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Abstract We study a simplemotion evasion differential game ofmany pursuers and evaders.
Control functions of players are subjected to integral constraints. If the state of at least one
evader does not coincide with that of any pursuer forever, then evasion is said to be possible
in the game. The aim of the group of evaders is to construct their strategies so that evasion
can be possible in the game and the aim of the group of pursuers is opposite. The problem is
to find a sufficient condition of evasion. If the total energy of pursuers is less than or equal
to that of evaders, then it is proved that evasion is possible, and moreover, evasion strategies
are constructed explicitly.
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1 Introduction

Differential games have been an object of research since the 1960 (see, for example, Isaacs
[18], Friedman [12], Hajek [14], Pontryagin [27], Krasovskii and Subbotin [21], Petrosyan
[26]). A great number ofworkswere devoted to simplemotion pursuit and evasion differential
games of many players. Mainly, controls of players are subjected to either geometric or
integral constraints. In the case of geometric constraints, Croft [11] showed that in the n-
dimensional Euclidean ball n lions can catch the man while the man can escape from n − 1
lions. A similar game problem was studied by Ivanov [19] on any convex compact set and an
estimate from above was obtained for guaranteed pursuit time. In the case of an unbounded
region, interesting results were obtained by Alexander et al. [1].

A new evasion maneuver was proposed by Mishchenko et al. [25] in the game of many
pursuers. Chernous’ko [7] studied an evasion game of one evader and several pursuers where
the evader was faster than the pursuers. It was proved that evader can avoid pursuers by
remaining in a neighborhood of a given ray. Later on, the result of this paper was extended
by Zak to more general differential game problems (see, for example, [33]). Also, evasion
from a group of pursuers were studied by Borowko et al. [6] and Chernous’ko [9].

A simplemotion differential game ofmany pursuers and one evader, when all players have
the same dynamic possibilities, was studied inR

n by Pshenichnii [28]. Namely, it was proved
that if the initial state of the evader belongs to the convex hull of pursuers’ initial states, then
pursuit can be completed; otherwise, evasion is possible. Based on this work, Pshenichnii et
al. [29] developed the method of resolving functions for solving linear pursuit problems with
many pursuers. In the case of integral constraints, the method of resolving functions was
developed by Belousov [4]. Later on, the results of the paper [28] were extended by many
researchers. For example, when control sets of players are convex compact sets, Grigorenko
[13] obtained the necessary and sufficient conditions of evasion of one evader from several
pursuers. The papers [8,23] are also extensions of [28]. In the work [22], the game problem of
many pursuers and one evader was studied on a cylinder. In the recent work of Kuchkarov et
al. [24], the results of [28] were extended to differential games on manifolds with Euclidean
metric.

Petrov [5] obtained necessary and sufficient condition of evasion in a simple motion
differential games of a group of pursuers and a group of evaders in R

n where all evaders
use the same control. By definition, pursuit is considered completed if the state of a pursuer
coincides with the state of at least one evader. Also, the works [3,32] relate to such games.

The present paper is devoted to the evasion differential game of K pursuers and M evaders
described by equations

ẋi = ui , xi (0) = xi0, i = 1, . . . , K , (1.1)

ẏ j = v j , y j (0) = y j0, j = 1, . . . , M, (1.2)

with integral constraints

∞∫

0

|ui (s)|2ds ≤ ρ2
i , i = 1, . . . , K , (1.3)

∞∫

0

|v j (s)|2ds ≤ σ 2
j , j = 1, . . . , M, (1.4)
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where xi , y j , ui , v j ∈ R
n , n ≥ 2, and ρi , σ j are given positive numbers, xi0 �= y j0 for all

i = 1, . . . , K , and j = 1, . . . , M . Control systems with integral constraints on the control
functions arise in problems, where the control resource is exhausted by consumption, such
as energy, finance, food (see, e.g.,[10,15,20]).

A linear differential game of many pursuers and one evader (M = 1) when the control
functions of players are subjected to integral constraints was first studied by Satimov et
al. [30]. For the game (1.1)–(1.4), the result of that paper can be formulated as follows: if
ρ2
1 + · · · + ρ2

K > σ 2
1 , then pursuit can be completed. In the paper of Satimov et al. [31], it

was shown that if
ρ2
1 + · · · + ρ2

K ≤ σ 2
1 , (1.5)

then evasion is possible from some initial positions of players. In general, an evasion game
of K pursuers and M = 1 evader was studied in the work of Ibragimov et al. [17], and it
was proven that if (1.5) holds, then for any initial positions of players evasion is possible.
Later on, Ibragimov and Satimov [16] studied a pursuit game problem of K pursuers and M
evaders described by Eqs. (1.1)–(1.4) in a closed convex subset of R

n . It was established that
if

ρ2
1 + · · · + ρ2

K > σ 2
1 + · · · + σ 2

M ,

then pursuit can be completed. In the evasion game problem studied by Idham et al. [2]
in �2, strategies of evaders were constructed based on the fact that the space �2 is infinite
dimensional.

In the present paper, we study the game (1.1)–(1.4) in R
n in the case where

ρ2
1 + · · · + ρ2

K ≤ σ 2
1 + · · · + σ 2

M .

If this is the case, we show that evasion is possible from any initial positions of players. In
addition, we construct explicit strategies for the evaders.

We use the following notations.

• ζ0 = (x10, . . . , xK0, y10, . . . , yM0) is initial position of players.
• Vj is the strategy of j-th evader,

• pi (t) = ρ2
i −

t∫
0

|ui (s)|2ds, q j (t) = σ 2
j −

t∫
0

|v j (s)|2ds,
• σ = (

σ 2
1 + · · · + σ 2

M

)1/2
, ρ = (

ρ2
1 + · · · + ρ2

K

)1/2
, d = min

i=1,...,K , j=1,...,M
|xi0 − y j0|,

• e j = y j0−z0
|y j0−z0| , and e′

j is a unit vector orthogonal to the vector e j to be obtained from e j
by rotating it to the angle −π

2 ,
• S j = {ξ ∈ R

2 | |(ξ − y j0, e′
j )| ≤ a + b, (ξ − y j0, e j ) ≥ −b}, and

S′
j = {ξ ∈ R

2 | |(ξ − y j0, e′
j )| ≤ a, (ξ − y j0, e j ) ≥ −b} are strips,

• I j (t) = {s ∈ {1, . . . , K } | xs(t) ∈ S j },
• d0 = min{|yi0 − y j0| | yi0 �= y j0, i, j = 1, . . . , M},
• a j1, a j2, . . . are given numbers that satisfy a j,i+1 = κ · a4j,i where κ ∈ (0, 1),
• τ j i is the a ji -approach time of the evader y j with some pursuers; x ji is the pursuer that

is chosen to apply maneuver at τ j i ; τ ′
j i = τ j i + a ji

α
(later they are used without j),

• Continuous attack of a group of the pursuers xωk−1+1, . . . , xωk , is started at τωk−1+1 and
is completed at τ ∗

ωk
= max{τ ′

ωk−1+1, . . . , τ ′
ωk

}, ω0 = 0, τ ∗
0 = 0, τ ′

0 = τ ′
1,

• Ji+1 = ∪ωk
j=i+1[τ j , τ ′

j ), ωk−1 + 1 ≤ i < ωk; Jωk+1 = ∅,
• zi is i-th fictitious evader, and wi is its control parameter.
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2 Statement of Problem

We consider a differential game described by Eqs. (1.1)–(1.4) where K ≥ 1, M ≥ 1. First,
we give definitions for control functions of players and strategies of evaders.

Definition 2.1 Borel measurable functions ui (t), t ≥ 0, and v j (t), t ≥ 0, that satisfy the
constraints (1.3) and (1.4), respectively, are called controls of the pursuer xi , i ∈ {1, . . . , K }
and evader y j , j ∈ {1, . . . , M}, respectively.
Definition 2.2 If y j (t j ) = xi (t j ) at some j ∈ {1, . . . , M}, i ∈ {1, . . . , K } and t j > 0, then
we say that the evader y j is captured by the pursuer xi at the time t j .

To define the strategies of evaders, we introduce new scalar parameters q j = q j (t), t ≥ 0,
by equations

q̇ j = −|v j (t)|2, q j (0) = σ 2
j , j = 1, 2, . . . , M.

Clearly, q j (t) = σ 2
j −

t∫
0

|v j (s)|2ds, and q j (t) expresses the amount of energy of evader y j

remained at the time t . Let ζ0 = (x10, . . . , xK0, y10, . . . , yM0).

Definition 2.3 A function Vj (ζ0, t, y j , q j , x1, . . . , xK , u1, . . . , uK ), j ∈ {1, . . . , M}, is
called strategy of the evader y j if

(i) for any controls of the pursuers ui = ui (t), i = 1, . . . , K , the initial value problem⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ1 = u1(t), x1(0) = x10,
...

...

ẋK = uK (t), xK (0) = xK0,

ẏ j = Vj (ζ0, t, y j , q j , x1, . . . , xK , u1(t), . . . , uK (t)), y j (0) = y j0,
q̇ j = −|Vj (ζ0, t, y j , q j , x1, . . . , xK , u1(t), . . . , uK (t))|2, q j (0) = σ 2

j ,

(2.1)

has a unique solution (x1(t), . . . , xK (t), y j (t), q j (t)), t ≥ 0,
(ii) along this solution

∞∫

0

|Vj (ζ0, t, y j (t), q j (t), x1(t), . . . , xK (t), u1(t), . . . , uK (t))|2dt ≤ σ 2
j . (2.2)

By a solution of the initial value problem (2.1), we mean (K +2)-tuple (x1(t), . . . , xK (t),
y j (t), q j (t)), t ≥ 0, with absolutely continuous components xi (t), i = 1, . . . , K , y j (t), and
q j (t) that satisfy initial conditions in (2.1), differential equations in (2.1) almost everywhere
on [0,∞) and q j (t) ≥ 0.

Definition 2.4 We say that evasion is possible in the game (1.1)–(1.4) if there are strategies
of evaders such that, for any controls of the pursuers, for all t > 0 and i = 1, . . . , K , there
exists j0 ∈ {1, 2, . . . , M} such that xi (t) �= y j0(t).

Thus, evaders apply strategies, whereas the pursuers use any controls. In other words,
behaviors of pursuers are any. Pursuers try to capture each evader, and evaders try to avoid.
If at least one evader is not captured by pursuers for all t ≥ 0, then by Definition 2.4 evasion
is possible. It should be noted that we will not study the existence and uniqueness of solution
for the system of Eq. (2.1). We construct strategies Vj , j = 1, . . . , M , for evaders such that
the initial value problem (2.1) has a unique solution and (2.2) is satisfied as well.

Now, formulate the problem.
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Problem 1 Find a condition of evasion in terms of ρ1, . . . , ρK and σ1, . . . , σM.

3 Main Result

Let σ = (
σ 2
1 + · · · + σ 2

M

)1/2
, ρ = (

ρ2
1 + · · · + ρ2

K

)1/2
. The main result of the paper is the

following statement.

Theorem 3.1 If σ ≥ ρ, then for any initial position of players ζ0, evasion is possible in the
game (1.1)–(1.4).

First, we give the structure of proof. In constructing the strategies for evaders the fact that
σ > ρ is crucial. Therefore, the case σ = ρ is reduced to the case σ > ρ (Sect. 3.1). Then
disjoint strips corresponding to evaders are constructed and each evader further moves only
in his own strip (Sect. 3.2). Next, strategies for evaders are constructed (Sect. 3.3).

If for a pursuer xi ∈ S, the inequalities (y(t), e) ≥ (xi (t), e) and y(t) �= xi (t) hold at
some time t = θ ≥ 0, then they hold for all t ≥ θ while the pursuer moves in the strip S
and the evader’s energy is positive (Sect. 3.4). In particular, this is true for all pursuers xi for
which xi0 ∈ S and (y0, e) ≥ (xi0, e), where θ = 0. In other words, such pursuers moving in
S can never capture the evader while its energy q(t) is positive.

To estimate the distance between any pursuer xp moving in S and the evader y on the
time interval [τp, τ ′

p], where τp is ap-approach time, we introduce fictitious evaders (FE)
zi (Sect. 3.5) and estimate their energies. Then, we estimate the distance |z p(t) − xp(t)| on
[τp, τ ′

p] from below (Sect. 3.6). Next, we estimate |z p(t)− y(t)| from above (Sect. 3.7). Use
these estimates to estimate |y(t) − xp(t)| on [τp, τ ′

p] from below, which allows to conclude
that xp(t) �= y(t), and moreover, ap+1-approach will not occur with the pursuer xp on
[τp, τ ′

p] (Sect. 3.8). In addition, we show that (y(τ ′
p), e) ≥ (xp(τ ′

p), e) and y(τ ′
p) �= xp(τ ′

p).
As mentioned above, pursuer xp moving in S cannot capture the evader on t ≥ τ ′

p as long as
q(t) > 0.

Further, we estimate the evaders’ energies to prove that q j (t) > 0, t ≥ 0, for some
j ∈ {1, . . . , M} and then prove that evasion is possible on any interval [0, T ] providing that
the number of approach times in [0, T ] is finite (Sect. 3.9). Then finiteness of the number of
approach times in any interval [0, T ] is established (Sect. 3.10).

Finally, we choose parameters to satisfy all imposed conditions throughout the paper
(Sect. 3.11), show that evader moves by remaining in the set S′ whose width 2a can be made
as small as we wish, give a method of reduction of the game in R

n to the game in R
2, and

then discuss the strategies of evaders (Sect. 4).
Proof The fact that evasion is possible in R

2 implies that evasion is possible in R
n (see

Sect. 4.2). Therefore, we prove the theorem for R
2. ��

3.1 Reduction to the Case σ > ρ

Show that the case σ = ρ can be reduced to the case σ > ρ. Indeed, let σ = ρ. Set

v j (t) = 0, 0 ≤ t ≤ τ 0, j = 1, . . . , M, (3.1)

where t = τ 0 is the first time at which

|xi (t) − xi0| = d

4
, where d = min

i=1,...,K , j=1,...,M
|xi0 − y j0| (3.2)
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for at least one of the numbers i ∈ {1, . . . , K }. Such a time τ 0 may not exist meaning that
|xi (t) − xi0| < d/4 for all i ∈ {1, . . . , K } and t ≥ 0. In this case, we let τ 0 = ∞, and
evasion is possible since

|xi (t) − y j (t)| = |xi (t) − xi0 + xi0 − y j0|
≥ |xi0 − y j0| − |xi (t) − xi0|
> d − d

4
= 3d

4

for all i and j , and, hence, xi (t) �= y j (t), t ≥ 0. Let τ 0 be finite. Say |xs(t) − xs0| = d/4 at
some t = τ 0 and s ∈ {1, . . . , K }. Then in view of (3.1) at the time t = τ 0 the total resource
of the evaders is still σ 2

1 + · · ·+ σ 2
M since they have not moved on [0, τ 0]. The total resource

of the pursuers remained at the time τ 0 is

p(τ 0) =
K∑
i=1

pi (τ
0), pi (t) = ρ2

i −
t∫

0

|ui (s)|2ds.

We have

p(τ 0) =
K∑
i=1

ρ2
i −

K∑
i=1

τ 0∫

0

|ui (t)|2dt ≤ ρ2 −
τ 0∫

0

|us(t)|2dt. (3.3)

Since

d

4
= |xs(τ 0) − xs0| =

∣∣∣∣∣∣∣

τ 0∫

0

us(t)dt

∣∣∣∣∣∣∣
≤
⎛
⎜⎝τ 0

τ 0∫

0

|us(t)|2dt
⎞
⎟⎠

1/2

,

the pursuer xs has spent a positive resource
τ 0∫
0

|us(t)|2ds ≥ d2

16τ 0
, and so by (3.3) p(τ 0) < ρ2.

Thus, at the time t = τ 0, we have [see (3.1)]

M∑
j=1

q j (τ
0) = σ 2 > ρ2 − d2

16τ 0
≥ p(τ 0)

meaning that the total energy of evaders is greater than that of pursuers at the time τ 0.
Moreover, xi (τ 0) �= y j (τ 0) for all i and j . Thus, without loss of generality, we can assume
that σ > ρ.

Remark 3.2 According to Definition 2.3, evaders are not allowed to know information about
pi (τ 0). Hence, evaders do not know the value p(τ 0). However, evaders know the fact that
p(τ 0) ≤ ρ2 − d2

16τ 0
< σ 2 at the time τ 0. Therefore, if σ = ρ, then at the time τ 0 evaders use

ρ̄ =
√

ρ2 − d2

16τ 0
instead of ρ to construct their strategies at t ≥ τ 0. At the time τ 0 evaders

exactly know that σ > ρ̄.

3.2 Disjoint Strips

To construct disjoint strips, consider two cases.
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Fig. 1 Sets S j and S′
j

Case 1 yi0 �= y j0, for all i �= j , i, j = 1, . . . , M . Let z0 be any point that doesn’t coincide
with y10 if M = 1; and any point that doesn’t lie on any straight line passing through the
points yi0 and y j0 for all i, j = 1, . . . , M , i �= j , ifM ≥ 2. Hence, z0 �= y j0, j = 1, . . . , M .

Let

e j = y j0 − z0
|y j0 − z0| , j = 1, . . . , M,

and let e′
j be a unit vector orthogonal to the vector e j to be obtained from e j by rotating it to

the angle −π
2 , that is, by rotating clockwise to the angle π

2 .
We define a strip S j associated with each point y j0 as follows:

S j = {ξ ∈ R
2 | |(ξ − y j0, e

′
j )| ≤ a + b, (ξ − y j0, e j ) ≥ −b},

where the positive numbers a and b are any if M = 1, and if M ≥ 2, they are chosen so that
Si ∩ S j = ∅ if i �= j , and z0 /∈ S j for all i, j = 1, . . . , M (see Fig. 1). If M ≥ 2, we can
choose such numbers a and b, since the rays ζ j (t) = z0 + e j t, t > 0, j = 1, . . . , M , have
no common point. Let

I j (t) = {s ∈ {1, . . . , K } | xs(t) ∈ S j }, j = 1, . . . , M, t ≥ 0.

In other words, I j (t) is the set of numbers of pursuers in the strip S j at the current time t . In
the case M ≥ 2, because of Si ∩ S j = ∅, we have Ii (t) ∩ I j (t) = ∅ for all i �= j .
Case 2 There exist initial states yi0, y j0, i �= j with yi0 = y j0. Let y′

i0 = yi0 + εvi0, i =
1, . . . , M , where unit vectors

vi0 =
(
cos

2π(i − 1)

M
, sin

2π(i − 1)

M

)
, i = 1, . . . , M, (3.4)

are the vertices of regular M-gon with the center at the origin, ε is a positive number that
satisfies the following condition

ε < min

{
σ 2 − ρ2

M
,

d2

64ρ2 , ρ2,
d0
2

}
, (3.5)
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where

d0 = min{|yi0 − y j0| | yi0 �= y j0, i, j = 1, . . . , M},
and d is defined by (3.2). Since ε < d0/2, we have y′

i0 �= y′
j0 for all i �= j , i, j = 1, . . . , M .

We now use the procedure of construction of strips in Case 1, with yi0 replaced by y′
i0 for all

i = 1, . . . , M .
In Case 2, first we bring all the evaders to points y′

i0, i = 1, . . . , M . To this end, we let

vi (t) = vi0, j = 1, . . . , M, 0 ≤ t ≤ ε.

Then, clearly, at the time t = ε, we have yi (ε) = y′
i0 for all i = 1, . . . , M , and

M∑
j=1

q j (ε) =
M∑
j=1

σ 2
j − Mε >

K∑
i=1

ρ2
i ≥

K∑
i=1

pi (ε),

showing that the total energy of the evaders at the time t = ε is still greater than that of the
pursuers. Moreover,

y j (t) �= xi (t), 0 ≤ t ≤ ε, j = 1, . . . , l, i = 1, . . . , K ,

because by (3.5)

|y j (t) − xi (t)| ≥ |y0 − xi0| −
∣∣∣∣∣∣

ε∫

0

v j0ds

∣∣∣∣∣∣−
∣∣∣∣∣∣

ε∫

0

ui (s)ds

∣∣∣∣∣∣
>

3d

4
− ε − √

ερ ≥ 3d

4
− 2

√
ερ ≥ d

2
> 0. (3.6)

Thus, Case 2 can be reduced to Case 1. Therefore, we can assume at the beginning that
yi0 �= y j0 for all i �= j , i, j = 1, . . . , M .

3.3 The Construction of Strategies for Evaders

We construct a strategy for each evader y j to move in the strip (Fig. 1)

S′
j = {ξ ∈ R

2 | |(ξ − y j0, e
′
j )| ≤ a, (ξ − y j0, e j ) ≥ −b}.

Let us choose a number a j1 that satisfies the condition

0 < a j1 < min

{
1

2
,
a

2
, b,

d

2

}
, (3.7)

where d is defined by (3.2), and let a j,i+1 = κ · a4j i , i = 1, 2, . . .. The number κ ∈ (0, 1)
will be specified later.

Then, clearly, terms of the sequence a j1, a j2, . . . satisfy the following inequalities

a j,i+1 < a4j,i , i = 1, 2, . . . , (3.8)

and, therefore, by the inequality a j1 < 1/2, we obtain

a j,i+1 + a j,i+2 + · · · < a j,i+1 + a4j,i+1 + a16j,i+1 + · · ·
< a j,i+1 + a2j,i+1 + · · · < 2a j,i+1, i = 0, 1, 2, . . . , (3.9)
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and ∞∑
i=0

√
a j,i+1 <

√
a j1 + a2j1 + a8j1 + · · · < 2

√
a j1. (3.10)

We say that a pursuer xs is j-active at the time t ≥ 0 if xs(t) ∈ S j and (e j , xs(t)) >

(e j , y j (t)), otherwise xs is called j-passive at the time t . We say that t = τ j i ≥ 0 is a ji -
approach time of a pursuer xs to the evader y j if this pursuer is j-active at τ j i and the equation
|xs(τ j i ) − y j (τ j i )| = a ji is first satisfied at the time τ j i . Thus, for the specified sequence of
numbers a j1, a j2, . . ., first we define τ j1 as the a j1-approach time, then we define τ j2 as the
a j2-approach time and so on. Therefore, τ j1 < τ j2 < · · · .

It should be noted that the same τ j i can be a ji -approach time for several pursuers to the
evader y j . If there are more than one of such pursuers, then we take any of these pursuers
and, for convenience, we denote this pursuer by x ji . Starting from the time τ j i on some time
interval, the evader y j uses a maneuver to be defined against the specified pursuer x ji . While
a pursuer xs is j-passive, for xs , neither approach time is defined nor maneuver is applied
against. Note that j-passive pursuer at some t ′ might be able to be j-active at some t ′′ ≥ t ′.
Therefore, one pursuer can have several approach times to the same evader.

We make the following convention: If a pursuer makes a ji - and a jl - approaches at times
τ j i and τ jl , respectively, then this pursuer is labeled by x ji and x jl respectively at these times.
Also, for convenience, we’ll write x ji , y j , y j0, q j , τ j i , a ji , I j (t), e j , e′

j , S j , S′
j , v j without

j as xi , y, y0, q, τi , ai , I (t), e, e′, S, S′, v.
Define numbers

τ ′
i = τi + ai

α
, i = 1, 2, . . . ,

where α is a positive number, which will be specified later. Note that, in general, the sequence
τ ′
1, τ

′
2, . . . is neither increasing nor decreasing. Throughout the paper we impose conditions

on parameters α, a1, a2, . . . and we choose the parameters in Sect. 3.11.
Describe the idea of construction of evader’s strategy. On the time interval [0, τ1), the

evader y moves parallel to the vector e. Note that τ1, the first time of a1-approach with a
pursuer may not occur. In this case, either |y(t) − xi (t)| > a1 or (y(t), e) ≥ (xi (t), e) and
y(t) �= xi (t) for all t ≥ 0 and i = 1, . . . , K . The latter case will be discussed in Sect. 3.4.
In both cases, we let τ1 = ∞, and because of y(t) �= xi (t), t ≥ 0, evasion is possible.

Let ai -approaches occur at finite times τi , i = 1, 2, . . .. On the set [τi , τ ′
i )\∪ j≥i+1 [τ j , τ ′

j ),
the evader y uses a maneuver against the pursuer xi , i = 1, 2, . . .. Also we say that the evader
is under the attack of pursuer xi on this set.

Note that a2-approach may occur before the time τ ′
1, that is, τ2 < τ ′

1, and then a3-
approach may occur before the time max{τ ′

1, τ
′
2}, that is, τ3 < max{τ ′

1, τ
′
2} and so on. If

this process is broken off at some first time τ ∗
p

.= max{τ ′
1, . . . , τ

′
p} with p ≥ 1, that is,

τ j < max{τ ′
1, . . . , τ

′
j−1} (τ ′

0
.= τ ′

1) for all j = 1, . . . , p and τp+1 > τ ∗
p , then we say that the

evader undergo the continuous attack of the pursuers x1, . . . , xp on the time interval [τ1, τ ∗
p).

In other words,

(i) [τ1, τ ∗
p) = ∪p

i=1[τi , τ ′
i ), that is, at each t ∈ [τ1, τ ∗

p), the evader is under the attack of a
pursuer x j , j ∈ {1, . . . , p},

(ii) all pursuers xi , i = 1, . . . , p, participate in attack on [τ1, τ ∗
p ],

(iii) τp+1 > τ ∗
p and on the interval [τ ∗

p , τp+1) the evader is not under the attack of any
pursuer.

It should be noted that one pursuer can attend several times in the sequence x1, . . . , xp with
different labels.
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Fig. 2 Continuous attack of the pursuers x1, x2, x3, and x4 is completed at τ ′
2

At the time τ ∗
p , a continuous attack of the group of pursuers x1, . . . , xp is stopped. The

evader y moves again parallel to the vector e on [τ ∗
p , τp+1). In general, on the set R\ ∪i≥1

[τi , τ ′
i ), the evader is not under attack of any pursuer. Starting from τp+1 the evader may

undergo a continuous attack of another group of pursuers. It should be noted that one pursuer
can participate in several continuous group attacks too.

Let [τωk−1+1, τ
∗
ωk

), k = 1, 2, . . . , (ω0 = 0), be time intervals where the evader
undergoes a continuous attack of a group of pursuers xωk−1+1, . . . , xωk , where τ ∗

ωk
=

max{τ ′
ωk−1+1, . . . , τ

′
ωk

}. Hence, on the time intervals [τ ∗
ωk

, τωk+1), k = 1, 2, . . ., the evader
is not under attack of any pursuer. For convenience, let τ ∗

0 = 0. If for some ωk there is no
approach time greater than τ ∗

ωk
, then we put τωk+1 = ∞.

Define a natural-valued function r = r(t), τωk−1+1 ≤ t < τ ∗
ωk
, which may change its

value only at points τi , τ ′
i , i = ωk−1 + 1, . . . , ωk , as follows:

r(t) = max{ j ∈ {ωk−1 + 1, . . . , ωk}| τ j ≤ t < τ ′
j } if t ∈ [τωk−1+1, τ

∗
ωk

). (3.11)

Here some properties of the function r(t).

Property 3.3 Let i ∈ {ωk−1 + 1, . . . ωk} be any number. Then
(i) r(t) = i, if t ∈ [τi , τ ′

i )\Ji+1, where Ji+1 = ∪ωk
j=i+1[τ j , τ ′

j ), i < ωk; Jωk+1 = ∅,

(3.12)
(ii) if τi+1 < τ ′

i , then r(t) = i on [τi , τi+1),
(iii) if τi+1 ≥ τ ′

i , then r(t) = i on [τi , τ ′
i ).

Proof (i) Indeed, let t ∈ [τp, τ ′
p)\Jp+1. Then t ∈ [τp, τ ′

p), and so by (3.11) r(t) ≥ p.
However, because of t /∈ Jp+1, we get r(t) < p + 1. Hence, r(t) = p.
(ii) Let τi+1 < τ ′

i . Then [τi , τi+1) ⊂ [τi , τ ′
i )\Ji+1, and therefore by (3.12) r(t) = i .

(iii) Let now τi+1 ≥ τ ′
i . Then [τi , τ ′

i )\Ji+1 = [τi , τ ′
i ), and so therefore by (3.12) we get

r(t) = i, t ∈ [τi , τ ′
i ). ��

Thus, r(t) is a step function.
Give an example (see Fig. 2). On the interval [0, τ1) the evader is not under attack of any

pursuer; r(t) = 1 if t ∈ [τ1, τ2); r(t) = 2 if t ∈ [τ2, τ3) ∪ [τ ′
3, τ4) ∪ [τ ′

4, τ
′
2); r(t) = 3

if t ∈ [τ3, τ ′
3); r(t) = 4 if t ∈ [τ4, τ ′

4) and the evader uses (3.14). At the time τ ∗
4 = τ ′

2,
continuous attack of the pursuers x1, x2, x3 and x4 is completed. Then on the interval [τ ′

2, τ5),
the evader is not under attack of any pursuer. Starting from the time τ5 the evader undergoes
an attack of another group of pursuers.

We now start constructing a strategy for the evader y. Set v(t) = 0 if I (t) = ∅, else

v(t) =
{(∑

k∈I (t) |uk(t)|2
)1/2

e, q(t) > 0,

0, q(t) = 0,
, t ∈ [τ ∗

ωk
, τωk+1), k = 0, 1, 2, . . .

(3.13)
For k = 0, we have [τ ∗

ω0
, τω0+1) = [0, τ1), therefore, the evader uses (3.13) on [0, τ1) as well.

Thus, by (3.13) the evader moves parallel to the vector e on the intervals [τ ∗
ωk

, τωk+1), k =
0, 1, 2, . . ..
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For i = 1, 2, . . ., let

V1i (t) =
{

α + |(ui (t), e′)|, (y(τi ), e′) ≥ (xi (τi ), e′),
−(α + |(ui (t), e′)|), (y(τi ), e′) < (xi (τi ), e′),

V2i (t) = α +
⎛
⎝ ∑

k∈I (t)\{i}
|uk(t)|2 + (ui (t), e)

2

⎞
⎠

1/2

.

For t ∈ [τωk−1+1, τ
∗
ωk

), k = 1, 2, . . ., the maneuver of the evader against the pursuer xr is
defined as follows:

v(t) =
{
V1r (t)e′ + V2r (t)e, q(t) > 0,
0 q(t) = 0,

(3.14)

where r = r(t) defined by (3.11).

3.4 Evasion from the Pursuer xi for which ( y(θ), e) ≥ (xi (θ), e)

Let (y(θ), e) ≥ (xi (θ), e) and y(θ) �= xi (θ) for a pursuer xi at some time θ ≥ 0. We show
that if xi (s) ∈ S, θ ≤ s ≤ t , then xi (t) �= y(t) for any behavior of the pursuer xi , as long as
q(t) > 0. Let xi (s) ∈ S, θ ≤ s ≤ t .

Consider two cases 1) θ ∈ [τ ∗
ωp

, τωp+1), and 2) θ ∈ [τωp+1, τ
∗
ωp+1

) at some p ∈ {0, 1, . . .},
where τ ∗

ωp
is the time when continuous attack of a group of the pursuers xωp−1+1, . . . , xωp

is completed, and the attack of another group of pursuers xωp+1, . . . , xωp+1 is started at the
time τωp+1 and completed at the time τ ∗

ωp+1
.

Case 1 Let θ ∈ [τ ∗
ωp

, τωp+1), p ∈ {0, 1, . . .}.
A. Let θ ≤ t < τωp+1. Since (y(θ) − xi (θ), e) ≥ 0, then by (3.13) we have (y(θ) −

xi (θ),
t∫

θ

v(s)ds) ≥ 0, and hence

|y(t) − xi (θ)|2 ≥ |y(θ) − xi (θ)|2 +
⎛
⎝y(θ) − xi (θ),

t∫

θ

v(s)ds

⎞
⎠+

∣∣∣∣∣∣
t∫

θ

v(s)ds

∣∣∣∣∣∣
2

≥ |y(θ) − xi (θ)|2 +
⎛
⎜⎝

t∫

θ

⎛
⎝ ∑

k∈I (t)
|uk(s)|2

⎞
⎠

1/2

ds

⎞
⎟⎠

2

≥ |y(θ) − xi (θ)|2 +
⎛
⎝

t∫

θ

|ui (s)|ds
⎞
⎠

2

.

Therefore,

|y(t) − xi (t)| ≥ |y(t) − xi (θ)| −
∣∣∣∣∣∣

t∫

θ

ui (s)ds

∣∣∣∣∣∣

≥
⎛
⎜⎝|y(θ) − xi (θ)|2 +

⎛
⎝

t∫

θ

|ui (s)|ds
⎞
⎠

2
⎞
⎟⎠

1/2

−
∫ t

θ

|ui (s)|ds.
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Since the right-hand side of this inequality is positive, and so y(t) �= xi (t). Moreover, in
the view of (3.13), (y(t) − xi (t), e) ≥ 0, θ ≤ t ≤ τωp+1.

B. Let now τωp+1 ≤ t < τ ∗
ωp+1

. We get

(y(t), e) − (xi (t), e) = (y(θ), e) − (xi (θ), e) +
t∫

θ

(v(s), e)ds −
t∫

θ

(ui (s), e)ds

≥
τωp+1∫

θ

(v(s), e)ds +
t∫

τωp+1

(v(s), e)ds

−
τωp+1∫

θ

(ui (s), e)ds −
t∫

τωp+1

(ui (s), e)ds.

In view of (3.14), we then have

(y(t), e) − (xi (t), e) ≥
τωp+1∫

θ

((v(s), e) − (ui (s), e)) ds

+
t∫

τωp+1

⎡
⎢⎣α +

⎛
⎝ ∑

k∈I (t)\{r}
|uk(s)|2 + (ur (s), e)

2

⎞
⎠

1/2

− (ui (s), e)

⎤
⎥⎦ ds > 0, (3.15)

where r = r(t). The first integral is not negative since by (3.13), (v(s), e) ≥ (ui (s), e), θ ≤
t ≤ τωp+1, and the second integral is clearly positive. Hence, y(t) �= xi (t), τωp+1 ≤ t <

τ ∗
ωp+1

.
C. Let now t ≥ τ ∗

ωp+1
. Then it can be shown that inequalities (3.15) and (v(t), e) ≥

(ui (t), e) [see (3.13) and (3.14)], imply that (y(t), e) − (xi (t), e) > 0 for all t ≥ τ ∗
ωp+1

.
Hence, xi (t) �= y(t) for all t ≥ θ .
Case 2 Let θ ∈ [τωp+1, τ

∗
ωp+1

). Then according to (3.14)

(v(t), e) ≥ α + |ui (t)| > (ui (t), e), θ ≤ t < τ ∗
ωp

,

and therefore for any t > θ, we obtain (y(t), e) > (xi (t), e), provided xi (s) ∈ S, s ∈ [θ, t].
Thus, in both cases, if (y(θ), e) ≥ (xi (θ), e), y(θ) �= xi (θ) and xi (s) ∈ S, θ ≤ s ≤ t , for a

pursuer xi and some time θ , then (y(t), e) ≥ (xi (t), e) and y(t) �= xi (t). What if this pursuer
goes out of the set S and moves outside S till some time τ for which (xi (τ ), e) > (y(τ ), e)
and gets again into the set S to make some a j -approach? We will discuss this question in
Sect. 3.10.

3.5 Fictitious Evaders

To estimate distances between pursuers and evaders, we define fictitious evaders (FEs) zi , i =
ωk−1, . . . , ωk , by the equations

żi = wi , zi (τi ) = y(τi ), τi ≤ t < τ ′
i , (3.16)

where wi is the control parameter of the FE zi . According to (3.16), the initial position
of FE zi at τi coincides with the position of the evader at the same time τi , and FE
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zi is defined only on the time interval [τi , τ ′
i ). We define the strategy of FE zi as fol-

lows:

wi (t) = V1i (t)e
′ + V2r (t)e, τi ≤ t < τ ′

i , (3.17)

where V2r (t) is the same as in (3.14). Note that (wi (t), e) = (v(t), e) = V2r (t), τi ≤
t < τ ′

i , that is speeds of the FE zi and the evader y along the direction e are the
same. Also combining (3.14) and (3.17), we observe that zr (t) = y(t), τr ≤ t ≤
τ ′
r .
Next, show that

τ ′
i∫

τi

|wi (s)|2ds ≤ 2σ 2. (3.18)

Indeed, introducing the following vector functions

f (s) = (α, α) and g(s) =
⎛
⎜⎝|(ui (s), e′)|,

⎛
⎝ ∑

k∈I (t)\{r}
|uk(s)|2 + (ur (s), e)

2

⎞
⎠

1/2
⎞
⎟⎠ ,

we obtain

V 2
1i (s) + V 2

2r (s)

= (α + |(ui (s), e′)|)2 +
⎛
⎜⎝α +

⎛
⎝ ∑

k∈I (s)\{r}
|uk(s)|2 + (ur (s), e)

2

⎞
⎠

1/2
⎞
⎟⎠

2

= | f (s) + g(s)|2.
Then by the Minkowskii inequality

⎛
⎜⎝

τ ′
i∫

τi

|wi (s)|2ds
⎞
⎟⎠

1/2

=
⎛
⎜⎝

τ ′
i∫

τi

(
V 2
1i (s) + V 2

2r (s)
)
ds

⎞
⎟⎠

1/2

=
⎛
⎜⎝

τ ′
i∫

τi

| f (s) + g(s)|2ds
⎞
⎟⎠

1/2

≤
⎛
⎜⎝

τ ′
i∫

τi

| f (s)|2ds
⎞
⎟⎠

1/2

+
⎛
⎜⎝

τ ′
i∫

τi

|g(s)|2ds
⎞
⎟⎠

1/2

=
⎛
⎜⎝

τ ′
i∫

τi

2α2ds

⎞
⎟⎠

1/2

+
⎛
⎜⎝

τ ′
i∫

τi

⎛
⎝(ui (s), e

′)2 +
∑

k∈I (s)\{r}
|uk(s)|2 + (ur (s), e)

2

⎞
⎠ ds

⎞
⎟⎠

1/2

(3.19)

Since

τ ′
i∫

τi

(ui (s), e
′)2ds ≤

τ ′
i∫

τi

|ui (s)|2ds ≤ ρ2
i ,
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and

τ ′
i∫

τi

⎛
⎝ ∑

k∈I (s)\{r}
|uk(s)|2 + (ur (s), e)

2

⎞
⎠ ds ≤ ρ2.

then requiring that
αa1 ≤ (σ − ρ)2 (3.20)

and using definition of τ ′
i , we obtain from (3.19)

⎛
⎜⎝

τ ′
i∫

τi

|wi (s)|2ds
⎞
⎟⎠

1/2

≤ √
2αai +

√
ρ2
i + ρ2

≤ √
2αa1 + ρ

√
2 ≤ σ

√
2

which is the desired conclusion.

3.6 Estimation of the Distance Between FE and Pursuer

Let us estimate the distance |xp(t) − z p(t)|, t ∈ [τp, τ ′
p), between the FE z p and pursuer xp

for any p ∈ {ωk−1 + 1, . . . , ωk}. To this end, estimate |xp(t) − z p(t)| in two ways. Since
|xp(τp) − z p(τp)| = ap , then by the Cauchy–Schwartz inequality and inequality (3.18), we
have

|xp(t) − z p(t)| ≥ |xp(τp) − z p(τp)| −
∣∣∣∣

t∫

τp

wp(s)ds

∣∣∣∣−
∣∣∣∣

t∫

τp

u p(s)ds

∣∣∣∣

≥ ap − (
√
2 + 1)

√
t − τp · σ (3.21)

provided
t∫

τp

|u p(s)|2ds ≤ ρ2
p.

On the other hand by (3.14), signs of

(z p(τp), e
′) − (xp(τp), e

′) = (y(τp), e
′) − (xp(τp), e

′)

and ±(α + |(u p(s), e′)|) are the same, and therefore

|z p(t) − xp(t)| ≥ |(z p(t) − xp(t), e
′)| ≥ |(z p(τp), e′) − (xp(τp), e

′)|

+
t∫

τp

(α + |(u p(s), e
′)|)ds −

t∫

τp

|(u p(s), e
′)|ds

≥ α(t − τp). (3.22)

From (3.21) and (3.22), we conclude that

|z p(t) − xp(t)| ≥ h(t), h(t) = max{ap − (
√
2 + 1)σ

√
t − τp, α(t − τp)}.
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Since the function h1(t) = ap − (
√
2 + 1)σ

√
t − τp decreases on [τp, τ ′

p] from ap to

ap − (
√
2 + 1)σ

√
ap
α
, and h2(t) = α(t − τp) increases on [τp, τ ′

p] from 0 to ap , and

therefore the function h(t) has the only minimum point t∗ ∈ (τp, τ
′
p), which is the only root

of the equation h1(t) = h2(t). We can see that

t∗ = τp + 4a2p(
(
√
2 + 1)σ +

√
(3 + 2

√
2)σ 2 + 4αap

)2 .

Then, h2(t∗) >
αa2p
6σ 2 , provided α and ap are required to satisfy the inequalities

0 < α < 1, 12αap < σ 2. (3.23)

Then we obtain the following estimate for the distance between FE z p and pursuer xp

|z p(t) − xp(t)| >
αa2p
6σ 2 , τp ≤ t ≤ τ ′

p. (3.24)

In addition,

(z p(τ
′
p) − xp(τ

′
p), e) = (z p(τp) − xp(τp), e) +

τ ′
p∫

τp

((v(s), e) − (u p(s), e))ds

≥ −ap +
τ ′
p∫

τp

(α + |(u p(s), e)| − (u p(s), e))ds

≥ −ap + α(τ ′
p − τp) = 0,

then according to (3.16) and (3.17), we obtain

(y(τ ′
p), e) = (y(τp), e) +

τ ′
p∫

τp

(v(s), e)ds

= (z p(τp), e) +
τ ′
p∫

τp

(wp(s), e)ds

= (z p(τ
′
p), e) ≥ (xp(τ

′
p), e). (3.25)

The inequality (3.25) shows that at the time τ ′
p the pursuer xp becomes passive.

3.7 Estimation of the Distance Between Evader and FE

To estimate the distance |xp(t)− y(t)| between the evader y and pursuer xp for t ∈ [τp, τ ′
p),

we first estimate the distance |y(t) − z p(t)| between the evader y and FE z p on the time
interval [τp, τ ′

p) assuming that q(t) > 0.
If ap+1-approach time τp+1 > τ ′

p , then by Property 3.3 (iii) r = r(t) = p for all
t ∈ [τp, τ ′

p). Hence, comparing (3.14) with (3.17) we get wp(t) = v(t), τp ≤ t < τ ′
p .

Consequently y(t) = z p(t), t ∈ [τp, τ ′
p], and so |y(t) − z p(t)| = 0, t ∈ [τp, τ ′

p].
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Fig. 3 Evader y and FE z p

Let now τp+1 ∈ (τp, τ
′
p). Then by Property 3.3 (ii) r = r(t) = p for t ∈ [τp, τp+1), and

comparing (3.14) with (3.17) we get wp(t) = v(t), τp ≤ t < τp+1.
Then (see Fig. 3)

y(τp+1) = y(τp) +
τp+1∫
τp

v(t)dt

= z p(τp) +
τp+1∫
τp

wp(t)dt = z p(τp+1).

Therefore, for τp+1 ≤ t < τ ′
p , we get

|y(t) − z p(t)| =

∣∣∣∣∣∣∣
y(τp+1) +

t∫

τp+1

v(s)ds − z p(τp+1) −
t∫

τp+1

wp(s)ds

∣∣∣∣∣∣∣

≤
t∫

τp+1

|v(s) − wp(s)|ds (3.26)

Since wp(t) = v(t) on [τp+1, t]\Jp+1, where Jp+1 is defined in (3.12), then combining
(3.14) and (3.17) with (3.26), yields

|y(t) − z p(t)| ≤
∫

[τp+1,t)∩Jp+1

|v(s) − wp(s)|ds

≤
∫

Jp+1

(2α + |(ur (s), e′)|) + |(u p(s), e
′)|)ds, (3.27)
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where r = r(s). As

|(ur (s), e′)| ≤ |ur (s)| ≤
√√√√ K∑

i=1

|ui (s)|2ds

then from (3.27) by using the Cauchy–Schwartz inequality we get

|y(t) − z p(t)| ≤ 2α mes(Jp+1) + 2
∫

Jp+1

√√√√ K∑
i=1

|ui (s)|2ds

≤ 2α mes(Jp+1) + 2ρ
√
mes(Jp+1), (3.28)

where mes(Jp+1) denotes the Lebesgue measure of the set Jp+1. Since Jp+1 ⊂
∪i≥p+1[τp, τ ′

p), then (3.9) implies that

mes(Jp+1) ≤
∑

i≥p+1

(τ ′
i − τi ) ≤

∞∑
i=p+1

ai
α

≤ 2ap+1

α
,

Thus, the last inequality and (3.28) yield that

|y(t) − z p(t)| ≤ 4ap+1 + 2ρ

√
2ap+1

α
< 4ρ

√
2ap+1

α
(3.29)

provided that the parameters ap+1 and α satisfy the condition

2ap+1α < ρ2. (3.30)

Thus, we have obtained an estimate for |y(t) − z p(t)| which is given by (3.29).

3.8 Estimation of Distance Between Pursuer and Evader

Finally, estimate the distance between the pursuer xp and evader on the time interval [τp, τ ′
p)

when evader’s energy is positive. It follows from (3.24) and (3.29) that

|xp(t) − y(t)| ≥ |xp(t) − z p(t)| − |z p(t) − y(t)|

>
αa2p
6σ 2 − 4ρ

√
2ap+1

α
≥ αa2p

12σ 2 (3.31)

provided that
αa2p
12σ 2 ≥ 4ρ

√
2ap+1

α
. Solve this inequality for ap+1 to obtain a new requirement

for parameters ap+1, ap, and α

ap+1 ≤ α3

144 · 32 · ρ2 · σ 4 a
4
p. (3.32)

Thus, for any t ∈ [τp, τ ′
p),

|xp(t) − y(t)| >
αa2p
12σ 2 . (3.33)

Also, require that
αa2p
12σ 2 ≥ ap+1. (3.34)
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Then (3.33) implies that |xp(t)− y(t)| > ap+1. Therefore, for any j ≥ p+1, a j -approach
doesn’t occur on [τp, τ ′

p] with the pursuer xp . According to (3.25) (y(τ ′
p), e) ≥ (xp(τ ′

p), e).
As it was proved earlier in Sect. 3.4, the inequalities xp(τ ′

p) �= y(τ ′
p) [which follows from

(3.33)] and (y(τ ′
p), e) ≥ (xp(τ ′

p), e) imply that (y(t), e) ≥ (xp(t), e) and y(t) �= xp(t) for
all t > τ ′

p , while xp(s) ∈ S for all τ ′
p ≤ s ≤ t , and q(t) > 0. That is this pursuer becomes

passive while xp(t) ∈ S, t > τ ′
p .

3.9 Estimation of Evaders Energy and Possibility of Evasion

Let T be any positive number, and τ ∗
ωl

(ω0 = 0, τ ∗
0 = 0), l = 0, 1, . . ., be the times when

continuous attack of a group of pursuers is completed, and τωl+1, l = 0, 1, . . ., be the times
when continuous attack of a group of pursuers is started. The time T can be either in an
interval [τ ∗

ωp
, τωp+1) or in an interval [τωp−1+1, τ

∗
ωp

) for some p. First, estimate the energy of
the evader spent on the time interval [0, T ]. Since on the intervals [τ ∗

ωl
, τωl+1), l = 0, 1, . . . ,

the evader uses (3.13), and on the intervals [τωl−1+1, τ
∗
ωl

), l = 1, 2, . . . , the evader is under
the attack of pursuers and uses (3.14). Consequently, the evader spends the following amount
of energy

T∫

0

|v(t)|2dt ≤ A1 + A2 + A3, (3.35)

where

A1 =
p−1∑
l=0

τωl+1∫

τ∗
ωl

⎛
⎝∑

i∈I (t)
|ui (t)|2

⎞
⎠ dt,

A2 =
p−1∑
l=1

τ∗
ωl∫

τωl−1+1

(
V 2
1r (t) + V 2

2r (t)
)
dt,

A3 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

T∫
τ∗
ωp

(∑
i∈I (t) |ui (t)|2

)
dt, if T ∈ [τ ∗

ωp
, τωp+1),

T∫
τωp−1+1

(
V 2
1r (t) + V 2

2r (t)
)
dt, if T ∈ [τωp−1+1, τ

∗
ωp

),

where r = r(t).
Since (ur (t), e′)2 + (ur (t), e)2 = |ur (t)|2, then similar to (3.19), with i replaced by r , we

obtain for any λ,μ ∈ [τωp−1+1, τ
∗
ωp

) and λ ≤ μ that

⎛
⎝

μ∫

λ

(
V 2
1r (s) + V 2

2r (s)
)
ds

⎞
⎠

1/2

=
⎛
⎝

μ∫

λ

2α2ds

⎞
⎠

1/2

+
⎛
⎝

μ∫

λ

⎛
⎝(ur (s), e

′)2 +
∑

i∈I (s)\{r}
|ui (s)|2 + (ur (s), e)

2

⎞
⎠ ds

⎞
⎠

1/2
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=
√
2α2(μ − λ) +

⎛
⎝

μ∫

λ

⎛
⎝ ∑

i∈I (s)
|ui (s)|2

⎞
⎠ ds

⎞
⎠

1/2

. (3.36)

Then, by the inequality
μ∫
λ

(∑
i∈I (s) |ui (s)|2

)
ds ≤ ρ2, we can see that

μ∫

λ

(
V 2
1r (s) + V 2

2r (s)
)
ds

= 2α2(μ − λ) + 2
√
2α2(μ − λ)ρ +

μ∫

λ

⎛
⎝ ∑

i∈I (s)
|ui (s)|2

⎞
⎠ ds.

Therefore, (3.35) can be rewritten as follows:

T∫

0

|v(t)|2dt ≤
T∫

0

∑
i∈I (t)

|ui (t)|2dt + B1 + B ′
1 + B2 + B ′

2, (3.37)

where

B1 =
p−1∑
l=1

2α2(τ ∗
ωl

− τωl−1+1), B2 =
p−1∑
l=1

2
√
2α2(τ ∗

ωl
− τωl−1+1)ρ,

B ′
1 =

{
0, T ∈ [τ ∗

ωp
, τωp+1),

2α2(T − τωp−1+1), T ∈ [τωp−1+1, τ
∗
ωp

),
(3.38)

B ′
2 =

{
0, T ∈ [τ ∗

ωp
, τωp+1),

2ρ
√
2α2(T − τωp−1+1), T ∈ [τωp−1+1, τ

∗
ωp

).
(3.39)

Next, estimate B1, B ′
1, B2, B ′

2. Using (3.9) yields for l = 1, . . . , p − 1,

α2(τ ∗
ωl

− τωl−1+1) ≤ α2
∑

τ j∈[τωl−1+1,τ∗
ωl

)

(τ ′
j − τ j ) = α2

∑
τ j∈[τωl−1+1,τ∗

ωl
)

a j

α

≤ α(aωl−1+1 + aωl−1+2 + . . .) ≤ 2αaωl−1+1, (3.40)

Similarly, for T ∈ [τωp−1+1, τ
∗
ωp

),

α2(T − τωp−1+1) ≤ α2(τ ∗
ωp

− τωp−1+1) ≤ 2αaωp−1+1. (3.41)

Then, combining the inequalities (3.40) and (3.41) with (3.38) and then using (3.9), we get

B1 + B ′
1 ≤ 2

p−1∑
l=1

α2(τ ∗
ωl

− τωl−1+1) + 2α2(T − τωp−1+1)

≤ 4α
p−1∑
i=1

aωl−1+1 + 4αaωp−1+1 ≤ 4α
∞∑
i=1

ai ≤ 8αa1. (3.42)
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Combining (3.40) and (3.41) with (3.39), and then using (3.10), we obtain

B2 + B ′
2 ≤ 2ρ

p−1∑
l=1

√
2α2(τ ∗

ωl
− τωl−1+1) + 2ρ

√
2α2(T − τωp−1+1)

≤ 4ρ
p−1∑
i=1

√
αaωl−1+1 + 4ρ

√
αaωp−1+1 ≤ 4ρ

∞∑
i=1

√
αai ≤ 8ρ

√
αa1. (3.43)

Therefore, using (3.42) and (3.43), we obtain from (3.37)

T∫

0

|v(t)|2dt ≤ 4αa1 + 8ρ
√

αa1 +
T∫

0

∑
i∈I (t)

|ui (t)|2dt. (3.44)

Let α, a1 satisfy the following inequality

4αa1 + 8ρ
√

αa1 <
σ 2 − ρ2

2M
. (3.45)

Then it follows from (3.44) that

T∫

0

|v(t)|2dt <
σ 2 − ρ2

2M
+

T∫

0

∑
i∈I (t)

|ui (t)|2dt. (3.46)

We again think of all evaders moving in the sets S j , j = 1, . . . , M , and proceed to show
that evasion is possible in the game (1.1)–(1.4). For the evader y j , j ∈ {1, . . . , M}, the
inequality (3.46) can be written as follows:

T∫

0

|v j (t)|2dt <
σ 2 − ρ2

2M
+

T∫

0

∑
i∈I j (t)

|ui (t)|2dt. (3.47)

Clearly, the evader y j can move using strategies (3.13) and (3.14) not being captured on
[0, T ] providing that q j (t) > 0 and the number of approach times in [0, T ] for this evader is
finite. We claim that for any T > 0, the inequality qi (t) > 0, 0 ≤ t ≤ T , holds for at least
one i ∈ {1, . . . , M}. Finiteness of approach times will be shown in the next subsection. This
means that at least one of the evaders is not captured on [0, T ]. Assume the contrary, that is

T∫

0

|v j (t)|2dt ≥ σ 2
j for all j = 1, . . . , M,

at some T > 0. Since I j1(t) ∩ I j2(t) = ∅ for every j1 �= j2, and I j (t) ⊂ 1, 2, . . . , M , then
from (3.47), we obtain

σ 2 = σ 2
1 + · · · + σ 2

M ≤
M∑
j=1

T∫

0

|v j (t)|2dt

<
σ 2 − ρ2

2
+

M∑
j=1

T∫

0

∑
i∈I j (t)

|ui (t)|2ds



372 Dyn Games Appl (2018) 8:352–378

≤ σ 2 − ρ2

2
+ ρ2 = σ 2 + ρ2

2
< σ 2.

A contradiction. Thus, for any time T > 0, at least one of the evaders is not captured on
[0, T ]. Note that strategies of evaders do not depend on T .

3.10 Finiteness of the Number of Approaches

Is the number of approach times τ1, τ2, . . . in any time interval [0, T ] finite? or are there
infinitely many approach times τ1, τ2, . . . on an interval [0, T ]? We show that for any finite
time interval [0, T ], the number of approach times τ1, τ2, . . . is finite. To see this, we take
any pursuer xi and show that the number of approach times of xi in [0, T ] is finite.

Let τi be the first an ai -approach time of the pursuer xi with the evader. On the interval
[τi , τ ′

i ), as shown in Sect. 3.9 that a new a j -approach ( j ≥ i + 1) will not occur with this
pursuer. According to (3.33), at the time τ ′

i the inequality (y(τ ′
i ), e) ≥ (xi (τ ′

i ), e) holds. It
was shown in Sect. 3.9 that, if xi (s) ∈ S for all τ ′

i ≤ s ≤ t , then (y(t), e) ≥ (xi (t), e)
and y(t) �= xi (t), and therefore, starting from τ ′

i , this pursuer is passive, and because of
the inequality (y(t), e) ≥ (xi (t), e), t ≥ τ ′

i , further approach times are not defined while
xi (t) ∈ S.

There is only one way for the pursuer xi to make a new a j - approach with the evader: The
pursuer xi has to go out of the set S, and move outside S for some time to get (xi (t), e) >

(y(t), e), then get into the set S again to make a new approach with the evader.
Show that at any approach time τk the pursuer xi will be in S′. Indeed, by the definition

of the approach time τk , we have |y(τk) − xi (τk)| = ak and therefore

|(xk(τk) − y0, e
′)| ≤ |(xk(τk) − y(τk), e

′)| + |(y(τk) − y0, e
′)|

≤ ak + a

2
< a,

meaning that xi (τk) ∈ S′. Here, the inequality |(y(τk) − y0, e′)| < a
2 , which will be proved

in Sect. 4.2, and assumption

ak <
a

2
for all i = 1, 2, . . . , (3.48)

are used.
We now estimate the number of approach times on the interval [0, T ]. Let t ′ be an approach

time. Then by the reasoning above we have xi (t ′) ∈ S′. Let xi (t ′′) /∈ S at some time t ′′. That
is, at the time t ′ the pursuer is in S′, and at the time t ′′ the pursuer xi is outside S. Then

b ≤ |xi (t ′′) − xi (t
′)| =

∣∣∣∣∣∣∣

t ′′∫

t ′
ui (s)ds

∣∣∣∣∣∣∣
≤

t ′′∫

t ′
|ui (s)|ds. (3.49)

If there are N approach times in (τi , T ], then the pursuer xi must have gone out of S at
least N times. Note that at each approach time the pursuer is in S′. Let xi (t ′j ) ∈ S′ and
xi (t ′′j ) /∈ S, j = 1, . . . , N . According to (3.49),

b ≤
t ′′j∫

t ′j

|ui (s)|ds, j = 1, . . . , N . (3.50)
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Clearly, t ′j < t ′′j < t ′j+1, j = 1, 2, . . . , N , and so intervals [t ′j , t ′′j ], j = 1, 2, . . . , N , are
disjoint. Then, we obtain from (3.50)

Nb ≤
N∑
j=1

t ′′j∫

t ′j

|ui (s)|ds ≤
T∫

0

|ui (s)|ds ≤ √
T · ρi ≤ ρ

√
T .

Hence, N ≤ ρ
√
T

b . Thus, the number of approach times with the pursuer xi on [0, T ] is finite
and does not exceed

[
ρ
√
T

b

]
+ 1.

Therefore, the total number of approaches with all pursuers on [0, T ] does not exceed
K
([

ρ
√
T

b

]
+ 1

)
. Thus, we can conclude that the number of approach times τ1, τ2, . . ., is

finite on any interval [0, T ] and hence they have no limit point on [0, T ].
3.11 Estimate of Parameters

We imposed the following conditions on the parameters κ, α, ai , i = 1, 2, . . .:

A. 0 < κ < 1, 0 < a1 < min
{ 1
2 ,

a
2 , b, d

}
[see (3.7)];

B. 0 < α < 1, 12αai < σ 2 [see (3.23)];

C.
αa2i
12σ 2 > ai+1 [see (3.34)];

D. ai+1 < a4i [see (3.8)];

E. 4αa1 + 8ρ
√

αa1 <
σ 2−ρ2

2M [see (3.45)];
F. ai < a

2 [see (3.48)];
G. 2αai+1 < ρ2 [see (3.30)];
H. ai+1 ≤ α3

144·32·ρ2σ 4 a
4
i [see (3.32)];

I. 2αa1 ≤ (σ − ρ)2 [see (3.20)];

To satisfy all these inequalities, we choose parameters. Let

a1 = a2α

16σ 2 ,

where a is the number in definition of S′. Next, choose the number α, 0 < α < min{1, σ 2},
to satisfy the inequalities

12αa1 < (σ − ρ)2, αa1 <
(σ 2 − ρ2)2

64M2(2ρ + 1)2
, a1 < min

{
1

2
,
ρ2

2
,
a

2
, b, d

}
. (3.51)

Then choose κ by the formula

κ = α3

144 · 32σ 6 . (3.52)

Observe that κ < 1. After that choose numbers a2, a3, . . . by the formula

ai+1 = κa4i , i = 1, 2, . . . . (3.53)

Note that by the third inequality of (3.51) and (3.53) the inequalities 1/2 ≥ a1 > a2 > . . .

hold. Then, we show that all the above inequalities A–I are satisfied.
Indeed, A follows from (3.51) and (3.52). B is satisfied since by the first inequality of

(3.51)
12αai ≤ 12αa1 < (σ − ρ)2 < σ 2. (3.54)
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Next, show the inequality in C. Indeed, to show

αa2i
12σ 2 > ai+1 = α3a4i

144 · 32σ 6 ,

it is sufficient to show that

a2i α
2 < 12 · 32σ 4.

This inequality is valid since by (3.54)

(aiα)2 ≤ (a1α)2 < σ 4/144 < 12 · 32σ 4.

Since κ < 1, then (3.53) implies D. Since α ∈ (0, 1), 0 < ai+1 < a1 and a1 < ρ2/2, then
we obtain

2αai+1 < 2ai+1 < 2a1 < ρ2,

which gives us the validity of option G.
We now think of E. The numbers α and a1 are less than 1, and therefore αa1 <

√
αa1.

Then according to the second inequality of (3.51) we have

4αa1 + 8ρ
√

αa1 < 4
√

αa1 + 8ρ
√

αa1 = 4(1 + 2ρ)
√

αa1 <
σ 2 − ρ2

2M
,

and soE is satisfied.Next, F follows from the inequalities a1 < min{ 12 , a
2 } and ai > ai+1, i =

1, 2, . . .. Sinceσ ≥ ρ, H follows from (3.52) and (3.53). I also follows from thefirst inequality
in (3.51).

Now, we turn to the game with the evaders y1, . . . , yM . We choose the parameters
αi , a j1, a j2, . . . as follows. Let a j1 = a1 for all j = 1, . . . , M . We choose αi = α.
We define the numbers a j2, a j3, . . . by formula

a j,i+1 = κa4j i , i = 1, 2, . . . , j = 1, . . . , M.

Note that by the choice of the numbers a j1 we obtain a1i = . . . = aMi , i = 1, 2, . . ..
Therefore, inequalities a ji < a

2 are satisfied. Proof of Theorem 3.1 is complete.

4 Discussion

4.1 The Evader Moves in a Corridor of width a

If parameters are chosen as in Sect. 3.11, then we show that the evader moves in a corridor
of width a. More precisely, we show that |(y(t) − y0, e′)| ≤ a/2. Indeed,

|(y(t) − y0, e
′)| =

∣∣∣∣∣∣
t∫

0

(v(s), e′)ds

∣∣∣∣∣∣ ≤
t∫

0

|(v(s), e′)|ds

≤
⎛
⎜⎝
∫

E

+
∫

[0,t]\E

⎞
⎟⎠ |(v(s), e′)|ds

where

E =
⋃

{i |τi∈[0,t]}
[τi , τ ′

i ].
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Note that by (3.13), (v(t), e′) = 0, t ∈ [0, t]\E . Therefore,

|(y(t) − y0, e
′)| ≤

∫

E

|(v(s), e′)|ds

≤
∞∑
i=1

τ ′
i∫

τi

|(v(s), e′)|ds ≤
∞∑
i=1

√√√√√√(τ ′
i − τi )

τ ′
i∫

τi

(v(s), e′)2ds

≤ σ ·
∞∑
i=1

√
(τ ′

i − τi ) ≤ σ ·
∞∑
i=1

√
ai
α

.

From this using (3.10) and the formula a1 = a2α
16σ 2 , we get

|(y(t) − y0, e
′)| < 2σ

√
a1
α

= a

2
.

This means the evader always moves in the set

S′ = {ξ | |(ξ − y0, e
′)| ≤ a

2
, (ξ − y0, e) ≥ −b}.

We have shown that the evader moves in a/2 neighborhood of the ray ζ(t) = y0 + et, t ≥ 0.

4.2 Reduction to the Game in R
2

Give a procedure of reduction of the game inR
n, n ≥ 3, to the game inR

2. Given xi0− y j0 �=
0, i = 1, . . . , K ; j = 1, . . . , M , we choose a unit vector e1 different from the vectors
±(xi0 − y j0)/|xi0 − y j0|, i = 1, . . . , K ; j = 1, . . . , M . Let x̄ stand for x − (x, e1)e1, the
projection of x on the subspace L1 = {x ∈ R

n | (x, e1) = 0}. One can verify that xi0 �= y j0
implies that x̄i0 �= ȳ j0. For the projections of the pursuers on L1, we obtain from (1.1) the
following equations

˙̄xi = ūi , x̄i (0) = x̄i0,

where
∞∫

0

|ūi (s)|2ds =
∞∫

0

(|ui (s)|2 − (ui (s), e1)
2) ds ≤

∞∫

0

|ui (s)|2ds ≤ ρ2
i .

Consider the evader’s projection ȳ j ∈ L1 whose motion is described by the equation

˙̄y j = v j , ȳ j (0) = ȳ j0,

∞∫

0

|v j (s)|2d ≤ σ 2
j ,

where v j (t) ∈ L1, t ≥ 0. Since x̄i (t) �= ȳ j (t) implies xi (t) �= y j (t), therefore if evasion
is possible in the game in L1, then evasion is possible in the game (1.1)–(1.2). Note that
the evader y j (t) uses the same control function v j (t) as its projection ȳ j (t). Thus, evasion
problem in R

n is reduced to an evasion problem in (n − 1)-dimensional space L1. We can
proceed analogously to reduce the problem in L1 to evasion problem in an (n−2)-dimensional
space and so on. After some finite steps, we obtain a two-dimensional space.
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4.3 Important Points of the Solution

According to the constructed strategies of the evaders, the total energy of the evaders spent by
a time t might be greater than that of pursuers. Indeed, it can be seen from (3.14) and (3.13)
that if any pursuer is in one of the sets S j , the total energy of the evaders can be estimated
from below as follows. When the evader y j is moving on the time interval [0, τ1 j ], by (3.13)

t∫

0

|v j (t)|2dt =
t∫

0

∑
i∈I j (t)

|ui (t)|2dt,

meaning that the evader y j spends energy same as all the pursuers in the strip S j . When the
evader y j moves on a time interval [τωl−1+1, τ

∗
ωl

], by (3.14) we have

τ∗
ωl∫

τωl−1+1

|v j (t)|2dt ≥
τ∗
ωl∫

τωl−1+1

∑
i∈I j (t)

(2α2 + |ui (t)|2)dt >

τ∗
ωl∫

τωl−1+1

∑
i∈I j (t)

|ui (t)|2dt.

Hence, on the interval [τωl−1+1, τ
∗
ωl

], the evader y j spends energy more than that of all
pursuers in S j . In a similar fashion, we can verify that if the evader y j moves on the interval
[τ ∗

j , τ j+1] according to (3.13), then the evader y j spends energy same as all the pursuers in
the strip S j on the time interval [τ ∗

j , τ j+1], where τ ∗
j is time group pursuit is completed at

and at τ j+1 another group pursuit is started.
Therefore, we can conclude that the total energy spent by evaders at any time t greater than

or equal to that of all the pursuers. By this reason, we first reduced the case σ 2
1 +· · ·+σ 2

M =
ρ2
1 + . . . + ρ2

K to the case σ 2
1 + · · · + σ 2

M > ρ2
1 + · · · + ρ2

K . Then we constructed strategies
for the evaders, which depend on some parameters. We have chosen the parameters so that
the total energy of the evaders be less than σ 2

1 + · · · + σ 2
M .

Next, the movement of the evaders in the disjoint strips S j , j = 1, . . . , M , is crucial.
Because of disjointness of the strips, the control parameter of any pursuer cannot appear in
the strategies of two different evaders yi and y j with i �= j . This condition is important for
admissibility of the strategies of evaders.

The fact that approach times τi have no finite limit point is another key point in the proof of
the main result since if the approach times have a finite limit point, the evader can be captured
before his energy is exhausted. In fact, one pursuer, say xi , can make infinitely many aω1 -,
aω2 -, …, -approaches at some times τω1 , τω2 , ... → ∞ respectively.

4.4 Realization of Evaders’ Strategies

ByDefinition 2.3, to construct the strategy Vj , the evader y j knows information about param-
eters t, y j , q j , x1, . . ., xK , u1, . . ., uK at each time t ≥ 0.

The initial position ζ0, which is known to evaders, is used to find the numbers d , d0 and
ε. Also, the evaders employ only ζ0 to construct the points y′

j0 and vectors v j0, e j , e′
j , and,

hence, strips S j , S′
j , j = 1, . . . , M .

Step 1 Check the equation σ = ρ. If it is so, using techniques of Sect. 3.1, we obtain
q(τ 0) > p(τ 0) where τ 0 is the time for which |xs(τ 0) − xi0| = d/4 at some 1 ≤ s ≤ K
then we go to Step 2. Here, the evader y j needs the information about xi (t), i = 1, . . . , K ,
and time t to check the condition |xi (t) − xi0| = d/4. To this end, the evaders employ the
following controls
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v j (t) = 0, j = 1, . . . , M, 0 ≤ t ≤ τ 0.

As mentioned in Remark 3.2 that the evaders do not know p(τ 0), but they know ρ̄ and the
fact that p(τ 0) ≤ ρ̄. From now on the evaders use ρ̄ instead of ρ. If σ > ρ, then we put
τ 0 = 0 and go to Step 2.

Step 2 Let q(τ 0) > p(τ 0). We check whether yi0 = y j0 for some i �= j , i, j ∈
{1, . . . , M}. If so the evaders move to the points y′

j0 by using the following controls

v j (t) = v j0, j = 1, . . . , M, τ 0 ≤ t ≤ τ 0 + ε.

This control is constructed based on ζ0. To choose the parameter a j1 [see (3.7)], we use
d which depends also on ζ0. Note that a j1 < d/2 and by (3.6) |xi (t) − y j (t)| > d/2 for
all i = 1, . . . , K ; j = 1, . . . , M , and therefore there is no a j1-approach time in the time
interval τ 0 ≤ t ≤ τ 0 + ε.

If yi0 �= y j0 for all i �= j , i, j ∈ {1, . . . , M}, then we put ε = 0 and go to Step 3.
Step 3 Let q(τ 0 + ε) > p(τ 0 + ε) and y′

i0 �= y′
j0 for all i �= j , i, j ∈ {1, . . . , M}. Then

evaders use strategies (3.13) and (3.14) where we have to put τ ∗
0 = τ 0 + ε. In this step, the

strategies of evaders are constructed based on the information about t, y j , q j , x1, . . ., xK ,
u1, . . ., uK at each time t ≥ 0. While q j (t) > 0 the evader y j is not captured by any pursuer.
If q j (t) = 0, the energy of the evader y j is exhausted, y j is not able further to move, and
then it can be captured by a pursuer.

Importantly, the number of summands in the definition of V2i (t) depends on t , therefore
the measurability of V2i (t) needs to be explained. This follows from the fact that any pursuer
xi can stay in the strip S only on a closed time interval since xi (t) is continuous and S is
closed.

5 Conclusion

In the present paper, we have solved completely the simple motion evasion differential game
of many evaders from many pursuers when control functions of the players are subject to
integral constraints. We have shown that if

ρ2
1 + · · · + ρ2

K ≤ σ 2
1 + · · · + σ 2

M ,

then evasion is possible fromany initial position ζ0 of players. In addition,wehave constructed
explicit strategies for the evaders. Note that this inequality is a necessary condition of evasion
as well since if it does not hold, then pursuit can be completed from any initial position of
players [16]. Thus, the result of the present paper fills the long standing gap in the simple
motion differential game of many players with integral constraints. In future, this result can
be extended to differential games described by more general linear differential equations.
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