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Published online: 1 January 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Due to complex dependencies between multiple layers and components of emerging cyber-
physical systems, security and vulnerability of such systems have become a major challenge
in recent years. In this regard, game theory, a powerful tool for modeling strategic interactions
between multiple decision makers with conflicting objectives, offers a natural paradigm to
address the security-related issues arising in these systems. While there exists substantial
amount of work in modeling and analyzing security problems using game-theoretic tech-
niques, most of the existing literature in this area focuses on static game models, ignoring
the dynamic nature of interactions between the main players (defenders vs. attackers). In
this paper, we focus only on dynamic game analysis of cyber-physical security problems
and provide a general overview of the existing results and recent advances based on applica-
tion domains. We also discuss several limitations of the existing models and identify several
hitherto unaddressed directions for future research.

Keywords Dynamic game · Cyber-physical security · Network security · Mechanism
design · Learning · Security game

1 Introduction

Cyber-physical systems are integration of many components such as physical plants, cyber
components (e.g., digital controllers or computing devices), and the communication networks
among them. Such systems are inseparable part of our modern world and emerge in wide
range of applications such as Internet, smart grids, sensor networks, or even smart transporta-
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tion systems. As cyber-physical systems become more involved into our daily life, serious
concerns related to their security and vulnerability have been raised. In fact, in certain circum-
stances, failure of cyber-physical systems can be catastrophic such as terrorist attacks due to
failure of national defense organization, political chaos due to hacking of classified informa-
tion, or information leakage of nations’ nuclear infrastructures. While security is arguably
one of the most important challenges of our modern world, it is still far from being com-
pletely solved. This calls for a systematic study of cyber-physical security in order to prevent
strategic attacks where the casual defensive methods have shortcomings in identifying them.

In recent years, various models for studying the security of the cyber-physical systems
have been introduced. Since security can always be viewed as a conflict between two opposing
objectives, it is quite natural to cast it as amulti-agent decision problem inwhich the defenders
(e.g., system authorities) aim to protect the system against potential attackers. However, what
makes the analysis of security systems challenging is the fact that most of the recent attacks
are highly organized and strategic. In other words, the attackers are quite cautious about the
potential consequences of their adversarial actions and hence take strategic actions to hide
their identities. In this regard, game theory, a powerful tool for analyzing strategicmulti-agent
decision systems, proves quite useful to capture the interactions between security players.
In fact, one can find a rich literature of survey type since the early 2000 on applications of
game theory in security problems, which are mainly based on static models [66,76,96,109].
Although static game formulations provide good insights into the behavior of security players
(and make quite a bit of sense in certain situations), in most cases they fail to capture the
crucial dynamic characteristic of security problems, which is the fact that security players
are repeatedly engaged in a multistage game in which the underlying environment can itself
change dynamically over the course of interactions. This has motivated researchers in the
field to enrich their models by considering more realistic dynamic game formulations.

In fact, studying cyber-security problems using dynamic games becomes even more
sophisticated once we account for the information structure. This is because in most secu-
rity problems the defenders and attackers do not have complete information on each other’s
payoffs, nor are they aware of each others’ identities. Furthermore, due to limitation of moni-
toring devices, it is possible that once an attack has occurred, it is not identified by the system.
As a result, the players may only have partial information about each other’s past or current
strategies. In addition, the existence of heterogeneous security players can completely ruin
the symmetric structures of the game which introduces additional challenges for rigorous
analysis of realistic cyber-physical security models. As it can be seen, cyber-physical secu-
rity is a fairly complex problem, offering adversaries a large attack surface and ample room
for evasive maneuvers. This requires new insights and novel techniques for modeling the
behavior of security players, which not only is scalable to large numbers of players, but also
takes into account the dynamic nonstandard information structure of the problem.

In this survey article, we provide an overview of advances in modeling and informational
aspects of dynamic games for cyber-physical security problems. Different from most of the
earlier game-theoretic security surveys [66,76,93,96,109], we focus here on only dynamic
game formulations of cyber-physical security and discuss several common methods for ana-
lyzing them. In this effort, we group security problems based on both theme and application
domains and approach them from diverse perspectives such as network security, mechanism
design, learning, and optimal investment. Following a review of some relevant basic con-
cepts of game theory in Sect. 1.1, we organize the rest of the discussion based on security
applications and themes. More specifically, in Sect. 2, we address several important issues
related to network security such as risk assessment and intrusion detection. We then look
into several important classes of security games such as signaling, deception, and Stackel-
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berg security games in Sect. 3. In Sect. 4, we consider decision making in the physical layer
and in the presence of jammers or eavesdroppers. In Sect. 5, we approach cyber-security
from the perspective of incentive and mechanism design. Optimal investment strategies for
security players with limited resources are discussed in Sect. 6. We review several learning
algorithms for finding optimal defense/attack strategies in Sect. 7. We conclude the paper
by providing several future directions of research and discussing new emerging issues in the
next generation of cyber-physical security problems in Sect. 8.

1.1 An Overview of GameTheory

In this subsection, we briefly review several important concepts and solutions from game
theory, as relevant to this paper. We assume that, as appropriate for this journal, the readers
have a basic knowledge of game theory, and particularly dynamic game theory; for a broader
exposition, we refer the reader to [21].

Game theory provides a mathematical model for studying the conflict and cooperation
among intelligent rational decision makers. A game is comprised of several elements: (i)
players, who are the strategic entities participating in the decision-making process in the
game; (ii) actions, which are players’ decisions taken at each move of the game; (iii) strate-
gies, which determine how the players select their actions based on their past and current
information at each stage1; and (iv) payoffs, which are the rewards or punishments received
by players as a consequence of their own actions and others’. A game can be either static,
i.e., a one-shot game in which all players make decisions simultaneously without knowledge
of others’ strategies, or dynamic in which at least one player is allowed to use a strategy
that depends on previous actions. In other words, a dynamic game is the one with sequential
moves over multiple stages with new revealed information to the players at different stages.
For dynamic games, a somewhat more generalized notion of strategy is so-called policy
which is a sequence of strategies taken by a player at different stages of the game based
on the observed information. In this paper, we only focus on dynamic game formulation of
cyber-physical security problems (Table 1).

A game can be viewed as belonging to one of four possible groups, based on its underlying
information structure. A game is of complete information if all the players know completely
the structure of the game being played, such as the number of players in the game, payoff
functions of the players, the underlying dynamics, the information structure, etc., and it is of
incomplete information, otherwise. A game is of perfect information if all the players know
the historical actions of each other at the time of their move, and it is of imperfect information,
otherwise. Next, we identify several important nonexclusive classes of dynamic games which
are particularly suitable for addressing security problems. Here, we want to stress the fact
that each of the following games can itself be of the form of complete–perfect information,
complete–imperfect information, incomplete–perfect information, or incomplete–imperfect
information, depending on the description of the game.

• Zero-sumgameAclass ofmultistage dynamic games inwhich the sumof players’ payoffs
at each stage is identical to zero.

• Stochastic game A dynamic multistage game where at the beginning of each stage the
game is in some state. The players choose their actions and receive payoffs that depend
on the current state and their chosen actions. The game then moves to a new state with
some transition probability which depends on the previous state and the actions chosen

1 A strategy can be either pure or mixed, meaning that a player can either choose a particular action with
probability 1, or based on a probability distribution over its set of possible actions.
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by all the players. The total payoff to a player is typically defined to be the discounted
average of his payoff over the course of the game.

• Repeated gameA game that consists of a number of repetitions of some base static game,
usually referred to as the stage game.

• Differential game A game in which the players’ payoffs depend on the evolution of a
state and their actions over a finite or infinite time horizon. The state evolution is usually
captured by a differential equation which also depends on the players actions throughout
the time horizon.

• Stackelberg game A hierarchical game that in its simplest form is composed of a leader
and a follower. The leader chooses his strategy first. The follower, observing the leader’s
strategy, maximizes his payoff by best responding to the leader’s strategy.

• Extensive form game An explicit representation of a dynamic game which displays the
evolution of the game by showing important factors such as the information structure, the
possible actions for players at every decision stage, and the sequence of players’ moves.

In fact, we can also consider a combinations of the above games. For instance, we can talk
about zero-sum stochastic differential games which is a zero-sum stochastic game whose
state evolution is driven by a probability transition rule or a stochastic differential (or differ-
ence) equation which depends on players’ actions at each stage [63]. As another example,
one can consider repeated zero-sum or differential games with incomplete and asymmetric
information, where the players’ knowledge about the underlying game is neither complete
nor identical [63,105].

An important solution concept in game theory is equilibriumwhich refers to a joint strategy
(policy) profile fromwhich no player has a unilateral incentive to change his strategy (policy)
within the rules of the game. The concept of equilibrium can also be readily adopted for each
of the aforementioned types of dynamic games, which yields the notions of Nash equilib-
rium, Stackelberg equilibrium, stationary equilibrium, saddle-point equilibrium, Bayesian
equilibrium, etc. However, at this point we will not go further into the details of these notions
and we refer the readers to [21] for precise definitions of these equilibrium concepts; see also
[4] for a security perspective.

2 Network Security

Since the early 2000s, a large amount of effort has been devoted to analyzing security issues
connected to networks. In this section, we review several important topics within the context
of network security with analysis based on dynamic games.

2.1 Intrusion Detection and Information Limitations

Intrusion detection (ID) is one of the important ingredients of recent computer networks
which compensates the shortcomings of standard prevention methods. The main task of an
intrusion detection system (IDS) is to detect intrusions by monitoring the events occurring in
the network and report them to a system administrator in order to stop or mitigate the effects
of an attack [66].

In [86], a two-player stochastic game between an attacker and a defender over a network
of nodes was proposed. Here, the network captures the influence among the nodes. Each state
of this stochastic game can be represented by a binary vector with the i th entry being 0 or 1,
depending on whether node i is compromised or not. At each state of the game, the attacker



Dynamic Games and Applications (2019) 9:884–913 889

decides either to attack one of the network nodes or to do nothing, while the defender decides
to either defend one of the nodes or to stay idle. The possible combinations of the players’
pure strategies at a given state define a payoff matrix corresponding to that state whose
entries are determined based on the effective security assets at that stage as well as transition
probabilities of moving to the next state. Moreover, there is always a chance that the game
ends at any stage, meaning that either the defender has detected the attacker and stopped
him from further intrusion, or the attacker has stopped attacking. The challenge in analyzing
such a stochastic game is that due to correlation among the nodes, if a node is compromised,
the effective security assets and the supports of the remaining nodes will change and have to
be recalculated. For this game, the authors show existence, uniqueness, and structure of the
equilibrium solution and justify the model effectiveness through numerical examples.

Stochastic game formulations for security problems are quite useful when there are
imperfections in the sensor network or ID monitoring system in which case the transition
probabilities between game states map attacker actions to sensor outputs. In particular, when
limitations are imposed on information available to players, then the outcome and evolution
of the stochastic game highly depend on how successful the players can estimate the state of
the security system (and hence the game) which also depends on their learning rate. In this
regard, the work in [6] presents a two-player stochastic game with imperfect information and
uses a Q-learning method to evaluate how the players learn and optimize their strategies.
It is worth noting that imperfect measurements can also be addressed with fixed structure
observers/estimators, which are different in spirit from Q-learning. A similar approach has
been used in [121] to extend the two-player stochastic game for IDS to multiple attackers and
defenders. However, the proposed framework in [121] assumes a perfect information struc-
ture for the stochastic game and uses value iteration method to approximate the stationary
Nash equilibrium of the game. Other zero-sum or nonzero-sum stochastic game formulations
for security of IDS with different assumptions on their information structure can be found
in [27,73,77,101,117,123]. For instance, the work in [73] provides a stochastic game with
complete and perfect information and illustrates how one can compute the Nash equilibrium
using a nonlinear program.

The work in [71] takes a different path by looking into IDS as a two-player repeated
Bayesian game. One player is a potential attacking node which can operate in two different
modes (types): regular or malicious. However, the type of the attacker is unknown to the
other player. The other player is a defending node which has a regular type and is known
to the attacker. The attacker in its malicious type can either choose to attack or not attack,
while in its regular type can only choose not attack. The defending node which always
has the regular type can either choose to monitor or not monitor the network. The players
simultaneously make their moves at each round, whose payoffs are determined by a payoff
matrix reflecting the cost of damage to the system. The paper provides a Bayesian rule
that the defender can consistently update his belief on his opponent’s maliciousness as the
game progresses. Moreover, the paper provides an energy-efficient monitoring strategy for
the defender by extending the setting to a Bayesian hybrid detection approach where the
defender can choose between two alternatives: a lightweight monitoring system to estimate
his opponent’s actions and a heavyweightmonitoring system acting as a last resort of defense.
Wemention here [44] and [90] as two other examples of dynamic Bayesian game formulation
for IDS with incomplete but perfect information structures, with the analysis relying on the
notion of perfect Bayesian equilibrium.2 In fact, what makes the concept of perfect Bayesian

2 A perfect Bayesian equilibrium is a set of strategies and beliefs for every player at every information set, so
that the beliefs are derived from the strategies and common prior beliefs using Bayes’ rule, and the strategies
are optimal at every point in the game, given the players’ beliefs.



890 Dynamic Games and Applications (2019) 9:884–913

equilibrium suitable in analysis of security systems and in particular IDS is that a defender
cannot directly detect the attacker’s activities and vice versa. Therefore, in such a situation, if
a player wants to evaluate his strategy, he needs to gradually form beliefs about his opponent’s
private information that is relevant to his objective.

The work in [5] adopts a repeated incomplete–imperfect information game to model a
security game between an attacker and IDS where the imperfection of information stems
from the fact that in reality the distributed virtual monitoring sensors may have imperfect
detection capabilities. It is shown that the single-stage game admits a unique Nash equilib-
rium and several basic strategies for the players of the repeated game are discussed through
numerical analysis. [84] looks at IDS as a repeated two-player nonzero-sum game with
incomplete–imperfect information and proposes a fictitious play3 dynamics in which play-
ers improve their strategies based on their past observations. In particular, the convergence
properties of the proposed dynamics to the Nash equilibrium in the presence of perfect or
imperfect observations are studied.We refer to [45,72,85,88,94] for alternative dynamic game
formulations for IDS, network security, and other applications of fictitious play. The authors
in [113] adopt a slightly different setting to study network security with potential application
to IDS. They consider a two-stage stochastic Stackelberg game where the attacker’s goal is
to interdict a smart network from routing maximum flow from an origin to a destination. In
this game, the results of attack actions are stochastic, and the attacker observes outcomes
from an initial attack before choosing a second attack. Using a so-called branch and bound
technique, the paper provides a fast method for solving the optimal strategy for the intruder
with increasingly accurate lower bounds.

2.2 Risk and Security Assessment

Risk management and security assessment is a method to obtain and evaluate the current
and future security status of a network information system and is quite beneficial in reducing
risks and helping the network system to reach a certain security level. In this regard, [104]
provides an incomplete information stochastic game framework to estimate the belief of each
possible attack pattern and generate the corresponding defensive strategy. The players’ payoff
functions, as defined in [104], are generally nonlinear, and the corresponding game is hard to
be analyzed toward explicit, closed-form solutions. Instead, the paper provides a defensive
strategy based on fictitious play for the approximated linearized system and evaluates its
effectiveness using simulation results and a developed software.

Within the same framework, a complete–perfect information stochastic game model
between a threat agent and a vulnerability agent for risk assessment was proposed in [110]. In
this game, the threat agent aims to increase the system risk by spreading the threat, while the
vulnerability agent aims tomitigate the risk by repairing the information system. In this game,
the state of the game at some time instant k = 0, 1, . . ., denoted by s(k), is the entry-wise
product of two binary vectors st(k) and sv(k), where sti (k) = 0 or 1 denote, respectively, no
threat or threat to the i th asset (node) of the network at time step k. Similarly, svi (k) = 0 or 1
mean, respectively, that the i th asset is not vulnerable or vulnerable at time k. In particular,
the state of the entire game at time k equals s(k) = (st1(k)s

v
1 (k), . . . , s

t
n(k)s

v
n (k)), where n

denotes the total number of system assets. At each stage k, an action for the threat agent,
denoted by ut(k), is to spread the threat to one asset, while an action for the vulnerability
agent is to repair vulnerability of one of the assets. Given actions of the players at stage k, the

3 Fictitious play is a learning rule in which at each round, each player best responds to the empirical frequency
of play of his opponents.
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threat spreads over the assets at the next time stage based on a transition probability given
by P(s(k + 1)|s(k), ut(k), uv(k)), and the system incurs a damage V (s(k)) which depends
on the current risk of the system, R(s(k)), and the possible future damages given by

V (s(k)) = R(s(k))

+ β
∑

s(k+1)

P(s(k + 1)|s(k), ut(k), uv(k))V (s(k + 1)), (1)

where β ∈ (0, 1) is a discounting factor. This formulation allows to take into account the
future security status, which also has impact on risk assessment. Therefore, according to the
value function (1), one can compute the system risk induced from each threat and accumulate
them to get the aggregate risk of the system. Using this risk measure, the paper proposes an
automatic generated reinforcement scheme for the system administrator in order to mitigate
the amount of vulnerabilities utilized by threats and make the system safer. Along the same
research thrust, the authors in [100] use a stochastic game formulation to measure the trust-
worthiness of a security system and to assess how the parameters of the game may change
the expected behavior of the attacker.

Different from [104,110], the authors in [103] propose a hierarchical three-level Stack-
elberg game with perfect information between an attacker and a defender for security
assessment of electricity distribution networks. In this game, the defender first chooses a
security strategy to secure a subset of network nodes. Then, the attacker compromises a set
of vulnerable nodes and injects false generation set points. In the last stage, the defender
responds by controlling loads and uncompromised network nodes. Finding the Stackelberg
equilibrium for this three-level game can be cast as a nonlinear mixed-integer programwhich
is hard to solve. Instead, the authors in [103] use a practical linear approximation to find the
critical nodes and the optimal attack strategy. In particular, they propose an iterative greedy
algorithm to compute attacker’s/defender’s strategies for the original nonlinear problem.
In [114], the authors study risk management in security networks using a linear influence
directed graph which captures the dependencies between security players. As a distinct fea-
ture of their model, the authors allow the network environment to be stochastic and time
varying under which they study the stochastic behavior of the best response dynamics. In
particular, the paper provides sufficient conditions under which the existence, uniqueness,
and convergence of the best response dynamics are guaranteed.We refer to [8,29,64] for other
related works on risk assessment and risk management using dynamic game formulation.

3 Security Games

In this section, we review several popular and well-studied game-theoretic models for cyber-
physical security problems.While each of these games can be viewed as a special subclass of
dynamic games given in Sect. 1.1, their inherent properties make them particularly suitable
for studying security problems.

3.1 Signaling Games

In its simplest form, a signaling game is a dynamic Bayesian game with two players (a
sender and a receiver) in which the sender has several types which is private to him and
determines his payoff function. The receiver, however, has only one type, and hence, his
payoff is common knowledge to both players. The sender takes an action first by sending a
message. The receiver observes the sender’s message and then takes his action. The players
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then receive some payoffs depending on sender’s type and their actions. As in many security
problems, the defender (receiver) does not have knowledge about the attacker’s (sender’s)
target list, it seems quite reasonable to model the interactions between the attacker and the
defender in a security problem using a signaling game [31,69,89,90].

The authors in [69] develop a repeated two-way signaling game to model the multi-step
attack–defense scenario on confidentiality, and show how to find the actions maximizing the
expected payoffs through the equilibrium. In their proposed game, both attacker and defender
have incomplete information about their opponent and use the received signals to gradually
reduce their uncertainty about their opponents. Using a case study, it is shown that upon
receiving an attack alert, if the defender analyzes the attack targets through the equilibrium
of a basic signaling game, then he can gradually learn and deploy his optimal strategy.

3.2 Honeypot and Deception Games

Deception is a method which can be employed by both attackers and defenders in advanced
security problems tomake the situation ambiguous, and hence,maximize their payoffs. Using
deception in security systems makes the situation more complex as now a player relies less
on his opponents’ strategies in arriving at his decision [30,32,62,79,91]. As discussed in
[32], the information asymmetry in most security problems (e.g., one player may have more
information than the other) is one of themain reasons that contributes to players acting decep-
tively in order to gain advantages. In fact, deception can also be used in active cyber defense
to manipulate the beliefs of an adversary. Perhaps, honeypot is one of the most common
deception techniques for cyber defense, which is an effective deception mechanism set by
the security system to detect, deflect, or counteract attempts of attackers in an information
security system [30,34,62].

In [30], the authors use a deceptive signaling game to study the behavior of attacker and
defender in an information security system. The defender can either disguise a normal system
as a honeypot or disguise a honeypot as a normal system. For this model, the authors deter-
mine the set of perfect Bayesian equilibrium strategies in which no player has any incentive to
deviate unilaterally. They also extend the model to a hybrid setting which can accommodate
a mix of security systems such as honeypot and normal system, which allows more effective
deceptive strategies for the defender. The work in [62] looks at a security problem within the
context of Internet of Things (IoT) and formulates it using a repeated signaling game between
an attacker and a defender. In this game, the attacker can deceive the defender by employing
different types of attacks ranging from a suspicious to a seemingly normal activity, while
the defender can deceive and trap the attacker using honeypots. For this game, the authors
fully characterize the set of perfect Bayesian Nash equilibrium strategies and use simulation
results to show that deploying honeypots by defenders can be quite effective when there is a
high concentration of active attacks.

The paper [112] looks at the network interdiction problem using the formulation of a
multistage zero-sumgame between an attacker and an intelligent network defender. The game
is posed as an imperfect information deception game in extensive form where the attacker
has imperfect knowledge of the network topology, but it can learn about the topology by
monitoring network operations. The network observes the attacker’s actions and can choose
to avoid using the observed parts of the network in order to disguise information from
the attacker. A dynamic programming-like algorithm based on partially observed Markov
decision processes (POMDPs) is then developed to obtain a complete set of equilibrium
solutions of the game.
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3.3 Cascading Games and Robustness

Cascading failure is a phenomenon in security systemswhere failure of a subsystem can result
in failure of successive subsystems. In other words, the failure can propagate over the system
once an attack is successful. This issue which can put systems at a serious risk, particularly
when there are strong interconnections among the subsystems, has been addressed from a
dynamic game-theoretic perspective in recent literature [23,60,115,118].

In [60], a zero-sum differential game for studying the behavior of the malware and the
defense in a wireless network which is vulnerable to a cascading failure has been proposed.
More specifically, the game is played between two players: a network administrator N and a
malware M . At any time t , the state of the game is characterized by a triple (S(t), I (t), D(t))
where S(t), I (t), and D(t) denote, respectively, the fraction of network nodes at time t ∈ R

+
which are susceptible to worm, are infected by worm, and are dead. Here, a susceptible node
refers to a node which is not contaminated by the worm, but has potential to be infected. An
infected node is already contaminated by the worm and can infect susceptible nodes through
communication with them. The worm can kill an infected host which is then declared dead.
A functional node that is immune to the worm is referred to as recovered.

A strategy for the network N at time t , denoted by uN (t) := (uNr (t), uNi (t)), is composed
of two components. uNr (t) determines the communication rate between network nodes at
time t (note that this implies that those that are susceptible are transformed to being infective
at a rate proportional to uNr (t)I (t)S(t) as the number of susceptible-infected pairs at time t
is proportional to I (t)S(t)). Moreover, uNi (t) determines the rate of communication between
network nodes with dispatchers at a cost of using network budget. If the node that receives
the patch is a susceptible node, it installs the patch and recovers. Otherwise, if an infective
node receives the patch, it is recovered with some probability h, and else, the patch fails
to cure and the node remains infective. On the other hand, the malware at an infective host
kills the host with rate proportional to uM (t) at time t . Using the above description, one can
capture the evolution of cascade dynamics by

Ṡ(t) = −β1u
Nr (t)I (t)S(t) − β2u

Ni (t)S(t),

İ (t) = β1u
Nr (t)I (t)S(t) − β2u

Ni (t)I (t) − uM (t)I (t),

Ḋ(t) = uM (t)I (t),

where β1, β2, and β3 are nonnegative constants and Ṡ(t), İ (t), and Ḋ(t) are the rates of
change in their corresponding quantities. These relations characterize the evolution of the
cascade dynamics in the underlying differential game. Finally, the damage over the time
horizon [0, T ] (or equivalently the payoff to the malware) is given by

J (uN , uM ) =
∫ T

0

(
α1 I (t)D(t) + α2u

Ni (t) − α3u
Nr (t)

)
dt + αD(T ),

where α1, α2, α3, and α are nonnegative scaling constants. In this differential game, player
N wants to minimize J (·) subject to some budget constraints, while the malware wants to
maximize this overall damage function.

Itwas shown in [60] that the above differential game admits a pair of saddle-point strategies
(uN∗ , uM∗) such that

J (uN∗ , uM ) ≤ V := J (uN∗ , uM∗) ≤ J (uN , uM∗), ∀uM , uN .

Therefore, a robust strategy for the network player is to choose its saddle-point strategy uN∗ ,
in which case irrespective of the strategy of the malware, the damage it incurs is at most V . In
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particular, it is shown that the structure of the network’s saddle-point strategy is of the form
of a threshold policy in which there are time instances t1, t2 ∈ [0, T ] such that for t ≤ t1
and t > t1, uN∗r attains its minimum value and maximum value, respectively. Similarly, for
t ≤ t2 and t > t2, uN∗i attains its maximum value and minimum value, respectively. This
simple structure allows the network player to effectively employ a robust defensive strategy.

Along the same line of work, [23] provides a differential game formulation for the cascade
behavior in Botnets (computer networks infected with malicious programs) using a modified
SIS (susceptible–infectious–susceptible) epidemic model. In particular, the authors are able
to establish similar saddle-point strategy characterization based on threshold policies. For
other dynamic game approaches to investigating the coupling between cyber-security policy
and robust control design in the presence of cascading failures, we refer readers to [115,118]
(and the references therein).

3.4 Stackelberg Security Games

One of the widely studied models in security games is known as the Stackelberg security
game (SSG), where in its simplest form, the defender acts first and assigns resources to
potential targets. The attacker observes the defender’s strategy and decides to attack one of
the targets to maximize his utility. Such games have been the topic of many research papers
in security and have been studied under various settings such as repeated SSG under known
or unknown attacker types [9,11,40,58,59,61,87,106]. In fact, as we shall see in Sects. 6 and
7, SSG provides a suitable framework for learning the behavior of the attackers as well as
finding optimal allocation strategies when there is a limited amount of security resources.
Furthermore, as discussed in [9,11,61], SSGs have many real-world applications in airport
security, the Federal Air Marshals, wildlife protection, screening incoming shipments at
ports, and patrolling subway systems.

The authors in [61] consider a SSG and provide fast algorithms for computing its optimal
strategies, which scale tomany resources and targets. The key element in their algorithms is to
exploit structural properties of optimal solutions under the payoff restrictions; they consider
SSG in a compact form due to the fact that, in their formulation, the payoffs depend only
on the identity of the attacked target and whether or not it is protected by the defender. As a
result, the authors do not need to face a normal form representation of the game which can
have exponential size for multiple resources and targets. The work in [59] considers a SSG
within a bounded rationality framework and develops a model which takes into account the
human behavior decisions. [40] provides a more generalized SSG for wildlife protection by
relaxing a standard assumption in SSG that the attacker observes the strategy of the defender
before taking his action. Instead, [40] introduces a generalized Green Security Games and
provides algorithms to plan effective sequential defender strategies by learning attacker’s
behavior.

3.5 Other Types of Security Games

In this subsection, we discuss some other forms of dynamic games, which are useful in
studying security problems. In [50], a complete information three-player three-stageColonel
Blotto game was introduced,4 with motivation coming from security. In this game, there are
two resource-constrained networks of servers and a resource-constrained hackerwhowants to

4 Colonel Blotto game is a multi-dimensional problem on strategic resource allocation. In its classic form, it is
a two-player game in which two colonels are tasked with allocating a limited number of troops over multiple
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access the servers. In the fist stage of the game, the network operators can invest in additional
servers (equivalent to adding battlefields to the Colonel Blotto game). In the second stage,
the network operators can share resources among themselves for further securing the servers.
In the third stage, the hacker observes the security level of each network and decides on
the amount of resource it deploys to hack each of the servers of the two network operators.
For a certain range of game parameters, the paper characterizes the subgame-perfect Nash
equilibrium of this game and studies whether adding battlefields would be more effective
than sharing resources between the network operators. In particular, the paper studies the
worst case behavior of the hacker in this security game.

Theworks in [46,53] look into the cyber-security problem using a hypergame formulation.
Hypergames are extensions of classical game models, where players may have different
understanding of the game due to misperceptions, differences in understanding the game
rules, etc. A hypergame contains several different subgames where at each stage possibly one
of them is being played by the players. As the security players generally have asymmetric or
unknown information about the game, hypergame theory provides many rooms for modeling
security type problems. This is because the attackers and defenders can invoke different
learning strategies to understand what subgame they are actually playing and to learn how to
deceive their opponents about different subgames in order to maximize their own payoffs.

4 Security and DecisionMaking at the Physical Layer

An important portion of security attacks happen at the physical layer. Jamming is an active
attack which usually happens at the physical layer of a communication system, where the
attacker disrupts the normal communication between a transmitter and a receiver by concur-
rently transmitting some data to corrupt the flow of information or to mislead the receiver.
On the other hand, eavesdropping is a passive attack where the attacker overhears the vic-
tim’s transmitted or received signals which can then be analyzed toward malicious purposes.
In fact, in reality, jammers and eavesdroppers can coexist in a communication network, and
therefore, having amathematical model to understand andmitigate, and even stop such adver-
sarial effects in communication systems becomes an important issue. Next we review several
dynamic game formulations related to both jamming and eavesdropping.

A prototype for a game-theoretic formulation of jamming in communication systems was
introduced in [15] as an extension of the so-called Gaussian test channel, where now there
is an intelligent jammer who has access to a possibly noise-corrupted version of a Gaussian
random variable transmitted over a Gaussian channel under a quadratic distortion measure,
which the transmitter (encoder) and the receiver (decoder) want to jointly minimize while
the jammer wants to maximize. More specifically, a Gaussian random variable u with zero
mean and unit variance (u ∼ N (0, 1)) is to be transmitted over a Gaussian channel with input
power constraint c2 and additive Gaussian noise w = w1 +w2, with zero mean and variance
ξ = ξ1 + ξ2, with wi ∼ N (0, ξi ) , i = 1, 2. The transmitter applies a transformation γ (·) on
u, and the jammer taps the channel and accesses a noisy version of x := γ (u)+w1, denoted
by y = x + v, where v ∼ N (0, σ ) and all random variables (u, w1, v, w2) are statistically
independent. Using the observed value of y, the jammer feeds back into the channel a second-
order random variable, ν = β(y), so that what the receiver receives is the corrupted signal

Footnote 4 continued
battlefields, with the player allocating the most troops to a front being declared the winner, and the overall
payoff being proportional to the number of fronts won.
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z = x + ν + w2, to which it applies a transformation δ(·) to arrive at an estimate of u under
the quadratic distortion measure. The jammer’s transformation (strategy) β is allowed to be
random, but it has to have a hard-bounded second moment: E[ν2] ≤ k2, for some positive
constant k; let the associated probability measure for the jammer be denoted by μ. For each
fixed triple (γ, δ;μ), with γ and μ satisfying the given energy constraints, let R(γ, δ;μ)

denote the mean-squared distortion measure, that is,

R(γ, δ;μ) =
∫ ∞

−∞
E{[δ(z) − u]2|ν} dμ(ν),

which is to be minimized by the pair (γ, δ) and maximized by μ. More precisely, the paper
studies the existence and characterization of a saddle-point solution, (γ ∗, δ∗;μ∗), satisfying
the pair of saddle-point inequalities

R(γ ∗, δ∗;μ) ≤ R(γ ∗, δ∗;μ∗) ≤ R(γ, δ;μ∗)

for all permissible (γ, δ;μ). The paper [15] provides a complete solution to this problem,
showing that a saddle point exists (and is essentially unique) for all values of the parameters
defining the game, but has different structures and characterizations in three different regions
of the parameter space. These regions are determined by the signal-to-noise ratios and relative
magnitudes of the noise variances. The best (maximin) policy of the jammer is either to choose
a linear function of y, or to choose, in addition, an independent Gaussian random variable (as
additive noise), depending on the region where the parameters lie. The optimal (minimax)
policy of the transmitter is to scale the input random variable u to the given power level by a
linear transformation (that is, γ ∗ is linear), and that of the receiver is to use a Bayes estimator
(which is linear).

The model and results of [15] were then extended in different directions in follow-up
works. The model in [19] allows for the jammer to tap the input to the encoder (rather
than the input to the channel) and thus be able to directly correlate its input to the channel
with the message to be transmitted. In this case, a saddle point exists only if the encoder is
allowed to randomize and a side channel of a specific nature is allowed between the trans-
mitter and the receiver; the saddle-point solution again involves only linear maps. If the
encoder is not allowed to randomize, however, then there exists no saddle-point solution,
but minimax and maximin solutions exist, whose complete characterizations are given in
the paper. A follow-up paper [20] extends these results to vector sources and vector chan-
nels and obtains secure strategies for the transmitter (and the receiver) within the class of
linear policies. Another paper, [13], revisits the model of [15], but this time with the hard
constraints on the transmitter and jammer policies replaced by partially or totally soft con-
straints. Depending on whether the soft constraints are partial or total, the paper shows that
in most cases a saddle point exists and is linear for the transmitter–receiver pair and is Gaus-
sian (partially correlated with the message) for the jammer. In one case (specifically, when
the jammer is subject to a hard constraint and the transmitter operates under soft power
constraint), the maximin policy is not well defined. Another extension has been provided
in the recent paper [2], which looks at the general source-channel case (not necessarily
Gaussian), and shows that under certain conditions linearity of transmitter–receiver policies
prevails, as in a sense the presence of the jammer forces the transmitter–receiver to use linear
policies to secure an achievable least upper bound on the quadratic distortion. Another set
of results on communication jamming games has been given in [16–18], where the model
is now in continuous time, involving transmission of a Gaussian stochastic process being
encoded and transmitted over a continuous-time Gaussian channel, which is also under a
jamming attack, where the jammer can tap the system either at the input or at the output of
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the transmitter. For different scenarios, the papers prove the existence of saddle points and
provide characterizations as linear Gaussian policies, when there is a clean feedback link
from the receiver to the transmitter. In most cases, the receiver has the structure of a Kalman
filter.

Another type of a jamming game has been introduced and solved in the paper [98], where
the game is among a set of transmitters and jammers, and is played at the medium access
control layer. The game is of the form of Bayesian incomplete information in which the users
do not have complete information about each other’s identities. In particular, using both
gradient and fictitious play in the repeated jamming game, the performance loss of jamming
attacks with respect to network uncertainty is evaluated. [80] proposes a dynamic zero-sum
game to model the interactions between a transmitter and a joint-eavesdropper/jammer who
can choose to behave as either a passive eavesdropper or an active jammer. Moreover, the
equilibrium strategies for the extensive form of the gamewhere the playersmove sequentially
are derived. A discrete-time two-player zero-sum dynamic game to model the interactions
between a communicator and a jammer has been given in [75]. In this game, both transmitter
and jammer are subject to temporal energy constraints such that in each time slot, they must
choose their respective power levels randomly to be either zero or a positive value in order
to maximize their average payoffs over the entire horizon. Depending on the underlying
parameters of the players’ payoffs, the authors distinguish between two different types of
behavior on the players’ optimal stationary strategies such that in different regions playing
mixed or pure strategies become dominant.

Another representative work that is concerned with security in the presence of eavesdrop-
pers is [97], which has introduced a game-theoretic formulation that enables in multi-hop
networks a number of wireless nodes to interact and optimize the security of their uplink
transmissions. In the game proposed, the strategy of each node is to choose its preferred
path to reach the base station, while optimizing physical layer security-related utilities. The
type of adopted utility depends on the knowledge that the nodes have about the eavesdrop-
pers channels. To solve the game, the paper introduces a distributed algorithm that enables
the nodes to engage in pairwise negotiation so as to decide on the graph structure that will
interconnect them. It is shown that the algorithm converges to a Nash network and leads to
significant performance gains in terms of both the average bottleneck secrecy rate per node
and the average path qualification probability per node, relative to classical algorithms and
the star network.

In a different application, a two-player zero-sum dynamic game between a jammer and
a smart grid communication system is considered in [74]. In this game, the jammer aims
to interfere real-time communication in order to manipulate the electricity price toward its
benefits. Using dynamic programming and extensive form representation of the game, the
authors construct the saddle-point equilibrium strategies and provide further demonstration
of their optimality. Within the same context, a stochastic zero-sum game between a jammer
and a smart grid communication system was formulated in [67] in order to study a denial-of-
service for remote state monitoring. In [49], a discrete-time dynamic zero-sum game between
a controller of a linear time-invariant plant and a jammer was introduced. In this game, it is
assumed that the jammer has onlyM possibilities of intercepting the communication between
the controller and the plant over a horizon N , where M < N . At each time k = 0, . . . , N −1,
the jammer can either choose to jam αk = 0, or to stay inactive αk = 1 and let the control
signal reach the plant, where

∑N−1
k=0 αk = N − M . Denoting the controller’s action at time

k by uk , the state of the plant xk ∈ R evolved as

xk+1 = Axk + αkuk + wk, k = 0, . . . , N − 1,
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where {wk} is a discrete-time zero-mean Gaussian white noise process with variance σ 2
w and

x0 is a zero-mean Gaussian random variable with variance σ 2. The objective function of the
jammer is to maximize its expected payoff function given by

J := E

[
N−1∑

k=0

(x2k + αku
2
k) + x2N

]
,

while the controller aims to minimize this quantity. At each point in time, the controller and
jammer have access to the current and past values of the state and have fullmemory onwhether
any of the previous control transmissions were intercepted or not. Denoting this information
set at time step k by Ik , the jammer and controller seek, respectively, saddle-point strategies
α∗
k = μ∗

k(Ik) ∈ {0, 1}, and u∗
k = γ ∗

k (Ik) ∈ R such that J (γ ∗, μ) ≤ J (γ ∗, μ∗) ≤ J (γ, μ∗),
for all admissible strategies γ and μ of the controller and the jammer. By extending the state
space of the above game from x to (x, t, s) to account for the number of remaining game
stages (t) and remaining jamming opportunities (s), it was shown in [49] that this jamming
game admits a saddle point. In particular, it was shown that for the case of M = 1 (i.e., when
the jammer can act only once), the optimal saddle-point strategy is a threshold-based policy
which is further characterized in the large state limit.

The paper [119] develops a multi-hop multistage dynamic deception game framework
for data routing in communication networks. In this game, the network nodes aim to send
some amount of valid data from a source to a destination, while the network is subject to
adversarial jamming effects. In the first stage of the game, the source strategically splits its
data into two intermediate routing nodes. One is legitimate and the other one is deceptive to
distract the jammers. In the second stage, the nodes search for the optimal multi-hop paths
to the destination in response to jamming behaviors from adversaries. The underlying game
is defined as a Stackelberg game, and in this context, the paper introduces a number of solu-
tion concepts, specifically path Stackelberg equilibrium (PSE), rate Stackelberg equilibrium
(RSE), and their counterparts in behavioral andmixed strategies, and has obtains closed-form
expressions for PSE and RSEwhen the utility functions are logarithmic. These solutions lead
to an assessment of the benefit that arises from deception.

Paper [3] proposes a game-theoretic framework to model optimal secure communication
over a sensor network. In this game of a single Gaussian source observed by multiple sensors
after being corrupted by independent additiveGaussian noises, some of the sensors are normal
and want to communicate with the receiver under minimummean-squared error, while others
act as adversaries and aim to maximize the distortion in communication. It was shown in
[3] that for a certain range of parameters, the underlying game reduces to a zero-sum game
while for others the game becomes a Stackelberg game (with normal transmitting sensors
and adversarial ones acting as leader and follower, respectively). In both cases, the paper
characterizes the structures of the saddle-point or Stackelberg strategies.

A Bayesian game framework was used in [99] to model wireless medium access control in
which selfish transmitters (players) decide on their power level or transmission probability.
In this game, transmitters may have incentive to act as malicious jammers in order to maxi-
mize their own payoffs, which results in an incomplete information game among the selfish
and malicious transmitters. For this game and under different degrees of uncertainties, the
Bayesian Nash equilibrium strategies and a learning mechanisms for the type belief updates
are derived. In [65], the problem of sensor node communication in the presence of a jamming
attack is considered. The problem is cast as a discrete-time zero-sum dynamic game with
linear time-invariant state process in which both the sensor and the attacker have energy con-
straints. It is shown that optimal strategies for both players constitute a Nash equilibrium of
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this game which can be obtained using a Lagrange multipliers method in the case of offline
setting (i.e., when the players choose their entire policies at the beginning of the game).
Moreover, the game is extended to an online setting where players sequentially observe the
game outcomes and update their strategies at the next time step, and a recursive algorithm to
update both sides decision processes is provided. The paper [68] studies security strategies
in two-player zero-sum repeated Bayesian games with application to jamming in sensor net-
works. In such games, each player has a private type chosen from a known distribution. At
every stage, players simultaneously choose their actions which are observed by the public
and receive payoffs which depend on players’ types and actions, and are not directly observed
by any player. The paper develops explicit algorithms to compute the security strategies of
the players, i.e., players’ optimal strategies in the worst case.

Another class of jamming games arises in the framework of mobile networks, where
nodes are under constant motion (such as UAVs or terrestrial vehicles aiming at accomplish-
ing a mission) and they are required to maintain a certain distance with their neighbors for
purposes of connectivity (such as UAVs or terrestrial vehicles to stay within their communi-
cation ranges). A jammer, which is also mobile (such as a jamming UAV), wants to break the
connectivity (by getting close to some of the UAVs or vehicles, and jamming their communi-
cation links). This problem can be formulated as a pursuit–evasion differential game,5 where
the jammer (pursuer) tries to break connectivity as quickly as possible, whereas the friendly
mobile nodes (evaders) want to extend connectivity for as long as possible. The paper [25]
has introduced this class of mobile jamming problems and provided optimal saddle-point
policies for both sets of players under certain conditions; further results can be found in
[24,26]. Finally, in [41], a Stackelberg game for communication between a source and a set
of selfish relays is considered. In this game, the source coordinates the relays in order to
benefit the relays (followers) in forwarding the signals and defend the system against the
eavesdropping attacks. In particular, an algorithm is developed for the relays to find their
Nash equilibrium strategies. It is shown that through such cooperative communication, the
source can achieve better secure transmission against eavesdroppers.

5 Incentives andMechanism Design

In real applications, many systems fail because of wrong incentives among their subsystems
or agents. As discussed in [10], “the people who guard a system often are not the people
who suffer the full costs of failure and as a result they make less effort than would be
socially optimal.” This shows that an effective incentive mechanism design can play a major
role in improving the system security which has been the center of many recent works
[1,22,33,35,39,42,70,83,116].

In [42], the authors design a dynamic incentive mechanism for security in networks of
interdependent agents. In this model, a system of n strategic agents who are interconnected
through a fixed directed network is considered. The agents interact over time instances t =
0, 1, . . .with their neighbors where the security status of agent i at time t is given by a binary
random variable θ it (agent i is safe at time t if θ it = 1, and unsafe if θ it = 0) whose realization
is a private information to agent i . There is a network manager whose goal is to maximize
the overall security of the network over time against external attacks and/or propagation of
internal attacks. At each time, a safe agent i can be attacked externally with probability di or

5 Pursuit–evasion games model many security problems where one or more evaders try to escape a group of
pursuing units; see [21].
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internally from any of its neighbors j with probability li j which corresponds to the strength
of agent j’s influence on agent i in the network. At each time t , the network manager’s
action at is to choose an agent i and apply a security measure on it. If at = i and agent
i is unsafe (that is, θ it = 0), then it will be safe with a constant probability h while being
protected from external attack with the same probability during time instance t (note that
network director’s action does not affect the internal attacks within the network). As a result
of network manager’s action as well as external and internal attacks, the security state of the
network θt = (θ1t , . . . , θnt ) evolves based on a Markov chain with a stochastic rule governed
by

P(θt+1 = b|θt , at ) =
n∏

i=1

P(θ it+1 = bi |θt , at ),∀b ∈ {0, 1}n,

where P(θ it+1 = bi |θt , at ), i = 1, . . . , n, can be computed in a closed form based on the
probabilities h, di and l j i . For instance, if at = i and θ it = 0, then P(θ it+1 = 1|θt , at ) =
h(1− di (1− h))

∏
j∈Ni :θ j

t =0
(1− l j i ), where Ni denotes the set of neighbors of node i . This

is because if agent i is in the unsafe state and receives the security measure, he will be safe
in the next time instance if the security measure is successful with probability h, he is not
the subject of new successful external attacks with probability 1 − di (1 − h), and he is not
attacked internally by his unsafe neighbors with probability

∏
j∈Ni :θ j

t =0,
(1− l j i ). Note that

the underlying assumption in these derivations is that the external and internal attacks are
independent across different agents.

Further, at each time t , agent i evaluates his safety based on the network security state
and the measurement that he receives from the network manager by

vi (θt , at ) = θ it +
( α

|Ni |
∑

j∈Ni

θ
j
t

)
1{θ it =1 or at=i},

where 1{·} denotes the indicator function and α ∈ (0, 1) is a scaling constant. As a result, an
agent feels safer if his state is safe or he receives measurement from the network manager.
Now, denoting the monetary payment by agent i to the network manager at time t by pit ∈ R,
the payoff received by agent i at time t can be expressed by uit (θt , at , p

i
t ) = vi (θt , at ) − pit ,

and his total payoff equals

Ui := (1 − δ)

∞∑

t=1

δt uit (θt , at , p
i
t ),

where δ ∈ (0, 1) is a common discounting factor. In particular, the goal of the network
manager is to maximize the expected social welfare (safety) of the network given by

W := E

[
(1 − δ)

n∑

i=1

∞∑

t=1

δtvi (θt , at )

]
.

Let Ht denote all possible histories of agents’ safety reports up to time t (note that agents
may have incentives to misreport their safety state θ it in order to maximize their own payoffs).
The mechanism design problem for the network manager is then to determine a measurement
allocation policy πt (·) : Ht → {1, . . . , n} (i.e., determine at each time t which agent receives
the measurement) together with a monetary payment policy pit (·) : Ht → R,∀i (i.e., at
time t how much each agent must pay to the network manager as a tax) which maximizes
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W while being incentive compatible and individually rational.6 It was shown in [42] that
this mechanism design optimization problem has a solution by first providing an incentive
compatible monetary payment rule which aligns the incentives of each agent with the social
welfare. Using this monetary payment, agents report their security states truthfully, and thus,
the problem of searching for an optimal measurement allocation policy becomes a stochastic
control problem with complete information. Therefore, a dynamic programming technique
can be used to obtain the optimal measurement allocation policy.

In [83], a repeated game has been introduced in order to understand firms’ incentives for
disclosing their security information and to find out whether inter-temporal incentives can
lead to support of cooperation. It has been shown that even an imperfect rating/monitoring
system can be very helpful to design inter-temporal incentives that lead firms to cooperate
on sharing their security information. Moreover, similar results have been shown when the
monitoring system is replaced by a platform to communicate firms’ privately observed beliefs
on each others’ adherence to the agreement. In [22], a differential Stackelberg game is used
to model the interactions between the “West” and “International Terror Organization” (ITO)
as two strategic decision makers. In this model, at each time instance t the West acts first
by deploying some terror control activities and the ITO acts as a follower by deciding how
many attacks to initiate at time t . As a result, the state of the game which is defined to be
the number of terrorists at time t evolves according to a differential equation based on the
players’ actions and the underlying parameters of the game. The equilibrium points of this
game have been characterized. In particular, the model has been used to analyze the effect of
West’s defensive strategies on incentives and strategies of ITO and to explore how changing
the underlying parameters can change the ITO incentives in both short or long term.

Using an economics approach, the authors in [1] leverage a repeated gamemodel to explore
the incentives of participants to offer and use anonymity services which is an important need
in a variety of circumstances, such as using the Internet, surfing the web, or online purchases.
As discussed in [1], in economic systems anonymity is particularly important from a security
perspective in which usability, efficiency, reliability, and cost become security objectives
which affect user size and hence the achievable degree of anonymity. Finally, in [70] a
general incentive-based framework to model attacker intent, objectives, and strategies, has
been developed.Moreover, to infer attacker incentives and objectives, several dynamic game-
theoretic formulations such as a repeatedBayesian game or a stochastic game are proposed. In
particular, the authors provide some insights into how one should choose themost appropriate
game in real-world attack–defense scenarios.

6 Resource Allocation and Optimal Investment

Broadly speaking, resource allocation in security refers to the set of problems inwhich defend-
ers must allocate limited security resources to protect targets from attack by adversaries. In
[106], the authors study the problem of dynamic security resource allocation by developing
a stochastic Stackelberg game between a defender and multiple attackers. In this game, the
defender acts as a leader and commits first to a patrolling allocation strategy over the security
targets. Then, the followers make the strategy selection trying to realize a Nash equilibrium
among themselves and obtain payoffs conditioned on the leader’s strategy. Depending on
defender’s and attackers’ strategies, the game will then move to a new state assuming that the

6 Incentive compatibility means that agents have no incentive to misreport their safety states, while individual
rationality implies that agents voluntarily have incentives to participate in the mechanism.
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underlying stochastic Markov chain is ergodic. A reinforcement learning method is applied
to this general setting in which the players can learn the game behavior through trial-and-
error interactions with this dynamic environment, and a so-called Extraproximal approach is
adopted to accelerate the reinforcement learning process. The results are numerically justified
for the case of a single defender and a single attacker, showing that the players can efficiently
learn their equilibrium strategies.

In [12], a differential game is used to analyze the optimal IT security investment of different
firms with similar information assets which are subject to hacking attacks. Such firms have an
incentive to deflect hackers toward others by strategically raising their own security levels. It
was shown that this competition leads firms to over-invest in IT security while creating proper
incentives can result in collaborative security effort among the firms (and hence savings in
industry). The authors in [78] develop a repeated best response dynamics to study the security
decision making in interdependent organizations (players) whose security levels can affect
others’ by a linear influence network. It is shown that by adjusting the influence matrix, the
equilibrium achieved for the single-stage game can be improved for any two players while
maintaining others’ levels of investment unchanged. The results are applied to the setting of
Web site security with shared passwords where users have the same passwords for different
websites, and hence, the decision of one organization may have substantial impact on the
security of the others.

As discussed inSect. 3.4, SSGsprovide a suitable framework for studying optimal resource
allocation in security systems (see, e.g., [92] for an application of SSG to assist in resource
allocation tasks for airport protection). However, the underlying assumption on the players’
information can result in considerably different analysis. In its simplest form [9], a two-player
SSG is composed of n possible targets T = {1, . . . , n}, and m identical resources (m < n).
The defender has a set of N feasible actions,A, where each A ∈ A is a binary coverage vector
representing which m targets are protected (Ai = 1 if target i is protected in action A and
Ai = 0, otherwise). The defender can choose to play a mixed (random) strategy x , where x
is a probability distribution over the action setA, with xA denoting the probability that action
A is being played. The defender’s mixed strategy can also be represented more compactly
using a coverage vector c(x) = (c1(x), . . . , cn(x)), where ci (x) = ∑

A∈A xA Ai , which is
the overall probability that target i is protected (covered) when defender’s mixed strategy is
x . On the other hand, the attacker’s mixed strategy a = (a1, . . . , an) is a probability vector
with ai being the probability that the attacker attacks target i . Given the strategy profile (c, a)
of the players, the utilities of the defender and the attacker denoted byUd(c, a) andUa(c, a),
respectively, are given by

Ud(c, a) =
n∑

i=1

ai
(
ci R

d
i + (1 − ci )P

d
i

)

Ua(c, a) =
n∑

i=1

ai
(
ci P

a
i + (1 − ci )R

a
i

)
,

where Rd
i and Ra

i are the rewards (similarly Pd
i and Pa

i are the penalties) associated with
the defender and the attacker given, respectively, whether target i is covered or not. Here, it
is assumed that Rd

i > Pd
i , and Ra

i > Pa
i to assure that the attacker wants the attack to be

successful while the defender wants it to fail. In SSG, the defender acts first by committing to
a mixed strategy x (or equivalently c(x)). The attacker fully observes the defender’s strategy
and responds to it optimally by attacking a target which brings him the highest payoff.
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Unlike the standard assumption on SSG, where the attacker has perfect knowledge of the
defender’s strategy, in [9], the authors study the optimal resource allocation strategies using a
dynamic SSG played over multiple stages and with limited surveillance in which the attacker
dynamically updates his belief in order to determine the point when to stop surveillance based
on observed actions and cost of surveillance. In their model, the attacker is of the form of
a Bayesian decision maker who observes defender moves, and optimally decides to either
attack at the current stage, or to make another observation of the defender at some fixed
cost. The game ends when the attacker attacks a target. One motivation for studying such
a model is security concerns at airports. Police deploy checkpoints at the entrance roads to
airports according to randomized rules. Attackers typically engage in surveillance such as
driving around different airport entrances, but will eventually launch an attack based on a
finite number of observations of the checkpoint locations.

The work in [9] formulates the attacker’s optimal stopping problem as a finite state space
Markov Decision Process (MDP) in which the states are the observation vectors. An obser-
vation vector o = (oA)A∈A is a vector in which oA denotes the number of times up to now
that the defender chooses coverage action (pure strategy) A. Therefore, each transition in
the states of this MDP corresponds to moving from an observation vector o to o′ where o′
differs from o in only one observation A (the most recent observation by the attacker). Now
if the attacker decides to attack his best target ψ(o) at state with observation vector o, his
immediate payoff will be

W (o) = cψ(o)P
a
ψ(o) + (1 − cψ(o))R

a
ψ(o) − λ(o),

where λ is a fixed cost of making observations and (o) = ∑
A∈A oA is the length of

observation o (i.e., the number of times the attacker has observed the defender’s strategy in
o). Moreover, cψ(o) is the marginal coverage of target ψ(o) according to the attacker’s belief
after observing o. Therefore, at each state o, the attacker can either attack the best targetψ(o)
and receive a payoff W (o), or make another observation reaching state o′ = o ∪ {A}, with
some probability P(A|o) (which can be computed based on posterior belief of the attacker).
Letting V (o) be the optimal value function for the attacker (i.e., the attacker’s expected utility
when his observation vector is o and he follows the optimal policy afterward), we have

V (o) = max

{
W (o),

∑

A∈A
P(A|o)V (o ∪ {A})

}
.

Solving thisMDP faces several challenges including the infinite size of state space. However,
it is shown in [9] that without loss of generality one can restrict attention to finitely many
states from some time onward, as making new observations for the attacker has negligible
effect in changing its posterior belief, and hence improving his expected payoff. In particular,
the authors obtain an upper bound on the maximum number of observations the attacker can
make before he attacks, and provide a backward induction–forward search technique together
with amixed linear integer program to approximate and compute the exact attack and defense
strategies, respectively.

Different from [9] and in order to model attacks on a cyber-physical system, a dynamic
multiplayer nonzero-sum game with asymmetric information has been considered in [48].
In this game, it is assumed that players have limited resource constraints and do not neces-
sarily acquire the same information as the system operators. Under certain conditions on the
information structure of the game (e.g., variables affecting the amount of resource invested
by players become a part of the common information at the next time step), a virtual game of
symmetric information is introduced, with an equivalence between its set of Nash equilibria
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and that of the original asymmetric game established. This virtual symmetric game is then
used to compute the Nash equilibrium points of the original asymmetric game. We refer the
readers to [56] for other dynamic game formulations of asymmetric information for studying
optimal resource allocation in cyber-physical security.

Using a repeated game formulation, it was shown in [28] that for interdependent security
networks, such as the Internet, optimal selfish investment of individual users on their own
security does not necessarily reduce the overall risk of the network.Moreover, beside optimal
investment, the effect of network topology, users’ preferences, and their mutual influence
on the overall network security has been studied. In particular, it is shown that under a
repeated game framework, the best equilibrium yields much better performance as users have
more incentive to cooperate for their long-term interests. From an economic perspective,
[55] considers a repeated game between a defender with incomplete information and an
attacker, who repeatedly targets the weakest link7 in order to model security investment
of an information system and derive optimal security investment over multiple rounds. As
opposed to the case of a single-stage game, the authors show that for the repeated game, the
defender’s strategies may be quite different so that he initially protects fewer assets and waits
until the attacker identifies theweakest links. This explainswhy underinvestment in security is
rational until threats are realized. Finally, the authors in [108] look into computational aspects
of resource allocation in security games by relaxing some of the standard assumptions, such
as additivity of the players’ payoff functions, or that the attacker can attack only one target.
Using a unified framework, they show that computing the equilibrium strategies in security
games is essentially a combinatorial optimization problem which can be used to study the
complexity of computing equilibrium points and optimal attack/defense strategies. We also
refer to [54] for other computational analysis related to equilibrium and optimal resource
allocation in Bayesian Stackelberg security games.

7 Learning in Security Games

Security is often an iterative process where the defenders commit to some strategies in order
to protect the assets. In return, the attackers decide what strategies to adopt in order to max-
imize their payoffs. From each failure or success of an attack, both attackers and defenders
gain new information which can be used to improve their future strategies. This opens an
exciting research area of learning in cyber-physical security, which has been addressed in
the past decade. In this section, we mainly focus on two important classes of learning algo-
rithms applied to security games: (i) Reinforcement learning (or other variants of it such
as Q-learning) in which the interaction environment between security players is typically
formulated as a Markov decision process. Many reinforcement learning algorithms in this
context utilize the notion of value function to represent the quality and expected reward of the
players’ decisions and use dynamic programming techniques to learn the optimal strategies.
Reinforcement learning methods are often model-free and can be applied to large class of
stochastic dynamic games (although their performance highly depends on the structure of the
game) [29,37,51,106,112,120]. ii) Online regret-based learning in which new information
becomes available in a sequential order and during the course of the game between security
players. The performancemetric here is usually based on some notion of regret [11,47,58,87].

7 In an information system, the system’s overall security usually depends on its weakest link.
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7.1 Reinforcement Learning in Security

In [29], the authors develop a zero-sum stochastic game to model security risk in interde-
pendent organizations and utilize a reinforcement Q-learning to analyze the behavior of the
players when the parameters of the game are not known. In [37], a stochastic game for model-
ing the decision-making process of cyber-security monitoring is proposed. Different variants
of Q-learning are used which react automatically to the adversarial behavior of suspicious
users. The efficiency of these methods under different environments is also evaluated through
simulation results. A zero-sum stochastic game between an attacker and a legitimate system
in an abstract form was formulated in [51]. At each stage of this game, k = 0, 1, . . ., both the
legitimate system and the attacker observe the current state sk and take actions ok, ak based on
their own learned policies and receive immediate rewards R(sk, ak, ok) and −R(sk, ak, ok),
respectively. After that, the state of the game (e.g., channel communication state) changes
from sk ∈ S to sk+1 ∈ S with some probability P(sk+1|sk, ak, ok)which is often unknown to
the players. The objective of the legitimate system (attacker) is to learn an optimal stationary
policy π := {πs}s∈S (πO := {πO

s }s∈S ) in order to maximize (minimize) the discounted
average reward given by E[∑∞

k=0 βk Rk(sk, πO (sk), π(sk))]. Here πs(·) (similarly πO
s (·))

is a mixed strategy over the action set of the legitimate system (attacker) such that πs(a)

determines the probability of choosing action a at a given state s ∈ S.
A conventional minimax-Q learning method for learning the optimal stationary policies

in this security game is to define two functions: an optimal quality function Q∗(s, a, o) for
each pair of state actions and an optimal value function V (s) defined over all the states.
Q∗(s, a, o) can be thought of the total expected discounted reward attained by the legitimate
system taking action a, given current state s and attacker action o, and then following the
optimal policy from then on, i.e.,

Q∗(s, a, o) := E[R(s, a, o) + βV∗(S′)],
where S′ is a random variable denoting the next state of the game, and

V∗(s) := max
πs

min
o

∑

a

πs(a)Q∗(s, a, o).

Based on these functions, one can define a conservative minimax optimal policy for the
legitimate system given by π∗(s) := argmaxπs

mino
∑

a πs(a)Q∗(s, a, o). The correspond-
ing minimax optimal strategy for the attacker is defined similarly. Now, one can define a
sequence of iterated functions {Qk(·)}, {Vk(·)}, and {πk(·)}, recursively in terms of the above
expressions, such that in the limit as k → ∞ these sequences converge to their corresponding
functions Q∗(·), V∗(·), and π∗(·). However, it is possible that the obtained optimal minimax
policy π∗(·) is not the actual optimal policy for the legitimate system. To resolve this issue,
the authors in [51] develop different variants of the aboveminimax-Q learning algorithm that
under certain conditions guarantee convergence of the iterated policies to the actual optimal
policy. In particular, it is shown that for unknown dynamic environments, with extra partial
information the modified algorithms converge faster to the actual optimal policies.

The paper [120] considers a zero-sum stochastic security game with heterogeneous play-
ers in which the players aim to learn their optimal strategies by adopting possibly different
distributed reinforcement learning algorithms while they have incomplete information about
the game. The paper uses stochastic approximation techniques to show that the heterogeneous
learning schemes can be studied in terms of their deterministic ordinary differential equation
counterparts. The results are applied to a class of security games in which the attacker and
the defender adopt different learning schemes due to differences in their rationality levels
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and the information they acquire. The book chapter [122] extends the model in [120] to
nonzero-sum stochastic security games with incomplete information, and develops fully dis-
tributed reinforcement learning algorithms, which require for each player a minimal amount
of information regarding the other player. At each time, a player can be in an active mode or
in a sleep mode. If a player is in an active mode, she updates her strategy and estimates of
unknown quantities using a specific pure or hybrid learning pattern. The players’ intelligence
and rationality are captured by a weighted linear combination of different learning patterns.
As in [120], it has been shown that the pure or hybrid learning schemes with random updates
can be studied using their deterministic ordinary differential equation counterparts. Finally,
the work [106] applies a reinforcement learning method to a Stackelberg security game and
provides an efficient framework for the attackers and defenders to adapt their strategies in a
dynamic environment.

7.2 Regret-Based Online Learning

Regret-based online learning algorithms have become quite popular in recent years with
interesting applications in studying security games. Given a multistage security game, the
regret associatedwith a player following an online learning algorithm is simply the difference
between his payoff for the best-in-hindsight fixed strategy8 and the expected payoff that he
can obtain by following the online algorithm. In [11], the authors consider a slightly more
general version of the repeated SSG introduced in Sect. 6 and devise an online algorithm for
the defender whose regret is sublinear in the number of time steps, and polynomial in the
parameters of the game. As a result, the average regret of the defender by following such an
online algorithm approaches zero as the number of game stages increases. More precisely,
a repeated SSG is considered in [11] in which one defender (leader) must protect a set of
n targets against a sequence of attackers (followers). At each step, the defender commits
to a randomized allocation strategy over the targets and an attacker (which can be chosen
adversarially from a set of k unknown different attackers) observes this randomized allocation
and attacks the target with the best expected payoff. Therefore, each stage of the game is
an SSG between the defender and a newly arrived attacker. Here, the defender’s goal is to
maximize his payoff over a period of time, even when the sequence of attackers is unknown.

For the full observation setting (i.e., when the defender can observe the attacker’s type
once an attack has occurred), it is shown in [11] that there is an online algorithm for the
defender such that his regret will be bounded above by O(

√
Tn2k log(nk)), where T is the

number of game stages. For the partial observation setting (i.e., when the defender can only
observe which target was attacked at each round), it is shown that the defender can still follow

an algorithm with sublinear regret but with slightly worse upper bound O(T
2
3 nk log

1
3 (nk)).

For another application of regret-based minimization in security games, we refer to [87] in
which the authors provide an algorithm for computing minimax regret-based strategies for
SSGs under uncertainty.

The work in [47] considers an online regret-based learning game within the context of
expert advice. In this problem, there is a learner (e.g., a recommendation system) which has
to select at each time t = 1, 2, . . ., one expert from a pool of k experts and follow his advice.
At every time t , an adversary sets a gain git ∈ [0, 1] for each expert i . Simultaneously, the
learner observes all the gains from all previous steps except t and has to choose which expert
to follow at stage t . Given that the learner follows expert j(t) at time t , he receives an instant

8 This is a strategy that yields the highest total payoff for that player if he knows the entire sequence of attacks
a priori.
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payoff of g j(t)t . After the learner makes his decision at time t , the gains associated with all
experts are revealed to him, and the adversary can also observe the learner’s choice of expert.
Given that this game is repeated T times, the learner’s objective is to select the experts in
a manner such that he can achieve a cumulative gain close to that when choosing the best
expert in hindsight. In other words, the learner’s goal is to minimize his regret defined by

RT := max
1≤i≤k

T∑

t=1

git −
T∑

t=1

g j(t)t ,

while the adversary aims to maximize this quantity. This defines a dynamic zero-sum game
between the learner and the adversary where the players must play in an online fashion.
The authors in [47] fully characterize the optimal online policies for the learner and the
adversary in the case of k = 2 or k = 3 experts and provide some general insights into
how to design optimal algorithm for the learner and the adversary for an arbitrary number of
experts. Along the same line of work, the authors in [107] consider a security system in the
form of expert advice setting in which the experts can themselves be malicious and report
false predictions to deceive the learning system.Using a dynamic programming approach, the
authors characterize the optimal online policies for the malicious experts for certain special
cases. We refer to [58] for other possibilities of learning algorithms in security games with
rationally bounded players [68].

8 Conclusions and Discussion

In this survey,we have discussed recent advances and applications of dynamic games in cyber-
physical security problems. We have categorized these problems based on their application
domain as well as the topical area. In particular, we have illustrated several common yet
important game-theoreticmethodologies inmodeling and analyzing security problems. There
aremany other important security topicswhich can be effectively captured and analyzed using
dynamic games. We mention here the issues related to information leakage, anonymity, or
privacy [38,43,95,111], bounded rationality and humans’ behaviors [36], and patrolling,
pursuit-evasion, or models of crime [7,14,52,81].

While the existing body of literature in dynamic games successfully models the behavior
of attackers/defenders in a variety of security circumstances, there are still many limitations
in applying them to real-world applications. In particular, the emerging security problems
are becoming more sophisticated so that analyzing them might require a combination of the
earlier tools and methods. In the following, we sketch briefly some of the current limitations
and some future directions of research.

• Most of the earlier literature on security games views information, rather than the com-
putation, as the main bottleneck. However, as we saw earlier in the case of SSG with
multiple resources and a target, the computational complexity of finding optimal defend-
ing strategies becomes a critical barrier which hinders their applicability in realistic
scenarios. Therefore, devising computationally efficient algorithms for computing (or
approximating) the optimal strategies for large-scale dynamic security games is an impor-
tant problem.

• Humans are mainly the decision makers in security games. While most of the earlier
literature assumes rational behavior of the decision makers, it has been observed exten-
sively that in reality humans have subjective views on uncertain events (e.g., risk averse or
risk seeking). Hence, human behavioral decisions can substantially affect the anticipated
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outcomes. Therefore, incorporating human behavioral decisions into the game structure
(e.g., using prospect theory [57]) and identifying its implications and deviations from
conventional game theory is another important issue which has received limited attention
so far. For some very recent work in that direction, we refer to [82,102].

• There are many circumstances in which the structure of the security system is not prede-
fined. For example, in social security the connections between attackers (e.g., terrorists)
and the defendersmight change based on their incentives. Therefore, developing dynamic
gamemodels to understand how the underlying connections forms and evolves as a result
of players’ interactions is an interesting problem.

• Finally, in many practical situations such as relationships between countries, there are
underlying adversarial and defender groups with potential weak links between members
of opposing groups which are effectively used by both groups to infiltrate the other.
In other words, an agent may possibly belong to multiple groups, which themselves
may be connected by multilayered networks. Providing comprehensive dynamic security
games which can capture the interactions of the agents in such a multilayered multi-scale
environment is another interesting research direction.
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3. Akyol E, Rose K, Başar T (2013) On communication over Gaussian sensor networks with adversaries:
further results. In: Proceedings of international conference on decision and game theory for security
(GameSec). Springer, pp 1–9
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39. Dziubiński M, Sankowski P, Zhang Q (2016) Network elicitation in adversarial environment. In: Pro-
ceedings of international conference on decision and game theory for security (GameSec). Springer, pp
397–414

40. Fang F, Stone P, Tambe M (2015) When security games go green: designing defender strategies to
prevent poaching and illegal fishing. In: IJCAI, pp 2589–2595



910 Dynamic Games and Applications (2019) 9:884–913

41. FangH,XuL,WangX (2017) Coordinatedmultiple-relays based physical-layer security improvement: a
single-leader multiple-followers Stackelberg game scheme. In: IEEE transactions on information foren-
sics and security, pp 75–80

42. Farhadi F, Tavafoghi H, Teneketzis D, Golestani J (2017) A dynamic incentive mechanism for security
in networks of interdependent agents. In: 7th EAI international conference on game theory for networks

43. Farhang S, Grossklags J (2016) Flipleakage: a game-theoretic approach to protect against stealthy attack-
ers in the presence of information leakage. In: Proceedings of international conference on decision and
game theory for security (GameSec). Springer, pp 195–214

44. Farhang S, Manshaei MH, Esfahani MN, Zhu Q (2014) A dynamic Bayesian security game framework
for strategic defense mechanism design. In: International conference on decision and game theory for
security. Springer, pp 319–328

45. Ghafouri A, AbbasW, Laszka A, Vorobeychik Y, Koutsoukos X (2016) Optimal thresholds for anomaly-
based intrusion detection in dynamical environments. In: International conference on decision and game
theory for security. Springer, pp 415–434

46. Gibson AS (2013) Applied hypergame theory for network defense. Air Force Inst of Tech WRIGHT-
PATTERSON AFB OH Graduate School of Engineering Management. Tech. Rep

47. Gravin N, Peres Y, Sivan B (2016) Towards optimal algorithms for prediction with expert advice. In:
Proceedings of the twenty-seventh annual ACM-SIAM symposium on discrete algorithms, pp 528–547
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116. Zhu Q, Fung C, Boutaba R, Başar T (2012) GUIDEX: a game-theoretic incentive-based mechanism for
intrusion detection networks. IEEE J Select Areas Commun (JSAC) Spec Iss Econ Commun Netw Syst
(SI-NetEcon) 30(11):2220–2230



Dynamic Games and Applications (2019) 9:884–913 913
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122. Zhu Q, Tembine H, Başar T (2013) Hybrid learning in stochastic games and its applications in network
security. In: Lewis FL, Liu D (eds) Reinforcement Learning and Approximate Dynamic Programming
for Feedback Control, Series on Computational Intelligence, IEEE Press/Wiley, chapter 14, pp 305–329

123. Zonouz SA, Khurana H, Sanders WH, Yardley TM (2014) RRE: a game-theoretic intrusion response
and recovery engine. IEEE Trans Parallel Distrib Syst 25(2):395–406

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.


	Dynamic Games in Cyber-Physical Security: An Overview
	Abstract
	1 Introduction
	1.1 An Overview of Game Theory

	2 Network Security
	2.1 Intrusion Detection and Information Limitations
	2.2 Risk and Security Assessment

	3 Security Games
	3.1 Signaling Games
	3.2 Honeypot and Deception Games
	3.3 Cascading Games and Robustness
	3.4 Stackelberg Security Games
	3.5 Other Types of Security Games

	4 Security and Decision Making at the Physical Layer
	5 Incentives and Mechanism Design
	6 Resource Allocation and Optimal Investment
	7 Learning in Security Games
	7.1 Reinforcement Learning in Security
	7.2 Regret-Based Online Learning

	8 Conclusions and Discussion
	References




