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Abstract Asymptotic stability of equilibrium in evolutionary games with continuous action
spaces is an important question. Existing results in the literature require that the equilibrium
state be monomorphic. In this article, we address this question when the equilibrium is
polymorphic. We show that any uninvadable and finitely supported state is asymptotically
stable equilibrium of replicator equation.
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Stability

1 Introduction

The growing interest in evolutionary games with continuous strategy spaces is primarily
because of the fact that many applications in economics are modelled as evolutionary games
with continuous strategy spaces. Some of the important applications include oligopoly games,
bargaining games, harvest pre-emptive game, andwar of attrition. In these games, the strategy
space is typically a compact subset of an Euclidean space. Considering the vast literature
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on evolutionary games with finite strategy spaces (see, e.g. [9,16,19,20,24,28]), a natural
approach is to approximate the strategy space by finite sets.

Oechssler and Riedel [21] have already considered such an approach for the Harvest pre-
emption game. It is observed (see Sect. 5.4 in [21]) that the limit of the ESS of the finite
approximation is not ESS of the harvest pre-emption game. The reason for such a negative
result is the infinite dimensional nature of the space of all mixed strategy spaces.

Evolutionary games with continuous strategy spaces were first studied by Bomze and
Pötscher through what they called as “generalized” mixed strategy games [5]. There is a vast
literature relating evolutionary stability and dynamic stability under various dynamics for
games with finite strategy spaces (see, e.g. [6,9,17,24,28]). However, this is not the case with
games with continuous strategy spaces. In the works [3–5,10,21,22], the relation is explored
for replicator dynamics. For the literature concerning other dynamics, see [8,13,15,18].

Replicator dynamics is one of the most important dynamics. In this article, we study
the relation between evolutionary stability and dynamic stability under replicator dynamics
for the polymorphic population states. In [5,21,22], such a connection has been studied for
monomorphic population states.

The population states in evolutionary games with continuous strategy spaces are nothing
but probability measures on its strategy space. We can define the static stability concepts of
evolutionarily stable strategy (ESS) and uninvadability in these games. We can also define
the replicator dynamics for these games which capture the evolution of the population over
time. Certain other stability concepts can also be defined, but they depend on the notion of
“closeness” of the population states.

The closeness of the population states can be made precise using various metrics. In this
article, we study the evolutionary dynamics and related stability results under the metric
defined by the variational or strong norm, which gives rise to the strong topology. In par-
ticular, we can define the static stability concepts of strong uninvadability [3,4] and strong
unbeatability [6] along with the dynamic stability concepts such as Lyapunov stability and
strongly attracting population states [5,21]. We can also define the concepts of evolutionary
robustness [22] and weakly attracting population states [21] when we consider the metric
associated with the weak topology.

Evolutionary games with continuous strategy spaces with the underlying topology as the
strong topology are studied in [21]. The authors connected the static and dynamic stabilities
for a population state where all the individuals in the entire population play one and the
same pure strategy x . Such a population state is called a monomorphic population state, and
it is represented by the Dirac measure δx . They proved that an uninvadable monomorphic
population state is Lyapunov stable. Moreover, if the initial population state is close to this
monomorphic population state in the strong sense and the payoff function is continuous, then
the monomorphic population state is weakly attracting. Some results regarding the stability
of dimorphic population states have been discussed in [14].

In [22], Oechssler and Riedel proved that for a doubly symmetric game with continu-
ous payoff function and compact strategy space, an evolutionary robust population state is
Lyapunov stable when the underlying topology is the weak topology. They also prove the
asymptotic stability of monomorphic evolutionary robust strategies under various assump-
tions. Cressman has also studied evolutionary games with continuous strategy games in
[10]. One of the main results he proves in this paper is regarding population states which
have a finite support, which are also known as polymorphic population states. He proved
that a dimorphic (or polymorphic) neighbourhood superior population state is neighbour-
hood attracting. Furthermore, this paper also contains a motivating example (Example 1c)
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of a neighbourhood attracting dimorphic population state. In [11] (Sect. 6), Cressman and
Hofbauer give a class of examples having globally superior dimorphic population states.

Bomze has proved a couple of results regarding the asymptotic stability of population
states in [3]. In the first result [3, Theorem 2], one of the condition that he imposes is that the
set of all population states has to be compact under the given topology. When the underlying
topology is strong, this becomes a very strong imposition. We can weaken the conditions of
this theorem considerably when we talk about the stability of polymorphic population states.
In fact, in this article, we prove that for the Lyapunov stability of the polymorphic population
state, the unbeatability condition is sufficient.

Another result that Bomze gives [3, Theorem 3], depends on a first-order condition for
strong uninvadability of a population state. This condition may not be satisfied always when
the population state is strongly uninvadable. We present here an example (Example 2 in
Sect. 3) where this first-order condition is not satisfied even though the population state is
strongly uninvadable. In this article, we also prove that in the case of polymorphic popu-
lation states, uninvadability is a sufficient condition for asymptotic stability which is our
main result (Theorem 7 in Sect. 3). Note that such a result is not expected in general, if
the underlying topology is weak because weak neighbourhoods of polymorphic states may
contain states whose support is far away from that of the polymorphism, as illustrated in [10]
(Example 3).

In all the results mentioned above, to obtain dynamic stability for a population state, say
P , the initial population state, say Q(0), for the replicator dynamics is taken from a small
neighbourhood of P . Moreover, Q(0) is chosen such that its support contains the support of
P . This is a necessary condition to study stability with respect to replicator dynamics since
the replicator dynamics can only increase or decrease the frequency of the strategies which
already exists at the start of the dynamics. Thus, in general, population state P will be not
be stable with respect to its complete neighbourhood.

In [26], van Veelen and Spreij proved that when a population state P is asymptotically
stable with respect to a complete (strong) neighbourhood under the replicator dynamics, then
P should be a polymorphic population state. The results we prove in this article establish the
converse of the result by van Veelen and Spreij.

There are many references studying polymorphic population models in various contexts;
see, e.g. [1,7,12,25]. In [25], the use of game theory is shown to be more effective in explain-
ing the behaviour of males and females by studying their strategies simultaneously. Broom
et al. [7] study evolutionary stability of various population mixtures in the context of bird
populations. Haplotypes are considered as pure strategies in [12], and evolutionary stability
of certain state/sets is illustrated. Furthermore, a review on game theory of public goods
in one-shot social dilemmas without assortment is given in [1] wherein the evolution of
cooperation in N-person games is discussed.

The rest of the article is structured as follows. Section 2 gives the preliminary notations,
definitions, and results to study continuous strategy evolutionary games with the underlying
topology as the strong topology. Section 3 is divided into two parts. In the first part, we
discuss some properties of polymorphic population states. In the second part, we discuss
the stability of polymorphic population states. We prove that an uninvadable polymorphic
population state is asymptotically stable, whereas for Lyapunov stability, it is enough if the
population state is unbeatable. Concluding remarks are given in Sect. 4. An “Appendix”
is devoted to study the Lyapunov stability for differential equations in infinite dimensional
spaces.
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2 Preliminaries and Problem Description

Let S be a Polish space (i.e. complete separable metric space) with the associated metric d .
We consider a symmetric two player game G = (S, u). Here, u : S × S → R represents
the payoff function, which is bounded and measurable. Recall that in a symmetric game, if
a player chooses z ∈ S and the other player chooses w ∈ S, then the player choosing z will
get a payoff u(z, w).

Let B denote the Borel sigma-algebra on S, i.e. the sigma-algebra generated by all open
sets in S. Following the tradition of evolutionary game theory, a population state of the game
G is defined to be a probability measure, Q, on the measurable space (S,B). The set of all
population states is denoted by �. The average payoff to a population P playing against a
population Q is given by

E(P, Q) :=
∫

S

∫
S

u(z, w) Q(dw) P(dz).

We recall a few definitions from evolutionary game theory.

Definition 1 [5,19] A population state P is called an evolutionarily stable strategy if for
every “mutation” Q �= P , there is an invasion barrier ε(Q) > 0, such that, for all 0 < η ≤
ε(Q),

E(P, (1 − η)P + ηQ) > E(Q, (1 − η)P + ηQ). (1)

Definition 2 [27] A population state P is called uninvadable if, in Definition 1, ε(Q) can
be chosen independent of Q ∈ �, Q �= P .

Note that we can rewrite the condition (1) in the ESS definition as

E(P, R) > E(R, R),

where R = (1− η)P + ηQ for all 0 < η ≤ ε(Q). A neighbourhood of P can be completely
characterized by R, with η sufficiently small, when the set of pure strategies is finite; but not
when the set of pure strategies is infinite. In games with infinite strategy set, the neighbour-
hoods of the population state P can be determined using various topologies. In this article,
we consider the topology generated by the variational (or strong) norm, i.e. the variational
(or strong) topology. The variational norm of a probability measure P is given by

‖P‖ = 2 sup
B∈B

|P(B)|.

Thus, the distance between two probability measures P and Q is given by

‖P − Q‖ = 2 sup
B∈B

|P(B) − Q(B)|.

We next define strong uninvadability and strong unbeatability.

Definition 3 [3,4] A population state P is called strongly uninvadable if there is an ε > 0
such that for all population states R �= P with ‖R − P‖ ≤ ε, we have

E(P, R) > E(R, R).

Definition 4 [6] A population state P is called strongly unbeatable if there is an ε > 0 such
that for all population states R �= P with ‖R − P‖ ≤ ε, we have

E(P, R) ≥ E(R, R).
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It can be easily seen that a strongly uninvadable state is uninvadable and an uninvadable
state is an ESS [4].

We now consider the evolution of the population over time using the replicator dynamics
[21,22]. To this end, we note that the success (or lack of success) of a strategy z ∈ S against
a strategy w ∈ S is given by

σ(z, w) := u(z, w) − u(w,w).

The average success (or lack of success) of a strategy z ∈ S against a population Q ∈ � is
given by

σ(z, Q) :=
∫

S
u(z, w) Q(dw) −

∫
S

∫
S

u(z̄, w̄) Q(dw̄) Q(dz̄) = E(δz, Q) − E(Q, Q),

where the Dirac measure δz represents a monomorphic population state.
The replicator dynamics is derived based on the idea that the relative increment in the

frequency of strategies in a set B ∈ B is given by the average success of strategies in B.
That is, for every B ∈ B,

Q′(t)(B) = dQ(t)

dt
(B) =

∫
B

σ(z, Q(t)) Q(t)(dz) (2)

where Q(t) denotes the population state at time t .
The replicator dynamics Eq. (2) can be also written as

Q′(t) = F(Q(t)), (3)

where for every B ∈ B, F(Q(t))(B) = ∫
B σ(z, Q(t)) Q(t)(dz); that is, F(Q(t)) is the

signed measure whose Radon–Nikodym derivative
d F(Q(t))

dQ(t)
, w.r.t. Q(t) is σ(·, Q(t)).

Since the payoff function u is bounded and measurable, it follows that the replicator
dynamics is well posed [21, Theorem 2] which in turn assures the existence of a unique
solution to the replicator dynamics (2) with the initial condition Q(0).

We can now introduce a few dynamic stability definitions for population states. Let P be
a rest point of the replicator dynamics, i.e. F(P) = 0.

Definition 5 Rest point P is called Lyapunov stable if for all ε > 0, there exists an η > 0
such that,

||Q(0) − P|| < η ⇒ ||Q(t) − P|| < ε for all t > 0.

Definition 6 P is called strongly attracting if there exists an η > 0 such that Q(t) converges
to P strongly as t → ∞, whenever ||Q(0) − P|| < η.

Definition 7 P is called asymptotically stable if P is Lyapunov stable and strongly attracting.

One of the main interest in studying games with continuous strategy spaces is to establish
conditions under which the population states will be dynamically stable. We recall here some
of the existing results in this direction.

Oechssler and Riedel [21] provide with sufficient conditions for a monomorphic popu-
lation state Q∗ = δx to be Lyapunov stable and “weakly attracting”. More precisely, they
prove the following result.
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Theorem 1 [21] If Q∗ = δx is an uninvadable, monomorphic population state, then Q∗
is Lyapunov stable. Moreover, if u is continuous then Q∗ is weakly attracting, in the sense
that the trajectory w.r.t the replicator dynamics converges to Q∗ weakly when the initial
population state is from a small (strong) neighbourhood of Q∗.

Bomze, in [3], proved couple of results regarding the asymptotic stability of population
states under very strong assumptions. The first theorem that he gives is as follows.

Theorem 2 [3] Suppose that � is relatively τ -compact, where τ is a topology on the L-
space, L , of (S,B,�) such that the map Q �→ ‖Q‖ from L to R is lower semi-continuous.
If P ∈ � is strongly uninvadable, and if the map Q �→ E(P, Q) − E(Q, Q) on � is
τ -continuous, then every replicator dynamics trajectory Q(t), t ≥ 0, starting in

UP =
{

Q ∈ � : P  Q and
∫

S
ln

(
dP

dQ

)
dP < δ

}

converges to P as t → ∞, with respect to τ , provided that δ > 0 is small enough.

The τ -compactness condition in the above theorem is a very strong condition when τ is
taken to be the strong topology. Bomze gives another result regarding the asymptotic stability
of the population state P with τ as the strong topology under the condition of the following
theorem.

LetM be the linear span of �, with variational norm, andF be the space of all bounded
measurable functions with the norm ‖F‖∞ = supz∈S |F(z)|. Also, for FQ ∈ F , FQ(z)
denotes the mean payoff to z ∈ S against Q ∈ �.

Theorem 3 [3] Let P ∈ � be a rest point and assume that the map Q �→ FQ from � to
F is Fréchet differentiable at Q = P in the sense that there is a continuous linear map
DFP : M → F such that for all η > 0 there is a ρ > 0 fulfilling

‖FQ − FP − DFP (Q − P)‖∞ ≤ η‖Q − P‖
whenever ‖Q − P‖ < ρ and Q ∈ �.

P is strongly uninvadable if there is a constant c > 0 such that
∫

S
DFP (Q − P) d(Q − P) ≤ −c ‖Q − P‖2 for all Q ∈ �. (4)

Note that games satisfying this last condition are known as negative definite games. Nega-
tive definite games possessmany interesting properties and they have been studied extensively
in the literature [8,18,24].

The above theorem gives a first-order condition for P to be strongly uninvadable. The
next one gives another set of conditions for asymptotic stability of a population state P .

Theorem 4 [3] Under the assumptions of Theorem 3, every replicator dynamics trajectory
Q(t), t ≥ 0, starting in UP (as in Theorem 2) satisfies ‖Q(t) − P‖ → 0 as t → ∞.

The first-order condition for strong uninvadability of P , given in Theorem 3 is not a
necessary condition, as illustrated by Example 2 in the next section. We observe that the
conditions for stability can be weakened when we are dealing with polymorphic population
states. In the next section, we focus on the polymorphic population states and provide with
conditions for their stability with the underlying topology as the strong topology.
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3 Stability of Polymorphic Population States

In this section, wewill first study some properties of polymorphic population states, and then,
wewill move on to the stability of these population states. As the name suggests, polymorphic
population states have a finite support. Moreover, we can view them as convex combinations
of monomorphic population states.

3.1 Properties of Polymorphic Population States

We begin by characterizing rest points of the replicator dynamics (3).

Lemma 1 A population state P is a rest point of the replicator dynamics (3) if and only if∫
S u(z, w)P(dw) is constant a.s. z(P).

Proof Clearly, P is a rest point of the replicator dynamics if and only if for all B ∈ B,

F(P)(B) =
∫

B
σ(z, P) P(dz) = 0.

This is equivalent to

σ(·, P) = 0 a.s.(P).

This implies and is implied by

E(δz, P) = E(P, P) a.s. z(P).

From this, it follows that P is a rest point of the replicator dynamics if and only if,∫
S u(z, w)P(dw) is independent of z a.s.(P). ��
In the case of the polymorphic population state given by

P∗ = α1δx1 + α2δx2 + . . . + αkδxk , (5)

where x1, x2, . . . , xk are distinct points in S and the sum of the positive numbers
α1, α2, . . . , αk is 1, this lemma reduces to the following corollary.

Corollary 1 Let P∗ be a polymorphic population state given by (5). Then, P∗ is a rest point

of the replicator dynamics if and only if the sum
k∑

j=1
α j u(xi , x j ) is independent of i .

Proof The proof follows since the support of P∗ is {x1, x2, . . . , xk}. ��
We illustrate the above corollary using the following example.

Example 1 Let S = [0, 1] and the payoff function be defined by

u(z, w) =
{

w if z < w

z − w if z ≥ w

Consider the polymorphic population state

P∗ = α1δx1 + α2δx2 + α3δx3 = 1

3
δ0 + 1

3
δ1/2 + 1

3
δ1.
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Then, for i = 1,

k∑
j=1

α j u(x1, x j ) = 1

3

3∑
j=1

u(0, x j ) = 1

3
{u(0, 0) + u(0, 1/2) + u(0, 1)}

= 1

3

{
0 + 1

2
+ 1

}
= 1

2
.

Similarly, for i = 2 and i = 3, we get the sum
∑k

j=1 α j u(xi , x j ) as 1/2. Thus, by Corollary
1, P∗ is a rest point of the replicator dynamics.

Now that we have established the condition for the polymorphic population state P∗ to be
a rest point of the replicator dynamics, we move on to characterizing small neighbourhoods
of P∗ with respect to the variational topology.

Consider population states P and Q from �. Then, by Lebesgue decomposition, we can
decompose Q in terms of the Borel measures Q1 and Q2 such that

Q = Q1 + Q2

where Q1 is absolutely continuous with respect to P and Q2 is singular with respect to P .
Now

‖Q − P‖ = 2 sup
B∈B

|Q1(B) + Q2(B) − P(B)| ≥ 2|Q1(A) − P(A)|

for every Borel set A ⊆ Support(P).
We can similarly decompose the population state Q, by taking P = P∗, the polymorphic

population state. Now since the support of P∗ = {x1, x2, . . . , xk}, note that whenever the
support of Q is a strict subset of the support of P∗, form the above inequality, we obtain

‖Q − P∗‖ ≥ 2 inf {α j : x j /∈ Support(Q)}.
Let 0 < ε < 2 inf {α j : j = 1, 2, . . . , k}. From the above, it follows that for every Q in the
ε-neighbourhood of P∗, the support of Q1 must be equal to the support of P∗.

In conclusion, every population state Q sufficiently close to P∗ will be of the form

Q =
k∑

j=1

β jδx j + βk+1R ;
k+1∑
j=1

β j = 1 (6)

where the support of R ∈ � is disjoint from the support of P∗.
One useful consequence of this fact is the following lemma, whose proof is a straight

forward application of the representation (6).

Lemma 2 Let P∗ be the polymorphic state given by (5). Then, for sufficiently small ε, P∗
is absolutely continuous with respect to Q, for every Q in ε-neighbourhood of P∗.

Not surprisingly, this lemma fails when P∗ is infinitely supported. In fact, the Lebesgue
measure on [0, 1] provides a counter example.

Another consequence of the Eq. (6) is the following lemma which gives bounds for the
variational distance between population states in a small neighbourhood of P∗.
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Lemma 3 Let ε > 0 be small enough such that all population states in the neighbourhood
�(ε) := {Q ∈ � : ‖Q − P∗‖ < ε} are of the form (6). If

Q1 =
k∑

j=1

β jδx j + βk+1R1 ;
k+1∑
j=1

β j = 1,

Q2 =
k∑

j=1

γ jδx j + γk+1R2 ;
k+1∑
j=1

γ j = 1

are population states in �(ε) then we have,

2 max
1≤ j≤k

{|β j − γ j |
} ≤ ‖Q1 − Q2‖ ≤ 2max

⎧⎨
⎩

k∑
j=1

|β j − γ j | , 2

⎛
⎝1 −

k∑
j=1

β j

⎞
⎠

⎫⎬
⎭ .

Proof The proof follows from straight forward calculations using the definition of the vari-
ational distance. ��

From this lemma, we can write the bounds for variational distance of P∗ and a population
state Q in its neighbourhood, with the form given in (6), as

max
1≤ j≤k

|α j − β j | ≤ 1

2
‖Q − P∗‖ ≤ max

⎧⎨
⎩

k∑
j=1

|α j − β j |, 2
⎛
⎝1 −

k∑
j=1

β j

⎞
⎠

⎫⎬
⎭ . (7)

Remark 1 The above lemma and its application not only gives us lower and upper bounds for
the variational distance but it also proves that ‖Q − P∗‖ → 0 if and only if |β j − α j | → 0
for every j = 1, 2, . . . , k. Thus, to prove convergence of a sequence of population states to
P∗, it is enough to prove the convergence of the weights on each of x j ’s.

Before proceeding further to study the stability of polymorphic population states, we
present an example which shows that the first-order condition in Theorem 3 is not necessary
to guarantee that P∗ is strongly uninvadable.

Example 2 Let S = [−1, 1] and the payoff function be defined as

u(z, w) = 2 − zw for all z, w ∈ S.

The polymorphic state P∗ = αδ−1 + (1− α)δ1 with α = 1/2 is a rest point of the replicator
dynamics. Now consider a population state Q from an arbitrarily small strong neighbourhood
of P∗ (as given in Lemma 2). Then, Q will be of the form

Q = βδ−1 + γ δ1 + (1 − β − γ )R,

where R ∈ � such that R({−1, 1}) = 0 and 0 < β + γ ≤ 1.
Note that E(δz, P∗) = 2 for all z ∈ S which implies that

E(P∗, P∗) = E(P∗, Q) = E(Q, P∗) = 2.

By definition of u,

E(Q, Q) = 2 − (γ − β + (1 − β − γ )μ)2

where μ = ∫
S z R(dz).
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Therefore, P∗ is strongly uninvadable since E(P∗, Q)− E(Q, Q) > 0 for every Q �= P∗
in a strong neighbourhood of P∗.

However, we can show that the condition (4) is not true. In fact, the map FQ =∫
S u(·, w) Q(dw) is Frèchet differentiable and DFP∗(Q − P∗) = FQ−P∗ . Hence,
∫

S
DFP∗(Q − P∗) d(Q − P∗) = E(Q, Q) − E(P∗, Q) − E(Q, P∗) + E(P∗, P∗).

Taking Q = 1
2 (δ−1/2 + δ1/2) we note that∫

S
DFP∗(Q − P∗) d(Q − P∗) = 0.

Thus, the game is not negative definite game.

3.2 Stability of P∗

We are now ready to discuss the stability of polymorphic population states. First, we recall
the following result from [26, Proposition 13]. Since this result forms the background for our
work, we provide a proof which is slightly different from [26] .

Theorem 5 [26, Proposition 13] Every asymptotically stable rest point of the replicator
dynamics in variational distance is finitely supported.

Proof From [4, Lemma 2], we have

Support(Q(t)) = Support(Q)

where Q(·) is the trajectory of the replicator dynamics (2) with initial condition Q(0) = Q.
If Q(t) converges to P strongly, then, by Portmanteau theorem [2, Theorem 2.1], we must
have

Support(P) ⊆ Support(Q). (8)

To prove the theorem, we exhibit a probability measure Q in any arbitrary neighbourhood
of P contradicting (8), provided P is not finitely supported.

If P is not finitely supported, then for each ε > 0, we can find a set C such that 0 <

P(C) < ε [26, Lemma 15]. Choose Q which is defined by

Q(B) = 1

1 − P(C)
P(B\C), for all B ∈ B.

Now, it is easy to verify that ‖P − Q‖ < ε, giving the required contradiction. ��
Remark 2 In fact, the above proof also proves the result in the case of weak convergence.
See Proposition 14 in [26].

Let P∗ be a rest point of the replicator dynamics where P∗ is as in (5). Let Q(0) be a
population state in a small neighbourhood of P∗ as in Lemma 2. Hence,

Q(0) =
k∑

j=1

β jδx j + βk+1R(0) ;
k+1∑
j=1

β j = 1 (9)

where R(0) ∈ � with R(0)({x1, x2, . . . , xk}) = 0.
Consider the solution Q(·) of the replicator dynamics Eq. (2) starting from Q(0). Since

the support of Q(0) and Q(t) is the same, Q(t)({x j }) > 0 for all j = 1, 2, . . . , k.
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Using this, from the replicator dynamics Eq. (2), we obtain,

Q′(t)({x j }) = Q(t)({x j }) σ (x j , Q(t)), Q(0)({x j }) = β j (10)

for j = 1, 2, . . . , k.
In the following theorem, we prove the Lyapunov stability of polymorphic population

states.

Theorem 6 Let P∗ be the polymorphic population state as in (5). If P∗ is unbeatable then
P∗ is Lyapunov stable.

Proof Let the polymorphic population state P∗ be unbeatable. By arguments similar to that
of Lemma 1 in [21], it follows that P∗ is strongly unbeatable. This implies that there exists
ε > 0 such that for R(�= P∗), with ‖R − P∗‖ ≤ ε,

E(P∗, R) ≥ E(R, R)

Let δ < 2min{α1, α2, . . . , αk}, θ = min{ε, δ} and � = {Q ∈ � : ‖Q − P∗‖ < θ}.
By the definition of θ , it follows from Lemma 2 that P∗ is absolutely continuous with

respect to Q, for every Q ∈ �. Therefore, for every Q ∈ � and B ∈ B, we have

P∗(B) =
∫

B

dP∗

dQ
dQ.

Putting B = {x j }, we get,
dP∗

dQ
(x j ) = α j

Q({x j }) ; j = 1, 2, . . . , k. (11)

Define V : � → R by,

V (Q) =
∫

S
ln

(
dP∗

dQ

)
dP∗. (12)

Since P∗ is polymorphic, using (11), we can rewrite (12) as follows.

V (Q) =
k∑

j=1

α j ln

(
dP∗

dQ
(x j )

)
=

k∑
j=1

α j ln

(
α j

Q({x j })
)

. (13)

Using continuity of the log function, one may show that V is continuous in �. Moreover,
V (P∗) = 0 and for Q ∈ � such that Q �= P∗, we have,

V (Q) =
k∑

j=1

α j ln

(
α j

Q({x j })
)

= −
k∑

j=1

α j ln

(
Q({x j })

α j

)

> −
k∑

j=1

α j

(
Q({x j })

α j
− 1

)
(∵ ln(z) < z − 1 for z �= 1)

= 1 −
k∑

j=1

Q({x j }) ≥ 0.
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Thus, V (Q) ≥ 0 and the equality holds if and only if Q = P∗; in other words, V is positive
definite.

From Pinsker’s inequality (see [23, Eqs. (3.3.6) and (3.3.9)] and [4, Lemma 3]) we see
that ‖Q − P∗‖2 ≤ V (Q) for every Q ∈ �.

Now, let Q(t) be the trajectory of the replicator dynamics with the initial population state
as Q ∈ �. Then,

d

dt
V (Q(t)) = d

dt

⎛
⎝ k∑

j=1

α j ln

(
α j

Q(t)({x j })
)⎞

⎠ (from (13))

= −
k∑

j=1

α j
d

dt

(
ln

(
Q(t)({x j })

α j

))

= −
k∑

j=1

α j
Q′(t)({x j })
Q(t)({x j })

= −
k∑

j=1

α j σ(x j , Q(t)) (from (10))

= −
k∑

j=1

α j [E(δx j , Q(t)) − E(Q(t), Q(t))]

= −E(P∗, Q(t)) + E(Q(t), Q(t)).

Therefore,

V̇ (Q) = −E(P∗, Q) + E(Q, Q).

Since P∗ is unbeatable, and in turn strongly unbeatable, V̇ (Q) ≤ 0 for any Q ∈ � which
proves that V is non-increasing along replicator dynamics trajectories.

Thus, by Theorem 8 (in the “Appendix”), we can conclude that P∗ is Lyapunov stable. ��
Our next results establishes the asymptotic stability of polymorphic population states.

Theorem 7 Let P∗ be the polymorphic population state as in (5). If P∗ is uninvadable then
P∗ is asymptotically stable.

Proof Let the polymorphic population state P∗ be uninvadable. By Lemma 1 in [21], P∗
is strongly uninvadable and hence, there exists ε > 0 such that for all R(�= P∗) with
‖R − P∗‖ ≤ ε,

E(P∗, R) > E(R, R).

We can define � and the function V as in the proof of Theorem 6 where V is a positive
definite continuous function for which

V̇ (Q) = −E(P∗, Q) + E(Q, Q)

for every Q ∈ �. Since, P∗ is uninvadable, and in turn strongly uninvadable, V̇ (Q) < 0 for
any Q ∈ �, Q �= P∗ which proves that V is strictly decreasing along replicator dynamics
trajectories which remain in �.
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Now, for any 0 < ε1 < θ , by Theorem 6, there exists δ1 > 0 such that every trajectory
starting from the open ball centred at P∗ with radius δ1 (denoted by B(P∗, δ1)) will remain
in B(P∗, ε1

2k ).
Consider the trajectory Q(t) = Q(t; Q0) starting from Q0 ∈ B(P∗, δ1). For this trajec-

tory Q(t), clearly, there exists a sequence tn → ∞ such that Q(tn)({x j }) converges to a
limit, say β∗

j ; j = 1, 2, . . . , k.
Since Q(tn) ∈ B(P∗, ε1

2k ), it follows from (7) that |α j −β∗
j | ≤ ε1

2k for every j = 1, 2, . . . , k

and hence
k∑

j=1
|α j − β∗

j | ≤ ε1
2 < θ . In particular, by the definition of θ we now have β∗

j > 0

for every j = 1, 2, . . . , k.
This implies that

V (Q(tn)) =
k∑

j=1

α j ln

(
α j

Q(tn)({x j })
)

converges to

V (Q∗) =
k∑

j=1

α j ln

(
α j

β∗
j

)

for any (fixed) Q∗ ∈ � ⊂ � where

� =
⎧⎨
⎩Q ∈ � | Q =

k∑
j=1

β∗
j δx j +

⎛
⎝1 −

k∑
j=1

β∗
j

⎞
⎠ R; R({x1, x2, . . . , xk}) = 0

⎫⎬
⎭ .

For s > 0, by the replicator dynamics Eq. (10), we know that

Q(s; Q∗)({x j }) = β∗
j exp

(∫ s

0
σ

(
x j , Q(t; Q∗)

)
dt

)

= β∗
j T (s) (14)

and

Q(s; Q(tn))({x j }) = Q(tn)({x j }) exp

(∫ s

0
σ

(
x j , Q(t; Q(tn))

)
dt

)

= Q(tn)({x j }) Tn(s). (15)

Therefore we have,

|V (Q(s; Q∗)) − V (Q(s, Q(tn)))|

=
∣∣∣∣

k∑
j=1

α j ln

(
α j

β∗
j T (s)

)
−

k∑
j=1

α j ln

(
α j

Q(tn)({x j }) Tn(s)

) ∣∣∣∣

=
k∑

j=1

α j

∣∣∣∣ ln
(

Q(tn)({x j }) Tn(s)

β∗
j T (s)

) ∣∣∣∣ (16)

Since σ(·, Q) is bounded, it follows that
Tn(s)

T (s)
→ 1 (uniformly in n) as s ↓ 0 and hence

from (16), we get,

lim
s↓0, n↑∞ |V (Q(s; Q∗)) − V (Q(s, Q(tn)))| = 0.



154 Dyn Games Appl (2018) 8:141–156

Thus, by Theorem 9 (in the “Appendix”), we can conclude that P∗ is asymptotically stable.
��

4 Conclusions

In this article, we studied the stability of polymorphic population states in games with contin-
uous strategy spaces. We proved that uninvadability is a sufficient condition for asymptotic
stability of a polymorphic population state, whereas unbeatability is enough for the Lyapunov
stability. Beyond finitely supported population states, one cannot establish similar stability
results unless weweaken the notion of stability. This is an interesting topic for future research
in games with continuous strategy spaces.

Appendix

Here, we establish two abstract stability theorems used to prove our main theorems in Sect. 3.
To this end, we consider an abstract differential equation

φ′(t) = H(φ(t)) (17)

on a Banach space (X, ‖ · ‖X ). It is assumed that for each initial condition φ0 in an invariant
set Y ⊂ X , the differential equation (17) has a unique solution φ(t) = φ(t;φ0) defined
for every t ≥ 0. We want to analyse this system around a rest point φ∗ ∈ Y . We recall the
definition of K ∞

0 functions:

K ∞
0 = {ω : [0,∞) → [0,∞) | ω is strictly increasing, continuous,

ω(0) = 0 and lim
s→∞ ω(s) = ∞}.

Theorem 8 Let � be an open subset of Y containing the rest point φ∗ of (17). Assume that
V : � → R is continuous at φ∗ and satisfies

(i) V (φ) ≥ 0 on � and V (φ∗) = 0;
(ii) there exists ω ∈ K ∞

0 such that ω(‖φ − φ∗‖X ) ≤ V (φ) for all φ ∈ �;
(iii) V is non-increasing along trajectories of (17) that lie in �.

Then, φ∗ is Lyapunov stable.

Proof Let B(φ∗, ε) be the open ball around φ∗ with radius ε. Let ε > 0 be small enough
such that the closure of B(φ∗, ε) is contained in �.

By continuity of V at φ∗ and condition (i), there exists δ > 0 such that V (φ) < ω(ε)

whenever φ ∈ B(φ∗, δ).
Clearly, by condition (i i i), the set U = {φ ∈ � | V (φ) < ω(ε)} is invariant. Without

loss of generality we can assume that closure of U is a subset of �. Therefore, for every
φ0 ∈ B(φ∗, δ), the trajectory φ(t) = φ(t;φ0) lies in U and hence,

ω
(‖φ(t) − φ∗‖X

) ≤ V (φ(t)) < ω(ε).

As ω ∈ K ∞
0 , it is invertible and from above it follows that

‖φ(t) − φ∗‖X < ε.

Hence, the trajectory φ(t) lies in B(φ∗, ε) whenever φ0 ∈ B(φ∗, δ). ��
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Theorem 9 Let � be an open subset of Y containing the rest point φ∗ of (17). Assume that
V : � → R is continuous on � and satisfies

(i) V (φ) ≥ 0 on � and V (φ∗) = 0;
(ii) there exists ω ∈ K ∞

0 such that ω(‖φ − φ∗‖X ) ≤ V (φ) for all φ ∈ �;
(iii) V is strictly decreasing along trajectories of (17) that lie in �\{φ∗};
(iv) there exists δ1 > 0 such that for every trajectory φ(t) emanating from B(φ∗, δ1), there

exists a sequence tn → ∞ such that V (φ(tn)) converges to V (ψ) for some ψ ∈ � and

lim
s↓0, n↑∞ |V (φ(s;ψ)) − V (φ(s, φ(tn)))| = 0.

Then, φ∗ is asymptotically stable.

Proof As the Lyapunov stability follows from the above theorem, it remains to show that φ∗
is attracting.

Let B(φ∗, δ) and B(φ∗, ε) be as defined in the proof of the above theorem.Without loss of
generality, we may assume that δ ≤ ε. Similarly, there exists δ2 > 0 such that all trajectories
emanating from B(φ∗, δ2) lie in B(φ∗, δ

2 ).
Let δ̄ = min{δ1, δ2} and φ(t) = φ(t;φ0) be the trajectory of the differential Eq. (17) with

the initial condition φ0 ∈ B(φ∗, δ̄). Then, by condition (iv), there exists a sequence tn → ∞
such that V (φ(tn)) converges to V (ψ) for some ψ ∈ �.

We need to show that ψ = φ∗. By condition (i i i), V (φ(t)) > V (ψ) for every t ≥ 0. If
ψ �= φ∗, let ψ(t) = φ(t;ψ). For any t > 0, V (ψ(t)) < V (ψ). By condition (iv),

lim
s↓0, n↑∞ |V (φ(s;ψ)) − V (φ(s, φ(tn)))| = 0.

and hence

V (φ(s, φ(tn))) < V (ψ)

for s > 0 small enough and n large enough which is a contradiction because φ(s, φ(tn)) =
φ(s + tn;φ0). Hence, ψ = φ∗. ��
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