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Abstract We construct a framework for modeling dynamic Cournot oligopoly. We consider
models where utility maximizing consumers give rise to demand functions that depend on
current and prior period prices. Future demand depends on the current price and consumers,
and firms must take this into account when making their decisions. Focusing on problems
that yield dynamic demand functions that are linear in current and prior period price, we
characterize the uniqueMarkov perfect equilibrium in linear strategies. We then demonstrate
the applicability of our framework through a series of practical examples.
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1 Introduction

Traditionally, dynamic models of oligopoly have assumed that a decision made in the past
does not directly affect payoffs in the future. That is, agents’ decisions are “time separable” so
that single-period utility, budget constraints or profit functions depend only on variables (e.g.,
consumption of a good) determined in that period.While this greatly simplifies analyses, there
are many goods for which this is not realistic. For example, purchases of some goods may
be substitutable over time [13], automobiles or household appliances are durable [4,9,14],
consumers may be able to hold inventories of non-perishable groceries like canned goods
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[7] or some goods like coffee or cigarettes may be habit forming [1,10]. Indeed, one might
argue that “intertemporal non-separability” should be the rule rather than the exception.

Given the pervasiveness of time non-separability, versatile and tractablemodels are needed
both as a guide to empirical work and for theoretical analysis. For instance, time non-
separability is important for understanding the persistence of price changes. Standard models
of oligopoly have no built-in intertemporal link andwithout embellishment they admit no per-
sistence. On the other hand, inmodels with non-time-separability, agents’ objective functions
are intertemporally linked and persistence arises naturally. For example, if consumption is
durable, consumers substitute toward a low current price, implying that next period’s demand
will be low if this period’s price is low. A low current price leads to low future demand, and
consequently the future price will be low as well.

There is growing literature that allows for intertemporal non-separabilities. A non-
exhaustive list includes models of habit persistence [10,12], durable goods [3,8,9] and
inventories [11] . In this paper, we provide a framework in which decisions are intertem-
porally non-separable and the good can be intertemporally substitutable or complementary.
Our framework allows for any degree of market power with an arbitrary number of Cournot
competitors and for stochastic shocks, either to firms’ costs or to demand. The framework is
tractable, and we fully characterize solutions and examine their comparative statics.

To ensure tractability, we consider quadratic utility functions and demonstrate conditions
for the uniqueness of Markov perfect equilibria in linear strategies. In equilibrium, prices
follow a dynamic stochastic process in which the current price depends both on past prices
and on random disturbances. The equilibrium of our model exhibits both persistence and
incomplete passthrough. Using several examples, we demonstrate the applicability of our
framework to examining intertemporally linked markets.

An important feature of our modeling framework is that we model both the demand
and supply side of a dynamic model. When consumers form expectations over the future,
a structural change alters not only the decisions of agents directly but also alters implied
demand parameters. This may be of significance when evaluating the potential impact of
market structure or policy changes.

We begin by laying out the framework in Sect. 2. We then examine a series of examples
in Sect. 3. Next, we offer some concluding comments in Sect. 4. Finally, proofs and a
supplemental analysis of correlated shocks is given in the “Appendices 1 and 2”.

2 The Linear Quadratic Framework

We model product markets with a finite set (N ) of infinitely lived firms and a representative
consumer (possibly infinitely lived).1 We assume that the good in question is homogeneous
and that firms are Cournot competitors. In each period, given market demand, each firm
chooses output to maximize the discounted expected value of profits. Given the market price,
consumers make consumption decisions to maximize discounted expected utility.

Assume that the representative consumer has a quadratic utility function that may depend
on the state (capital, inventories, etc), current consumption and may in addition depend on
prior or next period consumption. We consider models where optimal consumption subject
to an intertemporal budget constraint yields a linear, dynamic demand function that depends
on the current and prior period price,

1 It is straightforward to allow for heterogeneity of consumers (we provide two such examples) provided that
conditions ensuring nonnegativity of consumption are satisfied.
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Xt (pt ; pt−1) = â − b̂ pt + d̂ pt−1. (1)

Reduced form parameters, â, b̂ and d̂ are determined in equilibrium and are functions of
consumer expectations regarding the future price and “deep” model parameters.2 We later
illustrate with several examples using this basic framework.

The dynamic demand function depends on past prices and the current price. For example,
with habit (or addictive) goods or durable goods, purchases of the good in the current period
can be either substitutable or complementary with past consumption. Since the price in the
previous period affected purchases in the previous period, the dynamic demand function will
depend on the previous period’s price.

There is another,more subtleway, inwhich the pricing process affects the dynamic demand
function.Namely, through the formation of expectations. Inwhat follows,wewill assume that
utility functions are quadratic. On the supply side, given linear dynamic demand functions,
the solution to firms’ profit maximization problem reveals that prices follow a first-order
autoregressive process. The autoregression coefficient λ ∈ (−1, 1) depends on reduced
form parameters of the dynamic demand function. On the demand side, given that future
prices follow an autoregressive process, the solution to the representative consumer’s utility
maximization problem is a linear dynamic demand function with reduced form parameters
that depend on the autoregression coefficient, λ. In other words, the demand and supply sides
are tightly interwoven and a consistent solution for one cannot be had without a solution for
the other.

The dynamic demand function will depend on other factors through its dependence on
λ. For instance, we show that dynamic demand depends on N . This may have important
implications for policy analysis. For example, in analyzing how a change in market structure
will affect a market, it will not be sufficient to take into account that the demand function
depends on the current and previous prices. When the market structure changes, there will
be a shift in dynamic demand, not just a movement along it.

In each period, every firm has an identical marginal production cost of ct that is taken to
be independently and identically distributed over time with ct = c̄ + εt , εt ∈ [−εL , εH ] and
Etεt+1 = 0.3 Let pt (Xt ; pt−1) represent the inverse demand function. Given firm i’s output,
xit , the output of other firms, X−i

t = ∑
j �=i x

j
t , and last period’s, price, pt−1, its t period

profit function is given by

π i
(
xit ; X−i

t , pt−1, ct
)

=
[
pt

(
xit + X−i

t ; pt−1

)
− ct

]
xit .

Since we are considering Cournot equilibria, firm i is taking the other firms’ outputs as given
so that firm i’s choice of xit has a one-to-one correspondence with choice of pt . Thus, we
have firm i choose pt rather than xit since it summarizes the impact of the current choice on
the next period’s state. We can therefore rewrite firm i’s period t profit function as:

π i
(
pt ; X−i

t , pt−1, ct
)

= (pt − ct )
(
Xt (pt ; pt−1) − X−i

t

)
.

2 Given quadratic utility functions, there will generally exist an equilibrium with “policy functions” that are
linear in the state. We focus on such equilibria.
3 It is straightforward to allow for i.i.d. idiosyncratic shocks, i.e., cit = c̄+ εi t . In this case, rather than taking
rival outputs as given, firms must form beliefs over the distribution over rival outputs.
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Firms have discount factor β and in each period, t , taking the output of rival firms as given,
firm i chooses price to maximize discounted expected profits:

Π i
t = Et

∞∑

τ=t

βτ−tπ i
(
pτ ; X−i

τ , pτ−1, cτ

)
.

Since each period’s demand depends only on the current and last period’s price, pt−1 sum-
marizes each firm’s relevant information in a Markov perfect equilibrium. The equilibrium
price function will depend on pt−1, ct and w̄t .

The Bellman equation for firm i can be written as:

V i (pt−1, ct ) = max
pt

[
(pt − ct ) (Xt (pt , pt−1) − X−i

t (pt−1, ct )) + βEtV
i (pt , ct+1)

]

where X−i
t (pt−1, ct ) is the equilibrium output of rival firms as a function of last period’s

price and this period’s marginal cost.4

For the moment, assume that each firm’s equilibrium output is a linear function of last
period’s price and this period’s cost; let X−i

t = f + gpt−1 − hct . This assumption will
be subsequently verified when we complete our solution to the model. Using (1), firm i’s
residual demand can now be written as follows:

xit = â − b̂pt + d̂pt−1 − X−i
t

= (â − f ) − b̂ pt + (d̂ − g)pt−1 + hct
(2)

Differentiating and applying the envelope condition, the Euler equation is thus

(pt − ct )
∂xit
∂pt

+ xit + βEtV
i
p (pt , ct+1) = (â − f ) − 2b̂ pt

+ (d̂ − g)pt−1 + (b̂ + h)ct + β(d̂ − g)Et (pt+1 − ct+1) = 0 (3)

where V i
p denotes the derivative of V

i with respect to price. Since X−i
t represents the equi-

librium outputs of all firms but i , (3) determines the behavior of prices in equilibrium.
This is a stochastic second-order linear difference equation with characteristic equation:

βλ2 − 2
b̂

d̂ − g
λ + 1 = 0. (4)

The Euler equation (3) has a solution of the following form:

pt = (1 − λ) p̄ + λpt−1 + λ
b̂ + h

d̂ − g
(ct − c̄) (5)

where p̄ is the long-run expected price and λ is the smaller of the roots found by factorizing
the difference equation. Taking expectations, we see that Et pt+1 is a linear function of pt .

4 Note that we have specified the problem as one where in equilibrium, rival outputs are functions of the
prior period price and an individual firm maximizes discounted expected profits through choice of price.
Equivalently, we could invert (1) to get pt (xit + X−i

t , pt−1) and specify an individual firm’s problem more
traditionally as:

V i (pt−1, ct ) = max
xit

[(pt (xit + X−i
t (pt−1, ct ), pt−1) − ct )x

i
t + βEt V

i (pt , ct+1)].

In equilibrium, for every i, xit is a best response to X−i
t (i.e., xit solves the Bellman equation) and X−i

t =
∑

j �=i x
j
t .
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The equilibrium value of λ must solve Eq. (4). Provided that |b̂/(d̂ − g)| > 1 and since
we are looking for |λ| ∈ (0, 1), solving this yields:

λ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

b̂/(d̂ − g) −
√

(b̂/(d̂ − g))2 − β

β
if d̂ > 0

b̂/(d̂ − g) +
√

(b̂/(d̂ − g))2 − β

β
if d̂ < 0

. (6)

Solving for the long-run expected price yields,

p̄ = â − f

2b̂ − (1 + β)(d̂ − g)
+ (b̂ + h) − β(d̂ − g)

2b̂ − (1 + β)(d̂ − g)
c̄. (7)

Thus, λ and p̄ are functions of model parameters and â, b̂, d̂, f, g and h which are in turn
functions of model parameters and λ and p̄.

Using (5) and summing (2) over all j �= i yields equations for f, g and h.

f = (N − 1)(â − f ) − (N − 1)b̂(1 − λ) p̄ + (N − 1)
λb̂(b̂ + h)

d̂ − g
c̄ (8)

g = −(N − 1)λb̂ + (N − 1)(d̂ − g) (9)

h = (N − 1)
λb̂(b̂ + h)

d̂ − g
− (N − 1)h (10)

We can then solve (9) and (10) for g and h.

g = N − 1

N
(d̂ − λb̂) (11)

h = (N − 1)λb̂2

d̂
(12)

Substituting (11) and (12) into λ(b̂ + h)/(d̂ − g) and then simplifying yields:

λ
b̂ + h

d̂ − g
= Nλb̂

d̂
. (13)

Thus, (5) becomes:

pt+1 = (1 − λ) p̄ + λpt + Nλb̂

d̂
εt+1. (14)

That is, prices follow an AR(1) process5 and price changes persist into the future.
Note from (6) and (11), λ depends on b̂ and d̂ which typically will in turn depend on λ.

As a result, we need to prove the existence of a λ∗ which solves these equations. In addition,
we would like the solution to be unique and to prove some additional properties of the result.

Theorem 1 (i) For any â, b̂ and d̂ such that â > (b̂ − d̂)c̄ > 0, there exist εL , εH such
that the equilibrium as defined by (6), (7), (8), (11), (12) and (14) has pt , Xt > 0 for all
t, p̄ > c̄ and Nλb̂/d̂ < 1.

5 With more complicated shocks and additional information and behavioral assumptions to ensure solvability,
prices can be shown to follow more complicated stochastic processes. We examine one such extension in
“Appendix 2.”
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(ii) Suppose that b̂(λ) and d̂(λ) are derived from the solution to the consumer’s problem. If
b̂(λ)/d̂(λ) is nondecreasing in λ, then there exists a unique λ∗ that solves b̂(λ), d̂(λ),
(6), and (11).

Proof See “Appendix 1.” ��
Part (i) provides conditions on â, b̂, d̂ and c̄ such that the processes {pt , Xt } are well

behaved. Moreover, price changes have persistent effects (λ �= 0) and there is incomplete
passthrough (Nλb̂/d̂ < 1); these results arise naturally as a result of intertemporal linkages
and imperfect competition. Although the theorem assumes that these “reduced form param-
eters” are given, it tells us that if the equilibrium values of â, b̂ and d̂ satisfy our conditions,
then with appropriate bounds on the random error term, prices and output are well behaved.

Part (ii) provides a sufficient condition on the consumer’s dynamic demand function
that ensures existence and uniqueness of an equilibrium in linear strategies. In particular,
if the solution to the consumer’s problem yields b̂(λ)/d̂(λ) that is nondecreasing, then this
solution coupled with the solution to the firms’ problem (Eqs. (6), (7), (8), (11), (12) and
(14)) characterizes the uniqueMarkov perfect equilibrium in linear strategies. Nondecreasing
b̂(λ)/d̂(λ) intuitively implies that through consumer expectations, persistence affects the
demand impact of the current price at least as much as it affects the impact of the prior price.
This is satisfied for each of the examples we shortly consider.

Given the fully characterized equilibrium, we can also examine behavior of output by
substituting the equilibrium price into market demand.

Xt = (â − b̂(1 − λ) p̄) + (d̂ − λb̂)pt−1 − Nλb̂2

d̂
εt (15)

When d̂ > 0, equilibrium output depends positively on past price but negatively on the cost
shock. Following a shock that raises production costs, the good’s price rises and output falls.
After a shock that lowers costs, the price falls and output rises. These effects are temporary
and price and output revert to their means with time. Thus, a response analogous to a business
cycle boom or depression is endogenous in the model.

We now demonstrate some of the convergence properties of the equilibrium. In particular,

Corollary 1 As N tends to infinity, λ∗ tends to zero, Nλ∗b̂(λ∗)/d̂(λ∗) tends to one and p̄
tends to c̄.

Proof See “Appendix 1.” ��
Like the standard Cournot model, as the number of firms becomes large, the long-run

equilibrium price approaches expected marginal cost so that prices and output approach
perfectly competitive levels. Moreover, persistence becomes negligible.

Demand Shocks

Suppose that there is no cost uncertainty but that demand is subject to observable, additive
shocks. Let Xt = â− b̂pt + d̂pt−1+ξt where ξt is i.i.d. and Et−1ξt = 0. For ease of notation,
let c̄ = 0. If we now define the equilibrium output of rival firms as X−i

t = f + gpt−1 + kξt ,
then firm i’s residual demand can be written as

xit = (â − f ) − b̂pt + (d̂ − g)pt−1 + (1 − k)ξt . (16)
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The Euler equation is

(â − f ) − 2b̂pt + (d̂ − g)pt−1 + (1 − k)ξt + β(d̂ − g)Et pt+1 = 0

and has solution

pt+1 − pt = (1 − λ)( p̄ − pt ) + λ(1 − k)

d̂ − g
ξt+1. (17)

Using (17) and summing (16) over all j �= i , we get an expression for k (the solutions for
f and g remain unchanged):

k = −(N − 1)
λb̂(1 − k)

d̂ − g
+ (N − 1)(1 − k).

Solving this for k yields:

k =
1 − λb̂

d̂ − g

N

N − 1
− λb̂

d̂ − g

We know from the discussion earlier in this section that λb̂/(d̂ − g) < 1 implying that
k > 0. By examination it is easy to see that k < 1 and that as N tends toward infinity, k
tends toward 1. Using the system of equations constructed in the proof of Proposition 1, the
shock coefficient of the equilibrium price process, λ(1 − k)/(d̂ − g), can be rewritten as
q(1 − k)/b̂. Since q and b̂ are bounded, as N tends to infinity, this tends to zero. Since the
limiting behavior of λ and p̄ is the same as before, prices approach marginal cost.

Again substituting the equilibrium price into aggregate demand,

Xt = (â − b̂(1 − λ) p̄) + (d̂ − λb̂)pt−1 +
(

1 − λb̂(1 − k)

d̂ − g

)

ξt .

Since λb̂/(d̂ − g) < 1 and 0 < k < 1, 1 − λb̂(1 − k)/(d̂ − g) > 0 and positive demand
shocks result in increases in output. This is in contrast to a model with cost shocks. Following
a shock that increases demand, both price and output increases; following a shock that reduces
demand, both price and output fall. These effects are again temporary and prices and output
revert to theirmeans over time. Further, in the limit, as N tends to infinity, the shock coefficient
of the output process, 1 − λb̂(1 − k)/(d̂ − g), tends to 1.

3 Examples

In this section, we examine a number of examples to illustrate the applicability of our frame-
work to a wide variety of situations that include both intertemporal substitutability and
complementarity, allow for both finitely lived and infinitely lived consumers and where con-
sumers can be either homogeneous or heterogeneous.

3.1 Overlapping Generations

Consumers live for two periods, and consumption can be either intertemporally substitutable
or complementary.
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Each generation has a representative consumer who is born with an endowment of wealth
w̄ which can be divided between consumption when young, when old and a numéraire that is
perfectly substitutable between young and old age. Assume that a consumer born in period
t who consumes X y

t when young, Xo
t when old, and wt of the numéraire gets utility

u
(
X y
t , X

o
t , wt

) = a
(
X y
t + Xo

t

) − b

2

(
X y
t
2 + Xo

t
2
)

− dX y
t X

o
t + wt (18)

where a, b > 0 and |d| < b. The numéraire good can be interpreted as money spent on
other goods. The parameter b is an indicator of the elasticity of demand, while the parameter
d indicates the degree of substitutability or complementarity between current and future
consumption. Large values of d > 0 imply greater degrees of substitutability with current and
future consumption becoming perfectly substitutable as d → b. Similarly, a large negative
value of d indicates a greater degree of complementarity.

First consider an old consumer’s problem. Old consumers know the price and their level of
consumption when they were young. They also know the current price. Since the numéraire
good is perfectly substitutable between periods, consumption of the numéraire can be deter-
mined in the second period of life. Hence, in period t , an old consumer, born in period t − 1,
chooses Xo

t−1 and wt−1 to maximize utility, given pt−1, X
y
t−1 and pt :

max
Xo
t−1,wt−1

u
(
X y
t−1, X

o
t−1, wt−1

) = a
(
X y
t−1 + Xo

t−1

) − b

2

(
X y
t−1

2 + Xo
t−1

2
)

− dX y
t−1X

o
t−1 + wt−1

subject to: pt−1X
y
t−1 + pt X

o
t−1 + wt−1 ≤ w̄

Provided that w̄ is sufficiently large to ensure positive consumption of the numéraire, this
is a straightforward maximization problem which yields old consumer demand as a linear
function of consumption from last period and the current price.

Xo
t−1 = a

b
− d

b
X y
t−1 − 1

b
pt (19)

Consumption of the numéraire is given by the remainder of the endowment which was not
spent on consumption (i.e., wt−1 = w̄ − pt−1X

y
t−1 − pt Xo

t−1).
Nowconsider the young consumer’s problem. The young consumer knows current price pt

and has expectations over the future price pt+1 and future consumption. Expectations must
be consistent with the firm’s profit maximization problem and the old consumer’s utility
maximization problem. The young consumer’s problem is:

max
X y
t

Etu
(
X y
t , X

o
t , wt

) = Et

{

a(X y
t + Xo

t ) − b

2
(X y

t
2 + Xo

t
2
) − dX y

t X
o
t + wt

}

subject to: pt X
y
t + Et {pt+1X

o
t } + Etwt ≤ w̄

where expectations over Xo
t are governed by (19). Assume for the moment that Et pt+1 =

(1 − λ) p̄ + λpt .6 Solving the young consumer’s problem yields:

X y
t = a

b + d
+ d(1 − λ) p̄

b2 − d2
− b − dλ

b2 − d2
pt . (20)

6 As shown in the prior section, given linear consumer demand, expected prices will indeed have this form.
Linearity of demand will be verified shortly.
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Given pt−1 and assuming that old consumers behaved optimally when they were young,
we can substitute (20) into (19) to get old demand as a function of pt and pt−1.

Xo
t−1 = a

b + d
− d2(1 − λ) p̄

b(b2 − d2)
+ d(b − dλ)

b(b2 − d2)
pt−1 − 1

b
pt . (21)

Finally, summing young and old consumer demand yields aggregate consumer demand.

Xt = Xo
t−1 + X y

t = â − b̂ pt + d̂ pt−1

where

â = 2a

b + d
+ d(1 − λ) p̄

b(b + d)
, b̂ = b(b − dλ) + (b2 − d2)

b(b2 − d2)
, d̂ = d(b − dλ)

b(b2 − d2)
. (22)

If p̄ ≥ 0, a, b > 0 and |d| < b, then â, b̂ > 0, |d̂| < b̂ and sign(d̂) = sign(d).
Since,

b̂

d̂
= b

d
+ b2 − d2

d(b − dλ)

is strictly increasing inλ, part (ii) of Theorem1 is satisfied so that there is a unique equilibrium
in linear strategies. Moreover, if model parameters are such that part (i) of Theorem 1 is
satisfied, then there exist bounds on εt that ensure that pt and Xt are well behaved.

Examining (15), since low pt−1 implies high Xt−1, it is straightforward to see that for
d > 0 (d < 0), adjacent substitutability (complementarity) holds. Ford < 0, this is consistent
with [12] who find that adjacent complementarity holds when “habit capital” depreciates
sufficiently quickly—here, since consumers live for two periods, habit capital lasts for just
one period and depreciates completely.

We now demonstrate the derivation of comparative statics. In addition, we examine cor-
related shocks in “Appendix 2.”

Comparative Statics

From Corollary 1, we know the limiting effect of market structure (N → ∞) on persistence
(none) and passthrough (full). But for non-limiting market structures or for understanding
the effect of the degree of intertemporal substitutability on either persistence or passthrough,
we need to be able to conduct comparative static exercises. Despite our complicated analytic
solution, we are able derive comparative static results. While we focus on the overlapping
generations model, similar methods can be used to derive comparative statics for all of our
other examples.

In order to get comparative static results, we construct a simplified system of equations
which corresponds one-to-one with our economic model’s solution and can be tractably
differentiated. Our comparative static results will be given for both d > 0 and d < 0 but for
illustrative purposes, we outline the methodology using the case d > 0. Let q = Nλs/(1 +
(1−1/N )Nλs)where s = b̂/d̂ . Equation (4) can be now rewritten asβλ2−2q+1 = 0which
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has a solution λ = √
(2q − 1)/β. We now construct the following system of equations7:

λ = m
√
2q − 1, m = 1/

√
β

s = 2r2 − λr − 1

r − λ
, r = b

d

q = Nλs

1 + (N − 1)sλ

This three equation system determines the three endogenous variables λ, s, and q , given the
three exogenous variables m, r , and N .

To sign partial derivatives of these endogenous variables with respect to exogenous vari-
ables, totally differentiate this system:

dλ = θ1dq + θ2dm

ds = θ3dλ + θ4dr

dq = θ5dλ + θ6ds + θ7dN .

It can be shown that all the θi ’s are positive. Writing this system in matrix form:
⎡

⎣
1 0 −θ1

−θ3 1 0
−θ5 −θ6 1

⎤

⎦

⎡

⎣
dλ

ds
dq

⎤

⎦ =
⎡

⎣
θ2 0 0
0 θ4 0
0 0 θ7

⎤

⎦

⎡

⎣
dm
dr
dN

⎤

⎦ . (23)

Define the degree to which cost shocks are passed on as price changes to be y = Nλs.
Solving the above system of equations, we can show the following comparative statics results:

Proposition 1 For all admissible parameters, d|λ|/dN < 0, d|λ|/dβ > 0, d|λ|/dr <

0, dy/dβ > 0, dy/dr < 0 and for N ≥ 3, dy/dN > 0.

Proof See “Appendix 1.” ��
For the case where d > 0, the persistence of price changes unambiguously falls with

N . This is consistent with much of the empirical evidence (e.g., [2,5,6]). To understand the
intuition, consider the optimal price path, from the point of view of the firms. Since single-
period profits are concave in prices, optimality requires price smoothing. With more than
one firm, each firm’s output decision exerts an externality on other firms by reducing price
smoothing. That is, in addition to the static externality one firm’s decision imposes on other
firms, there is a dynamic externality. As a result, the degree of price smoothing falls as the
number of firms rises.

Similarly, persistence is strictly increasing in β, and decreasing in b/d . For d > 0, the
counterfactuals of either a higher discount factor or more intertemporal substitutability (i.e.,
falling b/d) imply that current decisions have a greater impact on the future and again,
optimality requires price smoothing; the more important the future, the more important
are dynamics and thus price smoothing. Therefore, as the discount factor increases or as
consumption becomes more intertemporally substitutable, last period’s price will have a
greater impact on the current price.

7 This system is a subset of the system of equations used in Appendix 1 to prove Theorem 1. It is important
to bear in mind that this is an artificial system of equations. For example, application of stability conditions to
establish properties of the solution (i.e., the correspondence principle in macroeconomics) would be a mistake
since stability in the artificial system is meaningless.
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Finally, the passthrough effect of a cost shock unambiguously rises with firms’ patience
and falls as the good becomes less intertemporally substitutable. Furthermore, we show that
for N ≥ 3 the initial effect of a shock is rising in the number of firms. That is, price becomes
more flexible as an industry becomes more competitive.

3.2 Durable Goods

Consider an infinitely lived consumer who gets utility from a durable good in each period.
Let Kt be the stock of a durable good and wt be the consumption of a numéraire good at
time t . With durability, purchases are substitutable over time—current purchases increase
the stock of the durable good so that less needs to be purchased in subsequent periods.

Suppose that in each period, the representative consumer gets utility

u(Kt , wt ) = aKt − b

2
Kt

2 + wt

where a, b > 0. The consumer faces period t budget constraint:

pt
[
Kt − (1 − δ)Kt−1

] + wt ≤ w̄.

where δKt−1 represents the depreciation of the durable good between periods t −1 and t, pt
is the price of new purchases of the durable good, and therefore Xt = Kt − (1 − δ)Kt−1

gives current purchases of the durable good.
The representative consumer seeks to maximize the following dynamic program:

U (Kt−1, pt ) = max
Kt

{

aKt − b

2
Kt

2 + w̄ − pt
[
Kt − (1 − δ)Kt−1

] + β ′EtU (Kt , pt+1)

}

(24)

where β ′ is the consumer’s discount factor. The Euler equation and envelope condition are:

a − bKt − pt + β ′EtUK (Kt , pt+1) = 0

UK (Kt−1, pt ) = (1 − δ)pt .

Shifting the latter forward a period and substituting, the Euler equation becomes:

a − bKt − pt + β ′(1 − δ)Et pt+1 = 0.

As before assume that Et pt+1 = (1 − λ) p̄ + λpt where λ and p̄ are, for the moment, taken
as given. Substituting this into the Euler equation and solving for Kt yields:

Kt = a

b
+ β ′(1 − δ)(1 − λ) p̄

b
− 1 − β ′(1 − δ)λ

b
pt (25)

The current demand for new durable goods is thus given by:

Xt = Kt − (1 − δ)Kt−1 = â − b̂pt + d̂pt−1 (26)

where

â = δ
a + β ′(1 − δ)(1 − λ) p̄

b
, (27)

b̂ = 1 − β ′(1 − δ)λ

b
(28)

and

d̂ = (1 − δ)
1 − β ′(1 − δ)λ

b
. (29)
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It is readily verified that â, b̂, and d̂ are all positive. As expected, the durability of the good
introduces intertemporal substitution.

Finally, note that since

b̂

d̂
= 1

1 − δ
> 0

is nondecreasing in λ, Theorem 1 applies, so we know that a solution to (6), (28) and (29)
exists and that (14) is the unique equilibrium in linear strategies.

Like [3], we find that for finite N , the long-run price of the durable good is strictly greater
than the competitive price so that the long-run stock is less than that under competition. Since
it fits within our framework, we could straightforwardly allow for quadratic costs as in [8,9].

3.3 Inventories

Consider a model with an infinitely lived consumer who gets utility from current consump-
tion and from holding inventories. In particular, suppose that the total period t utility from
consuming yt and holding it inventories is given by:

u(it , yt , wt ) = ai it + ay yt − (bi/2)it
2 − (by/2)yt

2 + dit yt + wt .

The consumer’s budget constraint is:8

pt (it+1 − it + yt ) + wt ≤ w̄.

As before, the numéraire enters the utility function linearly. Assume that d ≥ 0 under the
interpretation that the marginal utility of inventories increases as the rate of consumption
increases.

The representative consumer maximizes:

U (it , pt ) = max
it+1,yt

{

ai it + ay yt − bi
2
it
2 − by

2
yt

2 + dit yt + w̄ − pt (it+1 − it + yt )

+β ′EtU (it+1, pt+1)
}

where β ′ is the consumer’s discount factor and pt is the price of the good in period t .
The first-order conditions are:

ay − by yt + dit − pt = 0 (30)

−pt + β ′ (ai − bi it+1 + dEt yt+1 + Et pt+1) = 0 (31)

These first-order conditions can be taken without regard to expectations over future choices
because of the envelope theorem. Solving (30) yields:

yt = ay
by

+ d

by
it − 1

by
pt (32)

Shifting (32) forward one period and substituting into (31) yields:

− pt
β ′ + ai − bi it+1 + d

(
ay
by

+ d

by
it+1 − 1

by
Et pt+1

)

+ Et pt+1 = 0 (33)

8 It is straightforward to introduce a cost to holding inventory. Suppose for example that inventory decays by
the factor δ so that the following budget constraint becomes: pt (it+1 − δit + yt ) + wt ≤ w̄.
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As before, assume Et pt+1 = (1 − λ) p̄ + λpt . Using this to solve (33) yields:

it+1 = ai + day + (by − d)(1 − λ) p̄

bi by − d2
− by/β ′ − λ(by − d)

biby − d2
pt (34)

From (34) and (32):

yt = B0 − 1

by
pt − d(by/β ′ − λ(by − d))

by(biby − d2)
pt−1

where B0 is a constant. Total demand for the good, Xt , is therefore given by:

Xt = it+1 − it + yt

= â − b̂pt + d̂pt−1

(35)

where

b̂ = Ω + 1

by

d̂ = Ω
by − d

by

Ω = by/β ′ − λ(by − d)

biby − d2
.

If the utility function is concave in yt and it+1,Ω is positive (i.e., differentiate (33)).Moreover,
assume that by − d > 0; if by − d < 0, then an exogenous increase in inventories would
implausibly lead to a larger increase in current consumption (see (32)).

Note this implies that b̂/d̂ > 1 and it can then be shown that:

b̂

d̂
= by

by − d
+ 1

Ω(by − d)

is strictly increasing in λ so that part (ii) of Theorem 1 is satisfied so that there is a unique
equilibrium in linear strategies. When part (i) is satisfied, there exists distributions over εt
that ensure positive prices and output in every period.

Interestingly, the autoregression in prices is positive here, even though inventories and
consumption are complements. The reason is as follows: if the current price is low, the agent
increases its inventories. Other things being equal (as long as the increase in y in the next
period is smaller than the increase in i) this lowers purchases in the next period. Thus, current
and future demands for the good are intertemporal substitutes.

Dudine et al. [11] also consider a model where consumers can hold inventories. They
consider a monopoly seller in a market where demand rises in every period. They examine
pricing when the monopolist can and cannot pre-commit to future prices and show that in
contrast to [4], prices are higher without commitment.

3.4 Durable-Related Consumption

Suppose consumers must choose their consumption of a good, y, that is durable for two
periods and consumption of a good, x , that is nondurable but related to good y (either as a
substitute or as a complement). For example, x might be fossil fuel purchases and y might
be cars or it might be solar panels. For a car purchase, gasoline would be a complement and
for solar panels, natural gas would be a substitute.
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In any period t , half the consumers are choosing y for both period t and period t + 1. The
other half chose y for periods t − 1 and t at time t − 1. The good x is chosen in each period.
Since our focus will be on the market for the related good, assume that the periodic cost of
y is exogenously given by n. Let the consumer’s utility function be given by:

u(xt , yt , wt ) = ax xt − bx
2
xt

2 + ay yt − by
2
yt

2 + dxt yt + wt .

The consumer’s budget constraint is therefore given by:

pt xt + nyt + wt ≤ w̄

where yt = yt−1 if the consumer had chosen y in period t − 1.
The value function for consumers choosing y in period t can be written:

U0(pt )=max
xt ,yt

{

ax xt− bx
2
xt

2 + ay yt− by
2
yt

2+dxt yt − pt xt − nyt + β ′EtU1(pt+1, yt )

}

.

The value function for consumers who chose y in period t − 1 is:

U1(pt , yt−1) = max
xt

{

ax xt − bx
2
xt

2 + ay yt−1 − by
2
yt−1

2 + dxt yt−1 − pt xt − nyt−1

+β ′EtU0(pt+1)
}
.

Here, if d > 0, the goods are complements, and if d < 0, they are substitutes.
From these equations, the demand for x by each group is easily solved and given by:

x0t = ax
bx

+ d

bx
yt − 1

bx
pt , (36)

and:

x1t = ax
bx

+ d

bx
yt−1 − 1

bx
pt . (37)

For those choosing y in the current period, the Euler equation is given by:

ay − by yt + dx0t − n + β ′Et {ay − by yt + dx1t+1 − n} = 0. (38)

Substituting the demands for x0 and x1 and taking expectations, again assuming that
Et pt+1 = (1 − λ) p̄ + λpt , and solving for yt yield:

yt = ay − n + dax
bybx − d2

− β ′d(1 − λ) p̄

(1 + β ′)(bybx − d2)
− (1 + β ′λ)d

(1 + β ′)(bybx − d2)
pt . (39)

Substituting for y in the equations for the demand for x , we get:

x0t = A0 −
[
1

bx
+ d2(1 + β ′λ)

bx (1 + β ′)(bybx − d2)

]

pt , (40)

and:

x1t = A1 − 1

bx
pt − d2(1 + β ′λ)

bx (1 + β ′)(bybx − d2)
pt−1. (41)

Total demand in the current period is given by:

Xt = x0t + x1t = â − b̂ pt + d̂ pt−1, (42)
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where:

d̂ = − d2(1 + β ′λ)

bx (1 + β ′)(bybx − d2)
, (43)

and:

b̂ = 2

bx
− d̂. (44)

Note d̂ < 0 regardless of the sign of d . From these, we have:

b̂

|d̂| = 1 + 2(1 + β ′)(bybx − d2)

d2(1 + β ′λ)
. (45)

Note that since b̂/d̂ < 0 we will have λ < 0. Note also that b̂/|d̂| > 1 and that this will
be increasing in |λ|. Thus, the assumptions of Theorem 1 hold.

Since λ < 0, x is always an intertemporal complement regardless of whether x and y are
complementary or substitutable. If x and y are substitutes, a high price of x in the current
period induces consumers choosing y to buy less x and more y. The increase in y in the next
period then lowers demand for x in the next period. If x and y are complements, a high price
of x in the current period induces consumers choosing y to buy less of both x and y. The
lower amount of y in the next period then lowers their demand for x in the next period.

4 Concluding Remarks

In the paper, we constructed a framework for analyzing dynamic oligopoly where current
consumption decisions affect future utility. This framework is sufficiently flexible that many
types of intertemporal linkages can be modeled, including durable goods, habit persistence
and inventories. We show that models that fit into this framework are analytically tractable.

A key feature of our model is that both the demand and supply sides are modeled. This is
important because consumers form expectations over the future when making current period
choices. If market structure or policy changes, not only do consumer choices change directly
but implied demand parameters also change. Without consistent modeling of the consumer
decision process, inferences based on a purely supply side model may be misleading.

Acknowledgements We thank two anonymous referees for helpful comments and suggestions. The views
expressed are those of the authors and do not necessarily reflect those of the Bureau of Labor Statistics.

Appendix 1: Proof

We only include the proofs for the case when d̂ > 0. Suitable modifications yield proofs for
d̂ < 0.

Proof of Theorem 1 We begin with the latter part.
First, we define some additional notation. For each N let:

Q = b̂

d̂ − g
λ = Nλs

1 + (1 − 1/N )Nλs

where s = b̂/d̂ . Using this definition, we can rewrite (4) as:

βλ2 − 2Q + 1 = 0
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Solving this for λ then yields:

λ =
√
2Q − 1

β
.

Note that if we find a λ ∈ (0, 1) that satisfies (4), the above implies that 1/2 < Q < (1+β)/2.
Now, define the following functions over 1/2 ≤ q ≤ (1 + β)/2:

Λ(q) =
√
2q − 1

β
∈ [0, 1]

s(q) = b̂

d̂

∣
∣
∣
∣
∣
λ=Λ(q)

(46)

η(q) = Ns(q)√
β

> N/
√

β > N

y(q) = η(q)
√
2q − 1 = NΛ(q)s(q)

γ (q) = y(q)

1 + (1 − 1/N )y(q)
= NΛ(q)s(q)

1 + (1 − 1/N )NΛ(q)s(q)

k(q) = q − γ (q).

Suppose we knew an equilibrium value of λ. This would imply a value for Q so that
λ = Λ(Q). Then, by construction, b̂/d̂ = s(Q), Nλb̂/d̂ = y(Q) and Q = γ (Q). That
is, the Q corresponding to an equilibrium will be a fixed point of γ ( · ). Also, if q∗ is a
fixed point of γ ( · ), it is easily verified that Λ(q∗) satisfies the equilibrium conditions. So
equilibria will correspond one-to-one with fixed points of γ ( · ) or, equivalently, to points at
which k(q∗) = 0. Note that all the above functions are continuous over the range of q and
all are nondecreasing in q except k( · ). With this notation, we can now turn to the proof.

The strategy of the proof is to show that there is a unique q∗ ∈ [1/2, (1 + β)/2] such that
k(q∗) = 0 and y(q∗) < 1. Now, we can write:

k(q) = q − η(q)
√
2q − 1[1 − (1 − 1/N )q]

1 + (1 − 1/N )η(q)
√
2q − 1

and this will be zero if and only if the numerator is zero. Define, for 1/2 ≤ q ≤ (1 + β)/2
and η > N/

√
β (since η(q) > N/

√
β):

μ(q, η) = q − η
√
2q − 1[1 − (1 − 1/N )q].

The following properties of μ are important: μ is continuous, strictly convex in q , and
strictly decreasing in η. By construction, an equilibrium corresponds to a point q∗ such that
μ(q∗, η(q∗)) = 0. Note also that the composite function μ(q, η(q)) is continuous.

We next show an equilibrium exists. First:

μ (1/2, η (1/2)) = 1/2 > 0.

Also:



248 Dyn Games Appl (2018) 8:232–253

μ

(
1 + β

2
, η

)

= 1 + β

2
− η

√
β

[

1 −
(

1 − 1

N

)
1 + β

2

]

<
1 + β

2
− N

[

1 −
(

1 − 1

N

)
1 + β

2

]

, ∀η >
N√
β

so

μ

(
1 + β

2
, η

(
1 + β

2

))

<
1 + β

2
(1 + N − 1) − N = N

(
1 + β

2
− 1

)

< 0

since β < 1. By continuity, there exists q∗ ∈ (1/2, (1 + β)/2) such that μ(q∗, η(q∗)) = 0.
We now show q∗ is unique. Take arbitrary q ∈ (1/2, q∗). Since q∗ < (1 + β)/2, take

α ∈ (0, 1) such that q∗ = αq + (1 − α)(1 + β)/2. By convexity:

μ(q∗, η(q∗)) = 0 < αμ(q, η(q∗)) + (1 − α)μ

(
1 + β

2
, η(q∗)

)

.

The second term on the right-hand side is negative (since the above argument showed this
was true for arbitrary η), so the first must be positive. Therefore, μ(q, η(q∗)) > 0. But η(q)

is increasing in q so η(q∗) > η(q). Since μ is decreasing in η, this implies μ(q, η(q)) >

μ(q, η(q∗)) > 0, so μ(q, η(q)) > 0 for all q ∈ [1/2, q∗). That μ(q, η(q)) is not zero
for q ∈ (q∗, (1 + β)/2] is now obvious since otherwise the same argument would imply
μ(q∗, η(q∗)) > 0.

Turning to the former part, we first show that Nλb̂/d̂ < 1. Note that Nλb̂/d̂ = y(q∗)
and if q∗ = γ (q∗) < N/(2N − 1) it must be that y(q∗) < 1. So it suffices to show
q∗ < N/(2N − 1). If N/(2N − 1) > (1 + β)/2, we are done. Otherwise:

μ

(
N

2N − 1
, η

(
N

2N − 1

))

= N

2N − 1
− η

(
N

2N − 1

)
1√

N − 1

[

1 − N − 1

N
· N

2N − 1

]

= N

2N − 1

√
2N − 1 − η

(
N

2N − 1

)

√
2N − 1

<
N

2N − 1

√
2N − 1 − N√

2N − 1

≤ 0

where the inequalities hold since η > N and N/(2N − 1) ≤ 1, N ≥ √
2N − 1.9

Finally, solving (8) for f and using (10) yields:

f = N − 1

N
â − N − 1

N
b̂(1 − λ) p̄ + hc̄

Substituting this, g and h into p̄ and solving yields:

p̄ − c̄ = â − (b̂ − d̂)c̄

b̂(1 + N − (N − 1)βλ) − d̂(1 + β)
. (47)

It is straightforward to see that as long as â > (b̂ − d̂)c̄ it must be the case that p̄ > c̄.

9 This can easily be derived from the fact that (N − 1)2 ≥ 0.
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Now we show that there exist εL , εH where pt , Xt > 0. Define

pL = p̄ − N
λ

1 − λ

b̂

d̂
εL (48)

pH = p̄ + N
λ

1 − λ

b̂

d̂
εH . (49)

It is easy to show that if pt ∈ [pL , pH ], then pt+1 ∈ (pL , pH ). By induction, if pt ∈
[pL , pH ], then pt+k ∈ (pL , pH ) for any k > 0. Thus, by bounding the errors we can ensure
that prices set by the Euler equation will never be negative and will be lower than some price
at which the households would always choose positive consumption in both periods. ��
Proof of Corollary 1 Since 1/2 < Q < N/(2N−1), Qmust tend to 1/2 as N tends to infinity.
Since λ = Λ(Q) and this function is continuous, λ tends to Λ(1/2) = 0.

Note Q is a one-to-one, continuous function of y = Nλs, so the fact that Q converges
implies y converges to some limit point y′. But then it must be that 1/2 = y′/(1+ y′). Solving
this yields y′ = 1.

Rearranging (8) and substituting (13), we get

f = N − 1

N
â − N − 1

N
b̂(1 − λ) p̄ + N − 1

N

Nλb̂

d̂
b̂c̄.

Since we have already shown that λ∗ → 0 and Nλ∗b̂/d̂ → 1, in the limit as N → ∞, f →
â − b̂( p̄ − c̄) or in other words, â − f → b̂( p̄ − c̄). It is straightforward to see that h → b̂
and d̂ − g → 0 and therefore p̄ → c̄. ��
Proof of Proposition 1 Consider the case where d > 0.10 The determinant of the matrix on
the left-hand side of (23) is D = 1 − θ1(θ3θ6 + θ5). Now:

θ1 = m√
2q − 1

>
√
2N − 1

since m > 1 and q < N/(2N − 1).

θ5 = Ns

[1 + (1 − 1/N )Nλs]2 >
N

[(2N − 1)/N ]2 = N 3

(2N − 1)2

since s > 1 and Nλs < 1. Therefore, θ1θ5 > N 3/(2N −1)3/2. It is possible to show that the
last expression equals one when N = 1 and is greater than one for N > 1. This guarantees
that D is negative.

We can now sign the partial derivatives of λ using Cramer’s rule:

dλ

dN
= 1

D

∣
∣
∣
∣
∣
∣

0 0 −θ1
0 1 0
θ7 −θ6 1

∣
∣
∣
∣
∣
∣
= θ1θ7

D
< 0

dλ

dm
= 1

D

∣
∣
∣
∣
∣
∣

θ2 0 −θ1
0 1 0
0 −θ6 1

∣
∣
∣
∣
∣
∣
= θ2

D
< 0

dλ

dr
= 1

D

∣
∣
∣
∣
∣
∣

0 0 −θ1
θ4 1 0
0 −θ6 1

∣
∣
∣
∣
∣
∣
= θ1θ4θ6

D
< 0

10 The case where d < 0 is analogous but requires λ = −√
(2q − 1)/β.
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In order to get some idea as to the behavior of the term Nλb̂/d̂ , we will need to get similar
comparative static results on s. These are:

ds

dm
= 1

D

∣
∣
∣
∣
∣
∣

1 θ2 −θ1
−θ3 0 0
−θ5 0 1

∣
∣
∣
∣
∣
∣
= θ2θ3

D
< 0

ds

dr
= 1

D

∣
∣
∣
∣
∣
∣

1 0 −θ1
−θ3 θ4 0
−θ5 0 1

∣
∣
∣
∣
∣
∣
= θ4(1 − θ1θ5)

D
> 0

follows from the fact that θ1θ5 > 1.

ds

dN
= 1

D

∣
∣
∣
∣
∣
∣

1 0 −θ1
−θ3 0 0
−θ5 θ7 1

∣
∣
∣
∣
∣
∣
= θ1θ3θ7

D
< 0

Now, differentiating y = Nλs with respect to m, e and N yields:

dy

dm
= Ns

dλ

dm
+ Nλ

ds

dm
< 0

dy

dr
= Ns

dλ

dr
+ Nλ

ds

dr
< 0

Finally, to sign dy/dN , first note that:

dy

dN
= λs + Nλ

ds

dN
+ Ns

dλ

dN

= λs − Nλ
θ1θ3θ7

|D| − Ns
θ1θ7

|D|
where |D| = θ1(θ3θ6 + θ5) − 1 > 0. Factoring out |D|, we get:

dy

dN
= 1

|D| (θ1 [θ3 (θ6λs − θ7Nλ) + θ5λs − θ7Ns] − λs)

Using the definition of the θs:

dy

dN
= 1

|D|
(

θ1

[

θ3

(
Nλ2s

H2 − Nλ2s(1 − λs)

H2

)

+ Nλs2

H2 − Nλs2(1 − λs)

H2

]

− λs

)

where H = 1 + (N − 1)λs. So,

dy

dN
= 1

|D|
(

θ1

[

θ3
Nλ3s2

H2 + Nλ2s3

H2

]

− λs

)

= 1

|D|
(

θ3
Nλ2s2

βH2 + Nλs3

βH2 − λs

)

since θ1 = 1/βλ. Factoring out λs/H2 yields:

dy

dN
= λs

|D|H2

(
θ3Nλs

β
+ Ns2

β
− H2

)

This is positive whenever:

Ns2

β
> H2
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or
s√
β

√
N > H.

Now:
s√
β

√
N − H >

√
N − H (since

s√
β

> 1)

= √
N − 1 − N − 1

N
Nλs

= √
N − 1 − N − 1

N
y

>
√
N − 1 − N − 1

N
(since y < 1)

= N
√
N − 2N + 1

N

The term in the numerator is negative for N between one and two. However, it is positive
for N = 3 and is strictly increasing in N for N ≥ 3, so dy/dN is positive for N ≥ 3. ��

Appendix 2: Correlated Shocks

We have considered shocks which are i.i.d. over time. We now consider the case in which
there is correlation in the cost shocks. As a simple case, take the overlapping generations
example of Sect. 3.1 and suppose there is first-order autoregression in the cost-shock series.

In this case, the same method of solving for a Markov perfect equilibrium with linear
pricing strategies does not work. If young consumers form expectations of the next period’s
price as a linear function of the current price, thefirms’ problemwould be the same as inSect. 2
andEq. (14)would still give the equilibrium response of firms to such a strategy by consumers.
However, the last term in Eq. (14) involves the term εt+1 which will not have expectation of
zero unless the current cost shock is zero. Thus, if consumers were to form expectations of
the future price assuming the price sequence is first-order autoregressed, the price sequence
firms would choose would be second-order autoregressed and those expectations would be
inconsistent.

To solve this problem, we instead assume the young consumers observe only the current
price and not the cost shock or the history of prices that occurred before they were born.
Even with this simple information set, the expectation of the next period’s price will not
generally be linear (this depends on the distribution that generates the shocks), so we assume
consumers use a least-squares projection to form forecasts of the future price.

Given linear consumer forecasts, the firms’ problem remains the same and has a solution
of as in (14). Let zt denote the deviation in the price at time t from the long-run expected
price. That is, zt+1 ≡ pt+1 − p̄ = λ(pt − p̄) + λ(Nb̂/d̂)εt+1. This can be rewritten in the
form:

zt+1 = λzt + λet+1

where et is proportional to εt . Since the cost shock follows an AR(1) process:
et+1 = ρet + ut+1

where ρ is less than one in absolute value and ut is white noise. Let P(zt+1|zt ) be the
projection of zt+1 given zt . Since zt is known by consumers born on date t , to compute
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P(zt+1|zt ), we need to find the projection of et+1 given zt , P(et+1|zt ). This takes the form:
P(et+1|zt ) = φzt

where

φ = COV(zt , et+1)

VAR(zt )

It can be shown that

φ = (1 − λ2)ρ

λ(1 + ρλ)

so that the projection of zt+1 on zt is:

P(zt+1|zt ) = λ(1 + φ)zt = λ + ρ

1 + λρ
zt ≡ ζ zt

It is easy to show that ζ as defined above is in the interval [−1, 1] whenever ρ ∈ [-1, 1]
and λ ∈ [-1, 1]. To show existence of an equilibrium when d > 0, define the function
G : [−1, 1]2 → [−1, 1]2 as follows. For any given ρ, let:

G1(ζ, λ) = λ + ρ

1 + λρ

and let G2 be the right-hand side of (6) where for the solution to the consumers utility max-
imization problem, we have replaced the λ’s appearing in (22) with ζ ’s. Here, the subscripts
index the two arguments of G. It is straightforward to show that G is continuous and maps
the compact, convex set [−1, 1]2 back into itself. Therefore, G has a fixed point. By con-
struction, fixed points ofG correspond toMarkov perfect equilibria, so an equilibrium exists.
The primary difference is that prices now follow a second-order autoregression process.

Using similar informational and behavioral assumptions, other stochastic processes can
lead to similar results. For example, if shocks are instead assumed to follow a first-order
moving average process, it can be shown that prices will then follow an ARMA(1,1) process.
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