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Abstract We consider a model of evolutionary competition between adjustment processes
in the Cournot oligopoly model and investigate the effect of increasing the number of firms.
Our focus is on Nash play versus a general short-memory adaptive adjustment process.
We find that, although Nash play has a stabilizing influence, a sufficient increase in the
number of firms in the market tends to make the Cournot-Nash equilibrium unstable. This
shows that the famous result by Theocharis (Rev Econ Stud 1960), that Cournot oligopoly
markets are unstable for more than three firms, is robust, although the instability threshold
increases in the presence of Nash firms. We establish that both the existence and the level
of this threshold depend on the information costs associated with Nash play. Moreover, the
interaction between adjustment processes naturally leads to the emergence of complicated
endogenous fluctuations as the number of firms increases, even when demand and costs are
linear.
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1 Introduction

The seminal work by Palander [36] and Theocharis [45] shows that, in a quantity-setting
game with firms using the Cournot [14] adjustment process,1 the Cournot-Nash equilibrium
becomes unstable as the number of firms increases.2 In fact, with linear demand and constant
marginal costs, the Cournot-Nash equilibrium looses stability and bounded but perpetual
oscillations arise already for triopoly (n = 3). For more than three firms, oscillations grow
until the nonnegativity price and demand constraints become effective. Other short-term
learning processes, such as gradient learning (see, e.g., Arrow and Hurwicz [6]) also tend
to be less stable if the number of firms on a market increases. However, the assumption
underlying these conventional adjustment processes, that rivals will not revise their output
from the last period, is continuously invalidated outside equilibrium and has been criticized
as a consequence (see, e.g., Seade [42], Al-Nowaihi and Levine [3]). An alternative to these
intuitive, but simple, adaptive processes is the more sophisticated model where firms have
full knowledge of the demand function and of their own and their opponents’ cost functions
and coordinate on the Cournot-Nash equilibrium instantaneously.3 The price for the resulting
stability is that these more sophisticated models put much higher demands on the cognitive
capacities of the players. It seems reasonable that in a market where all firms use the same
adjustment process a tendency exists for some firms to change to another type of behavior—
either to avoid structural decision making errors in an unstable environment or to save on
cognitive efforts in a stable environment. In this paper, we therefore introduce a model
that presents a middle ground between these alternatives by allowing firms to use different
adjustment processes and switch between those on the basis of past performance, as in, e.g.,
Brock and Hommes [10] and Droste et al. [20]. Our aim is to study whether the classic
instability result by Palander [36] and Theocharis [45] will survive in an environment where
firms can switch to more sophisticated adjustment processes when market dynamics are
volatile and simple adjustment processes do not perform well.

We focus in particular on the interaction between a single short-memory adjustment pro-
cess and Nash behavior, where the latter refers to firms that have correct expectations about
the choices of the other firms, and are able to coordinate on the corresponding equilibrium.4

That is, we consider a large population of firms of which a fraction ρt are Nash firms in period
t , and the remaining firms use the short-memory adjustment process. Every period firms are
randomly matched in groups of n firms to play the Cournot oligopoly game. By averaging
over all groups, where groups typically differ in their composition of adjustment processes,
we can express the dynamics of the population-wide average individual supply of non-Nash
players, qt , as a function of the fraction of Nash players in the previous period, ρt−1, and
the average individual supply of non-Nash players in the previous period, qt−1. Similarly, by

1 Firms employ a Cournot adjustment process, also referred to as best-reply dynamics, whenever they take
the last period’s aggregate output of their rivals as a predictor for the current period choices of those rivals
and best-respond to it.
2 Although this finding is typically credited to Theocharis [45], the argument was already made, in Swedish
and some 20 years earlier, in Palander [36]. See Puu [38] for a discussion.
3 The Cournot-Nash equilibrium is also supported by relatively sophisticated long-memory adjustment pro-
cesses. For example, fictitious play (seeBrown [11]), which asserts that each player best-replies to the empirical
distribution of the opponents’ past record of play, converges to the Cournot-Nash equilibrium for a large set
of demand-cost structures (see, e.g., Deschamp [18] and Thorlund-Petersen [46]).
4 Note that the equilibrium the Nash firms coordinate on typically only coincides with the Cournot-Nash
equilibrium if firms using the short-memory adjustment process also choose the Cournot-Nash equilibrium
quantity—see the discussion of Nash play in a heterogeneous environment in Sect. 3.
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letting the fraction of Nash players, ρt , evolve according to their performance relative to the
non-Nash players in the previous period, it can be expressed as a function of qt−1 and ρt−1

as well. The model therefore gives rise to a system of two first-order nonlinear difference
equations, of which the fixed point corresponds to the Cournot-Nash equilibrium.

We find that the classic instability result of Theocharis [45] is quite robust: it persists
under endogenous switching between adjustment processes. However, the presence of Nash
firms increases the threshold number of firms that triggers instability. This threshold number
of firms furthermore varies with the information costs for Nash firms and with the level of
evolutionary pressure between the different adjustment processes. As the number of firms
increases, a period-doubling route to chaos typically arises, and the model might exhibit
complicated but bounded dynamics, a feature not present in the original model of Theocharis
[45]. These fluctuations have a smaller amplitude than the fluctuations that would emerge
when all firms use the short-memory adjustment process, but they are more erratic and less
predictable and arise naturally from the interaction of two opposing forces. If the fraction
of Nash firms is sufficiently high, the Cournot-Nash equilibrium will be stable. This induces
firms to switch to a short-memory adjustment process that gives similar market profits, but
does not require as much cognitive effort. As a sufficiently large fraction of the population
of firms uses this short-memory adjustment process, the Cournot-Nash equilibrium becomes
unstable and quantities start fluctuating. When these fluctuations are sufficiently large, firms
are attracted to Nash play, which stabilizes the dynamics again, and so on.

To some extent, our approach is supported by findings from laboratory experiments with
human subjects. In particular, neither theCournot-Nash equilibriumnor the predictions of less
sophisticated short-memory adjustment processes describe the data from these experiments
convincingly. Rassenti et al. [40], for example, present an experiment on a Cournot oligopoly
with linear demand, constant (but asymmetric) marginal costs and five firms, implying that
the Cournot-Nash equilibrium is unstable under best-reply dynamics. Indeed, they find that
aggregate output persistently oscillates around the equilibrium and does not converge. Indi-
vidual behavior, however, is not explained very well by best-reply dynamics. Huck et al. [28]
discuss a linear (and symmetric) Cournot oligopoly experiment with four firms. Instead of
diverging quantities, as predicted by best-reply dynamics, they find that the time average of
quantities converges to the Cournot-Nash equilibrium quantity, although there is substantial
volatility around this equilibrium throughout the experiment. Interestingly, Huck et al. [28]
find that a process where participants mix between best-replying and imitating the previous
period’s average quantity describes participants’ behavior best. This supports our model of
heterogeneous adjustment processes.

Our paper extends the literature on the stability of the Cournot-Nash equilibrium that
emerged in response to Theocharis [45] by considering switching between adjustment pro-
cesses. It also contributes to a separate but related literature on complicated dynamics and
endogenous fluctuations in Cournot oligopoly. This literature typically considers Cournot
duopolies with non-monotonic reaction functions that are postulated ad hoc (Rand [39]),
derived from iso-elastic demand functions together with substantial asymmetries in marginal
costs (Puu [37]) or derived from cost externalities (Kopel [30]) and shows that best-reply
dynamics might result in periodic cycles and chaotic behavior. For these models with non-
monotonic reaction curves, complicated behavior might also arise for other adjustment
processes (see, e.g., [1,9]). Although non-monotonic reaction curves cannot be excluded
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on economic grounds5 complicated behavior in our model emerges in a much more natural
fashion and perpetual but bounded fluctuations occur even for linear demand and cost curves.

Finally, our work is closely related to Droste et al. [20] who investigate evolutionary
competition between best-reply dynamics and Nash play in a Cournot duopoly with linear
demand and quadratic costs, but there are several important differences with respect to that
earlier work.6 First, whereas in Droste et al. [20], as in the vast majority of other contributions
in this field, the number of firms in the market is given and fixed, we analyze the effect on
the dynamics—for fixed values of the other (demand, cost and behavioral) parameters—of
an increase in the number of firms. This is particularly relevant in light of the original results
from Palander [36] and Theocharis [45] that show that under homogeneous best-reply an
increase in the number of firms is destabilizing. It is therefore very natural to study the
robustness of that result under the presence of more sophisticated behavior and evolutionary
competition. To the best of our knowledge, this has not been done before. Second, and related
to the first point, Droste et al. [20] find that complicated dynamics are only possible in their
Cournot duopoly model when the production function satisfies strong increasing returns to
scale. That is, firm’s cost functions should be sufficiently concave, ormarginal costs should be
decreasing sufficiently fast. Although theremight bemarkets for specific products that satisfy
this condition, it nevertheless corresponds to a rather special case. In particular, this condition
implies the existence of multiple Cournot-Nash equilibria (a symmetric interior equilibrium
and two asymmetric boundary equilibria where one of the firms has a monopoly and the
other firm is inactive). Moreover, it gives rise to a perverse and counterintuitive comparative
statics effect: instead of increasing the Cournot-Nash equilibrium price, as one would expect,
an exogenous increase in demand reduces the equilibrium price. The model studied in the
current paper does not require such a special and non-typical feature and works both for
increasing and decreasing marginal costs, as well as for the textbook case of linear demand
and constant marginal costs. It therefore generalizes the results from Droste et al. [20] to a
much wider range of market structures.7 The third difference with Droste et al. [20] is that the
latter uses the (noisy) replicator dynamics as a model of evolutionary competition, whereas
the current paper employs a different class of evolutionary models, which includes (but is
not restricted to) the discrete choice model. Both approaches model evolutionary selection
between adjustment processes, but the mechanisms are different. In particular, the replicator
dynamics—which can be derived from a process of pairwise imitation—inhibits adjustment
processes to spread quickly through the population of firms. With the class of evolutionary
processes studied here this is much easier, because the adoption of an adjustment process
only depends upon its relative performance and not on the fraction of firms currently using

5 Corchon and Mas-Colell [13] show that any type of behavior can emerge for continuous-time gradient (or
best-reply) dynamics in heterogeneous oligopoly, although Furth [23] argues that for homogeneous Cournot
oligopoly there are certain restrictions as to what behavior can arise. Relatedly, Dana and Montrucchio [16]
show that in a duopoly model where firms maximize their discounted stream of future profits and play Markov
perfect equilibria—and therefore are rational—any behavior is possible for small discount factors.
6 See Ochea [35] for an analysis of the model from Droste et al. [20] with a larger selection of adjustment
processes. Other recent contributions employing this framework are Bischi et al. [8] and Cerboni Baiardi et al.
[12] who study evolutionary competition between local monopolistic approximation on the one hand and best-
reply dynamics and gradient dynamics on the other hand, respectively, and Kopel et al. [31] and De Giovanni
and Lamantia [17], who study evolutionary competition between different types of objective functions for
firms (profit maximizing firms versus socially concerned firms and profit maximizing firms versus firms that
take revenues into account as well, respectively).
7 Moreover, the present paper is also more general than Droste et al. [20] in two other directions. Where the
main focus of Droste et al. [20] is on evolutionary competition, modelled by the noisy replicator dynamics,
between Nash firms and best-reply firms, in this paper we focus on competition between Nash firms and a
more general short-run adjustment process under a general set of evolutionary processes.
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that process. As a consequence, the two types of evolutionary processes give rise to similar
local stability results, but (at least for the economic model studied here) the global dynamics
of the models is quite different. Under the noisy replicator dynamics, typically the dynamics,
when the equilibrium is unstable, are attracted to a period two cycle or are explosive, whereas
the discrete choice model exhibits a much wider range of possible complicated behaviors,
including cycles with a high period and strange attractors that give rise to complicated and
erratic endogenous fluctuations.

The rest of the paper is organized as follows. Section 2 briefly reviews short-memory
adjustment processes in the general symmetric n-player Cournot model. Section 3 introduces
a Cournot population game where firms can choose between Nash play and a general short-
memory adjustment process and Sect. 4 illustrates the global dynamics of this model for the
Cournot oligopoly game with Nash play versus best-reply dynamics for linear demand and
constant marginal costs. Section 5 provides a short discussion. The Appendix contains the
proofs of our two main results.

2 Short-Memory Adjustment Processes in Cournot Oligopoly

Consider a Cournot oligopoly with n firms supplying a homogeneous commodity.8 The
inverse demand function P (Q) is nonnegative, nonincreasing and, whenever it is strictly
positive, twice continuously differentiable. Here Q = ∑n

i=1 qi is aggregate output,where qi
denotes production of firm i . The cost function C (qi ) is twice continuously differentiable
and the same for every firm. Moreover, C (qi ) ≥ 0 and C ′ (qi ) ≥ 0 for every qi .

Eachfirmwants tomaximize instantaneous profits P (Q−i + qi ) qi−C (qi ),whereQ−i =∑
j �=i q j = Q − qi . This gives the following first-order condition for an interior solution

P (Q−i + qi ) + qi P
′ (Q−i + qi ) − C ′ (qi ) = 0, (1)

with second-order condition for a localmaximumgivenby2P ′ (Q−i + qi )+qi P ′′ (Q−i + qi )
− C ′′ (qi ) ≤ 0.

The first-order condition (1) implicitly defines the best-reply correspondence or reaction
curve:

qi = R(Q−i ). (2)

We assume that a symmetric Cournot-Nash equilibrium q∗, that is, the solution to q∗ =
R ((n − 1) q∗), exists and is strictly positive and unique.9 Aggregate equilibrium production
is then given by Q∗ = nq∗.

The key question is: how do firms learn to play q∗? One approach is to assume that
firms have complete information about their environment and are able to coordinate on the
Nash equilibrium instantaneously. As an alternative, we consider short-memory adaptive
adjustment processes with the following general structure

qi,t = F
(
qi,t−1, Q−i,t−1

)
. (3)

8 For a thorough treatment of the Cournot oligopoly game under general demand and cost structures, we refer
the reader to Bischi et al. [7].
9 Sufficient conditions for the existence and uniqueness of the Cournot-Nash equilibrium are that P (·) is
twice continuously differentiable, nonincreasing and concave on the interval where it is positive and that
C (·) is twice continuously differentiable, nondecreasing and convex, see Szidarovszky and Yakowitz [43].
For more general conditions on existence and uniqueness, see, e.g., Novshek [34] and Kolstad and Mathiesen
[29], respectively.
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That is, the firm’s current production decision depends upon its own choice and the aggregate
choices of the other firms from the previous period.Wemake the following assumption on the

adjustment process (3), where F∗
q = ∂F(q,Q−i )

∂q

∣
∣
∣
(q∗,(n−1)q∗)

and F∗
Q = ∂F(q,Q−i )

∂Q−i

∣
∣
∣
(q∗,(n−1)q∗)

denote the partial derivatives of F , evaluated at the Cournot-Nash equilibrium.

Assumption A For all n, the adjustment process (3) satisfies (i) F (q∗, (n − 1) q∗) = q∗, (ii)∣
∣
∣F∗

q

∣
∣
∣ < 1, F∗

Q ∈ (−1,−δ), where 0 < δ < 1 is a strictly positive constant, and F∗
q −F∗

Q < 1.

Part (i) of Assumption A ensures that the Cournot-Nash equilibrium quantity corresponds
to a steady state of the adjustment process. Part (ii) puts some natural restrictions on the
partial derivatives of F which facilitate stability of adjustment process (3). In particular, note

that either
∣
∣
∣F∗

q

∣
∣
∣ > 1 or F∗

Q < −1 would make the adjustment process inherently unstable: a

small change in q or Q−i in the previous time period, respectively, would then bring about
a larger change in q in the current period. Similarly, F∗

q − F∗
Q > 1 would imply that a

redistribution of production from Q−i to q in the current period additionally increases next
period’s output q by more than that redistribution. The assumption that F∗

Q is negative and
bounded away from zero makes sense because quantities are strategic substitutes.

A number of well-known adjustment processes can be represented by (3).10 Probably
best known is the best-reply dynamics (see, e.g., Theocharis [45]) which assumes that firms
best-reply to the aggregate quantity of the other firms from the previous period, that is

F (q, Q−i ) = R (Q−i ) .

Note that we have F∗
q = 0 and F∗

Q = R′ (Q∗−i

)
, which is indeed typically negative.11 The

closely related adaptive best-reply dynamics (see, e.g., Fisher [21] ), where firms move in the
direction of their best reply, can be written as F (q, Q−i ) = αR (Q−i ) + (1 − α) qi , with
α ∈ (0, 1] and where F∗

q = 1 − α and F∗
Q = αR′ (Q∗−i

)
. Another variation is suggested in

Huck et al. [28], where it is found that participants to a laboratory experiment use a weighted
average of best-reply and imitation.

Another famous adjustment process is gradient learning (see, e.g., Arrow and Hurwicz
[6] and Bischi et al. [7]) where firms adapt their decision in the direction of increasing profits,
that is

F (qi , Q−i ) = qi + λ
∂π (qi , Q−i )

∂qi
,

with λ > 0 the speed of adjustment parameter.12 Here F∗
Q = λ

[
P ′ (Q∗) + q∗P ′′ (Q∗)

]
and

F∗
q = 1 + λ

[
2P (Q∗) + q∗P ′′ (Q∗) − C ′′ (q∗)

]
, where F∗

q < 1 follows from the second-
order condition for a local maximum and F∗

Q < 0 holds under the familiar condition that the
inverse demand function is “not too convex” (see footnote 11).

10 Bischi et al. [7] provide a systematic analysis of a variety of adjustment processes in Cournot oligopoly
games.
11 From the first-order condition (1), we find that

dqi
dQ−i

= R′ (Q−i
) = − P ′ (Q) + qi P

′′ (Q)

2P ′ (Q) + qi P ′′ (Q) − C ′′ (qi )
. (4)

Note that the second-order condition for a local maximum implies that the denominator, evaluated at the
Cournot-Nash equilibrium, is negative. Typically the numerator is also negative (although this is not necessarily

the case if the inverse demand function is sufficiently convex), and therefore, we generally have R′ (Q∗−i

)
< 0.

12 In a more general version of the gradient dynamics, the speed of adjustment is a function of the quantity,
λ (qi ).
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Besides these benchmark adjustment processes, many other processes obey the general
form (3), such as local monopolistic approximation13 or imitating the average (although the
latter does not satisfy part (i) of Assumption A). Some other adjustment processes, such as
fictitious play and least squares learning (see, e.g., Anufriev et al. [5]), cannot be represented
by (3).

The next proposition characterizes when the Cournot-Nash equilibrium is stable, given
that all firms use the same adjustment process (3).14

Proposition 1 Let all firms use adjustment process (3). The symmetric Cournot-Nash equi-
librium (q∗, . . . , q∗) is locally stable if

∣
∣
∣F∗

q + (n − 1) F∗
Q

∣
∣
∣ < 1. (5)

Proposition 1 suggests that the Cournot-Nash equilibrium becomes unstable, under adjust-
ment process (3), if the number of firms increases sufficiently. In particular, a sufficient

condition for instability is
∣
∣
∣F∗

q + (n − 1) F∗
Q

∣
∣
∣ > 1, which gives the following instability

threshold

n > 1 − 1 + F∗
q

F∗
Q

. (6)

The intuition is that individual firms, who choose their production level partly on the basis of
last period’s aggregate production of the other firms, do not take into account that those other
firms also adjust their production level. Obviously, disregarding other firms’ adjustments will

have a larger effect when there are more firms in the market (or when
∣
∣
∣F∗

Q

∣
∣
∣ is higher) and

eventually destabilizes the Cournot-Nash equilibrium. For example, with linear demand and
costs, the slope of the resulting linear reaction curve equals − 1

2 . This means that if one firm
deviates from the equilibrium by producing one additional unit, under best-reply dynamics
every other firm responds by decreasing its own production by half a unit. Consequently,
for n > 3 the aggregate reduction in production is larger than the earlier increase in pro-
duction, which renders the dynamics unstable. Similarly, for gradient learning with a speed
of adjustment λ low enough to induce convergence to the Cournot-Nash equilibrium when
the number of firms is small, a sufficient increase in the number of firms will destabilize the
dynamics.

Since F∗
Q typically depends upon n through q∗, in principle a market structure could exist

with the property that F∗
Q decreases in n faster than 1

n , meaning that (3) may converge to the

13 The idea behind local monopolistic approximation is that every firm estimates a linear demand curve on
the basis of his last observed price-quantity combination and the slope of the inverse demand function at
that quantity in the last period. It then uses this estimated demand function to determine its perceived profit
maximizing quantity. For constant marginal costs c, this gives rise to adjustment process

F
(
q, Q−i

) = 1

2
q − 1

2

P
(
q + Q−i

) − c

P ′ (q + Q−i
) .

For details, see Tuinstra [48] and Bischi et al. [9].
14 Recall that the local stability properties of the fixed point of a nonlinear dynamical system are qualitatively
the same as those of the linearized system, provided that the fixed point is hyperbolic (that is, the Jacobian
matrix has no eigenvalues on the unit circle), see, e.g., Kuznetsov [32]. Such a fixed point is locally stable (a
sink) if all eigenvalues of the Jacobian matrix (evaluated at that fixed point) lie within the unit circle, and the
fixed point is unstable either when all eigenvalues lie outside the unit circle (the fixed point is then called a
source) or when at least one eigenvalue lies outside the unit circle, and at least one eigenvalue lies inside the
unit circle (the fixed point is then called a saddle).
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Cournot-Nash equilibrium for any number of firms. However, such a market structure seems
unlikely and, to the best of our knowledge, has not been considered in the literature.15 The
assumption that F∗

Q is bounded away from zero therefore seems innocuous.

3 Evolutionary Competition Between Adjustment Processes

Proposition 1 establishes that dynamic behavior under adjustment processes of the form
(3) is quite different from more sophisticated adjustment processes, such as Nash play or
fictitious play, particularly when the number of firms in the market is large. However, the
latter typically require more cognitive effort. In this section, we introduce an evolutionary
competition between the different adjustment processes. For this, we model our Cournot
oligopoly as a population game. That is, we consider a large population of firms from which
in each period groups of n firms are sampled randomly to play the one-shot n-firm Cournot
oligopoly. Firms may use different adjustment processes, and they switch between these
processes according to a general, monotone selection dynamic, capturing the idea that an
adjustment process that performs better is more likely to spread through the population of
firms. In this paper, we focus on the interaction betweenNash play and a single short-memory
adjustment process of the form (3). Denote by ρt ∈ [0, 1] the fraction of Nash firms in the
population in period t , with a fraction 1 − ρt using the short-memory adjustment process—
from here onwewill refer to the latter as F-firms. After each period, the fraction ρt is updated
and the random matching procedure is repeated.

First consider the decision of a Nash firm that knows the fraction of Nash firms in the pop-
ulation and the production decision of the F-firms, but does not know the exact composition
of firms in its market (or it has to make a production decision before observing this). This firm
forms expectations over all possible mixtures resulting from independently drawing n − 1
other players from a large population, each of which is either a Nash firm or a F-firm. Nash
firm i therefore chooses quantity qi such that the objective function

n−1∑

k=0

(
n − 1

k

)

ρk
t (1 − ρt )

n−1−k
[
P

(
(n − 1 − k) qt + kqN + qi

)
qi − C (qi )

]
,

is maximized. Here qN is the (symmetric) output level of each of the other Nash firms, and
qt is the output level of each F-firm, which is given by (3). Assuming that F-firms respond
to the industry-wide average quantity from the previous period, the quantities they set will be
symmetric (provided all of them start out with the same quantity q0), see Eq. (8) below. The
first-order condition for an optimum is characterized by equality between marginal cost and
expected marginal revenue. We assume that, given the value of qt , all Nash firms coordinate
on the same output level qN . The first-order condition, with qi = qN , reads

15 For the specification of Theocharis [45],with linear inverse demand function and constantmarginal costs the
reaction curve is linearwith a constant slope that is independent of n. For an iso-elastic inverse demand function
and constant marginal costs, the slope of the reaction curve, evaluated at the Cournot-Nash equilibrium, does
depend upon n. In this case, the Cournot-Nash equilibrium is unstable under best-reply dynamics for n ≥ 5
(see [2] and [38]). Puu [38] provides an example for which the best-reply dynamics do remain stable when n
increases, but he assumes that the cost function of each firm depends directly upon the number of firms n: as
the number of firms increases the capacity of each individual firm is reduced, increasing its marginal costs.
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n−1∑

k=0

(
n − 1

k

)

ρk
t (1 − ρt )

n−1−k

×
[
P

(
(n − 1 − k) qt + (k + 1) qN

)

+ qN P ′ ((n − 1 − k) qt + (k + 1) qN
)

− C ′ (qN
)]

= 0. (7)

Let the solution to (7) be given by qN = H (qt , ρt ).16 Note that if the F-firms play the
Cournot-Nash equilibrium quantity q∗, or if all firms are Nash firms, then Nash firms will
produce q∗ as well, that is H (q∗, ρt ) = q∗, for all ρt and H (qt , 1) = q∗ for all qt . Moreover,
a Nash firm that is certain it will only meet F-firms plays a best-reply to current aggregate
output of these F-firms, that is H (qt , 0) = R ((n − 1) qt ), for all qt .

We assume that F-firms know the average quantity qt−1 played across the population of
firms in period t − 1. We therefore obtain

qt = F
(
qt−1, (n − 1) qt−1

) = F (qt−1, (n − 1) (ρt−1H (qt−1, ρt−1) + (1 − ρt−1) qt−1)) ,

(8)
with the output of a Nash firm in period t given by qN

t = H (qt , ρt ).
The evolutionary competition between adjustment processes is driven by the profits they

generate. Taking into account that a Nash firm meets between 0 and n − 1 other Nash firms,
expected profits for a Nash firm are given by

�N

(
qN , q, ρ

)
=

n−1∑

k=0

(
n − 1

k

)

ρk (1 − ρ)n−1−k

×
[
P

(
(k + 1) qN + (n − 1 − k) q

)
qN − C

(
qN

)]
, (9)

where qN and q are the (symmetric) quantities set by Nash firms and F-firms, respectively.
Expected profits �F

(
qN , q, ρ

)
for an F-firm can be determined in a similar manner. If the

population of firms and the number of groups of n firms drawn from that population are large
enough, average profits will be approximated quite well by these expected profits, which we
will use as a proxy for average profits from now on. In addition, because the information
requirements for Nash play are substantially higher than those for short-memory adjustment
processes, we allow for differences in information or deliberation costs κN , κF ≥ 0 required
to implement these types of behavior. Performance of Nash and F-firms is then evaluated
according to Vi = �i − κi where i = N , F .

The fraction ρt of Nash firms evolves endogenously according to a dynamic which is an
increasing function of the performance differential between the two adjustment processes,
that is

ρt = G
(
VN ,t−1 − VF,t−1

) = G
(
�N ,t−1 − �F,t−1 − κ

)
, (10)

where κ ≡ κN −κF is the difference in deliberation costs, which we—given the information
requirements for Nash play in a heterogeneous environment—assume to be nonnegative.17

16 Note that in general the solution to (7) does not necessarily have to be unique, although it will be unique
under the standard assumptions of nondecreasing marginal costs and concave inverse demand. If, for some qt
and ρt , there are multiple solutions to (7) we assume that the Nash firms are able to identify which of these
solutions corresponds to the global maximum of their profit function and coordinate on this solution, which
we then refer to as H (qt , ρt ).
17 Note that κ does not necessarily only represent the difference in information costs; it could also capture a
predisposition towards (or away from) Nash play.
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The map G : R → [0, 1] is a continuously differentiable, monotonically increasing function
with G (0) = 1

2 , limx→−∞ G (x) = 0 and limx→∞ G (x) = 1. One possible choice for G (·)
that satisfies these properties is the discrete choice model, G (x) = [

1 + exp (−βx)
]−1,

see Anderson et al. [4]. This model is based on stochastic choice of firms, who observe
performance of the different adjustment processes and tend to choose the better performing
process with a higher probability. This model is very popular in heterogeneous agent models
(see, e.g., Brock and Hommes [10]) and in the literature on quantal response equilibria
(see, e.g., McKelvey and Palfrey [33]), and we will use this specification in Sect. 4. It is
straightforward to generalize this approach to allow for other (andmore than two) adjustment
processes, or to let it depend upon performance of these processes from earlier periods.

The dynamics of the quantities and fractions are governed by Eqs. (8) and (10). The steady
state of this dynamic system is (q∗, ρκ), where q∗ is the Cournot-Nash equilibrium quantity,
and ρκ = G (−κ) is the fraction of Nash firms at the steady state. Because market profits are
the same in equilibrium, this fraction depends only on the difference in deliberation costs.
We have the following stability result:

Proposition 2 Let P ′ (Q∗) + q∗P ′′ (Q∗) < 0. Then the equilibrium (q∗, ρκ) of the model
with evolutionary competition between Nash play and the short-memory adjustment process
(3) is locally stable if:

(1 − ρκ) (n − 1)

1 − ρκ (n − 1) R′ (Q∗−i

) < −1 + F∗
q

F∗
Q

, (11)

and unstable if
(1 − ρκ) (n − 1)

1 − ρκ (n − 1) R′ (Q∗−i

) > −1 + F∗
q

F∗
Q

. (12)

Note that it follows from condition (11) that for a sufficiently large fraction of Nash firms
the Cournot-Nash equilibrium will be stable. On the other hand, from rearranging condition
(12), we find that a sufficient condition for instability is

n − ρκ (n − 1)
[
1 + R′ (Q∗−i

)]

1 − ρκ (n − 1) R′ (Q∗−i

) > 1 − 1 + F∗
q

F∗
Q

(13)

Note that the right-hand sides of conditions (6) and (13) are the same, but that the left-hand
side of (13) is smaller than n [the left-hand side of (6)], provided −1 ≤ R′ (Q∗−i

) ≤ 0.
Introducing Nash firms in an environment with F-firms therefore has a stabilizing effect.

In the next section, we will see that instability is still possible and that the model with
interaction between Nash play and a short-memory adjustment process may actually give rise
to complicated and unpredictable dynamics. Before we go into that, however, a remark on
the evolutionary process (10) is in order, since it does not include the well-known replicator
dynamics. These replicator dynamics—developed by evolutionary biologists (see [26] and
[44]), but also applied to many evolutionary economic models—can be derived from amodel
of imitation, see, e.g., Gale et al. [24] or Schlag [41]. For our case, the standard replicator
dynamics is given as:

ρt = ρt−1VN ,t−1

ρt−1VN ,t−1 + (1 − ρt−1) VF,t−1
. (14)

For κ > 0 the model consisting of (8) and (14) has two equilibria, (q∗, 0) and (q∗, 1), both
of which are unstable if the market with only F-firms is unstable. Because in equilibrium
Nash firms and F-firms do not coexist, the standard replicator dynamics does not seem to be
a suitable model to study the stabilizing effect of an increase in the fraction of Nash firms.
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This issue can be addressed by introducing noisy decision making in the replicator dynamics
(see, e.g., [20] and [22,24]), which gives rise to

ρt = δ + (1 − 2δ)
ρt−1VN ,t−1

ρt−1VN ,t−1 + (1 − ρt−1) VF,t−1
. (15)

Here each period a fraction 2δ of the population chooses between the adjustment processes
randomly (with equal probability) and independent of past performance. For this specification
of the replicator dynamics, there will be a unique equilibrium (q∗, ρδ), with ρδ ∈ (0, 1). As
δ decreases (or as κ increases), ρδ decreases and for ρδ small enough (and n high enough)
the equilibrium will be unstable. The local stability properties for the model with the noisy
replicator dynamics will therefore be similar to that of the model we study here, although the
global dynamics is typically different, see the discussion in the next section. Note that the
economic interpretation of the replicator dynamics is also different from that of models of
the form (10), such as the discrete choice model. The former relies upon (pairwise) imitation
which implies that if one adjustment process performs better than the other, but is initially
used by only a small fraction of the population (that is, ρt is close to 0 or 1), it may take
quite some periods for that adjustment process to be used by almost all firms. In contrast,
for models of the form (10) almost the full population may switch to the better performing
adjustment process in only one period. Since in oligopolistic markets firms may arguably
perform some kind of (possibly restricted) optimization, instead of simply imitating another
firm, we have a slight preference for models of the form (10) as a description of how firms
choose adjustment processes.

4 Nash Play Versus Best-Reply: Global Dynamics and Perpetual Bounded
Fluctuations

In this section,we study the global dynamical behavior of themodel discussed in Sect. 3where
for the short-memory adjustment process we take the best-reply dynamics, F (qi , Q−i ) =
R (Q−i ). This choice is supported by evidence from laboratory experiments that suggests
that best-reply dynamics is relevant in human decision making. Cox and Walker [15], for
example, present an experiment on Cournot duopoly with linear demand and quadratic costs
where participants’ quantity choices fail to converge to the (interior) Cournot-Nash equilib-
rium when that equilibrium is unstable under best-reply dynamics. Also Rassenti et al. [40]
and Huck et al. [28] find that a Cournot-Nash equilibrium that is unstable under best-reply
dynamics will not be reached by human subjects.

Applying Proposition 2 to best-reply dynamics (that is, F∗
q = 0 and F∗

Q = R′ (Q∗−i

)
< 0)

and using ρ0 = 1
2 , we find that the Cournot-Nash equilibrium is locally stable for any number

of firms if there are no information costs for Nash play:

Corollary 3 Let P ′ (Q∗) + q∗P ′′ (Q∗) < 0. Then the equilibrium (q∗, ρκ) of the model of
endogenous switching between Nash play and best-reply dynamics is locally stable if

(1 − 2ρκ) (n − 1) R′ (Q∗−i

)
> −1. (16)

Moreover, in the absence of a difference in information costs, κ = 0, the equilibrium (q∗, ρ0)
is locally stable for all n ≥ 2.

To investigate global dynamics, we need to specify the demand and cost structure, as
well as the switching mechanism. We will use linear demand P (Q) = a − bQ, and costs,
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Ci (qi ) = cq , with a > c ≥ 0 and b > 0. The reaction curve then becomes

qi = Ri (Q−i ) = q∗ − 1

2

(
Q−i − (n − 1) q∗) , (17)

with q∗ = a−c
b(n+1) the unique Cournot-Nash equilibrium. Furthermore, given qt and ρt , Nash

firms in period t coordinate on the solution to Eq. (7) which is

qN
t = H (qt , ρt ) = q∗ − (1 − ρt ) (n − 1)

2 + (n − 1) ρt

(
qt − q∗) . (18)

It can be easily checked that qt = R ((n − 1) (ρt−1H (qt−1, ρt−1)) + (1 − ρt−1) qt−1) =
H (qt−1, ρt−1) = qN

t−1, that is, in each period best-reply firms produce the quantity that
Nash firms produced in the period before, illustrating the information advantage of the latter.
From Eq. (18), we see that Nash firms respond to best-reply firms by choosing a high (low)
production level when production of best-reply firms is low (high) in that period.18 Nash
firms therefore partially neutralize the instability created by best-reply firms. However, if the
equilibrium fraction ρκ of Nash firms in the population is too small, or the number of firms
n in a market sufficiently large, the Cournot-Nash equilibrium will still be unstable, as can
be seen by condition (16) which, for the current specification, reduces to

(1 − 2ρκ) (n − 1) < 2. (19)

We model evolutionary competition by the discrete choice dynamics (see, e.g., Brock and
Hommes [10]):

G
(
�N ,t−1 − �F,t−1 − κ

) = 1

1 + exp
[−β

(
�N ,t−1 − �F,t−1 − κ

)] . (20)

The parameter β ≥ 0 measures the intensity of choice: for a higher value of β, firms are
more likely to switch to the more successful adjustment process from the previous period. A
straightforward computation shows that the profit difference is given by

�N ,t − �F,t = b

(
n + 1

2 + (n − 1) ρt

)2 (
qt − q∗)2 .

Note that, abstracting from information costs κ , average profits of Nash firms are always
higher than those of the best-reply firms. The difference increases with the deviation of qt
from its equilibrium value and decreases with the fraction of Nash firms. The full model with
endogenous switching between Nash and best-reply behavior is

qt = q∗ − (1 − ρt−1) (n − 1)

2 + (n − 1) ρt−1

(
qt−1 − q∗) ,

ρt = 1

1 + exp

[

−β

(

b
(

n+1
2+(n−1)ρt−1

)2
(q∗ − qt−1)

2 − κ

)] , (21)

with the equilibrium given by (q∗, ρκ) =
(

a−c
b(n+1) ,

[
1 + exp [βκ]

]−1
)
. This equilibrium is

locally stable when condition (19) holds.

18 In fact, the production level of Nash firms will lie between q∗ and R ((n − 1) qt ). To be specific, for
ρ ∈ (0, 1) and qt �= q∗ we either have R ((n − 1) qt ) < H (qt , ρ) < q∗ < qt or R ((n − 1) qt ) >

H (qt , ρ) > q∗ > qt .
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This condition is always satisfied for n ≤ 3, but for n > 3 the Cournot-Nash equilibrium
becomes unstable if the fraction of Nash firms in equilibrium is too low, with the critical
value for ρ given by

ρκ < ρ = 1

2

n − 3

n − 1
. (22)

As is already clear fromCorollary 3, the equilibrium is always locally stable in the absence
of information costs, κ = 0 (note that ρ < ρ0 = 1

2 for all n). However, for any n > 3 there
exists an intensity of choice β and information costs κ such that the equilibrium becomes
unstable, because the fraction ofNashfirms in equilibrium is too small. In fact, the equilibrium
is unstable for all n ≥ 4 when ρκ < 1

6 , that is, whenever β × κ > ln 5 ≈ 1.609.
The trade-off between evolutionary pressure and the number of firms n in the market for

which the equilibrium is stable is illustrated in the upper panel of Fig. 1. This figure plots the
period-doubling bifurcation curve, where, for convenience, we interpret n as a continuous
variable.19 For combinations of βκ and n to the northeast of the curve the equilibrium is
unstable.

The dynamics can become quite complicated when the equilibrium is unstable. Figure 2
shows the results of some representative numerical simulations of the model with a = 17,

b = 1, c = 10, β = 5 and κ = 1
2 . Note that in this case ρκ =

[
1 + exp

[
5
2

]]−1 ≈ 0.076

and the equilibrium will be unstable for any n > 3. Panel (a) shows a bifurcation diagram
for n = 2 to n = 20, with the composite variable qt + ρt on the vertical axis.20 The
main dynamic scenario as n increases is a so-called period-doubling bifurcation route to
chaos. The equilibrium (q∗, ρκ) becomes unstable through a period-doubling bifurcation
at n ≈ 3.36. At this primary bifurcation, an attracting period two cycle is created. This
period two cycle undergoes a period-doubling bifurcation itself at n ≈ 6.04. Two coexisting
and stable period four cycles emerge from that secondary bifurcation. In (q, ρ)-space, these
cycles are symmetric to each other with respect to the vertical line at q = q∗.21 Because for
some values of n the initial condition (q0, ρ0) lies in the so-called basin of attraction of one
period four cycle, whereas for slightly different values of n it lies in the basin of attraction of
the other period four cycle, the bifurcation diagram in panel (a) of Fig. 2 gives the impression
that for many values of n (roughly between 9 and 15) the dynamics converges to a period
eight cycle, although this in fact illustrates the coexistence of two period four cycles. At
n ≈ 15.70 each of these period four cycles undergoes another period-doubling bifurcation

19 For a discussion on these period-doubling thresholds for more general adjustment processes, i.e., adaptive
expectations and fictitious play, see Chapter IV in Ochea [35].
20 We choose to plot qt +ρt on the vertical axis for the following reason. For a large range of values of n, the
dynamics of the model converges to a period four cycle of the type {(q1, ρ1) , (q2, ρ2) , (q3, ρ3) , (q4, ρ4)} =
{(a, x) , (b, x) , (c, y) , (b, y)}. That is, although the period four cycle consists of four different points in
(q, ρ)-space, it is characterised by only three distinct q-values and two distinct ρ-values. Plotting q (or ρ) on
the vertical axis of panel (a) of Fig. 2 would therefore suggest the existence of a period three (period two)
cycle. The composite variable q + ρ does take on four distinct values along the period four cycle, and we
therefore prefer that variable as a presentation of the dynamics.
21 Denoting by xt = qt − q∗ the deviation of the quantity from its Nash equilibrium level, we can write

(21) as (xt , ρt ) =
(
H̃

(
xt−1, ρt−1

)
, G̃

(
xt−1, ρt−1

))
, with H̃ (x, ρ) = − (1−ρ)(n−1)

2+(n−1)ρ x and G̃ (x, ρ) =
G

(
x + q∗, ρ

)
. It is easily checked that this map has a so-called reflection symmetry with respect to x = 0.

That is,
(
H̃ (−x, ρ) , G̃ (−x, ρ)

)
=

(
−H̃ (x, ρ) , G̃ (x, ρ)

)
for all x and ρ. This implies that if an attractor

of this dynamical system is not symmetric with respect to x = 0 (or q = q∗), that is, if it includes the point
(x0, ρ0) but not the point (−x0, ρ0), then another attractor must exist (which does include the latter point).
For more on the properties of dynamical systems with symmetries, see Golubitsky et al. [25] for an overview
and Tuinstra [47] for an application to economics.
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leading to the emergence of two coexisting attracting period eight cycles. This sequence of
period-doubling bifurcations continues, creating coexisting period 16 cycles (emerging at
n ≈ 17.19) and coexisting period 32 cycles (emerging at n ≈ 17.51) and eventually leading
to two coexisting four piece attractors, characterized by complicated aperiodic dynamics.
At approximately n ≈ 18.55, these two attractors merge into one large attractor which is
symmetric with respect to q = q∗ and has a complicated geometric structure. The dynamics
of the model exhibits other features as well. For example, for values of n approximately
between 6.64 and 8.76 a two-piece complicated attractor exists, which does not emerge from
the two period four cycles (see panel (e) of Fig. 2 for n = 8).

The obvious caveat to the discussion above is that the dynamics are only meaningful if
the parameter n, representing the number of firms in the market, takes on an integer value.
Therefore, not necessarily all types of behavior presented in Panel (a) of Fig. 2 and discussed
above can be observed. For example, period 16 or period 32 cycles do not appear for integer
values of n. However, by varying another parameter of the model, such as β or κ , we can
also observe dynamic behavior that arises for non-integer values of n in panel (a) of Fig. 2.
To illustrate consider the left panel of Fig. 3, which considers a bifurcation diagram for κ

running from 0.47 to 0.53, with n = 17 and all other parameters the same as in Fig. 2. The
left panel of Fig. 3 shows that at κ = 0.47 the dynamics is attracted to a period four cycle and
as κ increases to the dynamics undergoes a number of period-doubling bifurcations leading
to a complicated attractor when κ = 0.53. To illustrate this bifurcation scenario in a bit
more detail, the right panel of Fig. 3 zooms in on one point of the period four cycle from
the left panel. From this panel, it follows that the period four cycle undergoes a standard
period-doubling bifurcation scenario as κ increases, including cycles of period 16, 32 and
so on. Figure 3 suggests that we can obtain the behavior that arises for non-integer values
of n also from choosing an integer value of n, combined with varying one or more other
parameters (that can take on real values).

Panels (b–d) in Fig. 2 show the dynamics of quantities, profit differences and fractions
for n = 8, respectively.22 Note that close to the equilibrium (in fact, when |qt − q∗| <
1
9

√
2

(
1 + 7

2ρt
)
) best-reply firms do better than Nash firms because they do not have to

pay information costs and the difference in average market profits is relatively small. This
decreases the fraction ofNash firms,which destabilizes the quantity dynamics. As the dynam-
ics moves away from the equilibrium, eventually Nash firms outperform best-reply firms and
more firms become Nash firms again, increasing ρt . Now, when ρt > ρ = 5

14 (the horizontal
dashed line in panel (d)) the quantity dynamics stabilizes again and quantities converge to
their Cournot-Nash equilibrium level, and the whole story repeats. Panel (f) shows that, for
n = 8, the largest Lyapunov exponent tends to be strictly positive if the intensity of choice
β is high enough, indicating chaotic behavior.

We conclude this section with a brief discussion of the dynamics when evolutionary
competition is modeled by the replicator dynamics, instead of the discrete choice model. For
the standard replicator dynamics (14), there will be two equilibria for κ > 0, one with only
Nash firms and one with only best-reply firms.23 Both equilibria will be unstable for n > 3.
The noisy replicator dynamics (15) has a unique equilibrium, which is interior, and which
becomes unstable if the noise parameter δ becomes small enough.As the equilibriumbecomes
unstable, the dynamics is either attracted to a stable period two cycle or it is explosive. More

22 Observe that the dynamics of quantities have a smaller amplitude and are much less regular than they would
be under pure best-reply dynamics. In that case (under symmetric initial conditions), individual quantities
would fluctuate in a period-two cycle between 0 and 1

2 (n + 1) q∗.
23 For κ = 0 the combination

(
q∗, ρ

)
is an equilibrium of the model for any ρ ∈ [0, 1]. The dynamics will

then always end up in an equilibrium with ρ > ρ.
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(a) (b)

(c) (d)

(e) (f)
Fig. 2 Linear n-player Cournot game with Nash versus best-reply firms. Panel a depicts a sequence of period-
doubling bifurcations as the number of players n increases. Instability sets in already for the triopoly game.
Panels b–d display oscillating time series of the quantity chosen by the best-reply firm, the profit differential
(net of information costs κ = 0.5) and the fraction of Nash firms, respectively. The threshold fraction of Nash
firms ρ = 5/14 for which the dynamics become stable is also marked in Panel (d). A typical phase portrait
is shown in Panel e while Panel f plots the largest Lyapunov exponent for increasing β. Game and behavioral
parameters: n = 8, a = 17, b = 1, c = 10, κ = 0.5, β = 5
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(a) (b)

Fig. 3 Linear n-player Cournot gamewithNash versus best-reply firms. For a fixed number of players n = 17,
panel a depicts a 4-cycle of the composite variable q + ρ and its subsequent period-doubling bifurcation with
respect to the information costs κ . Panel b zooms in the bifurcation scenario for one particular point of the
4-cycle. Game and behavioral parameters: n = 17, a = 17, b = 1, c = 10, β = 5

complicated dynamics only appear to occur in a very small region of the parameter space.
This is an important difference with respect to the model in Droste et al. [20], which also uses
(15) but typically gives rise to different types of complicated behavior for δ small enough.24

5 Discussion

In this paper,we introduced amodel of evolutionary competitionbetweendifferent adjustment
processes in Cournot oligopoly. We focused on the interaction between Nash play and a
single adaptive adjustment process. The availability of Nash play stabilizes the dynamics:
although the Cournot-Nash equilibrium will typically still be unstable if the number of firms
is sufficiently high, the stability threshold increases. For the special case of Nash play versus
best-reply dynamics, we find that the Cournot-Nash equilibrium is locally stable for any
number of firms if, in the equilibrium of the evolutionarymodel, at least half of the population
of firms uses Nash play.25 However, this does not generalize to other adjustment processes.
The lower panel of Fig. 1 shows stability curves for Nash play versus gradient learning (for
the case of linear demand and costs) where the horizontal axis shows the normalized speed
of adjustment parameter bλ and the vertical axis shows the number of firms n.26 The lowest
curve demarcates the stability region when all firms use gradient learning (for combinations

24 The exponential replicator dynamics (see, e.g., [8,12,19,27,31]) is a popular variation of the replicator
dynamics. Applying the noisy version of the exponential replicator dynamics, given by

ρt = δ + (1 − 2δ) ρt−1
[
ρt−1 + (

1 − ρt−1
)
exp

(−β
[
VN ,t−1 − VF,t−1

])]−1
,

to our model gives a complicated period-doubling route to chaos, comparable to the dynamics under the
discrete choice model, when δ decreases (or when n, β or κ increase).
25 One would expect the number of Nash firms to be lower in equilibrium however, since in equilibrium
best-reply firms can free ride on the Nash firms: they produce the same quantity, but do not incur the high
information costs.
26 Gradient learning, for P (Q) = a − bQ and C (q) = cq, is given by

qi,t+1 = (1 − 2bλ) qi,t + λ
[
a − c − bQ−i,t

]
.
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of bλ and n to the northeast of this curve the Cournot-Nash equilibrium is unstable) and the
highest curve characterizes stability in the case where, in equilibrium, half of the population
consists of Nash firms. It follows immediately that the stability region increases with ρκ ,
although, even for ρκ = ρ0 = 1

2 (and bλ > 1
2 ), one can always find a number of firms n such

that the Cournot-Nash equilibrium is unstable.
For the case of Nash play versus best-reply dynamics, the dynamics of the evolutionary

model can give highly irregular, perpetual but bounded fluctuations, even if demand and
costs are linear. Complicated dynamics have been established in Cournot models before, but
typically require non-monotonic reaction curves, which are not standard, or very specific
cost structures, as in Droste et al. [20]. In our model, the bounded fluctuations are created
naturally, in a wide range of market structures, by the interaction of different adjustment
processes and the increase in the number of firms.

The analysis provided in this paper can be extended by considering other adjustment
processes, although this will lead to qualitatively similar results.27 In addition, our local
stability results are robust against changing the switching mechanism to the noisy replicator
dynamics, and simulations suggest that the global dynamics are similar to those of the noisy
exponential replicator dynamics. Finally, continuous-time processes typically generate stable
equilibria for awide array of adjustment processes,28 at least forCournot oligopolywith linear
demand and costs and an arbitrary number of firms. It remains an open question whether
continuous-time processes with evolutionary competition between adjustment processes can
generate complicated dynamics in such an environment.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

Appendix

Proof of Proposition 1 The dynamics of quantities is governed by a system of n first-order
difference equations, given by (3) for i = 1, . . . , n. All of the diagonal elements of the

Footnote 26 continued
Note that

∣
∣
∣F∗

q

∣
∣
∣ < 1, from Assumption A, requires bλ < 1. The critical value for n implied by stability

condition (11) then becomes

nGD = 2 − bλ − ρκ

bλ − ρκ
.

The equilibrium
(
q∗, ρκ

)
is locally stable as long as bλ ≤ ρκ . For any ρκ < 1 and bλ ∈ (ρκ , 1) we can

always find n large enough such that the equilibrium is unstable. In particular, in the absence of information
costs for Nash play, the equilibrium will be unstable for n > (3 − 2bλ) / (2bλ − 1) and bλ > 1/2.
27 For example, we could use our framework to study evolutionary competition between imitation and best-
reply dynamics (which is the combination of adjustment processes found in the laboratory experiment presented
in Huck et al. [28]). When a fraction ρt of the population imitates last period’s average and a fraction of 1−ρt
uses best-reply, the average quantity produced evolves as qt = ρt qt−1 + (1 − ρt ) R

(
(n − 1) qt−1

)
. The

equilibrium
(
q∗, ρκ

)
is stable if and only if

∣
∣ρκ + (1 − ρκ ) (n − 1) R′ ((n − 1) q∗)∣

∣ < 1. In absence of

information costs (κ = 0 and ρ0 = 1
2 ) and with linear demand and costs we obtain that the Cournot-Nash

equilibrium is locally stable in this setting for n ≤ 7.
28 See Bischi et al. [7, p. 90] for the stability analysis of two continuous-time adjustment processes: best-reply
with adaptive expectations and partial adjustment towards the best-reply with naive expectations.

http://creativecommons.org/licenses/by/4.0/
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corresponding n × n Jacobian matrix J∗, evaluated at the Cournot-Nash equilibrium, are
equal to F∗

q and all of its off-diagonal elements are equal to F∗
Q . It follows that J∗ has

eigenvalues λ1 = F∗
q − F∗

Q , with multiplicity n−1, and λ2 = F∗
q + (n − 1) F∗

Q . Because the
Cournot-Nash equilibrium is locally stable if all eigenvalues of J∗ lie within the unit circle,
and since by Assumption A we have |λ1| < 1, a sufficient condition for local stability is

|λ2| =
∣
∣
∣F∗

q + (n − 1) F∗
Q

∣
∣
∣ < 1. Similarly, a sufficient condition for instability is |λ2| > 1.

Because F∗
Q ≤ −δ < 0 and F∗

q ∈ (−1, 1), we will have |λ2| > 1 for n sufficiently large. �

Proof of Proposition 2 The variables qt and ρt evolve according to

qt = �1 (qt−1, ρt−1) ≡ F (qt−1, (n − 1) (ρt−1H (qt−1, ρt−1) + (1 − ρt−1) qt−1)) ,

ρt = �2 (qt−1, ρt−1) ≡ G(�N ,t−1 − �F,t−1 − κ). (23)

Local stability of (q∗, ρκ) is determined by the Jacobian matrix of (23), evaluated at (q∗, ρκ).
First, we determine the partial derivatives of�2 with respect to qt−1 andρt−1, respectively.

To that end, note that we can write the profit differential as

��N = �N ,t−1 − �F,t−1 =
n−1∑

k=0

Ak (ρt−1) Dk (qt−1, ρt−1)

with Ak (ρt−1) = (n−1
k

)
ρk
t−1 (1 − ρt−1)

n−1−k , which does not depend upon qt−1, and

Dk (qt−1, ρt−1) =P
(
(n − 1 − k) qt−1 + (k + 1) qN

t−1

)
qN
t−1 − C

(
qN
t−1

)

−
[
P

(
(n − k) qt−1 + kqN

t−1

)
qt−1 − C (qt−1)

]
,

which only depends upon ρt−1 through qN
t−1 = H (qt−1, ρt−1). Note that Dk (q∗, ρκ) = 0.

Moreover, the partial derivatives of Dk (qt−1, ρt−1), evaluated at the equilibrium (q∗, ρκ)

are given by

∂Dk (qt−1, ρt−1)

∂qt−1

∣
∣
∣
∣
(q∗,ρκ )

= [
P

(
Q∗) + q∗P ′ (Q∗) − C ′ (q∗)]

×
(

∂H (qt−1, ρt−1)

∂qt−1

∣
∣
∣
∣
(q∗,ρκ )

− 1

)

= 0,

∂Dk (qt−1, ρt−1)

∂ρt−1

∣
∣
∣
∣
(q∗,ρκ )

= [
P

(
Q∗) + q∗P ′ (Q∗) − C ′ (q∗)]

× ∂H (qt−1, ρt−1)

∂ρt−1

∣
∣
∣
∣
(q∗,ρκ )

= 0,

where we use the fact that at the Cournot-Nash equilibrium the individual firm’s first-order
condition (1) is satisfied. We now have

∂�2

∂qt−1

∣
∣
∣
∣
(q∗,ρκ )

= G ′ (−κ)
∂ � �R

∂qt−1

∣
∣
∣
∣
(q∗,ρκ )

= G ′ (−κ)

n−1∑

k=0

Ak (ρκ)
∂Dk (qt−1, ρt−1)

∂qt−1

∣
∣
∣
∣
(q∗,ρκ )

= 0
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and

∂�2

∂ρt−1

∣
∣
∣
∣
(q∗,ρκ )

= G ′ (−κ)
∂ � �R

∂ρt−1

∣
∣
∣
∣
(q∗,ρκ )

= G ′ (−κ)

n−1∑

k=0

[
∂Ak (ρt−1)

∂ρt−1

∣
∣
∣
∣
ρκ

Dk
(
q∗, ρκ

)

+Ak (ρκ)
∂Dk (qt−1, ρt−1)

∂ρt−1

∣
∣
∣
∣
(q∗,ρκ )

]

= 0.

The Jacobian matrix of (23), evaluated at (q∗, ρκ), therefore has the following structure

(
∂�1

∂qt−1

∣
∣
∣
(q∗,ρκ )

∂�1

∂ρt−1

∣
∣
∣
(q∗,ρκ )

0 0

)

,

with eigenvalues λ1 = ∂�1

∂qt−1

∣
∣
∣
(q∗,ρκ )

and λ2 = 0. Hence, a sufficient condition for (q∗, ρκ)

to be locally stable (unstable) is |λ1| < 1 (|λ1| > 1).
We have

λ1 = ∂�1

∂qt−1

∣
∣
∣
∣
(q∗,ρκ )

= F∗
q + (n − 1)

(
ρH∗

q + (1 − ρ)
)
F∗
Q, (24)

where H∗
q = ∂H(qt−1,ρt−1)

∂qt−1

∣
∣
∣
(q∗,ρκ )

. To determine H∗
q we totally differentiate first-order con-

dition (7):

n−1∑

k=0

(
n − 1

k

)

ρk (1 − ρ)n−1−k (n − 1 − k)
[
P ′ (Q∗) + q∗P ′′ (Q∗)] dqt

+
n−1∑

k=0

(
n − 1

k

)

ρk (1 − ρ)n−1−k [
k

(
P ′ (Q∗) + q∗P ′′ (Q∗))

+ 2P ′ (Q∗) + q∗P ′′ (Q∗) − C ′′ (q∗)] dqN

= 0.

Using
∑n−1

k=0

(n−1
k

)
ρk (1 − ρ)n−1−k = 1 and

∑n−1
k=0

(n−1
k

)
ρk (1 − ρ)n−1−k k = ρ (n − 1)

and rearranging we find that

H∗
q = dqN

dqt
= − (1 − ρ) (n − 1)

(
P ′ (Q∗) + q∗P ′′ (Q∗)

)

ρ (n − 1) (P ′ (Q∗) + q∗P ′′ (Q∗)) + 2P ′ (Q∗) + q∗P ′′ (Q∗) − C ′′ (q∗)

= (1 − ρ) (n − 1) R′ (Q∗−i

)

1 − ρ (n − 1) R′ (Q∗−i

) . (25)

The last equality follows from the fact that from (1) the slope of the best-reply function
equals

dqi
dQ−i

= − P ′ (Q∗) + q∗P ′′ (Q∗)
2P ′ (Q∗) + q∗P ′′ (Q∗) − C ′′ (q∗)

< 0,
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where the inequality follows from the second-order condition of a profit maximum and the
assumption that P ′ (Q∗) + q∗P ′′ (Q∗) < 0. Substituting (25) into (24), we get

λ1 = F∗
q + (n − 1) (1 − ρ)

1 − ρ (n − 1) R′ (Q∗−i

) F∗
Q .

Note that, by Assumption A and given that R′ (Q∗−i

)
< 0, we know that λ1 < F∗

q < 1.
The equilibrium (q∗, ρκ) is therefore locally stable (unstable) when λ1 > −1 (λ1 < −1).
Rearranging these inequalities gives conditions (11) and (12). �

References

1. Agiza H, Bischi G, Kopel M (1999) Multistability in a dynamic Cournot game with three oligopolists.
Math Comput Simul 51:63–90

2. AhmedE,AgizaH (1998)Dynamics of a Cournot gamewith n-competitors. Chaos Solitons Fract 9:1513–
1517

3. Al-Nowaihi A, Levine P (1985) The stability of Cournot oligopoly model: a reassessment. J Econ Theory
35(2):307–321

4. Anderson S, de Palma A, Thisse J (1992) Discrete choice theory of product differentiation. MIT Press,
Cambridge

5. Anufriev M, Kopányi D, Tuinstra J (2013) Learning cycles in Bertrand competition with differentiated
commodities and competing learning rules. J Econ Dyn Control 37(12):2562–2581

6. Arrow KJ, Hurwicz L (1960) Stability of the gradient process in n-person games. J Soc Ind Appl Math
8(2):280–294

7. Bischi G, Chiarella C, Kopel M, Szidarovszky F (2010) Nonlinear oligopolies: stability and bifurcations.
Springer, Heidelberg

8. Bischi G, Lamantia F, Radi D (2015) An evolutionary Cournot model with limited market knowledge. J
Econ Behav Organ 116:219–238

9. Bischi G, Naimzada A, Sbragia L (2007) Oligopoly games with local monopolistic approximation. J Econ
Behav Organ 62:371–388

10. Brock W, Hommes CH (1997) A rational route to randomness. Econometrica 65:1059–1095
11. Brown GW (1951) Iterative solution of games by fictitious play. In: Koopmans C (ed) Act Anal Prod

Alloc. Wiley, New York, pp 374–376
12. Cerboni Baiardi L, Lamantia F, Radi D (2015) Evolutionary competition between boundedly rational

behavioral rules in oligopoly games. Chaos Solitons Fractals 79:204–225
13. Corchon L, Mas-Colell A (1996) On the stability of best reply and gradient systems with applications to

imperfectly competitive models. Econ Lett 51:59–65
14. Cournot A (1838) Researches into the mathematical principles of the theory of wealth. Macmillan Co.,

New York Transl. by Nathaniel T. Bacon (1897)
15. Cox JC, Walker M (1998) Learning to play Cournot duopoly strategies. J Econ Behav Organ 36:141–161
16. Dana R-A, Montrucchio L (1986) Dynamic complexity in duopoly games. J Econ Theory 40(40):40–56
17. DeGiovanniD,Lamantia F (2016)Control delegation, information and beliefs in evolutionary oligopolies.

J Evolut Econ 26:1089–1116
18. Deschamp R (1975) An algorithm of game theory applied to the duopoly problem. Eur Econ Rev 6:187–

194
19. Dindo P, Tuinstra J (2011) A class of evolutionary models for participation games with negative payoff.

Comput Econ 37:267–300
20. Droste E, Hommes C, Tuinstra J (2002) Endogenous fluctuations under evolutionary pressure in Cournot

competition. Games Econ Behav 40:232–269
21. Fisher F (1961) The stability of the Cournot solution: the effects of speeds of adjustment and increasing

marginal costs. Rev Econ Stud 28(2):125–135
22. Foster D, Young HP (1990) Stochastic evolutionary game dynamics. Theor Popul Biol 38:219–232
23. Furth D (2009) Anything goes with heterogeneous, but not always with homogeneous oligopoly. J Econ

Dyn Control 33:183–203
24. Gale J, Binmore K, Samuelson L (1995) Learning to be imperfect: the ultimatum game. Games Econ

Behav 8:56–90



Dyn Games Appl (2018) 8:822–843 843

25. Golubitsky M, Stewart I, Schaeffer D (1988) Singularities and groups in bifurcation theory II, vol II of
applied mathematical sciences, vol 69. Springer, New York

26. Hofbauer J, Sigmund K (1988) The Theory of Evolution and Dynamical Systems. Cambridge University
Press, Cambridge

27. Hofbauer J, Weibull J (1996) Evolutionary selection against dominated strategies. J Econ Theory 71:558–
573

28. Huck S, Normann HT, Oechssler J (2002) Stability of the Cournot process-experimental evidence. Int J
Game Theory 31:123–136

29. KolstadC,MathiesenL (1987)Necessary and sufficient conditions for uniqueness ofCournot equilibrium.
Rev Econ Stud 54(4):681–690

30. Kopel M (1996) Simple and complex adjustment dynamics in Cournot duopoly models. Chaos Solitons
Fractals 7(12):2031–2048

31. Kopel M, Lamantia F, Szidarovszky F (2014) Evolutionary competition in a mixed market with socially
concerned firms. J Econ Dyn Control 48:394–409

32. Kuznetsov YA (1995) Elements of applied bifurcation theory. Springer, Berlin
33. McKelvey R, Palfrey T (1995) Quantal response equilibria for normal form games. Games Econ Behav

10:1–14
34. Novshek W (1985) On the existence of Cournot equilibrium. Rev Econ Stud 52(1):85–98
35. OcheaM (2010) Essays on nonlinear evolutionary game dynamics. Ph.D. thesis, University of Amsterdam
36. Palander T (1939) Konkurrens och marknadsjmvikt vid duopol och oligopol. Ekon Tidskr 41:124–145
37. Puu T (1991) Chaos in duopoly pricing. Chaos Solitons Fractals 1:573–581
38. Puu T (2008) On the stability of Cournot equilibrium when the number of competitors increases. J Econ

Behav Organ 66:445–456
39. Rand D (1978) Exotic phenomena in games and duopoly models. J Math Econ 5:173–184
40. Rassenti S, Reynolds S, Smith V, Szidarovszky F (2000) Adaptation and convergence of behaviour in

repeated experimental Cournot games. J Econ Behav Organ 41:117–146
41. Schlag K (1998) Why imitate, and if so, how?: A boundedly rational approach to multi-armed bandits. J

Econ Theory 78(1):130–156
42. Seade J (1980) The stability of Cournot revisited. J Econ Theory 23:15–27
43. Szidarovszky F, Yakowitz S (1977) A new proof of the existence and uniqueness of the Cournot equilib-

rium. Int Econ Rev 18(3):783–789
44. Taylor PD, Jonker L (1978) Evolutionarily stable strategies and game dynamics. Math Biosci 40:145–156
45. Theocharis RD (1960) On the stability of the Cournot solution on the oligopoly problem. Rev Econ Stud

27:133–134
46. Thorlund-Petersen L (1990) Iterative computation of Cournot equilibrium. Games Econ Behav 2:61–75
47. Tuinstra J (2000) A discrete and symmetric price adjustment process on the simplex. J Econ Dyn Control

24:881–907
48. Tuinstra J (2004) A price adjustment process in a model of monopolistic competition. Int Game Theory

Rev 6(3):417–442


	Evolutionary Competition Between Adjustment Processes in Cournot Oligopoly: Instability and Complex Dynamics
	Abstract
	1 Introduction
	2 Short-Memory Adjustment Processes in Cournot Oligopoly
	3 Evolutionary Competition Between Adjustment Processes
	4 Nash Play Versus Best-Reply: Global Dynamics and Perpetual Bounded Fluctuations
	5 Discussion
	Appendix
	References




