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Abstract The notion of approachability was introduced by Blackwell (Pac J Math 6(1):1–8,
1956) in the context of vector-valued repeated games. The famous ‘Blackwell’s approach-
ability theorem’ prescribes a strategy for approachability, i.e., for ‘steering’ the average
vector cost of a given agent toward a given target set, irrespective of the strategies of the
other agents. In this paper, motivated by the multi-objective optimization/decision-making
problems in dynamically changing environments, we address the approachability problem in
Stackelberg stochastic games with vector-valued cost functions.Wemake twomain contribu-
tions. Firstly, we give a simple and computationally tractable strategy for approachability for
Stackelberg stochastic games along the lines of Blackwell’s. Secondly, we give a reinforce-
ment learning algorithm for learning the approachable strategy when the transition kernel is
unknown. We also recover as a by-product Blackwell’s necessary and sufficient conditions
for approachability for convex sets in this setup and thus a complete characterization. We
give sufficient conditions for non-convex sets.
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1 Introduction

Classical game theory, Markov decision processes (MDPs) and stochastic games typically
deal only with scalar performance criteria: Corresponding to each state and action of the
agents, each agent incurs a scalar cost. The standard problem is to compute or learn a
policy for each agent which will minimize her scalar performance objective conditioned on
the policies of all other agents and the dynamics of the underlying system. Computing or
learning equilibrium policies in a standard normal form strategic game or stochastic game,
computing or learning the optimal policy of average or discounted cost MDPs, are the typical
examples. However, many interesting problems often fall outside this ‘scalar performance
criteria’ class. For example, consider the problem faced by automobile manufacturers. They
want to minimize their cost but also worry about reliability, perceived quality and customer
satisfaction—all of which are quantified in some way and are required to be greater than
some prescribed values. Bandwidth allocation in a wireless network is another instance
which involves throughput maximization while also providing certain delay guarantees.

Multi-objective optimization is a well-studied area [24] though most methods focus on
achieving a Pareto-optimal solution. In the context of decision-making under dynamically
changing environment, these problems have been studied extensively under the rubric ‘con-
strainedMDPs’ [2].A reinforcement learning algorithm for constrainedMDPswas developed
in [11]. Articles [27] and [14] consider MDPs with arbitrary reward process. Their setting is
in the framework of regret minimization which is different from our approach. Approacha-
bility for repeated games has been analyzed extensively in the literature; we refer the reader
to the survey paper [21] and the references therein.

Approachability in a stochastic game framework has also been addressed before. Article
[23] addressed this problem where the approachability from a given initial state was studied
under some recurrence assumptions for countable state space-controlled Markov chains.
Their scheme depends on updating strategies when the system returns to a fixed state s0.
This scheme was proposed because there appeared to be a need to keep the policy fixed for
some duration in order to ‘exploit’ that policy before one ‘explores’ again. However, there
are many computational difficulties associated with this approach, in particular slow speed if
the returns to the prescribed fixed state are infrequent, a common situation in large problems.
Furthermore, this approach has the undesirable effect of increasing the variance of the cost
for the agents if the recurrence times are large, again a typical scenario in very large systems.
For this reason, the scheme will have slow convergence and high fluctuations. In [19], an
alternative scheme is proposed that requires less restrictive assumptions. The basic idea is
the ‘increasing time window’ method: keep the policy constant for a length of a time window
whose duration increases gradually. In each window, the policy used is the equilibrium policy
of an Ni -stage stochastic game where Ni is the length of the i th window. The computation
of this policy is thus clearly non-trivial. In turn, [16] presents yet another scheme which
has similar drawbacks. These schemes also do not address another important aspect of this
problem: a learning algorithm for approachability when the transition kernel corresponding
to the underlying Markov dynamics is unknown. In [18], one does have a learning algorithm
that builds on the work in [23]. The key idea is to run J learning algorithms in parallel, each
one corresponds to a different steering direction. If J is sufficiently large, ε-approachability
can be guaranteed. This scheme, however, is potentially computationally impractical in some
scenarios.

The key difference in the present work is our adaptation of the Stackelberg framework
which, by setting a much less ambitious goal, sidesteps the main difficulties faced in the
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above works and facilitates a result closer in spirit to the original Blackwell formulation.
In Stackelberg stochastic games, one agent (leader) takes an action first and the second
agent (follower) takes the action next after observing the action of the leader. However, the
evolution of the state depends on the action of both agents. A precise definition is given in
the next section. For Stackelberg stochastic games, we recover the necessary and sufficient
conditions for approachability of convex sets and sufficient conditions for non-convex sets.
As expected, these conditions are similar to prior work on repeated and Markov cases,
but our proof is different as we rely on ideas from stochastic approximation theory for
constructing an approachability strategy. Stochastic approximation as a tool for analyzing
approachability was also used in [6,7] where approachability for repeated games has been
analyzed extensively.

The Markov case considered here and in [16,19,23] is significantly more complicated
because the dynamics interferes with the simple strategy of Blackwell. The works [16,19,23]
consider general noncooperative stochastic games and establish analogous conditions for
approachability as well as optimal strategies. As mentioned above, they consider strategies
which include a ‘waiting’ component, i.e., the updates are done only along a subsample,
not every time. They differ in the manner the waiting is effected. This ‘waiting’ facilitates
learning by allowing pure exploration. As they consider the general noncooperative case, our
approachability results are weaker insofar as they are restricted to Stackelberg games. This
way we impose an order in which the agents operate and allow the follower to know the
leader’s move, thus modifying the information structure. As will become apparent later, this
essentially makes it a combination of a zero-sum game and a Markov decision process, both
vastly more amenable to analysis than the general noncooperative case. This significantly
simplifies the analysis. The primary gain is that one now has a strategy sans any waiting,
because updates can be performed at each step. This takes away the potential degradation of
convergence speed due to waiting. The flip side is that this is a much more restrictive model.

Using multiple time-scale stochastic approximation theory, we are also able to give a
‘learning’ scheme for Stackelberg stochastic games when the transition kernel is unknown.
It appears difficult to derive a learning scheme from approachability strategies for stochastic
games from any of the prior works (except [18]). Thus, our main contributions are: (i) a new
strategy for approachability for Stackelberg stochastic games recovering known character-
izations in other paradigms for this case and (ii) stochastic approximation-based learning
schemes for approachability when the transition kernel is unknown.

We describe the problem in detail in the next section. A sufficient/necessary conditions
and a strategy for approachability of a convex set are specified in Sect. 3. Section 4 extends
these to non-convex targets. Section 5 describes a learning algorithm for approachability.
Section 6 concludes the paper with a brief remark about future directions.

2 Preliminaries

Consider a stochastic game with two agents, finite state space S, finite action space A =
A1 × A2 where Ai is the action space of agent i, i = 1, 2. We shall denote by {sn, n ≥ 0}
the S-valued state process. An element a = (a1, a2) ∈ A is called an action vector. Let
p(·, ·, ·) be the transition kernel that governs the state evolution, p(s, a, ·) ∈ P(S) for
all s ∈ S, a ∈ A where P(S) is the set of probability distributions over the set S. Let
c : S × A → R

K be the vector cost function for agent 1, and for a given state s ∈ S and
an action vector a ∈ A, c(s, a) = [c1(s, a), . . . , cK (s, a)]† where c j : S × A → R for
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1 ≤ j ≤ K . We assume that the cost function is bounded and without loss of generality
assume that |c j (s, a)| ≤ 1, 1 ≤ j ≤ K , 1 ≤ i ≤ 2,∀s ∈ S,∀a ∈ A. The average vector cost
incurred for agent 1 till time n is denoted by xn = 1

n

∑n
m=1 c(sm, am), where {an = (a1n, a

2
n)}

is the control sequence being used. Note that this stochastic game reduces to amulti-objective
MDP whenA2 is a singleton. Throughout, P(X) for a Polish space X will denote the Polish
space of probability measures on X with the Prohorov topology.

Remark 1 In a more general setting, the action space Ai of each agent i can depend on the
current state s ∈ S and is denoted byAi (s). However, it is not difficult to show that all results
in this work can be extended to the case where the action space is state dependent at cost
of some additional notational complexity. This is straightforward from the corresponding
results in MDPs and zero-sum stochastic games [15]. We restrict to the former model for
simplicity of notation.

Inmany situations, the transition probabilities are either unknown or too complex to afford
explicit analytic handling of the dynamic programming equations, but a simulation device or
actual experimentation can provide input–output data (e.g., network simulators, robotics). In
such cases, a popular approach to approximate dynamic programming is to use the so-called
reinforcement learning algorithms, which essentially are stochastic approximation schemes
to solve the dynamic programming equations approximately. Developing such a learning
algorithm for a general noncooperative stochastic game is known to be difficult except in
very special cases such as zero-sum [20].Here,we consider a natural relaxation of the problem
as ‘game against nature’ and formalize it as a Stackelberg stochastic game. In a Stackelberg
stochastic game, at each time step n, agent 1 takes an action a1n first. Player 2 (adversary)
observes this action and then selects her action a2n .

Recall that a behavioral strategy for agent i is a sequence of functions which successively
map the available ‘history’ at any given time m to a probability distribution on Ai which
gives the conditional probability with which the action aim ∈ Ai is chosen. In a Stackelberg
stochastic game, agent 1’s behavioral strategy σ 1 = [σ 1

0 , σ 1
1 , . . .] is a sequence of maps

σ 1
m : Sm+1×Am

1 �→ P(A1) and agent 2’s (adversary) behavioral strategy σ 2 = [σ 2
0 , σ 2

1 , . . .]
is a sequence of maps σ 2

m : Sm+1 × Am × A1 �→ P(A2), because she also observes agent
1’s actions. When these conditional probabilities depend only on the current state for agent 1
and on the current state and agent 1’s current action for agent 2, we shall call them stationary
strategies and identify them with maps π1 : S → P(A1) and π2 : S × A1 → P(A2),
resp. Let �i be the set of behavioral strategies of agent i, i = 1, 2. A pair of strategies
(σ 1, σ 2) ∈ �1 × �2 together with an initial state s0 induces a probability distribution
μs0(σ

1, σ 2) on the sequence of vectors {xn}.
Our objective is to specify the conditions under which a given closed set is approachable,

propose a strategy for approachability and prescribe a learning algorithm for approachability.
The notion of an approachable set for stochastic games is made precise in the following
definition.

Definition 1 (Approachable Set) A closed set D is approachable for agent 1 if there exists a
behavioral strategy σ 1 for agent 1 such that ‖xn − D‖ → 0 as n→∞, μs0(σ

1, σ 2)-almost
surely for all σ 2 ∈ �2, and for all initial states, s0 ∈ S.

Let � denote the set of ergodic occupation measures over the set S × A. That is, any
ψ ∈ � can be decomposed as ψ(s, a1, a2) = ηψ(s)π1(a1|s)π2(a2|s, a1) where
– π1(·|s) ∈ P(A1), π2(·|s, a1) ∈ P(A2) and
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– ηψ is an invariant probability measure over S induced by the stationary policy pair
(π1, π2) and the controlled transition kernel p(·, ·, ·).
For any ψ ∈ �, define the ergodic vector cost function for agent i as

c(ψ) : � → R
K =

⎡

⎣
∑

s,a1,a2

ψ(s, a1, a2)c1(s, a
1, a2), . . . ,

∑

s,a1,a2

ψ(s, a1, a2)cK (s, a1, a2)

⎤

⎦

†

(1)
Note that c(ψ) is the expected average vector cost for agent i if both agents play a pair

of stationary strategies (π1, π2) such that ψ is the ergodic occupation measure induced by
(π1, π2).
Remark More generally, we may consider general behavioral strategies for either of both
agents. However, it follows from the results of [9], Chapter VI (see the proof of Theorem
1.1, pp. 58–59), that under an arbitrary behavioral strategy pair, every limit point of {xn} as
n ↑ ∞ will be of the form c(ψ) for some ergodic occupation measure ψ . Thus, there is no
loss of attainable payoffs by restricting a priori to stationary Markov policies (π1, π2), and
moreover, the latter have the appeal of lower memory requirements.

We make the following assumption.

Assumption 1 The Markov chain induced by any pair of stationary strategies (π1, π2) by
the agents is irreducible.

This is a standard assumption made in reinforcement learning. The basic assumption in
[23] is that there exists a state s0 such that the mean first-passage time from any arbitrary
state to s0 is finite for all stationary strategies of the agents. This is the so-called uni-chain
case. The consequences of Assumption 1 that are of relevance here are ([22], Chapter 8):

1. The existence of a single communicating class under any stationary strategy,
2. Accessibility (i.e., a.s. finite hitting time) for the communicating class from any state

under any stationary strategy,
3. A unique stationary distribution under any stationary strategy (implying in particular a

unique ergodic occupation measure),
4. An optimal stationary strategy exists that is optimal for any initial condition.

In fact, under Assumption 1, the whole state space is a communicating class, whereby the
above consequences are trivial. But they also hold under the seemingly weaker uni-chain
hypothesis ([22], Chapter 8). For the sake of completeness, we state the uni-chain assumption
below:

Assumption 2 (Uni-chainMDP)AnMDP is uni-chain if the transitionmatrix corresponding
to every deterministic stationary policy is uni-chain; that is, it consists of a single recurrent
class plus a possibly empty set of transient states.

Our core results for approachability will hold for the uni-chain case as well. The key fact
that ensures this is that under any stationary strategy the invariant distribution and therefore
the ergodic occupation measure are uniquely specified. Where we need the full strength of
Assumption 1 is when we develop the learning algorithm, which requires sufficient ‘explo-
ration’ for learning, as will become clear later. For the same reason, we also confine ourselves
to a finite state space case, though the results concerning approachability alonewill go through
for countable state space as in, e.g., [16], under additional conditions that ensure either blan-
ket stability (such as a suitable stochastic Liapunov condition) or a suitable condition on
costs that penalizes instability—see, e.g., Chapters VI, VII of [9]. In [17] too a similar, but
weaker assumption is used. Our Assumption 1 is thus stronger than that in [17,23].
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3 Conditions for Approachability of Convex Sets

In this section, we give the necessary and sufficient conditions for approachability of convex
sets. We note that these conditions have been given in previous work as well [19,23]. Our
main contribution here is to give a new approachable strategy using stochastic approximation
techniques that permits continuous updates, albeit only for the special case of Stackelberg
games. The main motivation for providing a new approachable strategy, apart from the com-
putational simplicity of the proposed strategy, is that it is amenable to a learning scheme.
We indeed use this strategy to propose a learning scheme for approachability in Sect. 5. We
assume that Assumption 2 is true throughout this section.

For now, we restrict our attention to a convex set D. Extension to a non-convex set is
given in Sect. 4.1. We begin by defining a few quantities. For any x ∈ R

K \ D, let PD(x)
denote the (unique) projection of x onto D. Let λ(x) = (x − PD(x)) /‖x − PD(x)‖. For
every x ∈ R

K \ D, we define a scalar-valued Stackelberg stochastic game with the stage cost
c̃(s, a; x) = 〈c(s, a), λ(x)〉 where 〈·, ·〉 denotes the inner product between two vectors. With
respect to this scalar-valued Stackelberg stochastic game, we define the following quantities:

c∗(x) = min
π1

max
π2
{〈c(ψ), λ(x)〉 : ψ(s, a1, a2) = ηψ(s)π2(a2|s, a1)π1(a1|s)} (2)


π1(x) = argmax
π2
{〈c(ψ), λ(x)〉 : ψ(s, a1, a2) = ηψ(s)π2(a2|s, a1)π1(a1|s)} (3)

�1(x) = argmin
π1

max
π2
{〈c(ψ), λ(x)〉 : ψ(s, a1, a2) = ηψ(s)π2(a2|s, a1)π1(a1|s)} (4)

�(x) = {ψ ∈ � : ψ(s, a1, a2) = ηψ(s)π2(a2|s, a1)π1(a1|s), π1 ∈ �1(x), π2 ∈ 
π1(x)}
(5)

�̃(x) = {ψ ∈ � : 〈c(ψ), λ(x)〉 ≤ c∗(x)} (6)

Given an x ∈ R
K \ D, 
π1(x) can be interpreted as the set of stationary strategies of a

worst case adversary (agent 2) and�1(x) can be thought as the set of best stationary strategies
of agent 1 against this adversary. �(x) is the ergodic occupation measures corresponding to
these strategies.

Ourmain result of this section is the following theorem. Themain content is part (i i)which
specifies a strategy for approachability. Part (i) and the necessary conditions that follow
(Proposition 3) are known results [23]. They are included here also because the proofs have
a bearing on what follows. Note that together, these provide conditions for approachability
that are both necessary and sufficient.

Theorem 1 (i) (Sufficient Condition) A closed convex set D is approachable from all
initial states in a Stackelberg stochastic game satisfying Assumption 1 if for every
x ∈ R

K \ D, there exists a (possibly non-unique) occupation measure ψ , ψ(s, a1, a2) =
ηψ(s)π2(a2|s, a1)π1(a1|s), such that c(ψ) = c∗(x) and 〈c(ψ)− PD(x), λ(x)〉 ≤ 0.

(ii) (Strategy for Approachability) A strategy for approachability is: At every time instant n,
select action a1n according to a policy π1(·|xn) ∈ �1(xn).

The proof is based on stochastic approximation theory [12]. The average vector cost till
time step n + 1 can be written as
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xn+1 = 1

n + 1

n+1∑

m=0
c(sm, am) (7)

= xn + γ (n)(c(sn+1, an+1)− xn)

= xn + γ (n)
((
c(sn+1, π1(·|xn), a2n+1)− xn

)+ Mn+1
)
, (8)

where

γ (n) = 1/(n + 1),

c(sn+1, π1(·|xn), a2n+1) =
∑

a1∈A1

π1(a1|xn)c(sn+1, a1, a2n+1),

and Mn+1 =
(
c(sn+1, a1n+1, a2n+1)− c(sn+1, π(·|xn), a2n+1)

)
. (9)

The key idea in the analysis of (7) is to show that it asymptotically tracks the differential
inclusion dynamics given by the differential inclusion

ẋ(t) ∈ w(x(t))− x(t), (10)

where

w(x) := co
(
{c(ψ̃) : ψ̃ ∈ �̃(x)}

)

and co(·) denotes the closed convex hull of a set. Then, by showing that the dynamics given
by (10) converges to the set D, we will conclude that the sequence {xn} also converges to the
same set a.s.

We start with the following proposition.

Proposition 1 The sets �(x) and �̃(x) are compact, non-empty and the set-valued maps
χ : x �→ �(x), χ̃ : x �→ �̃(x) are upper semi-continuous.

Proof Consider the Stackelberg stochastic game wherein at each time instant n, the state is
sn ∈ S and agent 1 moves first and generates a randomized action a1n ∈ A1 according to
conditional law π1(·|sn), followed by agent 2 who observes a1n and chooses a randomized
action according to the conditional law π2(·|sn, a1n). Thus, agent 2 faces an average reward
MDP with state process (sn, a1n), n ≥ 0, and transition probability p̃((s̃, ã1)|(s, a1), a2) :=
p(s, (a1, a2), s̃)π1(ã1|s̃). For a given x ∈ R

K \ D, the optimal adversarial policy π2 by
agent 2 for the scalar-valued MDP with cost function 〈c(s, a), λ(x)〉 can be characterized as
the maximizer in the associated dynamic programming equation

V ((s, a1)) = max
π2

⎛

⎝
∑

(s̃,ã1)

∑

a2

π2(a2|s, a1) p̃((s̃, ã1)|(s, a1), a2)
(
〈c(s, a1, a2), λ(x)〉 + V ((s̃, ã1))

)
⎞

⎠−β.

(11)

This has a solution (V, β) where β is unique and V is unique upto an additive scalar and
can be rendered unique by arbitrarily setting V ((s0, a10)) = 0 for some s0, a10 . Then, 
π1(x)
defined above is simply the set of maximizers on the R.H.S. Being the set of maximizers of
an affine function on a convex compact set, it is a non-empty convex compact set. We see
below that it is an upper semi-continuous set-valued map as a function of x .

Now consider the MDP with state process {sn} and stationary randomized policies
π((a1, a2)|s) := π1(a1|s)π2(a2|s, a1) where π1(·|s) ∈ P(A1) and π2(·|s, a1) ∈ 
π1(x).



Dyn Games Appl (2017) 7:422–442 429

That is, the action space for the problem is � := ∪π1∈P(A1)

({π1} × 
π1(x)
)
with the rel-

ative topology inherited from P(A1 × A2). Being a closed subset of a compact space, it is
compact. By our definition of 
π1(x), the optimal policy for this MDP corresponds to the
min–max policy for the original problem, i.e., belongs to �1(x). This in turn is given by the
minimizers on the right-hand side of the dynamic programming equation

V̂ (s) = min
π∈�

⎛

⎝
∑

s̃

∑

a1,a2

π1(a1|s)π2(a2|s, a1)p(s, (a1, a2), s̃)
(
〈c(s, a1, a2), λ(x)〉 + V̂ (s̃)

)
⎞

⎠− β̂, (12)

which has a solution (V̂ , β̂), where β̂ is unique and V̂ is unique upto an additive scalar and
can be rendered unique by arbitrarily fixing, say, V̂ (s0) = 0. In either (11) or (12), if we
replace x by xn with xn → x∞, then any subsequential limit (V ′∞, β ′∞), (V̂ ′∞, β̂ ′∞) of the
corresponding (V ′ = V ′n, β ′ = β ′n), (V̂ ′ = V̂ ′n, β̂ ′ = β̂ ′n)must satisfy the respective dynamic
programming Eqs. (11), (12), with V ′∞((s0, a10)) = V̂ ′∞(s0) = 0. By the uniqueness claim
above, they are the appropriate value functions for x = x∞. Furthermore, if we pick π2

n to
be a maximizer on the right-hand side of (11) for (V ′n, β ′n), n ≥ 1, any limit point thereof
as n ↑ ∞ must be a maximizer of the same for n = ∞. A similar argument works for the
minimizers of (12). It is easy to deduce from this that the graph of χ is closed. Hence, χ is
upper semi-continuous. The foregoing also implies that the min–max value is continuous in
x . This in particular implies that c∗(·) is continuous. The claim regarding �̃(·) follows from
this. ��

We now recall some conditions that will ensure the well posedness of (10), along with its
proof for the sake of completeness.

Proposition 2 For each x ∈ R
K \D, the set w(x) is convex, compact. Also, the map w :

x �→ w(x) is upper semi-continuous.

Proof The set w(x) is clearly bounded from the boundedness assumption on the cost c(·).
Also, w(x) is convex by definition. Now, consider the mapping h(x) := {c(ψ̃) : ψ̃ ∈ �̃(x)}.
Since �̃(x) is compact, and c(·) is continuous, h(x) is compact. Then, w(x), the closed
convex hull of h(x), is also compact. The upper semi-continuity of h is clear from the upper
semi-continuity of �̃. Then, the closed convex hull of h(x), i.e., w(x), is also upper semi-
continuous, by [12, Lemma 5, Chapter 5]. ��

The basic approach to the analysis of (7) is to construct a suitable continuous interpolated
trajectory x(t), t ≥ 0, and show that it asymptotically almost surely approaches the solution
set of (10). This is done as follows: Define t (0) = 0, t (n) = ∑n−1

m=0 γ (m),m ≥ 1. Clearly,
t (n) ↑ ∞. Let In := [t (n), t (n+1)), n ≥ 0.Define a continuous, piecewise linear x(t), t ≥ 0
by x(t (n)) = xn, n ≥ 0, with linear interpolation in each interval In . That is,

x(t) = xn + (xn+1 − xn)
t − t (n)

t (n + 1)− t (n)
, t ∈ In . (13)

Define a P(S ×A)-valued random process μ(t) = [[μ(t, (s, a))]], t ≥ 0, by

μ(t, (s, a)) := δ(sn ,an)((s, a)), t ∈ In, n ≥ 0, (14)

where δ is the Kronecker delta function. Also, define for t > v ≥ 0 and for B Borel in [v, t],
μt

v(B × (s, a)) := 1

t − v

∫

B
μ(y, (s, a))dy.

Two necessary conditions for the analysis in [12] to carry through are:
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1. Almost surely, supn ‖xn‖ <∞.
2. Almost surely, for any t > 0, the set {μv+t

v , v ≥ 0} remains tight.

Since we are dealing with only finite spaces, we do not need to worry about the measura-
bility issues discussed in [12]. For the same reason, conditions 1 and 2 are also true.

For ν ∈ P(S ×A), define

h̃(x, ν) :=
∑

(s,a)∈S×A

(
c(s, a)− x

)
ν(s, a)

For μ(·) defined in (14), consider the non-autonomous o.d.e.

ẋ(t) = h̃(x(t), μ(t)) (15)

Let xv(t), t ≥ v, and denote the solution to (15) with xv(v) = x(v), for v ≥ 0.
A set A ∈ R

K is said to be an invariant set for a differential inclusion if for x(0) ∈ A
there is some trajectory x(t), t ∈ (−∞,∞) thereof that lies entirely in A. The invariant
set is said to be an internally chain transitive invariant set if for any x, y ∈ A and any
ε > 0, T > 0, there exists an n ≥ 1 and points x0 = x, x1, . . . , xn−1, xn = y in A, such that
some trajectory of the differential inclusion initiated at xi meets with the ε-neighborhood of
xi+1 for 0 ≤ i < n after a time t ≥ T . That is, we can reach from any point in the set to any
other by traversing finitelymany trajectory segments of the differential inclusion interspersed
with small jumps. If we saw these through a microscope that cannot detect such jumps, it
would appear like a periodic trajectory. This may appear too general, but it does narrow down
the possibilities significantly. In fact, the whole space is an invariant set for the dynamics,
but not necessarily internally chain transitive, indicating in particular that ‘invariant set’ by
itself is not a sufficiently informative qualification. Examples of internally chain transitive
invariant sets are isolated equilibria, limit cycles, etc. In fact, if x(·) is a bounded trajectory
of the differential inclusion, then its ω-limit set ∩t≥0{x(s), s ≥ t} (which can depend on
the initial condition) is an internally chain transitive invariant set: This follows because the
proof of the theorem below also works for the differential inclusion itself. An interesting
example of internally chain transitive invariant sets is the Lorenz attractor [25]. Also, please
see Chapter 3 of [5] for a detailed description.

We use the following important result from [6] (see also [12]).

Theorem 2 [6, Theorem4.3], [12, Theorem7,Chapter 6]UnderAssumption 1, almost surely,
{x(v + ·), v ≥ 0} converge to an internally chain transitive invariant set of the differential
inclusion

ẋ(t) ∈ {h̃(x(t), ν) : ν ∈ �(x(t))} := w(x(t))− x(t) (16)

as t ↑ ∞. In particular, {xn} converge a.s. to such a set.

Remark 2 The above theorem summarizes the idea of averaging over natural time-scale
methodwhichwe use in the analysis. It shows that even though the opponent’s strategy can be
non-stationary, we can restrict our attention to the set of occupation measures corresponding
to the stationary strategies.

We now show that any path corresponding to the differential inclusion dynamics given
by (10) converges to the set D. Some definitions are in order: A compact invariant set M is
called an attractor of a dynamical system if it has an open neighborhood O such that every
trajectory in O remains in O and converges to M . The largest such O is called the domain
of attraction. An attractor M is called a global attractor if the domain of attraction is RK .
We now give the proof of Theorem 1:
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Proof We construct the interpolated trajectory x(t), t ≥ 0 of (7) as defined in Eq. (13).
By Theorem 2, almost surely {x(v + ·), v ≥ 0} converge to an internally chain transitive
invariant set of the differential inclusion given by (10). In particular, this implies that {xn}
converge a.s. to such a set. Consider the Lyapunov function V (x) = minz∈D 1

2‖x − z‖2.
Since ∇V (x) = (x − PD(x)), d

dt V (x(t)) = 〈∇V (x(t)), ẋ(t)〉 = 〈x(t) − PD(x(t)), y(t)〉
for y(t) ∈ w(x(t))− x(t).

By Proposition 1 and our hypotheses, there exists an occupation measure ψ such that
ψ(s, a1, a2) = ηψ(s)π2(a2|s, a1)π1(a1|s), and c∗(x) = 〈c(ψ), λ(x)〉 ≤ 〈PD(x), λ(x)〉.
Then, for any policy ψ̃x ∈ �̃(x) (which can be chosen to be measurable in x by a standard
measurable selection theorem [26]), we have 〈c(ψ̃x ), λ(x)〉 ≤ c∗(x) ≤ 〈PD(x), λ(x)〉. So
for any x(·) satisfying (16),

〈c(ψ̃x(t))− PD(x(t)), x(t)− PD(x(t)〉 ≤ 0 for all ψ̃x(·) ∈ �̃(x(·))
and hence 〈c(ψ̃x(t))− x(t), x(t)− PD(x(t)〉 ≤ −‖x(t)− PD(x(t))‖2. This gives

d

dt
V (x(t)) ≤ −2V (x(t))

so that

V (x(t)) ≤ V (x(0))e−2t .

Thus, D is a global attractor. Then, the internally chain invariant set corresponding to the
differential inclusion (10) is a subset of D [12] . Hence, {xn} converges to D a.s., proving the
first claim. The proof of the second claim is also implied by the foregoing. ��

We complete the characterization by specifying the necessary conditions for approacha-
bility.

Proposition 3 (Necessary Condition) If a closed convex set D is approachable from all
initial states in an arbitrary Stackelberg stochastic game satisfying Assumption 1, then

(i) Every half-space containing D is approachable, and
(ii) ∀x, there exists an occupation measure ψ , ψ(s, a1, a2) = ηψ(s)π2(a2|s, a1)π1(a1|s),

such that c(ψ) = c∗(x) and 〈c(ψ)− PD(x), λ(x)〉 ≤ 0.

Proof Claim (i) is obvious. We now show that (i) implies (ii) and complete the argument.
Let x ∈ R

K \D and Hx be the supporting half-space to the set D at the point PD(x) given
by

Hx := {y ∈ R
K : 〈y − PD(x), λ(x)〉 ≤ 0}.

Since every half-space containing D is approachable, there exists a strategy σ 1 for agent 1
such that for any (Stackelberg) strategy σ 2 of agent 2, lim supn→∞〈xn − PD(x), λ(x)〉 ≤ 0,
μ(σ 1, σ 2) a.s. Since |〈xn − PD(x), λ(x)〉| is bounded,
inf
σ1

sup
σ2

lim sup
n→∞

Eμ(σ1,σ2)[〈xn , λ(x)〉] ≤ inf
σ1

sup
σ2

Eμ(σ1,σ2)[lim sup
n→∞

〈xn , λ(x)〉] ≤ 〈PD(x), λ(x)〉 (17)

Note that the L.H.S. of Eq. (17) is the min–max cost for agent 1 in the average cost
scalar-valued Stackelberg stochastic game with stage cost c̃(s, a; x) = 〈c(s, a), λ(x)〉. By
the arguments in the proof of Proposition 1, the min–max cost is achieved by a pair of
stationary Markov policies (π1(·|·), π2(·|·, ·)) obtained by solving a pair of dynamic pro-
grams, implying in particular that there exists a ψ ∈ �(x) such that the L.H.S. is equal to
〈c(ψ), λ(x)〉. This completes the proof. ��
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Remark 3 The differential inclusion trajectory approaches D at an exponential rate. There is,
however, a time scaling n �→ t (n) in our passage from the original iterates to the differential
inclusion approximation. Since t (n) =∑n

m=0 γ1(m) and γ1(n) = 1
n+1 , t (n) ≈ log n. Thus,

exponential decay translates into an inverse power law decay in the original time scale. There
is a further issue of discretization errors and errors due to noise. As shown in [12], Chapter
4, the interpolated iterates x̄(·) remain within a small tube a differential inclusion trajectory
after n ≥ n0 steps1 with probability exceeding

1− O(

(

e
− C∑∞

m=n0 γ1(m)2

)

(18)

for some constant C > 0, which for γ1(n) := 1
n+1 becomes an exponential decay in n.

4 Extensions

4.1 Extension to Non-Convex Sets

We now give the approachability result when the target set is non-convex. The proof is the
same as that of Theorem 1 except for the fact that the Lyapunov function may be non-
differentiable. We overcome this difficulty by considering semi-differentials and a general
version of the envelope theorem [4]. We assume that Assumption 2 is true throughout this
section.

We first give some basic definitions and results from [4, Pages 29, 42-46] that are required
for the proof.

Definition 2 (Semi-differentials) Let V : RK → R. The super and sub-differential of V (or
semi-differentials) at x , D+V (x) and D−V (x) is defined as

D+V (x) :=
{

p ∈ R
K : lim sup

y→x

V (y)− V (x)− p · (y − x)

|x − y| ≤ 0

}

D−V (x) :=
{

p ∈ R
K : lim inf

y→x

V (y)− V (x)− p · (y − x)

|x − y| ≥ 0

}

Let V be such that

V (x) := inf
z∈D g(x, z)

where g : RK × D→ R, D ⊂ R
K . Assume that

(A1) g is bounded and g(·, z) differentiable at x uniformly in z, (19)

(A2) z �−→ Dxg(x, z) is continuous and z �−→ g(x, z) lower semi-continuous, (20)

where Dxg is the partial derivative of g w.r.t. x . Let

P̃D(x) := argmin
z∈D g(x, z) := {z ∈ D : V (x) = g(x, z)}, Y (x) := {Dxg(x, z) : z ∈ P̃D(x)}

Also, the (one-sided) directional derivative of V in the direction of q is

D+V (x)(q) := lim
h→0+

V (x + hq)− V (x)

h
.

1 The estimates of ibid. are for an o.d.e. limit, but a similar argument works for differential inclusion limits.
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We use the following general version of the envelope theorem.

Proposition 4 [4, Proposition 2.13, Page44] Let D be a compact set, and g satisfies assump-
tions (19)–(20). Then,

Y (x) �= ∅
D+V (x) = coY (x)

D−V (x) =
{ {y} if Y (x) = {y}
∅ if Y (x) is not a singleton

Moreover, V has the (one-sided) directional derivative in any direction q, given by

D+V (x)(q) = min
y∈Y (x)

y · q = min
p∈D+V (x)

p · q

Let g(x, z) = ‖x−z‖2. Then, P̃D(x) is the set of points in D that are closest to x ∈ R
K \D.

Theorem 3 (i) (Sufficient Condition) A closed set D is approachable from all initial
states in the stochastic game satisfying Assumption 1 if for every x ∈ R

K \ D and
for each PD(x) ∈ P̃D(x), there exists an occupation measure ψ , ψ(s, a1, a2) =
ηψ(s)π2(a2|s, a1)π1(a1|s), such that c(ψ) = c∗(x) and 〈c(ψ)− PD(x), λ(x)〉 ≤ 0.

(ii) (Strategy for Approachability) A strategy for approachability is: At every time instant
n, select a PD(x) ∈ P̃D(x), and select action a1n according to the policy π1(·|xn) such
that π1(·|xn) ∈ �1(xn).

Proof Let V (x) = minz∈D 1
2‖x − z‖2 be the Lyapunov function. Then, by Proposition 4,

D+V (x) = co{(x − PD(x)) : PD(x) ∈ P̃D(x)}.
Let v(t) = V (x(t)) and D+v(t) its right derivative. By chain rule [3, Proposi-

tion7,Page288],

D+v(t) = D+V (x(t))(ẋ(t)) = D+V (x(t))(y(t)) for some y(t) ∈ w(x(t))− x(t).

As before, we can also show that for all PD(x(t)) ∈ P̃D(x(t)),

〈c(ψ̃x(t))− x(t), x(t)− PD(x(t))〉 ≤ −‖x(t)− PD(x(t))‖2 = −2V (x(t)) = −2v(t).

Then,

D+v(t) = min
PD(x(t))∈P̃D(x(t))

〈c(ψ̃x(t))− x(t), x(t)− PD(x(t)〉 ≤ −2v(t)

and by [3, Proposition 8, Page 289], we get

v(t)− v(0)+ 2
∫ t

0
v(τ)dτ ≤ 0.

By Gronwall inequality,

v(t) ≤ v(0)e−2t .

The rest of the proof is the same as in the proof of Theorem 1. ��
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4.2 Perfect Information Stochastic Games

We can extend our results to a special class of simultaneous move games called perfect
information stochastic games defined as follows.

Definition 3 LetAi (s) be the set of feasible actions that the agent i can select when the state
is s. A stochastic game is said to be a game of perfect information if the state space S can be
partitioned into two disjoint sets S1 and S2 such that |A2(s)| = 1 for s ∈ S1 and |A1(s)| = 1
for s ∈ S2.

In words, at any given state s at least one of the agents has only a single action available.
It is easy to see that the quantities defined in Eqs. (2)-(6) for a Stackelberg stochastic

game are well defined for a perfect information simultaneous move stochastic game. Note
that the only change will be in the way we define the adversary’s (agent 2) strategy. In the
Stackelberg game, it is denoted as π2(a2|s, a1). However, in a perfect information game,
π2(a2|s, a1) = π2(a2|s) for s ∈ S2 and π2(a2|s, a1) = δa0(a

2) for s ∈ S1 where a0 is the
single action available to agent 2 when s ∈ S1.

In Sect. 3,we explicitly used the Stackelberg game assumptionmainly to proveProposition
1.We needed that assumption to decouple the dynamics as a combination of a zero-sum game
and an MDP. In particular, the proof of the proposition starts by observing that the adversary
(agent 2) faces an average reward MDP. It is easy to see that this observation is true in the
case of a perfect information simultaneous move stochastic game as well. When the state
s ∈ S1, the adversary’s decision is trivial: Select action a0. When the state s ∈ S2, it faces a
completely observedMDP because the action of agent 1 is known (since the action space is a
singleton). So, the proof of Proposition 1 will carry through. The proof of Theorem 1 depends
on theStackelberg assumption only viaProposition 1. So, ourmain result (Theorem1) extends
naturally to the case of a perfect information simultaneous move stochastic game.

However, it is not immediately clear if our approach can be extended to a switching-
controller stochastic game. Switching-controller stochastic game is a generalized version of
perfect information stochastic games. The transition kernels are such that when the state
s ∈ S i , only agent i can influence the transition. But the other agent’s action set need not
be a singleton. So the adversary is facing a partially observed MDP when s ∈ S2. Also, its
decision-making when the state s ∈ S1 is not trivial because the action set is not a singleton.
So, the proof of Proposition 1 does not carry through directly. We plan to address this issue
in a future work.

5 A Learning Algorithm for Approachability in Stochastic Stackelberg
Games

Approachability theorem for Stackelberg stochastic games that we proved above shows
that if agent 1 selects her action at time step n according to the policy π1(·|xn) such that
π1(·|xn) ∈ �1(xn), then xn approaches the desired set D. Given xn , such a policy can be
easily computed if one knows the transition kernel p(·, ·, ·). The problem of ‘learning’ arises
when this transition kernel is unknown and the objective of the learning algorithm is to ‘learn’
such a policy π1(·|xn) at each time step n. We give an algorithm which indeed does this.
We do this by considering the problem as learning in two coupled MDPs. We assume that
Assumption 1 is true throughout this section.

The proposed algorithm below is a two time-scale stochastic approximation algorithm.
We use two step-size sequences γ1(n) and γ2(n). The step-size γ (n) = γ1(n), γ2(n) satisfy
the conditions
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∑

n

γ (n) = ∞,
∑

n

γ 2(n) <∞ (21)

sup
n

γ ([yn])
γ (n)

<∞,

∑[yn]
m=0 γ (m)

∑n
m=0 γ (m)

→ 1 uniformly in y ∈ (0, 1) (22)

with the additional stipulation that γ1(n) = o(γ2(n)).

We give the asynchronous learning algorithm below. The synchronous scheme may be
written analogously. Note that in the following {a1n} denotes the actual control actions of agent
1 while {a2n} denotes the simulated control actions of agent 2. The actual control actions of
agent 2 are denoted by {ā2n}. The reason for this demarcation is explained later.
Learning Algorithm:

1. Initialize n = 0. Initialize the Q-values Q̂0(s, a1, a2) = Q̃0(s, a1, a2) = 0,∀s, a1, a2.
Set average cost vector x0 = 0. Observe the state s0.
Select an action a10 ∈ A1 uniformly at random.
Agent 2 takes action ā20 . Observe the cost c(s0, a

1
0, ā

2
0)

2. Update the time step n← n + 1
3. Observe sn+1. Simulate â1n+1 according to the distribution π

ε,1
n (c.f. Eq. 29).

Update the Q-value Q̂n+1(s, a1, a2) according to (25)
4. Update the Q-value Q̃n+1(s, a1, a2) according to (26)
5. Choose action a1n+1 according to the policy π

ε,1
n+1 as defined in (29)

6. Simulate action a2n+1 according to the policy π
ε,2
n+1 as defined in (29)

7. Agent 2 takes action ā2n+1. Observe the cost c(sn+1, a1n+1, ā2n+1)
8. Update the average cost according to (23)
9. Update ν̂(n + 1, s, a1, a2) according to (30)
10. Return to step 2

xn+1 =xn + γ1(n)
(
c(sn+1, a1n+1, ā2n+1)− xn

)
, γ1(n) = 1/(n + 1), (23)

εn+1 =εn(1− γ1(n)), (24)

Q̂n+1((s, a1), a2) =Q̂n((s, a
1), a2)+ γ2(ν̂(n, s, a1, a2))I {((sn, a1n), a2n) = ((s, a1), a2)}

(
c̃((s, a1), a2; xn)+max

z
Q̂n((sn+1, â1n+1), z)− f (Q̂n)− Q̂n((s, a

1), a2)
)
,

(25)

Q̃n+1(s, (a1, a2)) =Q̃n(s, (a
1, a2))+ γ2(ν̂(n, s, a1, a2))I {sn = s, a1n = a1}

× (
c̃(s, a1n , a

2
n; xn)+min

y
Q̃n(sn+1, (y, argmax

z
Q̂n+1(s, y, z)))

− f (Q̃n)− Q̃n(s, (a
1, a2))

)
, (26)

π1
n+1(a1|s) =δa∗(1)(a

1), where (27)

a∗(1) := argmin
a1

Q̃n+1(s, (a1, argmax
a2

Q̂n+1(s, a1, a2))).

π2
n+1(a2|(s, a1)) =δ(a∗(1),a∗(2))((a

1, a2)), where (28)

a∗(2) := argmax
a2

Q̂n+1(s, a∗(1), a2).

Here, the actual control process {a1n} for agent 1 and simulated control actions {a2n} for
agent 2 are governed by the randomized Markov policy

π
ε,i
n+1(·) = (1− εn)π

i
n+1(·)+ εnμ

i (·), (29)
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where μi := the uniform distribution on Ai , i = 1, 2,.
The function f is any Lipschitz function satisfying the following properties: For the all

1 vector e, f (e) = 1, f (y + ce) = f (y) + c and f (cy) = c f (y) for c ∈ R. As a simple
example, we can set f (Q) = Q(s0, a0) for a fixed s0 ∈ S, a0 ∈ A. Other possible choices
are maximum, minimum or arithmetic mean of {Q(i, s)}. Also,

ν̂(n, s, a1, a2) =
n∑

m=1
I {(s, a1, a2) = (sm, a1m, a2m)}. (30)

The synchronous scheme is analogous except that all components of {Q̂n}, {Q̃n} are
updated simultaneously. Thus, the indicators I {((sn, a1n), a2n) = ((s, a1), a2)} in (25) and
I {sn = s, a1n = a} in (26) drop out and the step-size γ2(ν̂(n, s, a1, a2)) are replaced by
γ2(n).

Assumption 3 Relative sampling frequency of state–action pairs is bounded away fromzero,
i.e.,

lim inf
n→∞

ν̂(n, s, a1, a2)

n + 1
> 0 a.s. ∀ (s, (a1, a2)) ∈ S ×A. (31)

This is not ensured automatically by the above choice of π1
n+1, so one usually employs

some randomization to ensure adequate ‘exploration’ implicit in the condition (31). One way
to do so is to choose some 0 < ε << 1 and use instead π

ε,1
n+1(s, ·) defined in (29) with

εn ≡ ε > 0 and μ is uniform on A1. This will ensure that any combination (s, a1) will have
relative frequency bounded away from zero. Our slow decrease of εn will effectively achieve
the same effect by the ‘two time-scale’ argument as we see later.

Our requirement, however, is for the corresponding statement for all triplets (s, a1, a2),
not just for a1. The control sequence {a2n} is chosen by agent 2, or ‘nature,’ so we cannot
ordain this, nor can we suppose that agent 2 run the Q-learning algorithm stipulated above.
We can, however, ensure this by changing the interpretation of the algorithm, which we
describe next. We use the terms ‘adversary,’ ‘nature’ and ‘agent 2’ interchangeably.

That ‘nature’ chooses controls to satisfy (31) is not required at all if we view (25) and
subsequent choice of a∗(2) that follows as agent 1’s simulation of the worst case behavior
of agent 2. Thus, this becomes an ‘off-line’ algorithm for agent 2. We briefly recall what this
distinction means. In Q-learning, the minimizer of the estimated Q function over the control
variable gives an estimate of the optimal control choice at a given state (which forms the first
argument of the Q function). There is no requirement, however, that the actual simulation
be carried out according to the policy suggested by this choice. It can be any admissible
state–control process as long as (31) is satisfied. This is the off-line situation in contrast
to the online case wherein {(sn, an)} is not a simulation, but an actual run of the control
system, so the control choice matters. Here, we are perforce considering an online situation
for agent 1 who wants to drive the averaged vector cost to a target set, but he/she is free
to simulate the adversary’s behavior assuming the worst case, so that the latter becomes an
off-line simulation. Therefore, while (31) imposes restrictions on agent 1’s control choices
as noted above, there can be no a priori restriction on agent 2’s control choices because they
are only simulated and therefore can be chosen at will, in particular so as to satisfy (31).
Note, however, that the iterates (23) must be performed according to actual observed costs.

That is, the adversary’s control choices entering (23) are the actual control choices of the
adversary so that c(sn+1, ān+1) is the true cost observed, whereas the control choices of the
adversary entering (25)-(26) are the simulated ones as stated. We have demarcated this by
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using the notation ān = (a1n, ā
2
n) for actual controls used as opposed to an = (a1n, a

2
n) for the

simulated ones. Of course, the first component of these is common.

Remark 4 It is also possible that we do not explicitly know the function c(·, ·), but observe
a noisy version thereof, say, c̆(n) = c(xn, ān) + a zero mean independent noise variable
with finite second moment. Then, we replace c(sn+1, ān+1) in (23) by this noisy observation.
We need not do so for the occurrences of c, c̃ in the rest of the algorithm, because there
we actually need to plug in the function value at the appropriate state–control combination,
which is known because the function c is known. The zero mean noise in observed cost can
be absorbed into the ‘martingale difference noise’ term Mn+1 in (9) for (23). This does not
affect the stochastic approximation-based analysis thereof.

Remark 5 The recent work of Yu and Bertsekas [28] gives an elegant and highly intricate
argument in case of single-agent Q-learning for stochastic shortest path problems that relaxes
(31) to the weaker requirement that ν̃(n, s, a1) ↑ ∞ a.s. A similar result should be possible
in the present context, which will make the requirement (31) unnecessary.

Explanation of the learning algorithm
The explanation for these iterations is as follows, which also gives an intuition about

the convergence proof to follow. As in classical Blackwell approachability, agent 1 hedges
against the worst possible behavior of the adversary, i.e., agent 2, whose exact strategy agent
1 may not know. This reduces it to a position-dependent zero-sum game in the following
manner. Given the present value of the vector average cost, agent 1 wants to maximize its
drift toward the target set. If she hedges against the possibility of agent 2 minimizing the
same, she ensures movement toward the target set in the worst possible scenario. Thus, we
have the MDPs associated with agent 1 and 2 as in the proof of Proposition 1.

If we fix xn ≡ x and π1
n ≡ π1, agent 2 faces the MDP: Control the chain {(sn, a1n)} with

controlled transition probabilities

p̃((s̃, ã1)|(s, a1), a2) := p(s, (a1, a2), s̃)π1(ã1|s̃)
with control variable a2, so as to maximize the ergodic cost

lim
n↑∞

1

n

n−1∑

m=0
E[〈c(sm, a1m, a2m), λ(x)〉]. (32)

(We use ‘lim’ in place of the usual ‘lim inf’ because of our prior restriction to stationary
strategies justified in Sect. 2.) The dynamic programming equation for this control problem
was noted to be (11). Denoting the term in large parentheses on the right-hand side of (11)
as Q̌((s, a1), a2), we have the corresponding equation for ‘Q-values’ Q̌((·, ·), ·) as

Q̌((s, a1), a2) =
∑

(s̃,ã1)

p̃((s̃, ã1)|(s, a1), a2)
(

〈c(s, a1, a2), λ(x)〉 +max
b

Q̌((s̃, ã1), b)

)

−β.

(33)
This has the advantage compared to (11) of having the nonlinearity, i.e., the max operator,

inside the conditional expectation, i.e., averaging w.r.t. p̃. This allows us to write a stochastic
approximation scheme to solve the fixed point equation (33) by first replacing the conditional
average by an evaluation at a random variable realized according to p̃ and then making an
incremental correction in the left-hand side based on the difference between the right-hand
side and the left-hand side. The incremental corrections with suitably chosen weights lead to



438 Dyn Games Appl (2017) 7:422–442

a stochastic approximation scheme which does the conditional averaging for you. This will
be

Q̌n+1((s, a1), a2) = Q̌n((s, a
1), a2)+ γ2(ν̂(n, s, a1, a2))I {((sn, a1n), a2n) = ((s, a1), a2)}

× (
c̃((s, a1), a2; x)+max

z
Q̌n((sn+1, a1n+1), z)− f (Q̌n)

−Q̌n((s, a
1), a2)

)
. (34)

Here, f (Q̌n) is a surrogate for β which is also unknown a priori and gets specified
by (33) as the optimal reward. If we generate samples according to p̃ by a single sim-
ulation run of a Markov chain {(sn, a1n)} governed by p̃, we see only the transition out
of the current state at a given time and therefore can update only the component corre-
sponding to the current state. This is incorporated in the above by means of the indicator
I {((sn, a1n), a2n) = ((s, a1), a2)}, which makes this an asynchronous stochastic approxima-
tion. This is the celebrated Q-learning algorithm. Our iteration (25) is exactly the same as
(34) above with xn ≡ x, π1

n ≡ π1. Thus, in the present framework, Q̂n replace Q̌n and are
the estimates for Q-function for the MDP faced by agent 2.

Q̃n are estimates for the Q-function for the MDP faced by agent 1, and π1
n are estimates

for its strategy.
Both xn and εn are updated on a slower ‘algorithmic’ timescale compared to Q̂n because

of our conditions γ2(n) = o(γ1(n)) and therefore can be considered ‘quasi-static’ for the
analysis of (25) by the theory of ‘two time-scale stochastic approximation’ as we shall see
below. That is, we can treat them as constant for analyzing (25). This will allow us to conclude
that Q̂n asymptotically track the optimal Q-value for agent 2’s MDP parametrized by the
slowly varying xn, εn . To be precise,

‖δargmaxz Q̂n(·,·,z) − 
π1
n
(xn)‖ → 0 a.s. (35)

Recall that the dependence on εn is via the actual control policy implemented; see (32)
and the discussion below.

Consider (26) next. Again, xn, εn can be treated as quasi-static for this and (35) holds.
Then, the problem faced by agent 1 is to minimize

max
π2

lim
n↑∞

1

n

n−1∑

m=0
E[〈c(sm, a1m, a2m), λ(x)〉].

Thus, agent 1 faces the dynamic programming equation (12) where π2 is chosen to be
optimal for agent 2. Equation (26) then represents the Q-learning algorithm for agent 1 with
δargmaxz Q̂n(·,·,z) serving as the estimate for optimal π2, justified by (35).

Our main convergence theorem is the following:

Theorem 4 For the learning algorithm for approachability in Stackelberg stochastic game
given by Eqs. (23)–(27), ‖xn − D‖ → 0 almost surely.

Proof The proof progresses in several steps. Since it uses known ideas from previous work
in the context of Markov decision processes, we shall be brief with details where they are
lengthy but essentially the same as the MDP case, giving precise pointers to the literature.

– Step 1 Convergence of {Q̂n}:
We first argue that {Q̂n} converge a.s. assuming that they remain bounded a.s., which we
prove subsequently. The proof is based on the ‘o.d.e. approach’ for analysis of stochastic
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approximation algorithms. We first consider the corresponding synchronous scheme.
Since γ1(n) = o(γ2(n)), (23) is on a slower time scale than (25) and we analyze (25)
treating xn ≈ x as frozen by the two time-scale argument of section 6.1, [12]. Likewise,
we treat εn ≈ ε as frozen as it varies on the same time scale as {xn}. The limiting o.d.e.
for (25) then is

q̇(t) = Fx (q(t))− q(t), (36)

where components of q(·), Fx (·) are indexed by (s, a1, a2) listed lexicographically with

Fx
(s,a1,a2)(q) := c̃((s, a1), a2; x)− f (q)− q((s, a1), a2)

+
∑

(s̃,ã1)

p̃((s̃, ã1)|(s, a1), a2)max
a′

q((s, a1), a′). (37)

The convergence of this to the unique fixed point of Fx follows exactly as in Theorem 3.5
of [1]. The boundedness proof also follows essentially as in ibid. using the arguments of
[13] (see also section 3.2 of [12]) with a slight tweak which we return to after considering
the asynchronous case, still under a.s. boundedness assumption. For the asynchronous
case, by the arguments of [10] (see also Chapter 7 of [12]), (36) gets modified to

q̇(t) = �(t)(Fx (q(t))− q(t))

= Fx
�(t)(q(t))− q(t), (38)

where �(t) is a diagonal matrix with diagonal elements in [0, 1], and Fx
�(q) for any

such matrix � is defined as (I − �)q + �Fx (q). Furthermore, (31) ensures that a.s.
the diagonal elements of �(t) remain uniformly bounded away from zero from below
by some (possibly random) δ > 0. The a.s. convergence again follows as in Theorem
3.5 of [1] using the fact that the asymptotically stable equilibrium in the synchronous
case remains the asymptotically stable equilibrium in this case as well even with the time
dependence via �(t). This is because Fx

� have a common unique fixed point, viz. the
unique fixed point q∗ of Fx , and a common Liapunov function ‖q − q∗‖∞ applies. The
a.s. boundedness argument of [13] (see also section 3.2 of [12]) applies exactly as in
these references except that one has to account for the t-dependence through �(t) and
the x-dependence. The argument uses the scaled limit of the (38) given by

q̇(t) = F̂ x
�(t)(q(t))− q(t), (39)

where F̂ x
�(q) := limα↑∞

Fx
�(αq)

α
, which turns out to be of the same form as Fx

�(q) except
that the cost c̃() in (37) gets replaced by zero. Using arguments leading to Theorem 3.4
of [1], one verifies that the origin is the globally asymptotically stable equilibrium of (39)
uniformly in the x variable2, which takes values in a compact set because c̃() is bounded,
and �, as long as the diagonal elements thereof are uniformly bounded away from zero.
A minor adaptation of the arguments of [13] (see also section 3.2 of [12]) yields the a.s.
boundedness.

– Step 2 Convergence of {Q̃n}:
As before, since γ1(n) = o(γ2(n)), we invoke the two time-scale arguments of section
6.1, [12], to treat both xn ≈ x and εn ≈ ε as frozen. The proof of a.s. boundedness and
a.s. convergence of {Q̃n} is exactly the same as in ‘step 1’ above, i.e., as for Theorem
3.5 of [1] with only one significant difference. The map Fx above gets replaced by F̆ x

2 This x-dependence is the only additional feature (or point of difference) here as compared to [1].
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where

F̆ x
(s,a1,a2)(q) := c̃(s, a1, a2; x)− f (q)− q((s, a1), a2)

+
∑

(s̃,ã1)

p̃((s̃, ã1)|(s, a1), a2)min
b

max
b′

q((s, b), b′).

The key property of Fx used to prove step 1 above is its non-expansivity with respect
to the ‖ · ‖∞ norm. (See Lemma 3.1 of [1].) This property also holds for F̆ x , so the
arguments remain valid.

– Step 3 Convergence of {xn}:
From (23)–(24), it follows by arguments of Chapter 5, [12] (see also [6], [7]), that {xn}
converges a.s. to an internally chain transitive invariant set of (10). In view of the proof
of Theorem 1, this implies xn → D a.s.

– Step 4 Proof of optimality:
This follows from a standard fact about average cost MDPs recalled in “Appendix.”

��

Remark 6 Wecanmake a remark regarding convergence rate along the lines of the concluding
remark of Sect. 3. The additional complication here is the multiple time scales, the error
analysis for which appears unavailable in the literature. Nevertheless, it stands to reason that
the convergence/sample complexity results be dictated by the slowest time scale which in this
case is governed by the slowest step-size γ1(n) = 1

n+1 . Thus, exactly the same observations
as in the concluding remark of Sect. 3 hold. There will be additional ‘tracking errors’ from
the fast time-scale iterations, but these will remain within prescribed bounds with probability
exceeding

1− O

(

e
− C ′∑∞

m=n0 γ2(m)2

)

for n ≥ n0. Since γ1(n) = o(γ2(n)), this will be dominated by the error expression in (18),
so the latter continues to hold for the overall error.

6 Conclusion

We have presented a simple and computationally tractable strategy for approachability in
Stackelberg stochastic games. We have also given a reinforcement learning-based algorithm
to learn the approachable strategywhen the transitionkernels are unknown.Themotivation for
this came frommulti-objective optimization and decision-making problems in a dynamically
changing environment.

There are many interesting related questions that one can possibly address in the future.
Extension to stochastic games with discounted reward is one problem, but the solution is
possibly very messy due to dependence on the initial state. Partial observations present
another challenge.
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Appendix

Consider a controlled Markov chain {sn} with a finite state space S, compact metric action
spaceU withmetricd and running cost k(i, u), with transition probabilities p( j |i, u). Assume
k, p to be continuous in u. Also assume that Assumption 1 is true. The dynamic programming
equation then is

V (i) = min
u

⎛

⎝k(i, u)− κ +
∑

j

p( j |i, u)V ( j)

⎞

⎠ , i ∈ S.

Then, κ is the optimal cost. LetU∗(i) denote the set of minimizers on the right-hand side,
which will perforce be compact and non-empty by standard arguments. Suppose

d(an,U
∗(sn))→ 0.

Then, we have

V (sn)− k(sn, an)− κ + E[V (sn+1)|sn, an] → 0

�⇒ lim
n↑∞

1

n

n−1∑

m=0
E[k(sm, am)] − κ = lim

n↑∞
1

n
(E[V (sn)] − E[V (s0)]) = 0.

Hence, {an} is optimal.
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