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Abstract Here, we consider numerical methods for stationary mean-field games (MFG) and
investigate two classes of algorithms. The first one is a gradient-flow method based on the
variational characterization of certain MFG. The second one uses monotonicity properties of
MFG. We illustrate our methods with various examples, including one-dimensional periodic
MFG, congestion problems, and higher-dimensional models.
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1 Introduction

Mean-field games (MFG) model problems with a large number of rational agents inter-
acting noncooperatively [39–43]. Much progress has been achieved in the mathematical
theory of MFG for time-dependent problems [13,23–25,27,31,34,47,48] and for stationary
problems [22,28,32,33,46,50] (also see the recent surveys [7,11,35]). Yet, in the absence
of explicit solutions, the efficient simulation of MFG is important to many applications.
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Consequently, researchers have studied numerical algorithms in various cases, including
continuous state problems [1–5,8–10,14,36–38] and finite state problems [29,30]. Here,
we develop numerical methods for (continuous state) stationary MFG using variational and
monotonicity methods.

CertainMFG, called variational MFG, are Euler–Lagrange equations of integral function-
als. These MFG are instances of a wider class of problems—monotonic MFG. In the context
of numerical methods, the variational structure of MFG was explored in [2]. Moreover,
monotonicity properties are critical for the convergence of the methods in [1,3,4]. Recently,
variational and monotonicity methods were used to prove the existence of weak solutions to
MFG in [12,13,18,44,49].

Here, our main contributions are two computational approaches for MFG. For variational
MFG, we build an approximating method using a gradient flow approach. This technique
gives a simple and efficient algorithm.Nevertheless, the class of variationalMFG is somewhat
restricted. Monotonic MFG encompass a wider range of problems that include variational
MFG as a particular case. In these games, the MFG equations involve a monotone nonlinear
operator. We use the monotonicity to build a flow that is a contraction in L2 and whose fixed
points solve the MFG.

To keep the presentation elementary, we develop our methods for the one-dimensional
MFG:

⎧
⎨

⎩

u2
x

2
+ V (x) + b(x)ux = lnm + H ,

−(m(ux + b(x)))x = 0.
(1.1)

To streamline the discussion, we study (1.1) with periodic boundary conditions. Thus, the
variable x takes values in the one-dimensional torus, T. The potential, V , and the drift, b,
are given real-valued periodic functions. The unknowns are u, m, and H , where u and m are
real-valued periodic functions satisfying m > 0, and where H is a constant. The role of H
is to allow for m to satisfy

∫

T
m dx = 1. Furthermore, since adding an arbitrary constant to

u does not change (1.1), we require
∫

T

u dx = 0. (1.2)

The system (1.1) is one of the simplest MFG models. However, its structure is quite rich and
illustrates our techniques well. Our methods extend in a straightforward way to other models,
including higher-dimensional problems. In particular, in Sect. 4, we discuss applications to
a one-dimensional congestion model and to a two-dimensional MFG.

We end this introduction with a brief outline of our work. In Sect. 2, we examine various
properties of (1.1). These properties motivate the ideas used in Sect. 3 to build numerical
methods. Next, in Sect. 4, we discuss the implementation of our approaches and present their
numerical simulations. We conclude this work in Sect. 5 with some final remarks.

2 Elementary Properties

We begin this section by constructing explicit solutions to (1.1). These are of particular
importance for the validation and comparison of the numerical methods presented in Sect. 3.
Next, we discuss the variational structure of (1.1) and show that (1.1) is equivalent to the
Euler–Lagrange equation of a suitable functional. Because of this, we introduce a gradient
flow approximation and examine some of its elementary properties. Finally, we explain how
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(1.1) can be seen as a monotone operator. This operator induces a flow that is a contraction
in L2 and whose stationary points are solutions to (1.1).

2.1 Explicit Solutions

Here, we build explicit solutions to (1.1). For simplicity, we assume that V and b are C∞
functions. Moreover, we identify T with the interval [0, 1].

Due to the one-dimensional nature of (1.1), if
∫

T
b dx = 0, we have the following explicit

solution

u(x) = −
∫ x

0
b(y) dy +

∫

T

∫ x

0
b(y) dy dx, m(x) = eV (x)− b2(x)

2

∫

T
eV (y)− b2(y)

2 dy
,

H = ln

(∫

T

eV (y)− b2(y)
2 dy

)

.

Suppose that b = ψx for some C∞ and periodic function ψ : T → R with
∫

T
ψ dx = 0.

For

u(x) = ψ(x), m(x) = eV (x)− ψ2
x (x)

2

∫

T
eV (y)− ψ2

y (y)

2 dy

, H = ln

(∫

T

eV (y)− ψ2
y (y)

2 dy

)

,

the triplet (u, m, H) solves (1.1). If
∫

T
b dx �= 0, we are not aware of any closed-form

solution.
Next, we consider the congestion model

⎧
⎨

⎩

u2
x

2m1/2 + V (x) = lnm + H ,

−(m1/2ux )x = 0.
(2.1)

Remarkably, the previous equation has the same solutions as (1.1) with b = 0. Namely, for

u(x) = 0, m(x) = eV (x)
∫

T
eV (y) dy

, and H = ln
(∫

T
eV (y) dy

)
, the triplet (u, m, H) solves (2.1).

Thus, this model is particularly convenient for the validation of the numerical methods.
However, we stress that our methods are valid for general congestion models satisfying
monotonicity conditions.

2.2 Euler–Lagrange Equation

We begin by showing that (1.1) is equivalent to the Euler–Lagrange equation of the integral
functional

J [u] =
∫

T

e
u2x
2 +V (x)+b(x)ux dx (2.2)

defined for u ∈ D(J ) = W 2,2(T) ∩ L2
0(T), where L2

0(T) = {u ∈ L2(T) : u satisfies (1.2)}.

Remark 2.1 (On the domain of J ) As proved in [16] (see [17,19,22,27,28,46] for related
problems), (1.1) admits a C∞ solution. By a simple convexity argument, this solution is the
unique minimizer of

J [u] = min
v∈W 1,2(T),

∫

T
v dx=0

J [v].
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Thus, the minimizers of J in {v ∈ W 1,2(T) : ∫

T
v dx = 0} are also minimizers of J in

{v ∈ W 2,2(T) : ∫

T
v dx = 0}. Hence, the domain of J is not too restrictive, and, due to

this choice, our arguments are substantially simplified. In particular, because we are in the
one-dimensional setting, W 2,2(T) ⊂ W 1,∞(T).

We also observe that L2
0(T) endowed with the L2(T)-inner product is a Hilbert space.

Lemma 2.2 For H = 0, (1.1) is equivalent to the Euler–Lagrange equation of J .

Proof Let u ∈ W 2,2(T) ∩ L2
0(T). We say that u is a critical point of J if

d

dε
J [u + εv]∣∣

ε=0

= 0

for all v ∈ W 2,2(T) ∩ L2
0(T). Fix any such v. For all ε ∈ R, we have that

d

dε
J [u + εv] =

∫

T

e
u2x
2 +εux vx +ε2

v2x
2 +V (x)+b(x)ux +εb(x)vx (uxvx + b(x)vx + εv2x ) dx .

Define m by

lnm = u2
x

2
+ V (x) + b(x)ux . (2.3)

Then, it follows that

d

dε
J [u + εv]∣∣

ε=0

= 0 ⇔
∫

T

m(ux + b(x))vx dx = 0 ⇔ −
∫

T

(m(ux + b(x)))xv dx = 0.

Since v ∈ W 2,2(T) is an arbitrary function with zero mean, we conclude that u is a critical
point of J if, and only if, (m, u) satisfies (1.1). 	


Asmentioned in Remark 2.1, the functional J defined by (2.2) admits a unique minimizer.
Moreover, since J is convex, any solution to the associated Euler–Lagrange equation is a
minimizer. By (2.3), we have m > 0. In MFG, it is usual to require

∫

T

m dx = 1.

To normalize m, we multiply m by a suitable constant and introduce the parameter H , which
leads us to (1.1).

2.3 Monotonicity Conditions

Let H be a Hilbert space with the inner product 〈·, ·〉H . A map A : D(A) ⊂ H → H is a
monotone operator if

〈A(w) − A(w̃), w − w̃〉H � 0

for all w, w̃ ∈ D(A).
In the Hilbert space L2(T) × L2(T), we define

A

[
m
u

]

=
[

− u2x
2 − V (x) − b(x)ux + lnm

−(m(ux + b(x)))x

]

, (2.4)

with D(A) = {(m, u) ∈ W 1,2(T)× W 2,2(T) : infT m > 0}. Observe that A maps D(A) into
L2(T) × L2(T) because W 1,2(T) is continuously embedded in L∞(T).
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The condition infT m > 0 in the definition of D(A) is due to the singularity of lnm. With
a non-singular coupling term the condition would become infT m � 0. However, the proof
that a smooth weak solution is a solution requires the condition m > 0 (see, e.g., Remark 3.8
for a similar argument).

Lemma 2.3 The operator A given by (2.4) is a monotone operator in L2(T) × L2(T).

Proof Let (m, u), (θ, v) ∈ D(A) ⊂ L2(T) × L2(T). We have
〈

A

[
m
u

]

− A

[
θ

v

]

,

[
m
u

]

−
[
θ

v

]〉

L2(T)×L2(T)

=
∫

T

(lnm − ln θ)(m − θ) dx +
∫

T

(m

2
+ θ

2

)
(ux − vx )

2 dx,

where we used integration by parts. Because ln(·) is an increasing function and because
θ, m > 0, the conclusion follows. 	


As observed in [41,43], the monotonicity of A implies the uniqueness of the solutions.
Here, we use the monotonicity to construct a flow that approximates solutions of (1.1).

2.4 Weak Solutions Induced by Monotonicity

Denote by 〈·, ·〉D×D′ the duality pairing in the sense of distributions. We say that a triplet
(m, u, H) ∈ D′ × D′ × R is a weak solution induced by monotonicity (or, for brevity, weak
solution) of (1.1) if 〈

A

[
θ

v

]

−
[

H
0

]

,

[
θ

v

]

−
[

m
u

]〉

D×D′
� 0

for all (θ, v) ∈ D × D satisfying infT θ > 0 and
∫

T
θ dx = 1.

2.5 Continuous Gradient Flow

Next, we introduce the gradient flow of the energy (2.2) with respect to the L2(T)-inner
product. First, we extend J in (2.2) to the whole space L2

0(T) by setting J [u] = +∞ if
u ∈ L2

0(T)\W 2,2(T). We will not relabel this extension.
The functional J : L2

0(T) → [0,+∞] is proper, convex, and lower semicontinuous in

L2
0(T). The subdifferential of J is the map ∂ J : L2

0(T) → 2L2
0(T) defined for u ∈ L2

0(T) by

∂ J [u] = {
v ∈ L2

0(T) : J [w] � J [u] + 〈v,w − u〉L2(T) for all w ∈ L2
0(T)

}
.

The domain of ∂ J , D(∂ J ), is the set of all u ∈ L2
0(T) such that ∂ J [u] �= ∅.

The gradient flow with respect to the L2(T)-inner product and energy J is

u̇(t) ∈ −∂ J [u(t)], t � 0, (2.5)

where u : [0,+∞) → L2
0(T). As we will see next, (2.5) is equivalent to

u̇(t) = (
m(t)((u(t))x + b(x))

)

x , t � 0, (2.6)

where m(t) is given by (2.3) with u replaced by u(t). Moreover, if the solution u to (2.6) is
regular enough, then

d

dt
J [u] = −

∫

T

[(
m(ux + b(x))

)

x

]2
dx � 0.
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Proposition 2.4 We have D(∂ J ) = W 2,2(T) ∩ L2
0(T) and, for u ∈ D(∂ J ), ∂ J [u] =

−(
m(ux + b(x))

)

x , where m is given by (2.3).

Proof By [15, Thm. 1 in §9.6.1], D(∂ J ) ⊂ D(J ) = {u ∈ L2
0(T) : J [u] < +∞} =

W 2,2(T) ∩ L2
0(T).

Conversely, fix u ∈ W 2,2(T) ∩ L2
0(T), let m be given by (2.3), and set v = −(

m(ux +
b(x))

)

x . Then, v ∈ L2
0(T) by the embedding W 2,2(T) ⊂ W 1,∞(T) and by the periodicity of

u,m, and b.Moreover, using the convexity of the exponential function, the integration by parts

formula, and the conditionsm > 0 and w2
x
2 − u2x

2 � uxwx −u2
x , for eachw ∈ W 2,2(T)∩L2

0(T),
we obtain

J [w] � J [u] +
∫

T

m
(w2

x

2
+ b(x)wx − u2

x

2
− b(x)ux

)
dx

� J [u] +
∫

T

m
(
uxwx − u2

x + b(x)(wx − ux )
)
dx

= J [u] −
∫

T

(
m(ux + b(x))

)

x (w − u) dx .

Because w ∈ W 2,2(T) ∩ L2
0(T) is arbitrary and because J = +∞ in L2

0(T)\W 2,2(T), we
obtain v = −(m(ux + b(x)))x ∈ ∂ J [u]. Because u ∈ W 2,2(T) ∩ L2

0(T) is also arbitrary, we
get D(∂ J ) ⊃ W 2,2(T) ∩ L2

0(T).
To conclude the proof, we show that for u ∈ D(∂ J ), the function −(

m(ux +b(x))
)

x with
m given by (2.3) is the unique element of ∂ J [u]. Let v̄ ∈ ∂ J [u]. Then, for all ε > 0 and
w ∈ W 2,2(T) ∩ L2

0(T), we have

J [u ± εw] − J [u]
ε

� ±〈v̄, w〉L2(T).

Letting ε → 0+ and arguing as in the proof of Lemma 2.2, we obtain
〈 − (

m(ux + b(x))
)

x , w
〉

L2(T)
� ±〈v̄, w〉L2(T).

Because w ∈ W 2,2(T) ∩ L2
0(T) is arbitrary, it follows that v̄ = −(

m(ux + b(x))
)

x . 	


The following result about solutions to the gradient flow (2.6) holds by [15, Thm. 3 in
§9.6.2] and by the fact that W 2,2(T) ∩ L2

0(T) is dense in L2
0(T).

Theorem 2.5 For each u ∈ W 2,2(T) ∩ L2
0(T), there exists a unique function u ∈

C([0,+∞); L2
0(T)), with u̇ ∈ L∞(0,+∞; L2

0(T)), such that

(i) u(0) = u,

(ii) u(t) ∈ W 2,2(T) ∩ L2
0(T) for each t > 0,

(iii) u̇(t) = (
m(t)((u(t))x + b(x))

)

x for a.e. t � 0, where m(t) is given by (2.3) with u
replaced by u(t).

2.6 Monotonic Flow

Because the operator A is monotone, the flow
[
ṁ
u̇

]

= −A

[
m
u

]

(2.7)
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is a contraction in L2(T) × L2(T). That is, if (m, u) and (m̃, ũ) solve (2.7), then

d

dt

(
‖u − ũ‖2L2(T)

+ ‖m − m̃‖2L2(T)

)

= −2

〈

A

[
m
u

]

− A

[
m̃
ũ

]

,

[
m
u

]

−
[
m̃
ũ

]〉

L2(T)×L2(T)

� 0,

provided that for each t � 0, (m(t), u(t)), (m̃(t), ũ(t)) ∈ D(A). The flow (2.7) has two unde-
sirable features. First, it does not preserve probabilities; second, the flow may not preserve
the condition m > 0. To conserve probability, we modify (2.7) through

[
ṁ
u̇

]

= −A

[
m
u

]

+
[

H(t)
0

]

, (2.8)

where H(t) is such that d
dt

∫

T
m dx = 0. A straightforward computation shows that (2.8) is

still a contraction in L2(T) × L2(T). More precisely, if (m, u) and (m̃, ũ) solve (2.8) and
satisfy (m(t), u(t)), (m̃(t), ũ(t)) ∈ D(A) for all t � 0,

∫

T
m(0) dx = 1, and

∫

T
m̃(0) dx = 1,

then

d

dt

(
‖u − ũ‖2L2(T)

+ ‖m − m̃‖2L2(T)

)
� 0.

Furthermore, thanks to the nonlinearity ln(·), positivity holds for the discretization of (2.8)
that we develop in the next section. Therefore, the discrete analog of (2.8) is a contracting
flow that preserves probability and positivity. Then, as t → ∞, the solutions approximate
(1.1).

3 Discrete Setting

Here, we discuss the numerical approximation of (1.1). We use a monotone scheme for the
Hamilton–Jacobi equation. For the Fokker–Planck equation, we consider the adjoint of the
linearization of the discrete Hamilton–Jacobi equation. This technique preserves both the
gradient structure and the monotonicity properties of the original problem.

3.1 Discretization of the Hamilton–Jacobi Operator

We consider N equidistributed points on [0, 1], xi = i
N , i ∈ {1, ..., N }, and corresponding

values of the approximation to u given by the vector u = (u1, ..., uN ) ∈ R
N . We set h = 1

N .
To incorporate the periodic conditions, we use the periodicity convention u0 = uN and
uN+1 = u1. For each i ∈ {1, ..., N }, let ψi : RN → R

2 be given by

ψi (u) = (ψ1
i (u), ψ2

i (u)) =
(ui − ui+1

h
,

ui − ui−1

h

)

for u ∈ R
N . To discretize the operator

u �→ u2
x

2
+ V (x) + b(x)ux ,

we use a monotone finite difference scheme, see [6]. This scheme is built as follows. We
consider a function F : R × R × T → R satisfying the following four conditions.

1. F(p, q, x) is jointly convex in (p, q).



664 Dyn Games Appl (2017) 7:657–682

2. The functions p �→ F(p, q, x) for fixed (q, x) and q �→ F(p, q, x) for fixed (p, x) are
increasing.

3. F(−p, p, x) = p2

2 + b(x)p + V (x).
4. There exists a positive constant, c, such that

F(−p, q, x) + F(q ′, p, x ′) � −1

c
+ c p2. (3.1)

An example of such a function may be found in Sect. 4 below. Next, we set

Fi (p, q) = F(p, q, xi ). (3.2)

Let G : RN → R
N be the function defined for u ∈ R

N by

G(u) = (G1(u), ..., G N (u)) = (
(F1 ◦ ψ1)(u), ..., (FN ◦ ψN )(u)

)
. (3.3)

Then,G(u) is afinite difference scheme for theHamilton–Jacobi operator u2x
2 +V (x)+b(x)ux .

Remark 3.1 In the higher-dimensional case, the Hamilton–Jacobi operator can be discretized
with a similar monotone scheme. See [45] for a systematic study of convergent monotone
difference schemes for elliptic and parabolic equations.

3.2 The Variational Formulation

Here, we study the following discrete version, φ : RN → R, of the functional (2.2):

φ(u) =
N∑

i=1

h eGi (u), u ∈ R
N , (3.4)

where Gi is given by (3.3).

Lemma 3.2 The function φ given by (3.4) is convex.

Proof Fix λ ∈ (0, 1) and u, v ∈ R
N . Because each Fi is convex, because the exponential is

an increasing convex function, and because h > 0, we have

φ(λu + (1 − λ)v) =
N∑

i=1

h eFi

(
λ

ui −ui+1
h +(1−λ)

vi −vi+1
h ,λ

ui −ui−1
h +(1−λ)

vi −vi−1
h

)

�
N∑

i=1

h eλFi

(
ui −ui+1

h ,
ui −ui−1

h

)
+(1−λ)Fi

(
vi −vi+1

h ,
vi −vi−1

h

)

� λφ(u) + (1 − λ)φ(v),

which completes the proof. 	

Lemma 3.3 Let φ be given by (3.4). Let L∗

u : RN → R
N represent the adjoint operator of

the linearized operator Lu : RN → R
N of the function G at u ∈ R

N . A vector u ∈ R
N is a

critical point of φ if and only if there exists m̃ ∈ R
N+ such that the pair (m̃, u) satisfies

{
Gi (u) = ln m̃i ,

(L∗
um̃)i = 0

for all i ∈ {1, ..., N }.
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Proof The proof is similar to the one for Lemma 2.2. 	

Remark 3.4 We observe that for w ∈ R

N and i ∈ {1, ..., N }, we have

(L∗
uw)i =

N∑

j=1

∂i G j (u)w j =
i+1∑

j=i−1

∂

∂ui
Fj (ψ j (u))w j

= 1

h

[

− ∂ Fi−1

∂p
(ψi−1(u))wi−1 + ∂ Fi

∂p
(ψi (u))wi + ∂ Fi

∂q
(ψi (u))wi

− ∂ Fi+1

∂q
(ψi+1(u))wi+1

]

.

Simple computations show that L∗
uw is a consistent finite difference scheme for the Fokker–

Planck equation.

3.3 The Discretized Operator

Motivated by the previous discussion,wediscretize (1.1) through thefinite difference operator

AN
[

m
u

]

=
[−G(u) + lnm

L∗
um

]

, (m, u) ∈ R
N+ × R

N , (3.5)

where lnm = (lnm1, ..., lnm N ) and where G is given by (3.3). Accordingly, the analog to
(1.1) becomes

AN
[

m N

uN

]

=
[

−H
N
ι

0

]

, (3.6)

where we highlighted the dependence on N and where ι = (1, ..., 1) ∈ R
N . In (3.6),

the unknowns are the vector uN , the discrete probability density m N , normalized to

h
∑N

i=1 m N
i = 1, and the effective Hamiltonian H

N
.

We are interested in two main points. The first is the existence and approximation of
solutions to (3.6). The second is the convergence of these solutions to solutions of (1.1). The
first issue will be examined by gradient flow techniques and by monotonicity methods. The
second issue is a consequence of a modified Minty method.

3.4 Existence of Solutions

Here, we prove the existence of solutions to (3.6). Our proof uses ideas similar to those of
the direct method of the calculus of variations.

Proposition 3.5 Let φ be as in (3.4). Then, there exists uN ∈ R
N with

∑N
i=1 uN

i = 0 that
minimizes φ. Moreover,

h
N∑

i=1

(uN
i )2 � C (3.7)

for some positive constant C independent of h. In addition, there exist m N ∈ R
N with

h
∑N

i=1 m N
i = 1 and H

N ∈ R
N such that the triplet (uN , m N , H

N
) satisfies (3.6).

Proof To simplify the notation, we will drop the explicit dependence on N of uN and m N .
Accordingly, we simply write u and m.
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As in the direct method of the calculus of variations, we select a minimizing sequence,
(uk)k∈N ⊂ R

N , for φ satisfying
N∑

i=1

uk
i = 0. (3.8)

Then, there exists a positive constant,C , independent of k and h such that supk∈N φ(uk) � C .
Using Jensen’s inequality, for all k ∈ N, we have that

h
N∑

i=1

Gi (u
k) � C̃,

where C̃ is positive constant that is independent of k and h. This estimate together with
(3.1)–(3.3) implies that

N∑

i=1

|uk
i+1 − uk

i |2
h

� C̄

for some positive constant C̄ that is independent of k and h. By a telescoping series argument
combined with the Cauchy inequality, for all l, m ∈ {1, ..., N }, we have

|uk
l − uk

m | �
N∑

i=1

|uk
i−1 − uk

i | �
( 1

h

) 1
2

(
N∑

i=1

|uk
i−1 − uk

i |2
) 1

2

� C̄
1
2 .

The previous bound combined with (3.8) yields

max
1�i�N

|uk
i | � C̄

1
2 .

By compactness and by extracting a subsequence if necessary, there exists u ∈ R
N with

∑N
i=1 ui = 0 such that uk → u in R

N . The continuity of φ implies that u is a minimizer of
φ. Furthermore, (3.7) holds.

Finally, by Lemma 3.3, we have

AN
[

m̃
u

]

=
[
0
0

]

for m̃i = eGi (u). By selecting H
N
conveniently and by setting mi = e−H

N
m̃i , we obtain

h
∑N

i=1 mi = 1. Moreover, the triplet (u, m, H
N
) satisfies (3.6). 	


Remark 3.6 The proof of the previous proposition gives an �∞ bound for ui , not just the
�2 bound in (3.7). However, the technique used in the proof is one-dimensional since it is
similar to the proof of the one-dimensional Morrey’s theorem. As stated in the proposition,
inequality (3.7) is a discrete version of the Poincaré inequality; this inequality holds in any
dimension. Finally, for our purposes, (3.7) is sufficient.

3.5 Monotonicity Properties

Next, we prove that the operator AN is monotone.
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Lemma 3.7 The operator AN given by (3.5) is monotone in R
N × R

N . More precisely, for
all (m, u), (θ, v) ∈ R

N+ × R
N ,

〈

AN
[

m
u

]

− AN
[
θ

v

]

,

[
m
u

]

−
[
θ

v

] 〉

RN ×RN
� 0. (3.9)

Proof Fix (m, u), (θ, v) ∈ R
N+ × R

N . Using the definition of AN and the fact that ln(·) is
increasing, we obtain

〈

AN
[

m
u

]

− AN
[
θ

v

]

,

[
m
u

]

−
[
θ

v

] 〉

RN ×RN

=
N∑

i=1

[(
Gi (v) − Gi (u) + lnmi − ln θi

)
(mi − θi ) + (

(L∗
um)i − (L∗

vθ)i
)
(ui − vi )

]

�
N∑

i=1

[(
Gi (v) − Gi (u)

)
mi + (L∗

um)i (ui − vi )
]

+
N∑

i=1

[(
Gi (u) − Gi (v)

)
θi − (L∗

vθ)i (ui − vi )
]
.

Moreover, by the periodicity convention, we have that

N∑

i=1

(L∗
um)i (ui − vi ) = 1

h

N∑

i=1

[

− ∂ Fi−1

∂p
(ψi−1(u))mi−1(ui − vi ) + ∂ Fi

∂p
(ψi (u))mi (ui − vi )

]

+ 1

h

N∑

i=1

[
∂ Fi

∂q
(ψi (u))mi (ui − vi ) − ∂ Fi+1

∂q
(ψi+1(u))mi+1(ui − vi )

]

= 1

h

N∑

i=1

[

− ∂ Fi

∂p
(ψi (u))mi (ui+1 − vi+1) + ∂ Fi

∂p
(ψi (u))mi (ui − vi )

]

+ 1

h

N∑

i=1

[
∂ Fi

∂q
(ψi (u))mi (ui − vi ) − ∂ Fi

∂q
(ψi (u))mi (ui−1 − vi−1)

]

=
N∑

i=1

[
∂ Fi

∂p
(ψi (u))(ψ1

i (u) − ψ1
i (v)) + ∂ Fi

∂q
(ψi (u))(ψ2

i (u) − ψ2
i (v))

]

mi

=
N∑

i=1

∇Fi (ψi (u)) · (ψi (u) − ψi (v))mi .

So, the estimate

N∑

i=1

[(
Gi (v) − Gi (u)

)
mi + (L∗

um)i (ui − vi )
]

=
N∑

i=1

[
Fi (ψi (v)) − Fi (ψi (u)) − ∇Fi (ψi (u)) · (ψi (v) − ψi (u))

]
mi � 0 (3.10)

follows from the convexity of each Fi and from the positivity of each mi . Similarly,

N∑

i=1

[(
Gi (u) − Gi (v)

)
θi − (L∗

vθ)i (ui − vi )
]

� 0,



668 Dyn Games Appl (2017) 7:657–682

which concludes the proof. 	

Remark 3.8 Because the operator AN is monotone, (uN , m N , H

N
) with m N ∈ R

N+ solves
(3.6) if and only if the condition

〈

AN
[
θ

v

]

+
[

H
N
ι

0

]

,

[
θ

v

]

−
[

mN

uN

]〉

RN ×RN

� 0 (3.11)

holds for every (v, θ) ∈ R
N ×R

N+ . In fact, if (uN , m N , H
N
) solves (3.6), then clearly (3.11)

holds (with “�” replaced by “=”). Conversely, let (ṽ, θ̃ ) ∈ R
N × R

N be arbitrary, and for
δ > 0, define (v, θ) := (uN +δṽ, m N +δθ̃). Because m N ∈ R

N+ , we have (v, θ) ∈ R
N ×R

N+
for all sufficiently small δ > 0; thus, (3.11) yields

〈

AN
[

uN + δṽ

m N + δθ̃

]

+
[

H
N
ι

0

]

,

[
θ̃

ṽ

]〉

RN ×RN

� 0.

Letting δ → 0+, we obtain
〈
AN

[
uN

m N

]

+
[

H
N
ι

0

]

,

[
θ̃

ṽ

] 〉

RN ×RN
� 0.

Because (ṽ, θ̃ ) ∈ R
N × R

N is arbitrary, we conclude that (uN , m N , H
N
) solves (3.6).

Definition 3.9 We say that AN is strictly monotone if (3.9) holds with strict inequality
whenever (m, u), (θ, v) ∈ R

N+ × R
N satisfy v �= u and

∑N
i=1 v = ∑N

i=1 u.

3.6 Uniform Estimates

Estimates that do not depend on N play a major role in establishing the convergence of
solutions of (3.6) to (1.1). Here, we prove elementary energy estimates that are sufficient to
show convergence.

Proposition 3.10 Let (uN , m N , H
N
) solve (3.6). Further assume that

∑N
i=1 uN

i = 0. Then,
there exists a positive constant, C, independent of N such that

1

N

N∑

i=1

(uN
i )2 � C (3.12)

and ∣
∣
∣H

N
∣
∣
∣ � C.

Proof By Lemma 3.3, we have that φ(uN ) � C , where C = φ(0). Then, arguing as in the
proof of Proposition 3.5, we obtain the �2 bound in (3.12).

The bound for H
N
is proven in two steps. First, we have

1

N

N∑

i=1

Gi (u
N ) = H

N + 1

N

N∑

i=1

ln(mN
i ) � H

N

by Jensen’s inequality. Because Gi is bounded from below, we obtain

H
N � −C
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for some constant C � 0 independent of N . Second, for each i ∈ {1, ..., N }, we multiply
the i th equation in (3.6) by mi and the (N + i)th equation by −ui . Adding the resulting
expressions and summing over i , we get

1

N

N∑

i=1

mi (Gi (u) − (Luu)i ) = H
N + 1

N

N∑

i=1

mi lnmi � H
N

by Jensen’s inequality. By the concavity of Gi (u), we have

Gi (u) − (Luu)i = Gi (u) + (Lu(0 − u))i � Gi (0).

Hence, H
N � C for some constant C > 0 independent of N . 	


3.7 Convergence

Here, we show the convergence of solutions of (3.6) to weak solutions of (1.1).

Proposition 3.11 For N ∈ N, let (uN , m N , H
N
) ∈ R

N × R
N × R be a solution of (3.6).

Denote by ūN the step function in [0, 1] that takes the value uN
i in the interval

[ i−1
N , i

N

]

for 1 � i � N. Similarly, m̄ N is the step function associated with m N . Then, up to a (not

relabeled) subsequence, H
N → H in R, ūN ⇀ ū in L2([0, 1]), and m̄ N ⇀ m̄ in P([0, 1]).

Moreover, (m̄, ū, H) is a weak solution of (1.1).

Proof According to Proposition 3.10, |H N | and ‖ūN ‖L2([0,1]) are uniformly bounded with
respect to N . Moreover, ‖m̄ N ‖L1([0,1]) = 1 by construction. Therefore, there exist H ∈ R,

ū ∈ L2([0, 1]), and m̄ ∈ P([0, 1]) such that H
N → H in R, ūN ⇀ ū in L2([0, 1]), and

m̄ N ⇀ m̄ in P([0, 1]), up to a (not relabeled) subsequence.
Select v, θ ∈ C∞(T) satisfying θ > 0 and

∫

T
θ dx = 1. Set vN

i = v
( i

N

)
and θ N

i = θ
( i

N

)
.

Then, by Remark 3.8,

0 �
〈

AN
[
θ N

vN

]

−
[

H
N

0

]

,

[
θ N

vN

]

−
[

m N

uN

]〉

RN ×RN

= O

(
1

N

)

+
〈

A

[
θ

v

]

−
[

H
N

0

]

,

[
θ

v

]

−
[

m̄ N

ūN

]〉

D×D′
.

The proposition follows by letting N → ∞ in this last expression. 	

3.8 A Discrete Gradient Flow

To approximate (3.6), we consider two approaches. Here, we discuss a gradient-flow approx-
imation.. Later, we examine a monotonicity-based method.

The discrete-time gradient flow is

u̇ = −(Lu∗ m̃)i , (3.13)

where m̃i = eGi (u). Because φ is convex, φ(u(t)) is decreasing. Moreover, the proof of
proposition 3.5 shows that φ is coercive on the set

∑N
i=1 ui = 0. Note that (3.13) satisfies

d

dt

N∑

i=1

ui = 0.
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Consequently, u(t) is bounded and converges to a critical point of φ. Finally, we obtain a
solution to (3.6) by normalizing m̃i .

3.9 Dynamic Approximation

We can use the monotonicity of AN to build a contracting flow in L2 whose fixed points
satisfy (3.6). This flow is

[
ṁ
u̇

]

= −AN
[
m
u

]

+
[

H
N
(t)ι
0

]

,

where H
N
(t) is such that the total mass is preserved; that is,

N∑

i=1

ṁi = 0.

Due to the logarithmic nonlinearity, m(t) > 0 for all t . We further observe that

d

dt

N∑

i=1

ui = 0.

Moreover, if (m̄ N , ūN , H
N
) is a solution of (3.6), then the monotonicity of AN implies that

d

dt

(
‖m − m̄ N ‖2 + ‖u − ūN ‖2

)
� 0.

Furthermore, if strong monotonicity holds (see Definition 3.9), the preceding inequality is
strict if (m, u) �= (m N , uN ). In this case, (m(t), u(t)) is globally bounded and converges to

(mN , uN ). Finally, this implies that H(t) converges to H
N
.

4 Numerical Results

Here, we discuss the implementation of our numerical methods, the corresponding results,
and some extensions.

In our numerical examples, we construct F as follows. First, we build

F Q(p, q) = 1

2
(max{p, q, 0})2

and

F D(p, q, x) =
{

−b(x)p if b(x) � 0,

b(x)q otherwise.

We set

F(p, q, x) = F Q(p, q) + F D(p, q, x) + V (x).

Then, Fi is given by (3.2).
We implemented our algorithms in MATLAB and Mathematica with no significant dif-

ferences in performance or numerical results. We present here the computations performed
with the Mathematica code. To solve the ordinary differential equations, we used the built-in
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Fig. 1 Gradient flow: u

Fig. 2 Gradient flow: m

Mathematica ODE solver with the stiff backward difference formula (BDF) discretization of
variable order.

4.1 Gradient Flow

For the gradient flow, we took u(x, 0) = 0.2 cos(2πx) as the initial condition for u. We used
N = 100. We set b = 0 and V (x) = sin(2πx). Figures 1 and 2 feature the evolution of u and
m, respectively, for 0 � t � 1. We can observe a fast convergence to the stationary solution
u = 0. Figure 3 illustrates the behavior of m at equally spaced times and compares it to the
exact solution (in black).
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Fig. 3 Gradient flow: m numeric for 0 � t � 0.1 versus exact (black line)

Fig. 4 Monotonic flow: u

4.2 Monotonic Flow

Here, we present the numerical results for the monotonic flow. We set, as before, b = 0
and V (x) = sin(2πx). We used u(x, 0) = 0.2 cos(2πx) and m(x, 0) = 1 + 0.2 cos(2πx)

as initial conditions for u and m, respectively. As previously, we used N = 100. Figures 4
and 5 depict the convergence to stationary solutions for 0 � t � 10. Figure 6 shows the
comparison of the values of m at equally spaced times with the stationary solution. Finally,
Figs. 7 and 8 illustrate the solution (u, m) for the case b(x) = cos2(2πx).

In Table 1, we show the error in m and u in L∞ and the CPU time for the preceding
problem at T = 100; that is, we compute maxi |m(xi ) − m N

i | and maxi |u(xi ) − uN
i |. We

note that the error is extremely small because of the particular form of the solution. Here,
the exact solution u = 0 is also the exact numerical solution. We also observe that the CPU
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Fig. 5 Monotonic flow: m

Fig. 6 Monotonic flow: m numerical versusexact (black line) for t = 0, 1, . . . , 10

times increase substantially. Thus, as suggested to the authors by Y. Achdou, we consider
the alternative monotone discretization

F(p, q) = 1

2

[
max{p, 0}2 + max{q, 0}2] .

The corresponding results (also for T = 100) are shown in Table 2. To get a better sense of
the convergence of the algorithm, we considered this last discretization for the case

b(x) = cos2(2πx),

and V (x) = sin(2πx), u(x, 0) = 0.2 cos(2πx), and m(x, 0) = 1 + 0.2 cos(2πx) as before.
The estimated errors are plotted in Table 3 and correspond to the difference between the
solution computed with N nodes and the solution computed with 2N nodes. We see that the
error decreases roughly linearly in 1

N as one would expect since the monotone discretization
of the Hamilton–Jacobi equation is first-order accurate.
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Fig. 7 Monotonic flow: u with b = cos2(2πx)

Fig. 8 Monotonic flow: m with b = cos2(2πx)

Table 1 MFG without
congestion: error and CPU time
for F(p, q) = 1

2 max{p, q, 0}2
N Error in m Error in u Time

8 3.38859 × 10−7 3.61958 × 10−11 60.26392

32 5.37315 × 10−10 3.12362 × 10−8 347.19608

128 2.09999 × 10−10 2.57435 × 10−8 2147.29250
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Table 2 MFG without
congestion: error and CPU time
for F(p, q) =
1
2

[
max{p, 0}2 + max{q, 0}2

]

N Error in m Error in u Time

8 3.30690 × 10−7 2.04534 × 10−8 0.02225

32 2.35318 × 10−9 4.21837 × 10−12 0.24032

128 3.84314 × 10−9 1.28029 × 10−12 3.12561

Table 3 MFG without
congestion: error and CPU time
for F(p, q) =
1
2

[
max{p, 0}2 + max{q, 0}2

]

and b �= 0

N Error in m Error in u

16 0.07228 0.01702

32 0.04750 0.00896

64 0.02524 0.00457

Fig. 9 Congestion model: u

4.3 Application to Congestion Problems

Our methods are not restricted to (1.1) nor to one-dimensional problems. Here, we consider
the congestion problem (2.1) and present the corresponding numerical results. We examine
higher-dimensional problems in the next section.

The congestion problem (2.1) satisfies the monotonicity condition (see [32]). Moreover,
this problem admits the same explicit solution as (1.1) with b = 0. We chose V (x) =
sin(2πx), for comparison.

We took the same initial conditions as in the previous section and set N = 100.We present
the evolution of u and m in Figs. 9 and 10, respectively. In Fig. 11, we superimpose the exact
solution, m, on the numerical values of m at equally spaced times. Finally, in Figs. 12 and
13, we consider the quartic mean-field game with congestion

{
u4x

2m1/2 + cos2(2πx)ux + sin(2πx) − lnm = H

−(2u3
x m1/2)x − (cos2(2πx)m)x = 0.



676 Dyn Games Appl (2017) 7:657–682

Fig. 10 Congestion model: m

Fig. 11 Congestion model: m numerical versusexact (black line) for t = 0, 1, . . . , 10

4.4 A Singular MFG

The logarithmic coupling in the MFG studied so far prevents m to vanish. However, m can
vanish in many cases. The following example, taken from [26] (also see [20,21]), illustrates
this behavior. Consider the MFG

{
u2x
2 + 3 sin(2πx) = m + H

−(mux )x = 0.

The solution of the preceding problem is m = (3 sin(2πx) − H)+, where H is determined
by the condition

∫

T

(3 sin(2πx) − H)+dx = 1,
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Fig. 12 Quartic congestion model: u

Fig. 13 Quartic congestion model: m

and u is a viscosity solution of

u2
x

2
= (H − 3 sin(2πx))−.

Here, themonotone flow fails to preserve the positivity ofm. Thus, we introduce a regularized
version of the monotone flow for which the set m � 0 is invariant. This regularized flow is
obtained by discretizing the following continuous flow

{
u̇ = (mux )x

ṁ = λm3

1+λm3

(
u2x
2 + 3 sin(2πx) − m − H(t)

)
,
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Fig. 14 Evolution of m for the modified monotone flow at T = 100 for the singular MFG

0.2 0.4 0.6 0.8 1.0
x

0.5

1.0

1.5

2.0

2.5

3.0

m

Fig. 15 Comparison between numerical (blue) and exact (dashed) solution for the singularMFG (Color figure
online)

where λ is a regularization parameter. The results corresponding to λ = 100 are shown in
Fig. 14 (the evolution of m) and Fig. 15 (comparison between exact and numerical solution).

4.5 Higher-Dimensional Examples

As a last example, we consider the following two-dimensional version of (1.1):

⎧
⎨

⎩

w2
x

2
+ w2

y

2
+ W (x, y) = lnm + H ,

−(θ(wx ))x − (θ(wy))y = 0,
(4.1)

with W (x, y) = sin(2πx) + sin(2πy). Because W (x, y) = V (x) + V (y) for V (x) =
sin(2πx), the solution to (4.1) takes the form w(x, y) = u(x) + u(y) and θ(x, y) = m(x) +
m(y), where (u, m) solves (1.1) with b = 0.
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Fig. 16 Two-dimensional problem: numeric θ at T = 50

Fig. 17 Two-dimensional problem: θ numerical error

We chose w(x, y, 0) = 0.4 cos(x + 2y), θ(x, y, 0) = 1 + 0.3 cos(x − 3y), and N = 20.
Figure 16 illustrates θ at T = 50. The numerical errors for θ and w are shown in Figs. 17
and 18, respectively.

5 Final Remarks

Here, we developed two numericalmethods to approximate solutions of stationarymean-field
games. We addressed the convergence of a discrete version of (1.1), and the convergence to
weak solutions through a monotonicity argument. Our techniques generalize to discretized
systems that are monotonic, and that admit uniform bounds with respect to the discretization
parameter.
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Fig. 18 Two-dimensional problem: w numerical error

In the cases we considered, our methods approximate well the exact solutions. While the
gradient flow is considerably faster than the monotonic flow, this last method applies to a
wider class of problems.

We selected a simplemodel for illustration purposes. In our numerical examples, however,
we illustrated the convergence of the schemes in higher-dimensional problems and congestion
MFGproblems. Furthermore, our results can be easily extended to related problems—higher-
dimensional cases, second-orderMFG, or non-local (monotonic) problems. Additionally, our
methodsprovide anatural guide for two future researchdirections.Thefirst is the development
of a general theory of convergence for monotone schemes and the extension of our methods
to mildly non-monotonic MFG. The second is the study of time-dependent MFG. This last
direction is particularly relevant since the coupled structure of MFG and the initial-terminal
conditions that are usually imposedmake these problems very challenging from the numerical
point of view.
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