (N\N′
) contains two or more agents.

The following example illustrates a network that is connected but not widely connected.

Example 4 Assume that there are 2m, m ≥ 2, agents; that is, n = 2m. The net-
work g is defined as follows: gi j = 1 for any distinct agents i, j ∈ {1, . . . ,m} and
i, j ∈ {m + 1, . . . , 2m}, and gm(m+1) = 1. This network is not widely connected. In fact,
N (N\{1, . . . ,m}) = N ({m + 1, . . . , 2m}) = {m}.

Examples 3 and 4 show that wide connectedness has no relationship with the minimum
degree among all agents. Example 3 illustrates a widely connected network where d(i) = 2
for any i ∈ N, whereas Example 4 presents a connected but not widely connected network
where mini∈N d(i), which is m − 1, can be as large as possible when m goes to infinity.

Informally, when there are two members in a component c who play A and are matched
to each other, wide connectedness of c implies that the Pareto-efficient action A is able
to spread from these two agents to all members in c. The following theorem shows that
wide connectedness excludes the polymorphic-action limit states. The proof is provided in
“Appendix”.

Theorem 2 If a component is widely connected, then all members choose the same action
in any limit state.

If a component c is widely connected, for any limit state, the coexistence of both actions
is prevented. The intuition is as follows. For a limit state s, when c is the polymorphic-action
component, (1) at least twomembers play action A, and (2)PA(s, c) is a singleton. Following
from Definition 2, the set of B-players in c has two or more neighbors from the set of A-
players in c. However, the neighborhood of the set of B-players in c coincides with PA(s, c).
This result contradicts the fact that PA(s, c) is a singleton.

As an immediate result of Theorem 2, we have the following corollary.

Corollary 1 Assume that each component of the network g is widely connected. Then, in
any limit state, there exists no component such that both actions coexist.
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Wide connectedness denies the possibility of the coexistence of both actions in any com-
ponent for each limit state. In other words, when the network is widely connected, in any
limit state, all members of each component choose the same action.

4 Stochastic Stability of the Perturbed Dynamics

In this section, we identify the stochastically stable states of the perturbed dynamics.Without
loss of generality, assume that the network is connected. First, we study the case of widely
connected networks. Then, we explore an example where agents are distributed along a line,
i.e., a network that is not widely connected.

For clarity, we introduce the following notation. For any a ∈ {A, B}, let Ωa ⊂ Ω denote
the set of states where all agent play action a. Formally,

Ωa = {((a, . . . , a︸ ︷︷ ︸
n

),m) : m ∈ M} for any a ∈ {A, B}.

Each element in Ωa is a limit state of the unperturbed dynamics {S(t)}t∈N, irrespective of
the architecture of the network g. Let Ω AB ⊂ Ω be the set of limit states where both actions
A and B coexist.

4.1 Perturbed Dynamics in Widely Connected Networks

Given that the network g is widely connected, the following theorem characterizes the
stochastically stable states of the perturbed dynamics.

Theorem 3 Assume that the network g iswidely connected.Consider the perturbeddynamics
{Sε(t)}t∈N, ε ∈ (0, 1). Then,

Ω∗ =
{

Ω A ∪ ΩB if n = 4;
Ω A otherwise.

Proof Following from Corollary 1, the set of all limit states of the unperturbed dynamics
{S(t)}t∈N is Ω A ∪ ΩB .

First, the following lemma investigates the transition from ΩB to Ω A. The proof is in
“Appendix”. ��
Lemma 1 Assume that g is widely connected. Starting from any limit state in ΩB, after
two action mutations followed by the unperturbed dynamics, {Sε(t)}t∈N will arrive at a limit
state in Ω A with positive probability.

Then, the following explores how to traverse all limit states in Ωa for any a ∈ {A, B}.
The proof is in “Appendix”.

Lemma 2 Assume that g is widely connected. For any two distinct limit states s, s
′ ∈ Ωa,

a ∈ {A, B}, there is a sequence (s0, . . . , s�) of distinct elements in Ωa such that (1) s0 = s
and s� = s

′
; and (2) for any 0 ≤ ι ≤ (� − 1), to transit from sι to sι+1, two partnership

mutations are required when λ ≤ 1, and two action mutations are required when λ > 1.

Following from Lemmas 1 and 2, for any s ∈ Ω A, when λ ≤ 1, the minimum resistance
among all s-trees is

2λ(|M| − 1) + 2 + 2λ(|M| − 1)
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where the first term is the resistance of transition from other limit states in ΩB to one state s
′

in ΩB ; the second term is the resistance of transition from s
′
to a state in Ω A; and the third

term is the resistance of transition from other limit states in Ω A to s; similarly, when λ > 1,
the minimum resistance among all s-trees is 2(|M| − 1) + 2|M|.4 However, the Proof of
Lemma 1 shows that to transit from a limit state in Ω A to any limit state in ΩB , 0.5n action
mutations of resistance 0.5n are required. As a result, if n ≥ 6, the set of stochastically stable
equilibria is Ω A; if n = 4, all limit states are stochastically stable. ��

Consider the transition from ΩB to Ω A. When one agent and her partner play action
A by mistake, they both receive the highest possible payoff of 1 and are never motivated
to switch to action B or end the partnership between them. Then, in the next period, with
strictly positive probability, all neighbors of these two agents play action A and are matched
to one another if possible, where at most one A-player is matched to a B-player. Note that
the network g is widely connected. This widely connected network implies that when the set
of B-players is not empty, some B-players observe A-players who are matched to A-players
and are motivated to switch to A. Following the same logic, the Pareto-efficient action A
can spread from two agents in a partnership to the entire population. Therefore, two action
mutations can induce the transition fromΩB toΩ A. The reasoning also implies that to transit
from Ω A to ΩB , there should be at least one B-player in any partnership, and thus at least
0.5n actionmutations are required. According to the radius–coradius theorem in Ellison [12],
the radius of Ω A is at least 0.5n, and its coradius is 2. If n ≥ 6, in the long run, only limit
states from Ω A will be observed with strictly positive probability.

Next, consider the transition from ((a, . . . , a),m) to ((a, . . . , a),m
′
) for any a ∈ {A, B},

m �= m
′
, provided that λ ≤ 1. When agents i and m

′
i , mi �= m

′
i , receive the opportunity

of partnership updating, they end their present partnerships by mistake. In the next period,
with strictly positive probability, i and m

′
i are matched to each other. After two partnership

mutations, another limit state s
′′ ∈ Ωa is arrived at where, in comparison with s, s

′′
has at

least one more partnership in commonwith s
′
. Thus, any two limit states inΩa are accessible

through transitions between elements in Ωa , where two partnership mutations are required
for each transition. According to the least-resistance tree construction, when n = 4, all limit
states are stochastically stable.

4.2 Perturbed Dynamics in a Line

When the network g is connected but not widely connected, there may exist polymorphic-
action limit states. The transition from Ω A to ΩB may proceed by passing through
polymorphic-action limit states. In this subsection, we introduce an example to explore the
perturbed dynamics in nonwidely connected networks provided that n is large.

Suppose that all agents are distributed along a line gl . Specifically, gli(i+1) = 1 for any

1 ≤ i ≤ n − 1 and gli j = 0 otherwise. Note that there is only one link between {1, . . . , i}
and {i, . . . , n} for any 1 ≤ i ≤ n. The network gl is not widely connected.

As in the case of widely connected networks, for any a ∈ {A, B} and m ∈ M,
((a, . . . , a),m) is a monomorphic-action limit state. As an illustration, see Fig. 3.

In addition to the monomorphic-action limit states in Ω A ∪ΩB , there exist polymorphic-
action limit states. Following from Theorem 1, for each polymorphic-action limit state, there
exists only one A-player i0 such that (1) one neighbor plays B and one neighbor plays A and
(2) i0 is matched to a B-player. The set of A-players is either {1, 2, . . . , i0} or {i0, . . . , n}.
Each A-player except i0 is matched to an A-player; otherwise, there is another A-player

4 For the definition of resistance and the s-tree, see Kandori et al. [24] and Young [35].
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Fig. 3 An illustration of two
monomorphic-action limit states

Fig. 4 An illustration of two
polymorphic-action limit states

besides i0 who is motivated to end the present partnership, or i0 is motivated to switch to B.
As an illustration, see Fig. 4.

In the remaining part of this subsection, we identify the stochastically stable states of the
perturbed dynamics in the line. For clarity, we focus on the case where in any polymorphic-
action limit state the set of A-players is {1, 2, . . . , i0}.

First, as in the case of widely connected networks (Lemma 2), any two distinct limit states
inΩa , a ∈ {A, B}, are accessible via a path of elements inΩa where each transition between
two neighboring elements requires two action or partnership mutations, and they have the
same stochastic stability.

Second, consider the transition from Ω A to Ω AB . Suppose that in the initial state, n − 1
and n are matched to each other. As an illustration, see the top panel of Fig. 3. Assume that
n switches from A to B by mistake. Then, a polymorphic-action limit state with one single
B-player is reached.

Third, consider the transition from ΩB to Ω AB . In any polymorphic-action limit state,
there exist two A-players who are matched to each other. The inequality 0 < α < β < 1
implies that at least two action mutations are required to induce the transition from ΩB to
Ω AB . Suppose that in the initial state,m(i) = i+1 for any odd i . Assume that 1 and 2 switch
from B to A by mistake. In the next period, 1 and 2 receive the highest possible payoff of
1. Then, 3 will play A by imitating the action choice of the most successful neighbor 2. A
polymorphic-action limit state with three A-players is reached. The discussion also shows
that to leave the basin of attraction of ΩB , two action mutations are required. In addition,
two action mutations by 1 and n can induce the transition from ΩB to Ω A provided that in
the initial state, m(i) = n + 1 − i for any i .

Next, consider the transition fromΩ AB toΩ A. Suppose that in the initial state,m(i) = i+1
for any odd i . As an illustration, see the bottom panel of Fig. 4. Assume that i0 − 1 ends the
present partnership by mistake. In the next period, with positive probability, i0 − 1 and i0 are
matched to each other and receive the highest possible payoff of 1, while i0 +1 and i0 −2 are
matched to each other. Then, i0 + 1 will switch to A because the most successful neighbor i0
chooses A, which implies that i0 + 2 will switch to A too. A polymorphic-action limit state
with two more A-players will be reached. This discussion suggests that any polymorphic-
action limit state is connected to a limit state in Ω A via a path of elements in Ω AB , where
each transition requires one single partnership mutation.

Now, consider the transition fromΩ AB toΩB . Suppose that in the initial state,m(i) = i+1
for any odd i . As an illustration, see the bottompanel of Fig. 4. There are twoways to complete
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the transition. In the first, assume that i0 − 1 switches from A to B by mistake. Then, i0 will
switch to B because both neighbors play B. After one single action mutation, a polymorphic-
action limit state with two more B-players will be reached. In the second, assume that
A-player i0 −2 ends the partnership with A-player i0 −1 by mistake and that B-player i0 +2
ends the partnership with B-player i0+3 by mistake. In the next period, with strictly positive
probability, A-player i0 − 1 (i0 − 2) is matched with B-player i0 + 3 (i0 + 2). Then, i0 will
switch to B because the most successful neighbor i0 +1 chooses B, which implies that i0 −1
will switch to B too. After two partnership mutations, a polymorphic-action limit state with
two more B-players will be reached. Note that when there is only one B-player in the initial
state, only the first route is possible.

When λ < 1, the partnership mutation is more likely than the action mutation. The above
discussion shows that in this case, the resistance of the transition from a polymorphic-action
limit state to another polymorphic-action limit state with more A-players is λ, whereas the
resistance of the transition in the reverse direction is min{2λ, 1}. Note that min{2λ, 1} > λ.
Therefore, for any s ∈ Ω A and s

′ ∈ ΩB , the least resistance of all s-trees is strictly less than
the least resistance of all s

′
-trees when n is large. The set of stochastically stable states is

Ω A when λ < 1.
When λ = 1, the partnership and action mutations occur with the same frequency. In this

case, both the resistance of the transition from a polymorphic-action limit state to another
polymorphic-action limit state with more A-players and the resistance of the transition in the
reverse direction are 1. However, leaving the basin of attraction of Ω A requires one single
action mutation, whereas leaving the basin of attraction ofΩB requires two action mutations.
Thus, the set of stochastically stable states is ΩB when λ = 1.

5 Discussion

Wide connectedness plays an important role in the previous two sections. Now, we examine
the properties of widely connected networks.

To facilitate the analysis, we first present the following definition.

Definition 3 (Tree) The network g is a tree if g is connected and there is no circular path.

An equivalent definition is as follows. A network g is a tree if for any i, j ∈ N, when
gi j = 1, g − i j is no longer connected, where g − i j is the network obtained from g by
deleting the link between i and j . Let gt denote a tree.

The line gl given in Sect. 4.2 is a tree. Recall that gl is not widely connected. The following
lemma shows that this conclusion can be extended to any tree.

Lemma 3 Any tree is not widely connected.

The proof is trivial. For any i, j ∈ N, if gti j = 1, the network gt − i j consists of two

components with one component (N
′
, (gi j )i, j∈N′ ) satisfying |N′ | ≥ 2. It is straightforward

to conclude that either N (N\N′
) = {i} or N (N\N′

) = { j} holds. Definition 2 implies that
gt is not widely connected.

Example 3 shows that the circle is widely connected. One may question that the tree is
not widely connected because of the nonexistence of a circular path. To address this issue,
consider the following example.
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Fig. 5 A polymorphic-action
limit state in a network
containing a circular path that is
not widely connected

Example 5 Consider a society comprising six agents. Assume that the network g is specified
as gi(i+1) = 1 for any i = 1, . . . , 5; g13 = 1 and gi j = 0 otherwise. Agents 1, 2, 3
and the links between them define a circular path. It is straightforward to determine that
N ({4, 5, 6}) = {i ∈ {1, 2, 3} : ∃ j ∈ {4, 5, 6} s.t. gi j = 1} = {3}. That is, g is not widely
connected. Figure 5 illustrates a polymorphic-action limit state in g.

Example 5 presents a connected network that is neither a tree nor widely connected. This
network implies that there is no dichotomy between widely connected networks and trees.

However, the following lemma shows that if there is a circular path passing through all
agents, g is widely connected. The proof is trivial, and we omit it here.

Lemma 4 If there exists a circular path passing through all elements of N, g is widely
connected.

Note that any network containing a circular path passing through all elements of N is
denser than the circle. Lemma 4 can also be extended further. The proof is trivial, and we
omit it here.

Lemma 5 Consider two networks g and g
′
where for any i, j ∈ N, gi j = 1 implies that

g
′
i j = 1. Then, if g is widely connected, g

′
is widely connected.

Lemma 4 only provides a sufficient condition for wide connectedness. To clarify this
point, consider the following example.

Example 6 Assume that the network is a core-periphery network gcp . Formally, there is a
partition {N1,N2} of N such that N (i) = N\{i} for any i ∈ N1 and N ( j) = N1 for any
j ∈ N2. That is, N1 (N2) is the set of core (periphery) agents.5 For any core-periphery
network gcp , there is no circular path passing through all agents provided that |N1| < |N2|.
However, it is straightforward to see that when 2 ≤ |N1| < |N2|, gcp is widely connected.6

Figure 6 illustrates a limit state where all agents play A.

6 Concluding Remarks

We consider the coevolution of social coordination and matchings. Agents are located within
an arbitrary, fixed network and are matched in pairs to play a 2 × 2 coordination game. In
each period, by comparing their own and neighbors’ payoffs, agents decidewhether to imitate
neighbors’ actions and whether to maintain their present partnerships. There is inertia in both

5 A number of empirical papers show that the structure of the inter-bank lending network has a core-periphery
structure [20,26].
6 The case that |N1| = 1 defines a star network, which is a tree and is not widely connected.
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Fig. 6 A limit state where all
agents play action A in a
core-periphery network

action revision and partnership updating. For any partnership, one member’s unwillingness
can end it and can separate the two members. All separated agents are randomly matched
in pairs at the beginning of the next period. Occasionally, agents make mistakes in action
revision and partnership updating.

Wefirst characterize the limit states of the unperturbeddynamics.To exclude thepossibility
that agents in a component play different actions in a limit state, we introduce the definition of
wide connectedness. Wide connectedness of a component implies that for any proper subset
of two or more members, two or more elements have links to elements in the complement
of the subset. A network is widely connected if it is connected and the unique component is
widely connected. Given that the network is widely connected, if the size of the population
is four, all monomorphic limit states are stochastically stable; if the size is strictly larger than
four, only the limit states where all agents choose the Pareto-efficient action are stochastically
stable. We also introduce an example, the line, to show that when the network is not widely
connected, the likelihood of partnership mutation relative to that of action mutation matters,
and stochastically stable states may be different.

When the network is widely connected, the Pareto-efficient action can spread from two
agents in a partnership to the entire population (Lemma 1 in the Proof of Theorem 3).
Therefore, the main results can be generalized to the case that agents are matched in pairs to
play a 2-person symmetric gamewhere there is aNash equilibrium strictly Pareto-dominating
any other strategy profile. One example is a 2-personminimum-effort game.Another example
is a 2-person symmetric game satisfying that there exists a strictly dominant strategy such
that when all players play the strictly dominant strategy, each player receives the highest
possible payoff.

There are several natural extensions to the research presented here. First, as in Alós-
Ferrer and Weidenholzer [3,4], agents are assumed to be optimistic and to focus on the
highest observed payoffs only. It would be desirable to consider other measures of the per-
formance of each action; for instance, agents focus on the lowest observed payoffs of each
action only. Second, agents are assumed to be matched in pairs to play a 2-person coordi-
nation game. We would be encouraged to consider the case in which agents are matched
in groups to play an n-person symmetric game in which n ≥ 3. In this case, any proper
subgroup of two or more agents may be tempted to regroup to play a “smaller” game. Third,
it would be interesting to assess whether or not the main results are supported by laboratory
experiments.
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A Appendix

A.1 Radius–Coradius Theorem

Here, we present the modified radius-coradius theorem of Ellison [12]. Some preliminary
definitions are necessary. Consider the perturbed dynamics ({X ε(t)}t∈N, S), ε ∈ (0, 1). For
any ε, ε ∈ (0, 1), {X ε(t)}t∈N is an irreducible Markov chain. For any two states s and s

′
, the

resistance is defined as

r(s, s
′
) = lim

ε→0

log Prob{X ε(t + 1) = s
′ |X ε(t) = s}

log ε
.

For any two subset Ω̄ and Ω̄
′
of Ω , Ω̄ ∩ Ω̄

′ = ∅, a path from Ω̄ to Ω̄
′
is a sequence of

distinct states (s1, . . . , sm) with s1 ∈ Ω̄ , sl /∈ Ω̄
′
for 2 ≤ l ≤ m − 1 and sm ∈ Ω̄

′
. Define

the resistance of the path (s1, . . . , sm) as

r(s1, . . . , sm) =
∑

1≤l≤(m−1)

r(sl , sl+1).

Let P(Ω̄, Ω̄
′
) be the set of all paths from Ω̄ to Ω̄

′
.

For any absorbing set Ω̄ , the radius R(Ω̄) is

R(Ω̄) = min
(s1,...,sm )∈P(Ω̄,Ω\D(Ω̄))

r(s1, . . . , sm).

If a path (s1, . . . , sm) passes through absorbing sets Ω̄1, . . . , Ω̄k , the modified-resistance is

r∗(s1, . . . , sm) = r(s1, . . . , sm) −
∑

2≤l≤(k−1)

R({Ω̄ l}).

The notation of modified-resistance can be extended to a point-set concept by setting

r∗(s, Ω̄) = min
(s1,...,sm )∈P({s},Ω̄)

r∗(s1, . . . , sm).

For any absorbing set Ω̄ , the modified-coradius CR∗(Ω̄) is defined by

CR∗(Ω̄) = max
s /∈D(Ω̄)

r∗(s, Ω̄).

Theorem 2 in Ellison [12], p.24) shows that for any union of absorbing sets Ω̄ , when
R(Ω̄) > CR∗(Ω̄), Ω̄ contains all stochastically stable equilibria. Intuitively, if there is less
resistance to enter the basin of attraction D(Ω̄) than to leave it, Ω̄ is relatively stable against
the perturbation of random noises and will be observed most of the time when random noises
vanish.

A.2 Proofs

Proof of Theorem 1 The proof consists of two parts. The first part shows that a state is a limit
state if and only if the conditions in Theorem 1 are satisfied. The proof of sufficiency is trivial.
For the sake of space, we only prove the necessity. The second part proves the convergence
of the unperturbed dynamics {S(t)}t∈N.

Part I: Characterization of limit states
The state s = ((a1, . . . , an),m) is an absorbing state if and only if (1) no one ismotivated to

alter her action and (2) the number of agentswho aremotivated to end the present partnerships
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is nomore than two. If the number is two, then these two agents are in a partnership. Formally,
for any agent i ∈ N, either (i) u(ai , ami ) ≥ max j∈N (i) u(a j , am j ) or (ii) u(ai , ami ) <

maxk∈N (i) u(ak, amk ) = u(a j0 , am j0
) for some neighbor j0 with ai = a j0 . There exists

no agent, only one agent i0 or two agents i0 and mi0 satisfying condition (ii). Note that
agents play a 2× 2 coordination game G with partners. When there are three or more agents
satisfying condition (ii), two of them choose the same action, and in the next period, with
positive probability, they will be matched to each other and will have no incentive to end the
present partnership between them. This behavior implies that the number of agents satisfying
condition (ii) can be reduced strictly. Accordingly, the proof of Part I is divided into three
cases: no agent, only one agent and two agents satisfying condition (ii). We only focus on
the first two cases. The last case can be analyzed similarly.

Case 1: �i0 satisfying condition (ii).
This nonexistence means that for any i ∈ N, u(ai , ami ) ≥ max j∈N (i) u(a j , am j ). As a

result, for any i, j ∈ N, if gi j = 1, ai = a j , and ami = am j . This result implies that for
each component, all members choose the same action, and their partners also choose the
same action. Therefore, there is no polymorphic-action component. It is straightforward to
conclude that for any component c, IA(s, c) = IB(s, c) = ∅ and PA(s, c) = PB(s, c) = ∅.

Case 2: ∃ only one agent i0 satisfying condition (ii).
Assume that i0 is from the component c

′
. Note that for any a, a

′ ∈ {A, B}, when a �= a
′
,

u(a, a
′
) < u(a, a) holds. It implies that ai0 �= ami0

. The uniqueness of i0 implies that there
exists at most one component cAB such that both actions are played by its members.

The component c
′
is cAB when cAB exists. Note that in any other component, all members

play the same action, and their partners also play the same action. Otherwise, there is at least
one more agent satisfying condition (ii). As a result, it must be true that cAB coincides with
c

′
. Furthermore, for c

′
, IA(s, c

′
) = IB(s, c

′
) = ∅, Pai0

(s, c
′
) = {i0} and Pami0

(s, c
′
) = ∅.

Similarly, when cAB does not exist, then for each component, all members choose the
same action. Furthermore,

∑

c∈C
|Pai0

(s, c)| = |Pai0
(s, c

′
)| = 1 and

∑

c∈C
|Pami0

(s, c)| = 0.

Part II: Convergence of the unperturbed dynamics.
Let s(t) = (

a(t),m(t)
)
be the state in period t . For any s ∈ Ω , let NAA(s) be the set

of A-players who are matched to A-players. Note that if i ∈ NAA(s), then m(i) ∈ NAA(s).
According to whether NAA(s(0)) is empty or not, the proof is divided into two cases.

Case 1: NAA(s(0)) �= ∅.
Note that A is the Pareto-efficient action. In period 0, any agent i ∈ N (NAA(s(0))) per-

forms strictly worse than some neighbor in NAA(s(0)). In period 1, with strictly positive
probability, all agents in N (NAA(s(0))) play A, and they are matched into � |N (NAA(s(0)))|

2 �
pairs. The remaining agent is matched to a B-player when |N (NAA(s(0)))| is odd. Fur-
thermore, all agents in IA(s(0), c)\N (NAA(s(0))) switch from A to B for any c ∈ C. It is
straightforward to see that NAA(s(0)) ⊆ NAA(s(1)) and when t ≥ 1, IA(s(t), c) = ∅ for
any c ∈ C.

Following the same logic, in some period t1 ≥ 1, {S(t)}t∈N arrives at a state s(t1) where
NAA(s(t1)) = NAA(s(t1 − 1)). The state s(t1) is a limit state. When the number of A-
players in s(t1) is even, all A-players constitute NAA(s(t1)); otherwise, at least one A-player
is motivated to switch to B, which yields a contradiction. The coincidence of NAA(s(t1))
and the set of A-players and the equation NAA(s(t1)) = NAA(s(t1 − 1)) together imply that
each agent plays the same action as her partner; for each B-player, all neighbors play action
B. That is, in each component, all members play the same action, and for any i, j ∈ N,
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if gi j = 1, u(ai (t1), ami (t1)(t1)) = u(a j (t1), am j (t1)(t1)). Thus, s(t1) is a limit state. When
the number of A-players in s(t1) is odd, all A-players except one, denoted by i0, constitute
NAA(s(t1)), and i0 ∈ N (NAA(s(t1))). The equation NAA(s(t1)) = NAA(s(t1 − 1)) implies
that except i0 and her partner, each agent is matched to an agent playing the same action, and
for each B-player, all neighbors except i0 play action B. Therefore, u(ai (t1), ami (t1)(t1)) ≥
max j∈N (i) u(a j (t1), am j (t1)(t1)) for any i ∈ N\{i0,mi0(t1)}, while neither i0 nor her partner
is motivated to alter action. Therefore, s(t1) is also a limit state.

Case 2: NAA(s(0)) = ∅.
In this case, in the initial state, all A-players are matched to B-players and receive a

common payoff of zero.
Assume that in the initial state, for each A-player, all neighbors play action A. In any

component, all members play the same action, and all A-players are matched to B-players.
If there are two or more B-players such that the partner of each is an A-player and one
neighbor is matched to a B-player, each of these B-players is motivated to exit from the
present partnership. In the initial period, with strictly positive probability, two of these B-
players, denoted by i0 and j0, have the opportunity to update their partnerships. In the next
period, with strictly positive probability, only two A-players mi0(0) and m j0(0) are matched
to each other. Then, we return to Case 1. If there is a unique B-player satisfying that the
partner is an A-player and one neighbor is matched to a B-player, then among all agents,
only this B-player wants to exit from the partnership, while nobody is motivated to alter
action. The initial state therefore is a limit state.

Assume that there exist two or more A-players such that for each of them, one neighbor
plays action B. Each of these A-players receives a strictly lower payoff than some neighbor.
This lower payoff implies that she is motivated to exit from the present partnership. In
the initial period, with strictly positive probability, two of these A-players only have the
opportunity to update their partnerships. In the next period, with strictly positive probability,
the two A-players are matched to each other. Thus, we return to Case 1.

Assume that in the initial state, there is a unique A-player, denoted by i1, satisfying that
one neighbor plays action B. Agent i1 receives a strictly lower payoff than some neighbor. In
the next period, with strictly positive probability, i1 switches to action B. For the state s(1),
either the condition in one of the above two paragraph holds, or the condition in this paragraph
holds. Following the same logic, after a finite number of periods, only the condition in one
of the above two paragraph holds. ��

Proof of Theorem 2 Assume that there is a limit state s = ((a1, . . . , an),m) such that both
actions coexist in a widely connected component c = (

N
′
, (gi j )i, j∈N′

)
. Let Na(s) denote

the set of all a-players for any a ∈ {A, B}. Theorem 1 shows that PA(s, c) is nonempty.
Furthermore, the discussion Theorem 1 implies that there exist at least two A-players in c;
that is, |N′ ∩ NA(s)| ≥ 2.

Let B(s, c) denote the set of A-players in c who have neighbors playing B. Formally,

B(s, c) = {i ∈ c : ai = A and ∃ j ∈ N (i) a j = B}.
It is straightforward to see that

B(s, c) = N (N
′ ∩ NB(s)) = N (N

′ \(N′ ∩ NA(s))).

Note that |N′ ∩NA(s)| ≥ 2. Thewide connectedness of c shows that |B(s, c)| = |N (N
′ \(N′ ∩

NA(s)))| ≥ 2. In addition, following from the fact that s is a limit state,PA(s, c) = B(s, cAB)

holds. Theorem 1 shows that PA(s, c) is a singleton, which yields a contradiction. ��
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Proof of Lemma 1 Assume that the initial state is
(
(B, B, . . . , B),m

) ∈ ΩB . In the initial
period, only agents i0 and mi0 receive the opportunity of action revision and switch from B
to A by mistake. No one is provided with the opportunity to update her partnership.

In the next period, both agents i0 and mi0 obtain the highest possible payoff of 1 from
the interaction. In the following periods, each of these two agents has no incentive to either
switch to B or end the partnership between them.

Following the same logic as in the Proof of Theorem 1, after a finite number of periods,
with probability one, {Sε(t)}t∈N will arrive at a limit state in ΩA. ��

To facilitate the Proof of Lemma 2, we introduce the following notation. The distance
between any two matchings m and m

′
is defined as the number of partnerships between

different pairs of agents. Formally,

d(m,m
′
)

.= |{i ∈ N : mi �= m
′
i }|

2
.

It is straightforward to see that twomatchingsm andm
′
are identical if and only if d(m,m

′
) =

0, and for any two distinct matchings m and m
′
, d(m,m

′
) ≥ 2.

Proof of Lemma 2 Weonly focus on the case that λ ≤ 1. The case that λ > 1 can be analyzed
in a similar manner. Let s denote ((a, a, . . . , a),m), and let s

′
denote ((a, a, . . . , a),m

′
).

Assume that the initial state is s.
Let Np(m,m

′
) be the set of agents whose partners are different in m and m

′
. Formally,

Np(m,m
′
)

.= {i ∈ N : mi �= m
′
i }. It is straightforward to see that |Np(m,m

′
)| = 2 ×

d(m,m
′
).

In the initial period, no one receives the opportunity of action revision, and only i0 and
m

′
i0
, i0 ∈ Np(m,m

′
), receive the opportunity of partnership updating. By two partnership

mutations, i0 and m
′
i0
end their partnerships in m.

Following the unperturbed behavior rule, in the next period, with strictly positive prob-
ability, i0 and m

′
i0

form a partnership, and mi0 and mm
′
i0

form a partnership. Therefore,

another limit state ((a, a, . . . , a), m̃) ∈ Ωa is arrived at where (1) m̃i = mi for any
i ∈ N\{i0,mi0 ,m

′
i0
,mm

′
i0

} and (2) m̃i0 = m
′
i0

and m̃mi0
= mm

′
i0

. Furthermore, for the

matching m̃,

d(m̃,m
′
) =

{
d(m,m

′
) − 2 if m

′
mi0

= mm
′
i0

;
d(m,m

′
) − 1 otherwise.

Following the same logic, the sequence (s0, . . . , s�) can be obtained. ��
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