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Abstract The purpose of this note is to show that a common noise may restore uniqueness in
mean field games. To this end, we focus on a class of examples driven by linear dynamics and
quadratic cost functions. Given these linear-quadratic mean field games, we prove existence
and uniqueness of solutions in the presence of commonnoise and construct a counter-example
in the absence of common noise. This illustrates the principle, already observed in dynamical
systems like ODEs, that introducing an appropriate noise may restore uniqueness.
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1 Introduction

The theory of mean field games (MFGs for short) is concerned with the study of asymptotic
Nash equilibria for stochastic differential games with infinite number of players subject to
a mean field interaction (i.e. each player is affected by the other players only through the
empirical distribution of the system).

A Nash equilibrium constitutes a consensus (or compromise) between all the players from
which no player has unilateral incentive to escape.

As the number of players (N ) of the stochastic differential game increases, finding Nash
equilibria becomes an increasingly complex problem as it typically involves a system of N
PDEs set on a space of dimension N . The motivation for studying the asymptotic regime
is to reduce the underlying complexity. At least in the case where the players are driven by
independent noises, the hope is indeed to take benefit from the theory of propagation of chaos
for mean field interacting systems (see for example [12]) in order to reduce the analysis of
the whole system to the analysis of a single representative player.
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In MFGs, the representative player aims at minimizing a cost functional while interacting
with an environment describedby aflowof distributions. FindingNash equilibria thus consists
in finding optimal states whose flow of marginal distributions matches exactly the flow of
distributions describing the environment. This is a constraint of McKean–Vlasov type.

MFGs were introduced independently and simultaneously by Lasry and Lions [8] and
by Caines, Huang and Malhamé [7] (who used the name of Nash Certainty Equivalence).
We refer to the notes written by Cardaliaguet for a very good introduction to the subject
[1]. Carmona and Delarue studied MFGs with a probabilistic approach [2,3]. Many other
authors have contributed to the rapid development of the theory. Under convexity conditions
on the cost functional, existence of Nash equilibria has been proved in the above works.
Further monotonicity conditions introduced by Lasry and Lions provide uniqueness of Nash
equilibrium.

In this note, we investigate a class of linear-quadratic mean field games (LQ-MFGs) in
which the representative player at equilibrium interacts with the mean of its distribution.

Inspired by earlier works in that direction, we suppose further that, in addition to the
independent noises, the N players in thefinite game are also subject to a common (or systemic)
noise, such a modelling being motivated by practical applications. For example, financial
markets models often consider some common market noise affecting the agents. Mean field
games with common noise are also related to mean field games with a major agent, as
introduced by Huang et al. [6,10]. Carmona and Zhu provided a probabilistic approach to
MFGs with a major agent [16].

We proceed to find Nash equilibria through Carmona and Delarue’s scheme, based on
the theory of forward–backward stochastic differential equations (FBSDE for short) of the
McKean–Vlasov type. The major change is that, due to the presence of common noise, the
representative player at equilibrium feels the mean field interaction through its conditional
expectation given the common noise. The environment is thus described by a stochastic
process whose randomness comes only from the common noise.

The strategy is to characterize the environment as the forward component of an auxiliary
FBSDE driven by the common noise only. Thanks to the common noise, this FBSDE is
non-degenerate and thus satisfies an existence and uniqueness theorem proved by Delarue
in [4]. This establishes the existence and uniqueness of a Nash equilibrium for this class of
LQ-MFGs.

Afterwards, we present a counter-example to uniqueness of Nash equilibria for a game in
this class of LQ-MFGs in the absence of common noise. This provides a concrete example
when common noise restores uniqueness. Several situations outside of the MFGs framework
in which noise restores uniqueness are presented in the monograph by Flandoli (see [5]). To
the best knowledge of the author, the example proposed in this paper is the first one in the
literature for MFGs.

For expository purposes the work presented here involves one-dimensional equations with
prescribed coefficients, but the results remain valid for higher dimensions.

2 A Class of Linear-Quadratic N-Players Games

We consider stochastic differential games with fixed terminal time T > 0 and N ∈ N play-
ers. Let B = (Bt )t∈[0,T ], (Wi

t )t∈[0,T ], i = 1, . . . , N be N + 1 independent one-dimensional
Brownian motions defined on a complete filtered probability space (�, F̂, (F̂t )t∈[0,T ],P)

satisfying the usual conditions. Let ψ i , i = 1, . . . , N be independent and identically distrib-
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uted F̂0-measurable random variables taking values in R and independent of all Brownian
motions.

Let σ, σ0 be non-negative constants, c ∈ R, and b, f, g : R → R be given Lipschitz
continuous and bounded functions.

We consider the following linear-quadratic stochastic differential game with N players:
For all i = 1, . . . , N , the i th player’s state process during the game is given by (Xi

t )t∈[0,T ]
and takes values inR. We consider a mean field interaction given by an average of all players’
states. We consider the empirical mean:

μN
t = 1

N

N∑

j=1

X j
t , ∀t ∈ [0, T ].

Each player has the cost function and stochastic dynamics below.

J (α1, . . . , αi , . . . , αN ) := E

[ ∫ T

0

1

2

[
(αi

t )
2 +

(
f (μN

t ) + Xi
t

)2]
dt

+ 1

2

(
Xi
T + g(μN

T )

)2]
. (1)

{
dXi

t = [cXi
t + αi

t + b(μN
t )]dt + σdWi

t + σ0dBt , ∀t ∈ [0, T ]
Xi
0 = ψ i .

(2)

The cost function of each player depends on the strategies of the other players through the
mean field process (μN

t )t∈[0,T ]. Each player controls its state process by choosing a control

process αi = (αi
t )t∈[0,T ] ∈ Ĥ2, the set of (F̂t )t∈[0,T ]-progressively measurable processes

satisfying

E

[ ∫ T

0
|αs |2ds

]
< ∞.

When σ0 > 0, B is integrated to the state dynamics of all the players. They are thus
dependent. We say that we are in the presence of common noise. When σ0 = 0, B is not
integrated to any player’s state and hence all players are independent. We say that we are
in the absence of common noise. We call B the common noise and σ0 its intensity. In both
cases, the players are exchangeable and we can study the asymptotic regime of this game.

Finding Nash equilibria consists in finding sets of (consensual) controls between the
players that minimizes the cost functional of any player when all the other players use the
consensual controls. This is a complex problem for large N . The strategy proposed byMFGs
theory to reduce the complexity is to find Nash equilibria for the asymptotic regime of the
game (‘N = ∞’) and use them as approximate Nash equilibria for the N -player LQ-Games.

2.1 The Asymptotic Regime: A Class of LQ-MFGs

Taking the limit as N tends to infinity in the above class of LQ-Games with players at
equilibrium yields a class of LQ-MFGs for which the representative player’s state process
denoted by (Xt )t∈[0,T ] (taking values in R) interacts with its expectation (in the absence
of common noise) or with its conditional expectation given B (in the presence of common
noise). This is possible thanks to a propagation of chaos property.

We now consider two Brownian motions B = (Bt )t∈[0,T ], (Wt )t∈[0,T ] defined on a com-
plete filtered probability space (�,F, (Ft )t∈[0,T ],P) satisfying the usual conditions. Let
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the representative player’s initial state be given by ψ ∈ L2
F0

, the set of square integrable,
F0-measurable random variables. We suppose that the filtration (Ft )t∈[0,T ] corresponds to
the natural filtration generated by ψ,W, B augmented with P-null sets. Let (F B

t )t∈[0,T ] be
the filtration generated by B only and augmented with P-null sets. Also, let H2, the set of

(Ft )t∈[0,T ]-progressively measurable processes satisfying E

[ ∫ T
0 |αs |2ds

]
< ∞.

Finding Nash equilibrium for this class of LQ-MFGs is possible through the scheme
proposed by Carmona and Delarue [2]. In our situation, the scheme reads as follows:

Scheme 1 (MFGs-solution scheme)

1. (Mean field Input) Consider a continuous (F B
t )t∈[0,T ]-adapted process (μt )t∈[0,T ] taking

values in R. This process is aimed to be the representative player’s flow of conditional
expectations given B at equilibrium.

2. (Cost Minimization) Solve the following stochastic optimal control problem for the rep-
resentative player;
Find α∗ ∈ H2, satisfying

J (α∗) = min
α∈H2

J (α) := min
α∈H2

E

[ ∫ T

0

1

2
[α2

t + ( f (μt ) + Xt )
2]dt

+ 1

2
(XT + g(μT ))2

]
(3)

under the stochastic dynamics:
{
dXt = [cXt + αt + b(μt )]dt + σdWt + σ0dBt , ∀t ∈ [0, T ]
X0 = ψ.

(4)

3. (McKean–Vlasov constraint) Find (μt )t∈[0,T ] such that,

∀t ∈ [0, T ], μt = E[Xα∗
t |F B

t ].
Remark 1 It is possible to show that for all t ∈ [0, T ], E[Xα∗

t |F B
t ] = E[Xα∗

t |F B
T ]. Indeed,

let F B
t,T denote the filtration generated by increments of B on (t, T ] augmented with P-null

sets. Then, for all t ∈ [0, T ] F B
T = F B

t ∨ F B
t,T , F B

t and F B
t,T are independent. So, for all

t ∈ [0, T ], E[Xα∗
t |F B

t ] = E[Xα∗
t |F B

t ∨ F B
t,T ]. This holds since, for all t ∈ [0, T ], Xα∗

t is

independent of F B
t,T .

With this observation, the Mckean–Vlasov constraint now reads: Find (μt )t∈[0,T ] such
that

∀t ∈ [0, T ], μt = E[Xα∗
t |F B

T ]. (5)

Moreover, since the map t �→ Xα∗
t is continuous, one can show that there exists a contin-

uous version of the map t �→ E[Xα∗
t |F B

T ].

3 Solvability of Scheme 1

3.1 Stochastic Maximum Principle

We solve the Problem (3–4) using Pontryagin’s Stochastic Maximum Principle which yields
a stochastic Hamiltonian system. For a review of this principle, see, for example, [11] and
[15].
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Definition 1 The Problem (3–4) admits the following Hamiltonian,

H(t, a, x, y, u) = y[cx + a + b(u)] + 1

2
a2 + 1

2
(x + f (u))2 (6)

for all t ∈ [0, T ], a, x, y, u ∈ R.

Proposition 1 Suppose that we are given a continuous (F B
t )t∈[0,T ]-adapted process

(μt )t∈[0,T ] taking values in R. Let H be the Hamiltonian for the Problem (3–4) and
α∗ = (α∗

t )t∈[0,T ] ∈ H2. Then (α∗
t )t∈[0,T ] is a solution to the Problem (3–4) if and only

if there exists (Xt , Yt , Zt , Z0
t )t∈[0,T ] an adapted solution to the adjoint FBSDE:

⎧
⎪⎨

⎪⎩

dXt = ∂y H(t, α∗
t , Xt , Yt , μt )dt + σdWt + σ0dBt , ∀t ∈ [0, T ]

dYt = −∂x H(t, α∗
t , Xt , Yt , μt )dt + ZtdWt + Z0

t dBt , ∀t ∈ [0, T ]
X0 = ψ, YT = XT + g(μT ).

(7)

subject to,

H(t, α∗
t , Xt , Yt , μt ) = min

a∈R H(t, a, Xt , Yt , μt ), ∀t ∈ [0, T ], P − a.s.

Proof The proposition follows from the Pontryagin stochastic maximum principle with
the fact that for all (t, y, u) ∈ [0, T ] × R × R, we have convexity of the map (a, x) �→
H(t, a, x, y, u). (See Theorem 5.4.6 in [11]) 	

Remark 2 1. We say that (Xt , Yt , Zt , Z0

t )t∈[0,T ] is an adapted solution to the adjoint
FBSDE, if X, Y are (Ft )t∈[0,T ]-adaptedprocesses and Z , Z0 are (Ft )t∈[0,T ]-progressively
measurable processes satisfying
E[supt∈[0,T ][|Xt |2+|Yt |2]+

∫ T
0 [|Zt |2+|Z0

t |2]dt] < ∞ and system (7)P- almost surely.
2. Observe that for all (t, y, u) ∈ [0, T ] × R × R, the map (a, x) �→ H(t, a, x, y, u)

is strictly convex. Hence, for all (t, x, y, u) ∈ [0, T ] × R × R × R there is a unique
a∗ = a∗(t, x, y, u) ∈ R such that

H(t, a∗(t, x, y, u), x, y, u) = min
a∈R H(t, a, x, y, u).

Thanks to the strict convexity of H , we know that the zeros of ∂aH are the minimizers
of H . In our situation, the unique minimizer is given by a∗(t, x, y, u) = −y.
Therefore, for all t ∈ [0, T ], α∗

t in the previous proposition is uniquely defined as a
function of (t, Xt , Yt , μt ), precisely:

∀t ∈ [0, T ], α∗
t = −Yt . (8)

Proposition 2 Suppose that we are given a continuous (F B
t )t∈[0,T ]-adapted process

(μt )t∈[0,T ] taking values in R. The process α∗ = −Y ∈ H2 is a solution to the stochas-
tic optimal control Problem (3–4) if and only if (Xt , Yt , Zt , Z0

t )t∈[0,T ] is an adapted solution
to the FBSDE:

⎧
⎪⎨

⎪⎩

dXt = [cXt − Yt + b(μt )]dt + σdWt + σ0dBt , ∀t ∈ [0, T ]
dYt = [−Xt − cYt − f (μt )]dt + ZtdWt + Z0

t dBt , ∀t ∈ [0, T ]
X0 = ψ, YT = XT + g(μT ).

(9)

Proof The proposition follows immediately from Proposition 1 and Remark 2. 	




204 Dyn Games Appl (2018) 8:199–210

In order to solve Scheme1,we have to find solutions to FBSDE (9), subject to the constraint
that the given process μ satisfies:

∀t ∈ [0, T ], μt = E[Xt |F B
T ]. (10)

In this probabilistic approach, solutions to the MFG problem can be used to construct
solutions to the conditional McKean–Vlasov FBSDE below (and vice versa)

⎧
⎪⎨

⎪⎩

dXt = [cXt − Yt + b(E[Xt |F B
T ])]dt + σdWt + σ0dBt , ∀t ∈ [0, T ]

dYt = [−Xt − cYt − f (E[Xt |F B
T ])]dt + ZtdWt + Z0

t dBt , ∀t ∈ [0, T ]
X0 = ψ, YT = XT + g(E[XT |F B

T ]).
(11)

3.2 Solvability of (9)

In this subsection, we show that given a continuous (F B
t )t∈[0,T ]-adapted process (μt )t∈[0,T ],

the Problem (9) is uniquely solvable. Then we derive a characterization of the solution using
an appropriate Ansatz.

Proposition 3 Suppose that we are given a continuous (F B
t )t∈[0,T ]-adapted process

(μt )t∈[0,T ] taking values in R. Then, there exists a unique adapted solution
(Xt , Yt , Zt , Z0

t )t∈[0,T ] to the FBSDE (9)
⎧
⎪⎨

⎪⎩

dXt = [cXt − Yt + b(μt )]dt + σdWt + σ0dBt , ∀t ∈ [0, T ]
dYt = [−Xt − cYt − f (μt )]dt + ZtdWt + Z0

t dBt , ∀t ∈ [0, T ]
X0 = ψ, YT = XT + g(μT ).

Proof Using the changes of variables X̄t = Xt − ψ, Ȳt = Yt − Xt , Z̄t = Zt − σ, Z̄0
t =

Z0
t − σ0∀t ∈ [0, T ], we get that solutions to Problem (9) can be used to construct solution

to FBSDE below (and vice versa)
⎧
⎪⎨

⎪⎩

dX̄t = [(−1 + c)X̄t − Ȳt + (−1 + c)ψ + b(μt )]dt + σdWt + σ0dBt , ∀t ∈ [0, T ]
dȲt = [(1 − c)Ȳt−2cX̄t − 2ψ − b(μt ) − f (μt )]dt + Z̄tdWt + Z̄0

t dBt , ∀t ∈ [0, T ]
X̄0 = 0, ȲT = g(μT ).

Following the article of Yong (see [13]) on linear FBSDE, solutions to FBSDE above can be
used to construct solutions to the reduced FBSDE (12) below (and vice versa)

⎧
⎪⎨

⎪⎩

dX̃t = [(−1 + c)X̃t − Ỹt ]dt, ∀t ∈ [0, T ]
dỸt = [−2cX̃t + (1 − c)Ỹt ]dt + Z̃tdWt + Z̃0

t dBt , ∀t ∈ [0, T ]
X̃0 = 0, ỸT = m,

(12)

where m is FT -measurable.
Now, using Theorem 6.1 in [13] in this situation, we conclude that the reduced FBSDE

(12) has a unique solution if and only if

(0, 1) exp(At)(0, 1)′ > 0, ∀t ∈ [0, T ].
where (0, 1)′ denotes the transpose (0, 1) and

A =
[
A B
Â B̂

]
=

[
(−1 + c) −1

−2c (1 − c)

]
.
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After some computations, we obtain

(0, 1) exp(At)(0, 1)′ =
(
1 − c + √

1 + c2
)
exp

(
2t

√
1 + c2

)
−

(
1 − c − √

1 + c2
)

2
√
1 + c2 exp

(
t
√
1 + c2

)

It is enough to check the sign of
(
1 − c +

√
1 + c2

)
exp

(
t2

√
1 + c2

)
−

(
1 − c −

√
1 + c2

)
.

The expression above has its minimum at t = 0, given by (1− c + √
1 + c2) − (1− c −√

1 + c2) = 2
√
1 + c2 > 0.

So, (1 − c + √
1 + c2) exp(t2

√
1 + c2) − (1 − c − √

1 + c2) > 0, ∀t ∈ [0, T ]. This
implies (0, 1) exp(At)(0, 1)′ > 0 ∀t ∈ [0, T ], and FBSDE (12) has a unique solution. 	


Theorem 6.1 in [13] gives more than a uniqueness results. It also provides a uniqueness
result for the Riccati ODE

dPt
dt

= P2
t + 2(1 − c)Pt − 2c, PT = 0.

And it states that the unique adapted solution to the reduced FBSDE (12) satisfies Ỹt =
Pt X̃t + pt ,∀t ∈ [0, T ] where (pt )t∈[0,T ] solves an associated BSDE.

Now, we want to characterize the solution of FBSDE (9). Inspired by previous studies on
linear FBSDE (see for example [14]), we make the following Ansatz.

Ansatz:Wewant the solution of (9) to satisfy the condition that Y has the following form,

Yt = ηt Xt + ht , ∀t ∈ [0, T ], (13)

where (ηt )t∈[0,T ] ∈ C1 is the unique solution to the Riccati ODE

dηt
dt

= η2t − 2cηt − 1, ηT = 1, (14)

The uniqueness of (ηt )t∈[0,T ] follows easily from the uniqueness of (Pt )t∈[0,T ] since
ηt = Pt + 1∀t ∈ [0, T ] is a solution to (14).

And, h = (ht )t∈[0,T ] is an (F B
t )t∈[0,T ]-adapted process whose randomness comes only

from the common noise and satisfies the BSDE
{
dht = [(−c + ηt )ht − f (μt ) − ηt b(μt )]dt + Z1

t dBt , ∀t ∈ [0, T ]
hT = g(μT ).

(15)

Proposition 4 Suppose that we are given a continuous (F B
t )t∈[0,T ]-adapted process

(μt )t∈[0,T ] taking values in R. Then the solution, (Xt , Yt , Zt , Z0
t )t∈[0,T ], to Problem (9)

satisfies (13) with h = (ht )t∈[0,T ] satisfying BSDE (15).

Proof Let (ηt )t∈[0,T ] the solution to (14) and (ht , Z1
t )t∈[0,T ] is a solution to the Problem (15).

We want to show that the unique solution (Xt , Yt , Zt , Z0
t )t∈[0,T ] to the Problem (9) satisfies

(13). We do this by construction.
Let (Xt )t∈[0,T ] be the solution of the forward SDE

{
dXt = [−(−c + ηt )Xt − ht + b(μt )]dt + σdWt + σ0dBt , ∀t ∈ [0, T ]
X0 = ψ.

(16)



206 Dyn Games Appl (2018) 8:199–210

Let Yt = ηt Xt + ht ,∀t ∈ [0, T ]. By Itô’s formula

dYt = dηt
dt

Xtdt + ηtdXt + dht .

Then by substituting, in the above expression, (14), (15), (23) and putting Z0
t = Z1

t +
ηtσ0, Zt = ηtσ∀t ∈ [0, T ], we see that (Yt , Zt , Z0

t )t∈[0,T ] solves the following backward
SDE:

{
dYt = [−Xt−cηt Xt−cht − f (μt )]dt + ZtdWt + Z0

t dBt, ∀t ∈ [0, T ]
YT = XT + g(μT ).

Therefore, (Xt , Yt , Zt , Z0
t )t∈[0,T ] solves the following FBSDE

⎧
⎪⎨

⎪⎩

dXt = [cXt − Yt + b(μt )]dt + σdWt + σ0dBt , ∀t ∈ [0, T ]
dYt = [−Xt−cYt − f (μt )]dt + ZtdWt + Z0

t dBt, ∀t ∈ [0, T ]
X0 = ψ, YT = XT + g(μT )

(17)

and satisfies (13), since Yt = ηt Xt + ht ,∀t ∈ [0, T ] with (ηt )t∈[0,T ] the solution to (14) and
(ht , Z1

t )t∈[0,T ] solution to (15). This concludes the proof. 	

3.3 Solvability of (5)

Proposition 5 Let (μt )t∈[0,T ] be an (F B
t )t∈[0,T ]-adapted process with values in R and

(Xt , Yt , Zt , Z0
t )t∈[0,T ] be the unique solution to Problem (9). Then, μt = E[Xt |F B

T ], for
all t ∈ [0, T ] if and only if

{
dμt = [−(−c + ηt )μt − ht + b(μt )]dt + σ0dBt , ∀t ∈ [0, T ]
μ0 = E[ψ]. (18)

Proof Step 1 Consider (μt )t∈[0,T ], (F B
t )t∈[0,T ]-adapted with values in R and

(Xt , Yt , Zt , Z0
t )t∈[0,T ] be the unique solution to Problem (9). By the previous proposition,

(Xt , Yt , Zt , Z0
t )t∈[0,T ] satisfies ansatz (13).

For all t ∈ [0, T ], taking conditional expectation of Xt given F B
T yields,

E[Xt |F B
T ] = E

[
ψ +

∫ t

0
(cXs − Ys + b(μs))ds +

∫ t

0
σdWs +

∫ t

0
σ0dBs |F B

T

]
.

Since (Xt , Yt , Zt , Z0
t )t∈[0,T ] satisfies (13) and (ht )t∈[0,T ] is F B

T -measurable,

E[Xt |F B
T ] = E[ψ] +

∫ t

0
E[−(−c + ηs)Xs − hs + b(μs)|F B

T ]ds +
∫ t

0
σ0dBs

= E[ψ] +
∫ t

0
(−(−c + ηs)E[Xs |F B

T ] − hs + b(μs))ds +
∫ t

0
σ0dBs .

Suppose that μt = E[Xt |F B
T ],∀t ∈ [0, T ]. Then,

μt = E[ψ] +
∫ t

0
(−(−c + ηs)μs − hs + b(μs))ds +

∫ t

0
σ0dBs, ∀t ∈ [0, T ].

Hence,
{
dμt = [−(−c + ηt )μt − ht + b(μt )]dt + σ0dBt , ∀t ∈ [0, T ]
μ0 = E[ψ].



Dyn Games Appl (2018) 8:199–210 207

Step 2Consider (μt )t∈[0,T ], (F B
t )t∈[0,T ]-adaptedwith values inR and (Xt , Yt , Zt , Z0

t )t∈[0,T ]
be the unique solution to Problem (9). By the previous proposition, (Xt , Yt , Zt , Z0

t )t∈[0,T ]
satisfies ansatz (13).

Taking the conditional expectation of Xt given F B
T yields,

E[Xt |F B
T ] = E[ψ] +

∫ t

0
[−(−c + ηs)E[Xs |F B

T ] − hs + b(μs)]ds +
∫ t

0
σ0dBs . (19)

Suppose that μ a solution to (18). Then,

μt = E[ψ] +
∫ t

0
(−(−c + ηs)μs − hs + b(μs))ds +

∫ t

0
σ0dBs, ∀t ∈ [0, T ]. (20)

Subtracting (19) from (20) gives:

(μt − E[Xt |F B
T ]) +

∫ t

0
(−c + ηs)(μs − E[Xs |F B

T ])ds = 0, ∀t ∈ [0, T ]. (21)

We thus have a linear ordinary differential equation with initial value zero. It follows that

(μt − E[Xt |F B
T ]) = 0, ∀t ∈ [0, T ].

The proof is complete. 	

Proposition 6 There exists (α∗

t , μt )t∈[0,T ] an MFGs-solution if and only if there exists
(μt , ht , Z1

t )t∈[0,T ] an adapted solution to the FBSDE:
⎧
⎪⎨

⎪⎩

dμt = [−(−c + ηt )μt − ht + b(μt )]dt + σ0dBt , ∀t ∈ [0, T ]
dht = [(−c + ηt )ht − f (μt ) − ηt b(μt )]dt + Z1

t dBt , ∀t ∈ [0, T ]
hT = g(μT ), μ0 = E[ψ].

(22)

Moreover, the optimal feedback is given by:

α∗
t = −ηt Xt − ht ,∀t ∈ [0, T ].

Proof Step 1: Suppose that (α∗
t , μt )t∈[0,T ] is an MFGs-solution.

Since (μt )t∈[0,T ] is (F B
t )t∈[0,T ]-adapted with values in R, by Proposition 2, there exists

(Xt , Yt , Zt , Z0
t )t∈[0,T ] solution to (9) and (α∗

t = −Yt )t∈[0,T ] solves the stochastic optimal
control Problem (3–4).

By Proposition 4, (Xt , Yt , Zt , Z0
t )t∈[0,T ] solution to (9) satisfies ansatz (13). Therefore,

we have Yt = ηt Xt + ht , ∀t ∈ [0, T ] with (ηt )t∈[0,T ] the solution to (14) and (ht , Z1
t )t∈[0,T ]

solution to (15).
Also, since (α∗

t , μt )t∈[0,T ] is an MFGs-solution, (μt )t∈[0,T ] must verify the condition
μt = E[Xt |F B

T ],∀t ∈ [0, T ]. And by Proposition 5, it follows that (μt )t∈[0,T ] is a solution
to (18).

Hence, (μt , ht , Z1
t )t∈[0,T ] is a solution to (22).

Step 2: Suppose that we are given (μt , ht , Z1
t )t∈[0,T ] solution to (22). Clearly, (μt )t∈[0,T ] is

(F B
t )t∈[0,T ]-adapted with values in R.
Let (Xt )t∈[0,T ] be the solution of the forward SDE

{
dXt = [−(−c + ηt )Xt − ht + b(μt )]dt + σdWt + σ0dBt , ∀t ∈ [0, T ]
X0 = ψ.

(23)

Let also, Z0
t = Z1

t + ηtσ0, Zt = ηtσ and Yt = ηt Xt + ht , ∀t ∈ [0, T ].
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By Propositions 2, 3 and 4, (Xt , Yt , Zt , Z0
t )t∈[0,T ] solves Problem (9) and (α∗

t =
−Yt )t∈[0,T ] solves the stochastic optimal control Problem (3–4).

Finally, it remains to check that the given (μt )t∈[0,T ] satisfies the McKean–Vlasov con-
straint, μt = E[Xt |F B

T ] = 0,∀t ∈ [0, T ]. This follows from Proposition 5.
Hence, (α∗

t = −Yt , μt )t∈[0,T ] is an MFGs-solution. 	


4 Unique Solvability and Common Noise

The next proposition shows that in the presence of the common noise we have a unique Nash
equilibrium for this class of LQ-MFGs.

This is possible thanks to the previous proposition which makes the equivalence between
the solvability of the class of LQ-MFGs considered and the solvability of the auxiliary FBSDE
(22). In the presence of common noise, the system (22) is said to be non-degenerate. For an
insight on the solvability of such FBSDE, see for example [9].

4.1 Unique Solvability (σ0 > 0)

Proposition 7 Suppose that σ0 > 0, then there is a unique Nash equilibrium for the class of
LQ-MFGs under study.

Proof To prove this proposition, it is enough to show that there exists a unique adapted
solution (μt , ht , Z1

t )t∈[0,T ] to the Problem (22).
Let us define the following smooth, invertible and bounded function

wt = exp
( ∫ T

t
(−c + ηs)ds

)
∀t ∈ [0, T ].

We now consider the transformations

μ∗
t = w−1

t μt , ∀t ∈ [0, T ] (24)

h∗
t = wt ht , ∀t ∈ [0, T ] (25)

Using these transformations, it follows immediately that (μt , ht , Z1
t )t∈[0,T ] is an adapted

solution to the Problem (22) if and only if (μ∗
t , h

∗
t , Z

2
t )t∈[0,T ] is an adapted solution to

⎧
⎪⎨

⎪⎩

dμ∗
t = [−w−2

t h∗
t + w−1

t b(wtμ
∗
t )]dt + w−1

t σ0dBt , ∀t ∈ [0, T ]
dh∗

t = [−wt f (wtμ
∗
t ) − wtηt b(wtμ

∗
t )]dt + Z2

t dBt , ∀t ∈ [0, T ]
μ∗
0 = E[ψ]w−1

0 , h∗
T = g(μ∗

T ).

(26)

Finally, since f, b, g are given bounded andLipschitz continuous functions,w−1
t > 0 ∀t ∈

[0, T ] and σ0 > 0, the Problem (26) satisfies the hypothesis of the existence and uniqueness
theorem of Delarue ([4]—[Theorem 2.6 p.240 200]).

Therefore, the system of FBSDE (22) admits a unique adapted solution and the proof is
complete. 	

4.2 Non-uniqueness (σ0 = 0)

Finding Nash equilibria for LQ-MFGs under study in the absence of common noise is equiv-
alent to solving the FBSDE (22) with σ0 = 0.
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Thanks to the transformations (24–25) in the previous proof, the solvability of the system
of FBSDEs (22) with σ0 = 0 is equivalent to the solvability of the following problem: Find
(μ∗

t , h
∗
t , Z

2
t )t∈[0,T ] an adapted solution to

⎧
⎪⎨

⎪⎩

dμ∗
t = [−w−2

t h∗
t + w−1

t b(wtμ
∗
t )]dt, ∀t ∈ [0, T ]

dh∗
t = [−wt f (wtμ

∗
t ) − wtηt b(wtμ

∗
t )]dt + Z2

t dBt , ∀t ∈ [0, T ]
μ∗
0 = E[ψ]w−1

0 , h∗
T = g(μ∗

T ).

(27)

Counter-example to uniqueness: To construct counter-example to uniqueness, we
choose f = b = ψ = 0. We set Kt = ∫ t

0 w−2
s ds,∀t ∈ [0, T ], so that KT > 0. Since

the terminal time T > 0 is fixed, R = KT > 0 is a constant.
Now, let us define g : R → R as follows;

g(x) =

⎧
⎪⎨

⎪⎩

1 if x < −R

−x/R if |x | ≤ R

−1 if x > R

For the specified LQ-MFG above, the Problem (27) reads as follows: Find
(μ∗

t , h
∗
t , Z

2
t )t∈[0,T ], an adapted solution to

⎧
⎪⎨

⎪⎩

dμ∗
t = −w−2

t h∗
t dt, ∀t ∈ [0, T ].

dh∗
t = Z2

t dBt

μ∗
0 = 0, h∗

T = g(μ∗
T ).

(28)

For all A ∈ R, such that |A| ≤ 1, the processes (−AKt , A, 0)t∈[0,T ] are adapted solutions
to (28).

Hence, we found infinitelymanyNash equilibria for this LQ-MFGwithout common noise.
The corresponding optimal feedbacks are given by

α∗
t = −ηt Xt − Aw−1

t ,∀t ∈ [0, T ],

for all A ∈ R, such that |A| ≤ 1.

5 Summary

The results exposed in this note illustrate the power of adding common noise as an hypothesis
in the study of MFGs from a mathematical perspective. For the class of LQ-MFGs studied
here, the uniqueness of the Nash equilibrium is obtained from the common noise hypothesis.
No monotonicity hypothesis is required. These results are in line with the idea that adding
noise to a problem can help to achieve uniqueness.

An interesting question is the one of the zero-noise limits of the Nash equilibrium of
the LQ-MFGs with common noise when uniqueness fails for the situation without common
noise. Does this limit exist? Does it select one or more Nash equilibria for the situation
without common noise?

Future work will consider these questions and cases where the mean field interaction is
not just an average.
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