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Abstract In this paper,we study scalar linear quadratic differential gameswith state feedback
information structure.We present a numerical algorithmwhich determineswhether this game
will have no, one, or multiple equilibria. Furthermore, in case there is a unique equilibrium,
the algorithmprovides this equilibrium. The algorithm is efficient in the sense that it is capable
of handling a large number of players. The analysis is restricted to the case the involved cost
depend only on the state and control variables.

Keywords Linear quadratic differential games · Linear feedback Nash equilibria · Coupled
algebraic Riccati equations

1 Introduction

Awide range of settings like communication, environmental, macroeconomic, epidemiolog-
ical, transportation, and energy systems are characterized by dynamical systems in which
large populations interact either in a competitive or cooperative way. In the last decades, there
is an increased interest to study the interaction within these systems using the framework
of dynamic games, that is, by an appropriate modeling of the underlying dynamics of the
system, the objective function of the involved agents, and specification of the information
structure (including often the specification of some assumed equilibrium concept). In envi-
ronmental economics and macroeconomic policy coordination, references and examples of
using dynamic games in modeling policy coordination problems can be found, e.g., in the
books of [6,15,18,30]). In engineering, applications of this theory are reported, e.g., in areas
like finance, robust optimal control, and pursuit-evasion problems. Particularly in the area of
robust optimal control, which can be modeled as a problem where the controller is fighting
“nature” producing worst-case disturbances, the theory of linear quadratic differential games
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has been extensively developed, see, e.g., [3,8,20,26]. In engineering, using this framework,
applications are reported from diverse areas: robot control formation [16]; interconnection
of electric power systems [26]; multipath routing in communication networks [2,23]; solv-
ing mixed H2/H∞ control problems [22]; and military operations of autonomous vehicles
[21]. Furthermore, in games involving a large number of players mean field approximation
techniques are reported to arrive at decentralized strategies for the original game, which is
then an ε-Nash equilibrium for the original game [17].

In linear quadratic differential games, “real world” is modeled/approximated by a set
of linear differential equations and the objectives are modeled using quadratic functions.
Assuming that players don’t cooperate and look for linear feedback strategies which lead to
a worse performance if they unilaterally deviate from it, leads to the study of so-called linear
feedback Nash equilibria (FNE). The resulting equilibrium strategies have the important
property that they are strong time consistent, a property which, e.g., does not hold under an
open-loop information structure (see, e.g., [4, Chapter 6.5]).

Linear quadratic feedback Nash differential games have been considered by many authors
and dates back to the seminal work of Starr and Ho [32]. For the fixed finite planning horizon,
there exists at most one FNE (see, e.g., [24]). For an infinite planning horizon, the affine-
quadratic differential game is solved in [13]. To find the FNE in this game involves solving a
set of coupled algebraic Riccati-type equations (ARE). Only for some special cases of these
equations conditions are reported under which FNE exist (see, e.g., [1,8,29]). It has been
shown (see, e.g., [8,28]) that the number of equilibria can vary between zero and infinity.
Many numerical approaches are reported in the literature to find a solution of the ARE (see
for an overview, e.g., [10]). Usually, these approaches only find one solution (if convergence
occurs) and it remains unclear whether more solutions exist. More recently in [11] and [31],
also algorithms are reported which, in principle, are capable of finding all solutions. These
algorithms seem to work if the number of players is not too large. Engwerda [11] uses an
eigenvalue-based approach to find all solutions for the general scalar game, whereas [31]
uses techniques from algebraic geometry to recast the problem of computing all FNE into
that of finding the zeros of a single polynomial function in a scalar variable.

Particularly in the context of large-scale systems, it seems interesting to have a decisive
algorithm to conclude whether no, or, a unique equilibrium exists and to calculate such a
solution if it exists within a reasonable computation time. Separate from direct applications,
this may be helpful, e.g., in the assessment of calculating the cost/gains of different informa-
tion/cooperation structures (see, e.g., [5]), or, in finding areas where approximate solutions of
certain nonlinear differential games exist (see, e.g., [27]). Following the analysis performed
in [7] (see also [8, Chapter 8.4]) in [12], an exhaustive description is given of conditions
under which the most simple linear scalar game, where the performance criterion is a strict
positive quadratic function of both states and controls, has either no, one, or multiple FNE.
In this paper, we use this approach to present a numerical algorithm which is capable of
answering for these games the question whether there will exist a unique FNE. And, in case
a unique FNE exists, to calculate it. Using standard MATLAB code, we show in a simulation
study that for systems having up to 100.000 players the FNE can be calculated within 1 s.
This, since the main body of the algorithm just requires the calculation of the zero of a scalar
function, where the bounds of the search interval are known.

So, whereas, e.g., [9] and [11] concentrate on finding all FNE equilibria in general scalar
(disturbed) games with a small number of players (due to computation time constraints), this
paper at first instance concentrates on the question whether a special subclass of these games
with a large number of players has a unique equilibrium. Furthermore, in case this question
is answered affirmative, this equilibrium can be calculated using, e.g., a brute- force halving
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technique which makes that computation time is small. For instance, in the example dealt
with in Sect. 5, calculation time of the equilibrium (for a reasonable accuracy) remains below
1s for a game that has 100.000 players. The numerical algorithms that are established use
the conditions derived in [12]. They will be summarized in Sect. 3.

The outline of the paper is as follows. Section 2 recalls from [8] the basic model and
approach. In Sect. 3, we recall from [12] the conditions under which the game will have
either no, one, or multiple equilibria. Based on the results presented in Sects. 2 and 3, we
develop in Sect. 4 numerical algorithms to calculate the unique FNE. Details on proofs of
Sect. 4 are presented in the separate “Appendix 1”. Section 5 illustrates the algorithm for a
simple oligopoly game. Finally, Sect. 6 concludes.

2 Preliminaries

In this paper, we consider the problem where N players try to minimize their performance
criterion in a noncooperative setting. Each player controls a different set of inputs to a single
system. The system is described by the following scalar differential equation

ẋ(t) = ax(t) +
N∑

i=1

biui (t), x(0) = x0. (1)

Here x is the state of the system, ui is a (control) variable player i can manipulate, x0 is
the arbitrarily chosen initial state of the system, a (the state feedback parameter), bi , i ∈
N: = {1, . . . , N }, are constant system parameters, and ẋ denotes the time derivative of x . All
variables are scalar.
The aim of player i ∈ N is to minimize:

Ji (u1, . . . , uN ) : =
∫ ∞

0

{
qi x

2(t) + ri u
2
i (t)

}
dt, (2)

where ri is positive and both bi and qi differ from zero. So, player i is not directly concerned
about the control efforts player j uses to manipulate the system. This assumption is crucial
for the analysis below.
We assume that players act noncooperatively and use time invariant feedback strategies,
ui (t) = fi x(t), to control the system. This, on the supposition that they do not want to
destabilize the system. So, the set of strategies is restricted to

FN : =
{

( f1, . . . , fN ) | a +
N∑

i=1

bi fi < 0

}
.

This restriction is essential. Indeed, there exist feedback Nash equilibria in which a player
can improve unilaterally by choosing a feedback for which the closed-loop system is unstable
(see [25]). Any f ∈ F is called a stabilizing solution. A set of feedback strategies is called a
Nash equilibrium if none of the players can improve his performance by unilaterally deviating
from his strategy within this class of stationary stabilizing feedback controls. More formally,
using the notation f̄−i ( fi ): = ( f̄1, . . . , f̄i−1, fi , f̄i+1, . . . , f̄N ):

Definition 2.1 The N -tuple f̄ : = ( f̄1, . . . , f̄N ) is called a set of (linear stabilizing station-
ary) feedback Nash equilibrium strategies if for all i ∈ N the following inequalities hold:

Ji
(
f̄ , x0

) ≤ Ji
(
f̄−i ( fi ), x0

)
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for all initial states x0 and for all fi ∈ IR such that f̄−i ( fi ) ∈ FN .

In the sequel, we will drop the adjectives linear, stabilizing and stationary in the above defin-
ition and use the shorthand notation FNE to denote the by these actions implied equilibrium
cost, and the actions themselves as FNE actions or strategies.
In this problem setting, we may assume, without loss of generality, that ri are positive and
both bi and qi differ from zero. This, since in case ri ≤ 0 the problem has no solution; and
in case either bi = 0 or qi = 0 the optimal control for player i is to use no control, i.e.,
ui (·) = 0, at any point in time. So, in the last-mentioned case, the player could be discarded
from the game. For this game, we distinguish three cases.

Definition 2.2 Consider the cost function (2). The game is called an economic game if
qi < 0, i ∈ N; a regulator game if qi > 0, i ∈ N; a mixed game if for some indices qi is
negative, and for other indices this parameter is positive.

The attached names are inspired by the fact that, in case qi < 0, i ∈ N, the game can be
interpreted as a game between players who all like to maximize their profits (measured by
the state variable x) using their input (measured by ui ) as efficient as possible. Whereas in
case qi > 0, i ∈ N, the game can be interpreted as a problem where all players like to track
the system’s state, x , as fast as possible to zero using as less as possible control efforts, ui .

The FNE for the game (1, 2) are completely characterized by the solutions of a set of

coupled algebraic Riccati equations (ARE). With si : = b2i
ri
, these equations in the variables

ki reduce to (see, e.g., [8]):
⎛

⎝a −
N∑

j=1

k j s j

⎞

⎠ ki + ki

⎛

⎝a −
N∑

j=1

s j k j

⎞

⎠+ qi + ki si ki = 0, i ∈ N. (3)

The precise statement is as follows:

Theorem 2.3 The game (1, 2) has a FNE if and only if (iff.) there exist N scalars ki such that
(3) holds and a − ∑N

j=1 s j k j < 0. If this condition holds, the N-tuple ( f̄1, . . . , f̄N ) with

f̄i : = −r−1
i bi ki is a FNE and Ji ( f̄1, . . . , f̄N , x0) = ki x20 .

So, to determine the set of FNE we have to find all stabilizing solutions of (3). To determine
these solutions, following [8, Section 8.5.1], we introduce (for notational convenience) the
variables:

σi : = si qi , yi : = si ki , i ∈ N, and yN+1: = −acl : = −
⎛

⎝a −
N∑

j=1

y j

⎞

⎠ .

Note that, by relabeling the player indices, we can enforce that σ1 ≥ · · · ≥ σN . This ordering
is assumed to hold throughout. Furthermore, since fi = −1

bi
yi , there is a bijection between

( f1, . . . , fN ) and (y1, . . . , yN ). Using this notation, (3) can be rewritten as

y2i − 2yN+1yi + σi = 0, i ∈ N. (4)

The above problem can then be reformulated as: under which conditions have the above N
quadratic equations, and the equation

yN+1 = −a +
N∑

j=1

y j , (5)

a real solution yi , i ∈ N, with yN+1 > 0.
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Remark 2.4 In the rest of this paper, we concentrate on providing numerical algorithms
which provide a conclusive answer whether (3, 5) have either no, one, or more than one real
solution yi , i ∈ N, with yN+1 > 0. We will distinguish three algorithms, based on the sign
of the involved σi parameters. Since there is a one-to-one correspondence between the signs
of parameter qi in performance criterion (2) and the sign of parameter σi , we will use the
notation introduced in Definition 2.2 for these equations.

As we will see later on in Sect. 5 on the oligopolistic competition example, the deter-
mination of the unique solutions to these Eqs. (3, 5) enables to determine, e.g., FNE for
different/higher-dimensional systems too. In those cases, the interpretation in terms of the
original scalar game is, of course, only indirect.

The solutions of (4) are yi = yN+1 +
√
y2N+1 − σi and yi = yN+1 −

√
y2N+1 − σi , i ∈ N.

Substitution of this into (5) yields next result (see [12]).

Lemma 2.5 1. The set of Eqs. (4, 5) has a solution iff. there exist ti ∈ {−1, 1}, i ∈ N, such
that the equation

(N − 1)yN+1 + t1
√
y2N+1 − σ1 + · · · + tN

√
y2N+1 − σN = a (6)

has a solution yN+1. In fact, for all solutions satisfying y2N+1 > σ1, there is a one-to-
one correspondence between solutions (y1, . . . , yN+1) of (4, 5) and (yN+1, t1, . . . , tN )

satisfying (6).
2. The game (1, 2) has a FNE iff. there exist ti ∈ {−1, 1}, i ∈ N, such that (6) has a solution

yN+1 > 0 with y2N+1 ≥ σ1.

3 Solvability Conditions

Theorem 3.3 below presents conditions under which the gamewill have either none, precisely
one, or, multiple equilibria. The results are obtained by a detailed study of the set of functions

F : =
{
f (x) | f (x) = (N − 1)x + t1

√
x2 − σ1 + · · · + tN

√
x2 − σN ,

where ti ∈ {−1, 1}, i ∈ N; x > 0 and x2 ≥ σ1
}
.

In particular, next three functions from this set F play a crucial role.

f1(x) ∈ F, where ti = −1, i ∈ N; (7)

f2(x) ∈ F, where t1 = 1 and ti = −1, i �= 1; (8)

f3(x) ∈ F, where t2 = 1 and ti = −1, i �= 2. (9)

Geometrically, the number of FNE is obtained by counting, for a fixed level a, the number
of intersection points with all functions from F . From [12, Lemma A.1], we recall next
properties of above-mentioned functions.

Lemma 3.1 Let f (x) ∈ F with f (x) �= fi (x), i = 1, 2, 3. Then

1. f1(x) ≤ f2(x) ≤ f3(x) ≤ f (x). If σ1 = σ2, f2(x) = f3(x).
2. (a) limx→∞ f1(x) = −∞ and limx→∞ f2(x) = ∞.

(b) limx→∞ f ′
1(x) = −1 and limx→∞ f ′

i (x) = 1, i = 2, 3.
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Above Lemma 3.1 shows that for all a ≥ f3(0) the game will have more than one equilib-
rium. Consequently, a detailed study of the functions fi (x), i = 1, 2, 3 provides complete
information on conditions under which the game will have either no, one, or more than
one equilibrium. This study is performed in [12]. To create some intuition for the behav-
ior of these functions, Lemma 3.2 recalls some general properties concerning the functions
fi (x), i = 1, 2, 3. The next subsections report existence conditions from that study.

Lemma 3.2 1. In the regulator game:

(i) f1(x) is monotonically decreasing.
(ii) If σ1 �= σ2, f2(x) has at most two stationary points x1 and x2 ≥ x1, yielding a local

maximum at x1 and a minimum (which might be global) at x2. If x1 = x2, f2(x1) is
an inflection point.

(iii) If σ1 �= σ2, f3(x) has precisely one stationary point, yielding a global minimum.
(iv) If σ1 = σ2, f2(x) = f3(x) has at most one stationary point, yielding a global

minimum.

2. In the economic game:

(i) f1(x) has exactly one stationary point x∗ > 0, where it attains a (global) maximum.
(ii) f2(x) and f3(x) are strictly increasing.

3. In the mixed game:

(i) f1(x) has at most two stationary points, yielding a local minimum and a maximum
(which might be global), respectively (and an inflection point if there is just one
stationary point).

(ii) f2(x) and f3(x) have the same properties as in item 1.

3.1 The 2-Player Case

For the 2-player case the question, for which values of the state feedback parameter a the
game will have either no, one, or more than one FNE, is solved by calculating, for fixed a,
the total number of solutions for the equations

x −
√
x2 − σ1 −

√
x2 − σ1 = a, x +

√
x2 − σ1 −

√
x2 − σ1 = a, or

x −
√
x2 − σ1 +

√
x2 − σ1 = a.

This, under the understanding that in the regulator and mixed game, only solutions x ≥ √
σ1

are relevant, whereas for the economic game only solutions x ≥ 0 apply.
By determining the various extremal points (including the boundary points) of the functions
fi (x), i = 1, 2, 3, and using the monotonicity properties of these functions, one can charac-
terize then the areas where either no, one, or more than one FNE will occur in terms of these
extremal points.
Introducing the notation fi∗, f ∗

i for the minimum and maximum of function fi (x), respec-
tively, Tables 1 and 2, below, present the results for the 2-player case. In this case, an analytic
solution of the problem is possible. Table 1 reports howmany equilibria exist for every choice
of the state feedback parameter a for the generic case that σ1 > σ2. For the case σ1 = σ2, a
separate analysis is required, as in that case the functions f2 and f3 coincide. Corresponding
results for that case are displayed in Table 2. Let



Dyn Games Appl (2017) 7:635–656 641

Table 1 Number of equilibria if N = 2, σ1 > σ2

# Equilibria 0 1 More than 1

Regulator game – a < f3∗ Elsewhere

Economic game a ∈ ( f ∗
1 , f2(0)) a < f1(0); a ∈ ( f2(0), f3(0)); a = f ∗

1 Elsewhere

Mixed game – a < f3∗ Elsewhere

Table 2 Number of equilibria if N = 2, σ1 = σ2

# Equilibria 0 1 More than 1

Regulator game – a ≤ f3∗ Elsewhere

Economic game a ∈ ( f ∗
1 , f2(0)) a < f1(0); a = f ∗

1 Elsewhere

y: = t1S + 1

2

√
−4S2 + 12

σ1σ2
− t1

4

S

σ1 + σ2

σ 2
1 σ 2

2

with S =
√√√√ 1

σ1σ2
+
(

(σ1 − σ2)2

4σ 4
1 σ 4

2

)1/3

;

(10)

where t1 = −1 if σ1 + σ2 > 0; t1 = 1 if σ1 + σ2 < 0; and, in case σ1 + σ2 = 0:
y: = 1

σ1

√√
12 − 3.

With y as defined above, f3∗: = 1−√
1−σ1 y+√

1−σ2 y√
y and, for the economic game (where

t1 = 1), f ∗
1 : = 1−√

1−σ1 y−√
1−σ2 y√

y .

In case the game is symmetric, i.e., σ1 = σ2 = σ , f2(x) = f3(x) = x . So, these functions are
monotonically increasing. Furthermore, for the regulator game fi (

√
σ) = √

σ, i = 1, 2, 3.
Due to this, it can be shown that at a = √

σ a unique equilibrium occurs. Consequently,
if σ1 = σ2 = σ > 0, f3∗ = √

σ , and in case σ1 = σ2 = −σ < 0, f ∗
1 = −√

3
√−σ ,

f1(0) = −2
√−σ and f2(0) = f3(0) = 0. In particular, this last observation implies that

in the symmetric case in the economic game the interval ( f2(0), f3(0)) is empty. These
observations give rise to Table 2.

3.2 The Symmetric Case

Next we consider the symmetric case if the number of players exceeds two. That is, the case
that σi = σ, i ∈ N,N > 2. From this definition, it follows that in the symmetric case F
reduces to the set of functions

F : =
{
g j (x) | g j (x) = (N − 1)x

+ (2( j − 1) − N )
√
x2 − σ , j ∈ N + 1; where x > 0 and x2 ≥ σ

}
.

In particular, f1 coincides with g1 and both f2 and f3 coincide with g2. That is,

f1(x) = (N − 1)x − N
√
x2 − σ and f2(x) = f3(x) = (N − 1)x − (N − 2)

√
x2 − σ .
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Table 3 Number of equilibria if σi = σ j , N > 2

# Equilibria 0 1 More than 1

Regulator game – a < f3∗ Elsewhere

Economic game N = 3, 4 : a ∈ ( f ∗
1 , f2(0)) a < f1(0); N = 3, 4 : a = f ∗

1 Elsewhere

It can be easily shown in this case that optima of fi (x), i = 1, 2, 3, occur at stationary
points. Some elementary calculations show that

f2∗ = f3∗ = √
σ
√
2N − 3 for the regulator game, and (11)

f ∗
1 = −√

2N − 1
√−σ for the economic game. (12)

Consequently, again, analytic conditions can be derived under which there exists either no,
precisely one, or more than one equilibrium. Table 3 presents the results for the two games.

3.3 The General Case

In the previous two subsections, results were recalled where analytic solutions could be
obtained. Unfortunately, this is not possible for the general case. The results advertised below
show that the question whether the game will have no, one, or more than one equilibrium,
basically, requires the calculation of the stationary points of the functions fi (x) i = 1, 2, 3.
The numerical algorithms developed in the next section use these results, together with
estimates of these stationary points, to determine in a large number of cases efficiently
whether the game will have no, one, or more than one equilibrium. And, in case there is a
unique equilibrium, to calculate it.

Theorem 3.3 Consider the scalar game (1, 2).

1. In the regulator and mixed game, there always exists a FNE. Moreover, for every FNE
strategy the closed-loop state feedback parameter acl satisfies: acl ≤ −√

σ1.
2. The economic game has no FNE iff. f ∗

1 < a <
√−σ1 − ∑N

i=2
√−σi . Here f ∗

1 =
maxx≥0 f1(x).

3. For very stable systems (i.e., a � 0) all three games have a unique FNE. For very
unstable systems (i.e., a � 0), all three games have 2N − 1 equilibria.

Theorem 3.4 Let fi (x), i = 1, 2, 3, be as defined in (7–9). Then, the items below present
both necessary and sufficient conditions for the existence of a unique feedback Nash equilib-
rium for the considered games.

1. Consider the regulator game. Let S f2 : = {x | f ′
2(x) = 0}, f2∗: = minx∈S f2

f2(x), f ∗
2 : =

maxx∈S f2
f2(x) if σ1 > σ2 and f ∗

2 : = −∞ if σ1 = σ2; S f3 : = {√σ1} ∪ {x | f ′
3(x) = 0}

and f3∗: = minx∈S f3
f3(x).

(a) Case f2(x) is monotonically increasing. If σ1 = σ2, there is a unique equilibrium iff.
a ≤ f3∗. Otherwise, there is a unique equilibrium iff. a < f3∗.

(b) Case f2(x) is not monotonically increasing. Then, there is a unique equilibrium iff.
i) a < f2∗ or ii) f ∗

2 < a < f3∗.

2. Consider the economic game. Let f ∗
1 : = max f1(x). This game has a unique equilibrium

if a < f1(0). Furthermore,
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Table 4 Number of equilibria, general case

# Equilibria 0 1 More than 1

Regulator game – If f ′
2 ≥ 0 and σ1 �= σ2: a < f3∗ Elsewhere

If f ′
2 ≥ 0 and σ1 = σ2: a ≤ f1(

√
σ1) = f3∗ Elsewhere

If f ′
2 � 0: a < f2∗; a ∈ ( f ∗

2 , f3∗) Elsewhere

Economic game a ∈ ( f ∗
1 , f2(0)) If f ∗

1 ≥ f3(0): a < f1(0) Elsewhere

If f ∗
1 ∈ [ f2(0), f3(0)): a < f1(0); a ∈ ( f ∗

1 , f3(0)) Elsewhere

If f ∗
1 < f2(0): a < f1(0); a ∈ [ f2(0), f3(0)); a = f ∗

1 Elsewhere

Mixed game – If f ′
1 ≤ 0: see regulator existence conditions Elsewhere

If f ′
1 � 0: a < f ∗

1 ; a ∈ (max{ f ∗
1 , f ∗

2 }, f3∗); a ∈ ( f ∗
1 , f2∗) Elsewhere

(a) If f2(0) ≤ f ∗
1 < f3(0), additionally there is a unique equilibrium if f ∗

1 < a < f3(0).
(b) If f ∗

1 < f2(0), additionally there is a unique equilibrium if i) f2(0) ≤ a < f3(0) or
ii) a = f ∗

1 .

3. Consider the mixed game with the notation from item 1.

(a) If f1(x) is monotonically decreasing, the existence conditions for the regulator game
in item 1 apply.

(b) If f1(x) is not monotonically decreasing let S f1 : = {x | f ′
1(x) = 0} and f1∗: =

minx∈S f1
f1(x), f ∗

1 := maxx∈S f1
f1(x). Then, there is a unique equilibrium iff. i)

a < f1∗; ii) max{ f ∗
1 , f ∗

2 } < a < f3∗ or iii) f ∗
1 < a < f2∗.

Table 4 summarizes the above results.

Remark 3.5 1. In [12], it is shown that the sets S fi have at most two elements. If in the
mixed game, case b., f2(x) is monotonically increasing, the corresponding maximum
andminimumvalues are not defined. It is easily verified that the corresponding statements
continue to hold if we define f2∗ = f ∗

2 = −∞ in that case.
2. Since f2(x) has a global minimum and f2(x) ≤ f3(x), the global minimum of f2(x) is

smaller than f3∗. So, by Theorem 3.4, item 1., the regulator game has a unique FNE for
all a smaller than the global minimum of f2(x).

3. From Theorem 3.4 and its proof, we obtain the next specializations in case σ1 = σ2
(implying f2(x) = f3(x)).

(i) The regulator game has a unique FNE if a < f3∗. Additionally, only a unique
equilibrium occurs at a = f2(

√
σ1) = f3∗ if f2 is monotonically increasing.

(ii) The economic game has a unique FNE iff. a) a < f1(0) or b) a = f ∗
1 if f ∗

1 < f2(0).
(iii) The mixed game has a unique FNE iff., in case f1(x) is monotonically decreasing the

conditions mentioned under item i) apply; and, in case f1(x) is not monotonically
decreasing:
(a) a < f1∗ or b) f ∗

1 < a < f3∗.

Proposition 3.6 reports some sufficient analytic conditions from [12] under which the game
has a unique FNE.

Proposition 3.6 The game (1, 2) has a unique FNE in the following situations.
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a. In the regulator game, with z1 :=
√∑N

i=2 σi
2 , a1 :=

√∑N
i=2 2σi − √

σ1 and a2 :=
1

2
√

σ1

∑N
i=2 σi : i) if

√
σ1 < z1, for all a ≤ a1, and ii) if z1 ≤ √

σ1, for all a ≤ a2.

b. In the economic game: for all a < −∑N
i=1

√−σi .
c. In the mixed game: let σi > 0, i ∈ N1 and σi < 0, i = N1 + 1, . . . , N. Assume∑N

i=N1+1

√
σ1√

σ1+σi
≥ N −N1−1. Let a0 := ∑N

i=N1+1(
√

σ1−√
σ1 + σi ) and, if N1 = 1:

z2 := √
σ1 and a4 := a0, whereas for N1 ≥ 2: z2 :=

√
∑N1

i=2 σi
2 , a3 :=

√∑N1
i=2 2σi −

√
σ1+a0 and a4 := 1

2
√

σ1

∑N1
i=2 σi +a0. Then, the mixed game has a unique equilibrium:

i) if
√

σ1 < z2, for all a ≤ a3, and ii) if z2 ≤ √
σ1, for all a ≤ a4.

In particular, this results in the next observation for the regulator game.

Corollary 3.7 The regulator game has a unique equilibrium if a < 0.

4 Numerical Algorithms

In this section, we provide computational schemes to verify in an efficient way whether
the game will have no, one, or more than one equilibrium. And, in case there is a unique
equilibrium, to calculate this equilibrium. Below we present for each game separately the
computational scheme. Proofs can be found in “Appendix 1”. The setup of the algorithms
is the same. First, there is a general check on the number of players and symmetry of the
game. If the game has two (nonsymmetric) players, we use results from Sect. 3.1 to present
the solution. In case the game is symmetric, results from Sect. 3.2 are used to calculate the
solution. Next, for every game, we calculate numbers a∗ and a∗, respectively. These numbers
have the property that they can be easily calculated and determine large regions where either
a unique equilibrium exists (for all state feedback parameters a smaller than a∗) or multiple
equilibria exist (for all a > a∗). The third step in the algorithms use more game specific
information to explore efficiently what is going on if a∗ ≤ a ≤ a∗.
In case there exists a unique equilibrium, the corresponding solution, ki , for the coupled
algebraic Riccati Eq. (3) can be easily obtained from the intersection point of a with either
f1(x) or f2(x). This follows from Lemma 2.5, item 1. In case f1(x) = a has a solution y,
yi := y −√

y2 − σi , i ∈ N, solves (4, 5). Or, using the definition of yi ,

ki = yi
si

=
(
y −

√
y2 − σi

)
/si , i ∈ N, (13)

solves the set of coupled algebraic Riccati Eq. (3). Similarly, the solutions of (3) are obtained
in case f2(x) = a has a solution y. The only solution that is obtained differently in that case
is of y1 which is then obtained as y1 := y +√

y2 − σ1. So, in that case the solutions of (3)
are

k1 =
(
y +

√
y2 − σ1

)
/s1 and ki =

(
y −

√
y2 − σi

)
/si , i > 1. (14)

The corresponding equilibrium actions, f̄i = − bi ki
ri

, follow then directly from this (see
Theorem 2.3).
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4.1 The Regulator Game

Algorithm 4.1 1. 2-player case

a. Calculate S and y from (10).
b. If a < f3∗ (see Table 1), proceed with item c. Otherwise, there is no unique equilib-

rium.
c. If a < f1(

√
σ1), ki is given by (13). Else ki is given by (14).

2. Symmetric case

a. If a < f3∗ (a ≤ f3∗ if N = 2), see Tables 2 and 3, proceed with item b. Otherwise,
there is no unique equilibrium.

b. ki is given by (13).

3. General case

a. Let a∗ := f3(0) = (N − 1)
√

σ1 + √
σ1 − σ2 − ∑N

i=3
√

σ1 − σi ; a∗ := a1 if item
a.i of Proposition 3.6 applies, and a∗ := a2 if item a.ii of Proposition 3.6 applies.
If a ≤ a∗, go to item c. If a ≥ a∗ there is more than one equilibrium. If a∗ < a < a∗,
proceed with item b.

b. Case i: σ1 = σ2 and N − 1 −∑N
i=3

√
σ1

σ1−σi
≥ 0.

No equilibrium exists for a ≥ f1(
√

σ1). If a < f1(
√

σ1), go to item c.
Case ii: otherwise.
Solve f ′

3(x̄) = 0 on [√σ1,

√
N2

2N−1σ1]. Denote f3∗ := f3(x̄) and I := [√σ1, x̄].
I. If a ≥ f3∗, there exists more than one equilibrium.
II. If f1(

√
σ1) ≤ a < f3∗: Calculate solution(s) of f2(y) = a on I .

Case i: There exists more than one solution. Multiple equilibria exist.
Case ii: There exists no solution. ki is given by (14) where y > x̄ solves
a = f2(y) (see Remark 4.2.2).
Case iii:There exists one solution y. If f ′

2(y) = 0 and f ′′
2 (y) < 0, two equilibria

occur at y. Otherwise, one equilibrium occurs at y, and ki is given by (14).
III. If a∗ < a < f1(

√
σ1). Calculate solution(s) of f2(y) = a on I .

Case i: There exists at least one solution. Multiple equilibria exist.
Case ii: There exists no solution. Go to item c.

c. ki is given by (13) where y solves a = f1(y) (see Remark 4.2.1).

In Remark 4.2, we discuss some computational issues occurring in the above Algorithm 4.1.

Remark 4.2 1. To determine the solution of f1(y) = a in item 3.c, notice that F1(x) :=
f1(x) − a = 0 has a unique solution; F1(

√
σ1) > 0, and with xr :=

√∑N
i=1 σi + |a|,

F1(xr ) < 0. Using this, e.g., a brute- force halving technique or Newton–Raphson can
be used to calculate the solution of F1(y) = 0. Other estimates that may be appropriate
to narrow the initial search interval are, e.g., F1(−a) > 0 if a < −√

σ1; F1( a
N−1 ) < 0

if a
N−1 >

√
σ1; and, with xr := −a+

√
a2+4NσN
2 , F1(xr ) < 0 if x2r > σ1.

2. Notice that xr :=
√

N2

2N−1σ1 + |a| > x̄ (see item 3.b.case ii) and, for all x ≥ xr ,

F2(x) := f2(x) − a = √
x2 − σ1 + ∑N

i=2
σi

x+
√

x2−σi
− a > 0. So, the solution of

f2(y) = a in item 3.b.II.ii can be obtained, e.g., by calculating the unique zero of F2(x)
on the interval [x̄, xr ].
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4.2 The Economic Game

Algorithm 4.3 1. 2-player case

a. Calculate, with t1 = 1, S and y from (10). If either a < f1(0) or a ∈ ( f2(0), f3(0))
holds, proceed with item c. Otherwise, proceed with item b.

b. Calculate f ∗
1 (see Table 1). If a = f ∗

1 , proceed with item c. Otherwise, there is no
unique equilibrium.

c. If either a < f1(0) or a = f ∗
1 holds, ki is given by (13). Else ki is given by (14).

2. Symmetric case

a. If either a < f1(0) or, in case N = 2, 3, or 4, a = f ∗
1 (see Tables 2, 3), proceed with

item b. Otherwise, there is no unique equilibrium.

b. If a < f1(0), y := a2+N2σ

(N−1)a+N
√

a2+(2N−1)σ
and ki is given by (13). If either N = 2, 3

or 4 and a = f ∗
1 , y := N−1√

2N−1

√−σ and ki is obtained again as (13).

3. General case

a. If a < f1(0) = −∑N
i=1

√−σi , go to item c. If a ≥ f3(0) = √−σ2 −∑N
i �=2

√−σi ,
there is more than one equilibrium. If f1(0) ≤ a < f3(0), proceed with item b.

b. Solve f ′
1(x̄) = 0 on

[
0,
√∑N

i=1 −σi
2

]
.

Case i: f1(x̄) ≥ f3(0) = √−σ2 −∑N
i �=2

√−σi .
Multiple equilibria exist.
Case ii:

√−σ1 −∑N
i=2

√−σi = f2(0) ≤ f1(x̄) < f3(0).
If f1(x̄) < a < f3(0), ki is given by (14) where y ∈ [0, xr ] solves a = f2(y). Here

xr =
√

|(a +∑N
i=2

√−σi )2 + σ1|.
If f1(0) ≤ a ≤ f1(x̄), or a ≥ f3(0), multiple equilibria exist.
Case iii: f1(x̄) < f2(0).
If f2(0) ≤ a < f3(0), ki is given by (14) where y ∈ [0, xr ] solves a = f2(y), where
xr is as in Case ii.
If a = f1(x̄), go to item c, with y := x̄ .
If f1(0) < a < f2(0), there exists no equilibrium. If a ≥ f3(0), multiple equilibria
exist.

c. ki is given by (13) where y solves a = f1(y) (see Remark 4.4.1).

Similar remarks we made in Remark 4.2 apply for the above algorithm here.

Remark 4.4 1. To determine the solution of f1(y) = a in item 3.c, notice that F1(x) :=
f1(x)−a has a unique zero; F1(0) > 0; and F1(|a|) < 0. So, the search can be restricted
to the interval [0, |a|]. Clearly, the bounds of this interval are not tight. So, to improve
calculation speed in certain applications, it might be worthwhile to improve on them.

2. A similar remark as in item 1 applies w.r.t. F2(x) = f2(x) − a. Also here, in case N
becomes large, it might be worthwhile from a computational point of view to improve
the bound xr in item 3.b.

4.3 The Mixed Game

Algorithm 4.5 Following the notation of Proposition 3.6, let σi > 0, i ∈ N1 (N1 > 1) and
σi < 0, i = N1 + 1, . . . , N (N > N1).
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1. 2-player case
See item 1 Regulator game.

2. Symmetric case
Not applicable.

3. General case

a. Let a∗ := f3(0) = (N − 1)
√

σ1 + √
σ1 − σ2 −∑N

i=3
√

σ1 − σi .
Next, consider the notation from Proposition 3.6, item c. Calculate z2. If

√
σ1 < z2,

a∗ := a3. Else, a∗ := a4.
If a ≤ a∗, go to item c. If a ≥ a∗, there is more than one equilibrium. If a∗ < a < a∗,
proceed with item b.

b. Case i: σ1 = σ2 and N − 1 −∑N
i=3

√
σ1

σ1−σi
≥ 0.

No equilibrium exists for a ≥ f1(
√

σ1). If a < f1(
√

σ1), go to item c.

Case ii: Otherwise. Let s :=
√∑N

i=N1
−σi

2 . Solve f ′
3(x̄) = 0 on [√σ1,

√
N2
1

2N1−1σ1].
Denote f3∗ := f3(x̄), I := [√σ1, x̄] and I2 := [x̄, s].

Case I. f1(s) ≥ f1(x̄).
Case i: a ∈ [ f1(a∗), f1(x̄)). Solve f1(x) = a on I2. If a solution exists, multiple
equilibria occur. If no solution exists, go to item c, where y ∈ [s, xr ] (see
Remark 4.6.1, below).
Case ii: a ∈ ( f1(x̄), f1(s)]: Multiple equilibria exist.
Case iii: a ∈ [ f1(s), f3∗] (if f3∗ ≤ f1(s) multiple equilibria occur). Solve
f1(x) = a on I2. If a solution exists, multiple equilibria occur. If no solution
exists: Solve f2(x) = a on I .
1. If no solution exists, ki is given by (14)where y ∈ [x̄, xr ] (see Remark 4.6.2,

below) solves a = f2(y).
2. Precisely one solution occurs at y. If f ′

2(y) �= 0, or f ′
2(y) = 0 and f ′′

2 (y) >

0, ki is given by (14).
3. Otherwise, multiple equilibria occur.

Case II. f1(s) < f1(x̄). Case i: a ∈ [ f1(a∗), f1(s)). Solve f1(x) = a on I2. If a
solution exists, multiple equilibria occur. If no solution exists, go to item c,
where y ∈ [s, xr ].
Case ii: a ∈ [ f1(s), f1(x̄)]: Solve f1(x) = a on I2. If a unique solution y exists,
go to item c. Otherwise, multiple equilibria exist.
Case iii: a ∈ ( f1(x̄), f1(

√
σ1)]. If both f1(x) = a has no solution on I2 and

f2(x) = a has no solution on I , go to item c, where y ∈ I . Otherwise, multiple
equilibria occur.
Case iv: a ∈ ( f1(

√
σ1), f3∗).

Solve f1(x) = a on I2. If a solution exists, multiple equilibria occur. If no
solution exists: Solve f2(x) = a on I .
1. If no solution exists, ki is given by (14)where y ∈ [x̄, xr ] (see Remark 4.6.2,

below) solves a = f2(y).
2. Precisely one solution occurs at y. If f ′

2(y) �= 0, or f ′
2(y) = 0 and f ′′

2 (y) >

0, ki is given by (14).
3. Otherwise, multiple equilibria occur.

c. ki is given by (13) where y solves a = f1(y) (see Remark 4.2.1).
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Remark 4.6 1. Note that, similar to the regulator game (see Remark 4.2.1), we have

F1(x) := f1(x) − a = (N1 − 1)x −
N1∑

i=1

√
x2 − σi −

N∑

i=N1+1

(√
x2 − σi − x

)

≤ (N1 − 1)x −
N1∑

i=1

√
x2 − σi < 0,

if x > xr :=
√∑N1

i=1 σi + |a|. Again, since xr is not tight, to improve calculation speed
in certain applications it might be worthwhile to improve on this bound.

2. Note that, similar to the economic game, we have

F2(x) = f2(x) − a =
√
x2 − σ1 +

N1∑

i=2

σi

x +√
x2 − σi

−
N∑

i=N1+1

−σi

x +√
x2 − σi

− a

>
√
x2 − σ1 +

N1∑

i=2

σi

x +√
x2 − σi

−
N∑

i=N1+1

√−σi − a > 0,

if x > xr :=
√

|(a +∑N
i=N1+1

√−σi )2 + σ1|.
Again, clearly xr here is just an upperbound, which may be improved depending on the
considered specific case.

5 An Example on Oligopolistic Competition

In this example, we consider the model on oligopolistic competition with sticky prices that
was analyzed by Fershtman and Kamien [14] (see also [6]). This model describes a market
where N companies sell, more or less, the same product. It is assumed that the market price
does not adjust instantaneously to the price indicated by the demand function. There is a
“lag” in the market price adjustment. Therefore, the price is called “sticky.”
Assume at any point in time, t , company i, i ∈ N, produces ui (t) with cost function

Ci (ui (t)) = ci ui (t) + 1

2
u2i (t),

and sells it in the market at the price of p. The inverse linear demand function for the product
is given by

p(t) = p̄ −
N∑

i=1

βi ui .

Here, p̄, βi are positive constants.1 Next, Eq. (15) models that the market price does not
adapt instantaneously to the price indicated by the demand function.

ṗ(t) = s

{
p̄ −

N∑

i=1

βi ui (t) − p(t)

}
, p(0) = p0. (15)

1 Usually in the literature, one considers βi = 1, assuming that the products are identical and there is just
one market. Here we allow for this slightly more general setup, which may allow for different interpretations
(e.g., some small differences between products/markets; role of leaders/followers in price leadership).
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Here, s ∈ (0,∞) is the adjustment speed parameter. For larger values of s, the market price
adjusts quicker along the demand function.
Within this framework, we look for affine stabilizing feedback Nash equilibria of the game,
where every player wants to maximize his discounted profits

Ji (ui ) =
∫ ∞

0
e−r t

{
p(t)ui (t) − ci ui (t) − 1

2
u2i (t)

}
dt, i ∈ N. (16)

More precisely, we assume that players choose their actions from next set F of stabilizing
affine functions of the price p.

F :=
{

(u1, . . . , uN ) | ui (t) = fi p(t) + gi , with − s

(
1 +

N∑

i=1

βi fi

)
<

1

2
r

}
. (17)

To determine the feedback Nash equilibrium actions for this game (15, 16), we first reformu-
late it into the standard linear quadratic framework. Following [8, Example 8.5], introduce
the variables

xT(t) := e− 1
2 r t

[
p(t) 1

]
and vi (t) := e− 1

2 r t ui (t) + [−1 ci
]
x(t), i ∈ N. (18)

Then, the problem can be rewritten as the minimization of

Ji :=
∫ ∞

0

{
xT(t)Qi x(t) + vTi (t)Rivi (t)

}
dt, i ∈ N,

subject to the dynamics

ẋ(t) = Ax(t) +
N∑

i=1

Bivi (t), xT(0) = [
p0 1

]
.

Here

A =
⎡

⎣− 1
2r − s

(
1 +

N∑
i=1

βi

)
s

(
p̄ +

N∑
i=1

βi ci

)

0 − 1
2r

⎤

⎦ ;

Bi =
[−sβi

0

]
; Qi =

[− 1
2

1
2ci

1
2ci − 1

2c
2
i

]
and Ri = 1

2
.

According to, e.g., [8, Theorem 8.5] this game has a feedback Nash equilibrium if and only
if

(
A −

N∑

i=1

Si Ki

)T

K j + K j

(
A −

N∑

i=1

Si Ki

)
+ K j S j K j + Q j = 0, j ∈ N, (19)

has a set of symmetric solutions K j such that matrix A −∑N
i=1 Si Ki is stable, where Si =[

2s2β2
i 0

0 0

]
. Introducing Ki :=

[
ki li
li mi

]
, a := − 1

2r − s(1 + ∑N
i=1 βi ), a2 := s( p̄ +
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∑N
i=1 βi ci ) and si := 2s2β2

i , simple calculations show that (19) reduces to next 3N equations.

2

(
a −

N∑

i=1

si ki

)
k j + s j k

2
j − 1

2
= 0, (20)

(
−a + 1

2
r +

N∑

i=1

si ki

)
l j + k j

N∑

i �= j

si li = −1

2
c j + a2k j , (21)

1

r

(
2

(
a2 −

N∑

i=1

si li

)
l j + s j l

2
j − 1

2
c2j

)
= m j , j ∈ N, (22)

where ki should be such that a −∑N
i=1 si ki < 0.

Or, stated differently, the oligopolistic market has a noncooperative affine feedback Nash
equilibrium iff (3) has a stabilizing solution with a := − 1

2r − s(1 +∑N
i=1 βi ), si := 2s2β2

i
and qi := − 1

2 , i ∈ N. So, in the terminology of Definition 2.2, this is an economic game.
Note that once we determined ki from (20), li can be calculated from the linear Eq. (21).
Finally, mi can then be directly calculated from (22).

The equilibrium actions follow now directly from (18). That is

ui (t) = (2ski + 1)p(t) + 2sli − ci , i ∈ N, (23)

with ki given by (20).
The resulting dynamics of the equilibrium price path are

ṗ(t) = −s

(
1 +

N∑

i=1

βi (1 + 2ski )

)
p(t) + s

(
p̄ −

N∑

i=1

βi (2sli − ci )

)
.

Or, stated differently, with ps := p̄−∑N
i=1 βi (2sli−ci )

1+∑N
i=1 βi (1+2ski )

,

p(t) = αe
−s
(
1+∑N

i=1 βi (1+2ski )
)
t + ps, where α = p0 − ps .

In particular, we infer from this that the price in this oligopolistic market converges to ps .
To find this equilibrium price for specific values of the parameters for a large number of

players requires, separate from solving ki from (20), the solution of the linear Eq. (21). In
“Appendix 2”, we show how li , i ∈ N, can be efficiently solved as (24).

To solve ki from (20), we use Algorithm 4.3. Note that

a = −1

2
r − s

(
1 +

N∑

i=1

βi

)
< −

N∑

i=1

sβi = −
N∑

i=1

√
s2β2

i = f1(0).

So, by item 3.a of this algorithm, there is a unique solution that can be calculated as outlined
in item 3.c.

Table 5 reports some simulation results for the benchmark parameters ci = 1; p̄ = 80;
βi = 1; s = 2; and r = 0.1 as a function of the number of players, N . The table reports the
parameters fi and gi of the affine equilibrium state feedback controls (17), together with the
steady-state price ps .
To see the impact if one βi parameter changes, we considered in our second experiment a
case β1 = 10 with the other parameters unchanged. Corresponding results are reported in
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Table 5 Equilibrium actions in
case βi = 1

N fi gi ps

2 0.8183 −7.3454 85.5716

4 0.8924 −3.3353 82.9195

10 0.9527 −1.5176 81.4416

100 0.995 −1.019 81.014

1.000 0.9995 −1.0015 81.001

10.000 1 −1.0002 81.001

Table 6 Equilibrium actions in
case β1 = 10 and βi = 1, i > 1

N f1 g1 fi gi ps

2 0.9459 −1.9207 0.9240 −3.2715 81.9747

4 0.9574 −1.5268 0.9481 −1.8979 81.5621

10 0.9728 −1.22 0.9707 −1.2701 81.2141

100 0.9954 −1.0172 0.9954 −1.0172 81.026

Table 6. In this table, no results are reported for N > 100 because they coincide with those
of Table 5.
We also performed a third experiment in which βi were chosen uniformly in the interval
[0.9, 1.1]. In this simulation, already for N = 10, almost the same results occurred as those
reported in Table 5.

From these simulation results, we see that for a small number of players an increase in the
number of players significantly affects equilibrium prices and strategies. And there is almost
no impact anymore if the number of players increases above 10. Furthermore, we see from
Table 6 that an increase in the β1 parameter has more or less the same impact as increasing
the number of players in the game.

For the implementation of Algorithm 4.3, we used MATLAB2 The computation time
using our code was less than 1s using an accuracy of 10−5. Using a larger accuracy provided
similar results. Only, when N = 10.000, problems occurred, as then apparently the numer-
ical precision of the square root function implemented in MATLAB reached its numerical
precision level.

Finally, we also implemented Algorithm 4.1 with σi = i, i ∈ N for this example and were
able to calculate equilibria up to N = 100.000, within 1 s. But, also in this case, numerical
problems seemed to occur for a larger number of players.

6 Concluding Remarks

In this paper, we presented numerical algorithms to determine the unique linear feedback
Nash policies of the basic scalar linear quadratic differential game. We distinguished three
cases: the regulator, the economic, and the mixed game. For each game, we provided a
separate algorithm which calculates the unique equilibrium if it exists. Furthermore, the
algorithm indicates for the economic game, in case not a unique equilibrium exists, whether
no equilibrium or multiple equilibria occur.

2 Readers interested in the source code may contact the author. To calculate the equilibrium, the author used
straightforward MATLAB code to implement the main body (basically a brute force halving technique) of
Algorithm 4.3, without any numerical optimization.
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Using a straightforward implementation with MATLAB code of the main body of the
algorithm shows that equilibrium actions can be calculated within a second for games having
up to 100.000 players. For a larger number of players, numerical problems seem to occur
due to using the predefined MATLAB square root function. To implement the algorithms for
a larger number of players seems to require a more subtle coding, as for a larger number of
players numerical precisiondeteriorates.Also, for such large number of players, to improveon
computational time it might beworthwhile to determinemore accurate search intervals where
one is looking for a zero of the involved function. The full implementation of the algorithm
requires also verification of whether functions f1 and f2 will have no, one, or more than one
zero on a certain interval. For this problem, a more detailed study of conditions under which
the involved function will be monotonic may help to limit considerably the interval where
one has to search for solutions.

Finally, an open question remains how to extend these results for more general games.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

Appendix 1

Proof Algorithm 4.1

1. 2-player case

c. As f1 is monotonically decreasing, in case a < f1(
√

σ1), the unique solution is
obtained as the intersection point of f1 with a. Furthermore, if a ≥ f1(

√
σ1), the

unique solution must be obtained as the intersection point of a with f2.

2. Symmetric case

b. f2 = f3 attains a global minimum of f3∗ = √
σ
√
2N − 3. So, for all a < (≤) f3∗

(N = 2), the unique solution is obtained as the intersection point of a with f1.

3. General case

a. a∗ = f3(
√

σ1). So, for a ≥ a∗, the equations a = fi (x), i = 2, 3, have a solution.
Therefore, multiple equilibria exist.
The global minimum of f2 is smaller than a∗ (see Proof [12, Proposition 3.5]).
Therefore, there is a unique solution if a < a∗ that is obtained as the intersection
point of a with f1.

b. Case i. If σ1 = σ2, f2 = f3 and f3 has at most one minimum ([12, Lemma 6.2.1]).
Therefore, if f ′

3(
√

σ1) ≥ 0, f3 will be strictly increasing. From which the conclusion
directly results.
Case ii. From above and [12, Lemma 6.1.3], it follows that f3 has one minimum.

f ′
3(x̃) > 0 at x̃ :=

√
N2

2N−1σ1 which provides then an upperbound for the interval
where this minimum can be attained.
From [12, Lemma 6.1.2.c], it follows that all stationary points of f2 are located to
the left of the minimum location of f3. So, for x ≥ x̄ , f ′

2(x) > 0.

http://creativecommons.org/licenses/by/4.0/
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I. In this case both, f3(x) = a and f2(x) = a have a solution, so multiple equilibria
occur.
II. In this case, all equilibria are obtained as the solutions of f2(x) = a.

Notice this equation always has at least one solution. As f ′
2(x) > 0, for x ≥ x̄ , it

follows that if f2(x) = a has no solution on I , it will have a unique solution for
x > x̄ .
So, basically, multiple solutions exist only if f2(x) = a has multiple solutions on
I . There is one additional point where multiple solutions occur in case f2 is not
monotonically increasing. This is when a coincides with the local maximum of
f2(x∗) on I . This situation occurs iff. at x∗, additionally to f2(x∗) = a, we have
f ′
2(x

∗) = 0 and f ′′
2 (x∗) < 0.

From this observation, the formulations under case ii and iii result.
III. In this case, always one equilibrium exists which is obtained as the solution of
f1(x) = a. So, in case f2(x) = a has a solution too, multiple equilibria occur.
In case f2(x) = a has no solution on I , it follows from the fact that f2 is continuous
and, moreover, is increasing for x ≥ x̄ that f2(x) = a has neither a solution for
x ≥ x̄ .

Proof Algorithm 4.3

1. 2-player case

b. f ∗
1 = 1−√

1−σ1y−√
1−σ2 y√

y . So, in case a = f ∗
1 according to Table 1 there is a unique

equilibrium that is obtained by (13). Otherwise, there is no unique equilibrium.
c. f1(0) = −√−σ1 − √−σ2. So, if a < f1(0), the unique solution is obtained as the

intersection point of f1 with a. As f1 is first increasing and has a unique maximum, it
follows that otherwise the unique solution must be obtained as the intersection point
of f2 with a.

2. Symmetric case

b. f1 attains a unique maximum f ∗
1 = −√

2N − 1
√−σ at y = N−1√

2N−1

√−σ . f1(0) =
−N

√−σ . So, for all a < f1(0) and a = f ∗
1 the unique solution is obtained as the

intersection point of a with f1. It is easily verified that for a < f1(0) this intersection

point is y := a2+N2σ

(N−1)a+N
√

a2+(2N−1)σ
.

3. General case
b. f1 has a unique stationary point where it achieves a global maximum (see [12,

Lemma 6.1.4]). f ′
1 = −1 + ∑N

i=1
−σi

x2−σi+x
√

x2−σi
. From this, one verifies that

f ′
1(0) > 0 and f ′

1(

√∑N
i=1 −σi
2 ) < 0.

From Theorem 3.4, item 2, it follows we have to distinguish 3 cases. In case f1(x̄) ≥
f3(0), it follows that for all a ≥ f1(0) there are at least two equilibria (case i).

From item2.a of this theorem, it follows next that if it applies, there is a unique equilibrium
obtained as the intersection point of a with f2(x) (case ii). Note that F2(x) := f2(x)−a
is monotonically increasing. Furthermore, by the assumed conditions, F2(0) < 0. And,
F2(x) ≥

√
x2 − σ1−∑N

i=2
√−σi −a. Fromwhich it follows directly that for all x ≥ xr ,

F2(x) > 0. Results advertised in Case iii follow in a similar way.

Proof Algorithm 4.5

1. 2-player case
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See item 1 Regulator game.
2. Symmetric case

Not applicable.
3. General case

a. This part of the proof is identical to the proof of the corresponding part of the regulator
game.

b. Case i. This case follows along the lines of the proof of the regulator game.
Case ii.Note that f3(x) = f R3 (x)+h3(x), where f R3 (x) = (N1−1)x+

√
x2 − σ2−∑N1

i �=2

√
x2 − σi and h3(x) = (N − N1)x −∑N

i=N1+1

√
x2 − σi . Analogously to the

regulator case, it follows that f R
′

3 (x) ≥ 0, for x ≥
√

N2
1

2N1−1σ1, and h
′
3(x) ≥ 0, ∀x ≥

√
σ1. So, f3 attains its minimum on the specified interval.

Next note that f1(x) = h1(x) + f e1 (x), where h1(x) = ∑N1
i=1 x − √

x2 − σi and

f e1 (x) = (N − N1 − 1)x − ∑N
i=N1+1

√
x2 − σi . It is easily verified that h′

1(x) <

0, ∀x ≥ √
σ1. Furthermore, similar as in the proof ofAlgorithm4.3 item3b, it follows

that f e
′

1 (s) < 0 and, consequently, f e
′

1 (x) < 0, ∀x ≥ s. So f ′
1(x) < 0, ∀x ≥ s.

Since, moreover, f ′
1(x) < f ′

3(x), it follows that f1 can only have (at most two)
stationary points on I2.
Case I.i: Since f1(s) ≥ f1(x̄), it follows that for all a < f1(x̄), the equation
f1(x) = a always has a solution y > s. From this, the result follows immediately.
Case I.ii: Similar as above, it follows that f1(x) = a always has a solution y > s if
a ∈ ( f1(x̄), f1(s)]. Furthermore, additionally, for x < s always either f1(x) = a or
f2(x) = a has a solution.
Case I.iii: If a ∈ [ f1(s), f3∗] always, the equation f2(x) = a will have a solution.
So, if f1(x) = a has at least one solution multiple equilibria exist. Note that on I ,
f1(x) ≤ f1(

√
σ1) and for x ≥ s, f1(x) ≤ f1(s). So, the search for solutions of

f1(x) = a can be restricted to I2. In case no solution exists, equilibria are obtained
from the intersection points of f2(x) = a. Since f ′

2(x) > f ′
3(x), it follows that f2 is

strictly increasing for x ≥ x̄ . Therefore, in case f2(x) = a has no solution on I there
will be a unique solution attained at the intersection point of f2(x) = a outside I . In
case there is a unique solution y on I , this yields the unique equilibrium, unless f2
attains a local maximum at y. From these observations, the stated results follow.
Case II.i In this case, the equation f1(x) = a always has a solution y > s. From
this, the result follows immediately.
Case II.ii Note that f2 is monotonically increasing for x ≥ x̄ and f2(x̄) > f1(x̄).
So, f2(x) = a has no solution for these values of a. All equilibria are obtained from
the intersection points f1(x) = a in this case which yields the stated result.
Case II.iii In this case, f1(x) = a has a unique solution on I . So if either f1(x) = a
has a solution on I2 or f2(x) = a has a solution on I (notice again, f2 ismonotonically
increasing for x ≥ x̄), multiple equilibria occur.
Case II.iv This case is similar to Case I.iii.
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Appendix 2

Let m := (−a + 1
2r + ∑N

i=1 si ki ); di := si ki
m−si ki

; c := [c1 · · · cN ]T; d := [d1 · · · dN ]T;
k := [k1 · · · kN ]T; and l := [l1 · · · lN ]T. Then, the set of linear Eq. (21) can be written as

Ll = b, where L :=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m k1s2 · · · k1sN

k2s1
. . . k2s3 · · · k2sN

...
. . .

...

...
. . . kN−1sN

kN s1 · · · kN sN−1 m

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and b := −1

2
c + a2k.

Note, L = diag(ki )(eeT + D) diag(si ), where e := [1 · · · 1]T and D = diag( m
si ki

− 1).
Consequently, (see, e.g., [19, p. 655]),

L−1 = diag

(
1

si

)(
D−1 − D−1eeTD−1

1 + eTD−1e

)
diag

(
1

ki

)

= diag

(
1

si

)(
diag (di ) − ddT

1 +∑N
i=1 di

)
diag

(
1

ki

)
.

So,

l = diag

(
1

si

)(
diag (di ) − ddT

1 +∑N
i=1 di

)(
a2e − 1

2
diag

(
1

ki

)
c

)
. (24)
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