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Abstract We consider a dynamic game where additional players (assumed identical, even
if there will be a mild departure from that hypothesis) join the game randomly according to
a Bernoulli process. The problem solved here is that of computing their expected payoff as
a function of time and the number of players present when they arrive, if the strategies are
given. We consider both a finite horizon game and an infinite horizon, discounted game. As
illustrations, we discuss some examples relating to oligopoly theory (Cournot, Stackelberg,
cartel).
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1 Introduction

In most strategic interactions analysis, the set of players is known and common knowledge.
But there are some situations where neither the players, nor the designer or public authority,
nor the theorist know how many players are in a game. As an illustration, consider the three
situations below:
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Example 1 Imagine the case of a company that commits a violation of competition rules
(which identically affects consumers) in a country where consumers can take joint action in
court to recover the amount of their losses. The legal system chosen by the country as part
of a joint action works as follows: the first period begins when a consumer enters the court,
in the second period the judge analyses the case. If he finds it justified, he evaluates the total
harm done,1 and imposes a reimbursement and a payments schedule for eachmonth of a third
period. But during that third period, more complainants may apply to join the action, given
that the judge will not approve more than one per week. The weekly reimbursement is then
shared equally among all complainants approved at that time. What is the first consumer–
victim expected payoff according to the fact that he does not know how many victims will
participate into the joint action as each victim can alternatively choose to never suit or suit
individually the company?

Example 2 Consider the case of a city where the authorities issue a number of taxi driver
licences. There are k individuals who hold such a licence. Then, thanks to a technological
innovation, a company is able to transform every willing motorist driver into a transporter of
people for fee. How much can the k licensed taxi drivers expect to loose, given that they do
not know how many motorists will be turned into drivers?

Example 3 Suppose that a wealthy French entrepreneur decides to create the “René and
Gisèle Foundation” to promote research in game theory. This foundation, thanks to the
proceeds of a charitable donation, appoints a benevolent research director (free of conflicts of
interest) to share eachmonth equally a sum of 100.000 euros between all scientific projects in
game theory which she has examined and fond valuable. As the entrepreneur and the research
director want to provide a long term support, they decide to never abandon the funding of
a project that she had already selected. After the beginning of the foundation, where k ≥ 1
projects could have been selected, each month, due to administrative procedures, only one
new project, if found valuable, could be added to the foundation’s public list of selected
projects (which mentions the date of arrival in the list of each selected project). How much
the mth selected project can expect to have?

The goal of this paper is to provide a general mathematical framework for computing the
payoff of players in a dynamic gamewith clone players randomly arriving at each step of time
in a Bernoulli process and to show examples of applications in oligopoly theory. The set-up
here only allows for a sequence of stepwise, static equilibria, and we assume that these static
problems are solved, so that strategies and payoffs are known as a function of the number of
players present. We leave a true inter-temporal equilibrium analysis for a later article.

The paper is organized as follows: in the next section, we expose the theoretical related
literature and explain how we contribute to the question of games with an unknown number
of players. In Sect. 3, we formulate the problem, propose a model and give the expected
payoff of finite (Theorem 1) and infinite (Theorem 5) horizon game that is the expected
payoff for each player. Then in Sect. 4, we provide some examples from oligopoly theory
where this framework and results could be used to find expected payoff and static equilibria.
Section 5 concludes by underlining the limits and questions of our framework which are left
for future research.

1 On the one hand, in a joint action, this country chooses to charge the total harm to the liable party. On the
other hand, it allows each victim not to prosecute, prosecute individually or collectively. It thus follows that
the liable party can be led to pay several times the damage which she caused: these are punitive damages.
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2 Related Literature

It is well known that the usual textbook game theory toolbox is in the “fixed-n” paradigm and
does not address problems where there is a degree of uncertainty on the number of players
in a game. Indeed, in Bayesian games, the uncertainty for each player is on the types of
other players, that is, on their private information about their characteristics represented by
a random variable for each player. So there is no uncertainty on the number of players in
the game. Moreover, to extend Bayesian games to games with unknown number of players
raises conceptual and modelling issues that could not be overcome. However, to the best
of our knowledge, there exists currently in game theory two ways to directly manage the
question of uncertainty on the number of players.

The first strain of the literature, which is the oldest one, investigates games where the
active competing players is not common knowledge. This issue has taken two forms (see
[13]). The first form models the number of active players as a stochastic process on a set of
potential players. It means that the active players are a subset of the set of potential players,
which implies that each player has a private information (he is active or not). The timing
of this kind of game is usually in four-step: (1) nature chooses which players will be active
(and those who will be passive), (2) each player observes only his own situation, (3) the
active players choose their strategies and (4) payoffs are received. The common knowledge
information is the set of potential players and the probability distribution used by Nature to
assign a role to each player.

The second form endogenizes the entry process. In this setting, at first, there is no player
in the market. Then, it is assumed that each potential player (the total set of which is common
knowledge) has a privately known and different cost to entry on the market, and each of them
must decide to participate or not into the game.

These two kinds of models are useful in a great number of cases. For example, consider
the situation of an appointment of Dean at a University; the applicants do not know how
many persons will apply even if they perfectly know how many persons can apply (the set of
Professors in the University). It is also the case, for example, in online auction sites where the
number of registers is known and the number of bidders for each product is ex ante unknown.

Seminal articles in this line of the literature are [15,16]which demonstrate that some results
of auction theory could be sensitive to the assumption that there is a stochastic number of
bidders, which means that the set of real bidders is not common knowledge, whereas the
set of potential bidders is. They also allow the bidders to have different priors on how many
bidders are present as long as these priors are Bayesian consistent. From the design policy
point of view, the question arises whether the seller had an interest to reveal (or conceal)
the number of actual bidders and their identities. In [27], the number of potential bidders is
common knowledge, but some of them are experts (bidders with private information) and
some are non-experts (bidders with no private information), and it is the number of experts
which is uncertain for the seller and the other buyers. Münster [20] offers an investigation of
rent-seeking contests with an unknown number of competing contestants where all players
are risk neutral or have constant absolute risk aversion. Complementing to the pure risk
approach, Salo andWeber [32] and Levin and Ozdenoren [13] propose models where bidders
are averse to the ambiguity generated by the lack of information about the number of rivals
in the auction. On the entry process endogenous side, Samuelson [33] finds that policies to
limit the number of bidders may be welfare improving. When a first-price sealed bid auction
is used and bidders can enter upon paying an entry cost, McAfee and McMillan [17] show
that the seller should not impose a reserve price higher than his own valuation and that the
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optimal number of bidders enter. More recently, there have been investigations along these
lines on environmental topics as in [31] or [2,3].

The more recent other strain of the literature is games with population uncertainty, where
the real number of players in the market is not common knowledge. But the number of
players really in the game is supposed to be drawn from a random variable, whose probability
distribution and mean are commonly known. Players have to choose their strategies before
the player set is revealed. Among these games, a special attention has been paid to the
subclass called Poisson games, where the number of players N is a random variable that
follows a Poisson distribution with mean n (so N = k with the probability e−nnk/k!), and
each player’s type is then drawn independently from some fixed probability distribution.
More generally, in extended Poisson games the expected population sizes and players’ utility
functions may depend on an unknown state of the world. In this case, there is a two-stage
structure: first a random state variable is drawn from some given distribution, and then a
Poisson game is played. In theses games, each player’s belief about the number of other
players and their types is the same with the prior distribution of the total number of players
and their types (property called by Myerson environmental equivalence). It has been shown
that Poisson gamesmodelling has very nicemathematical features, subsumesBayesian games
with consistent priors and opens a fertile field of research. To illustrate the nature of questions
solved by it, De Sinopoli and Pimienta [7] introduces the following simple and clear story:
“A player is sitting at home and faces two possible alternatives, either she goes out to some
social event, or she stays home. She does not know how many players are facing this same
disjunctive, but she knows that this number is a Poisson random variable with parameter n.
If she goes out and meets somebody she receives a payoff equal to 1. If she meets nobody or
decides to stay home, she gets a payoff equal to 0. Every player faces these same two options
and has the same preferences”.

This type of modelling was introduced byMyerson [21–23] andMilchtaich [19]. See also
[6] for a more recent account. It seems particularly well adapted to elections (where each
voter does not know what is the real number of voters, see Myerson’s works) or some kind
of auctions. Makris [14] proposes to model the coordination problem as a Poisson game
and investigates the conditions under which a unique equilibrium is selected. In [28], it is
shown that with population uncertainty, two competitors are not enough to eliminate all
profits in equilibrium and have competition in a Bertrand game. Recently, Östling et al. [26]
proposes an application of Poisson game to a LUPI game (lowest unique positive integer
wins lottery), in order to study a lottery called Limbo introduced by the government-owned
Swedish gambling monopoly Svenska Spel on January 29, 2007.

By contrast with these two lines of the literature, the spirit of our paper is a dynamic
framework where the number of players involved varies with time, and to study the expected
payoff of each player in situations where nobody knows ex ante the set of real players at
each period after the beginning and at the end of the game (finite case), or at each period of
the game (infinite case). The only information that are common knowledge before the game
actually starts in our set-up is the number of incumbents, that there is a random entry at each
period of time according to a Bernoulli process of known parameter, and the law linking
the actual number of players present at one stage to the expected payoff at that stage (e.g.
in a succession of Cournot equilibria, the inverse demand curve). Once the game is going,
the actual number of players present at each stage is also common knowledge at that stage.
So there is no asymmetric information in our model. We will consider a clone economy, i.e
an economy where the incumbents and the new entrants are perfectly identical. As already
stated, even though there is an equilibrium at each step, our aim at this stage will not be
to define a dynamic equilibrium, but to compute the expected payoff to the players when



364 Dyn Games Appl (2017) 7:360–385

their strategic behaviours are given. The full dynamic equilibrium will be dealt with in a
forthcoming article.

In the rest of the literature on games, but with a fixed number of players, wemay find some
kinship of our theory with repeated games, see, for example, [18], since the folk theorem,
for instance, involves an infinite sequence of plays with the same strategies, as we do. But
there, it is the same set of players who play again and again. The fact that in the present
theory, the payment matrices vary from step to step is reminiscent of stochastic games, see,
for example, [24] or, more recently, the special issue [25]. However, we are not, at this stage,
able to prove a result about a stationary dynamic equilibrium, as often found in that strain
of the literature. Another strain of the literature with an infinite sequence of decisions is
concerned with stopping problems by voting, such as [8]. But here again, the number of
players is fixed and known. Games with an infinite number of players have been considered,
either under the heading of “anonymous games” or that of Mean field games [4,12] or Nash
Certainty Equivalence Principle [10]. But while in the present article, the number of players
is unbounded, it remains finite, and we have no averaging of the effects of the other players,
as found in mean field games. Yet reference [11] provides some bridge between these two
theories, see below.

A literature much closer to our theory is that of piecewise deterministic systems [5,9],
although this is not in a game theoretical framework. But we may consider the stochastic
arrivals of players as stochastic jumps in the dynamic system, which is deterministic between
two jumps. This same idea was used in [1], although in a very different context.

Finally, the only other article we are aware of with a stochastic entry of an a priori
unknown number of players—that we learned of after this manuscript was first submitted for
publication—is [11]. In that article, a major player has an infinite horizonwhileminor players
enter randomly and leave after a given time T . Each has its own (linear) dynamics, but the
(quadratic) payoffs are functions of the means of the minor players’ states—a kind of “mean
field” approach which is then taken advantage of in an approximation for large numbers
of minor players. The authors aim to find a dynamic Nash equilibrium—not our topic in
the present article—in linear strategies and settle for an implicit solution via the concept
of “consistent set of strategies”, i.e. a set of strategies that satisfy the fixed point property
inherent in a Nash equilibrium. The algorithm proposed to solve for the Nash strategies
is precisely a Picard iteration of a fixed point problem. A convergence proof is given in a
restricted case.

3 Model

The family of problems we are investigating could have two forms. As in our examples 1 and
3, there are cases where the dynamic game has an end which corresponds to a finite horizon.
There are also cases, as in our example 2, where the dynamic game has no finite end time
or, more realistically, where the end time is unknown for the players, which corresponds to
the infinite horizon case. We will study these two types of games successively.

We consider a discrete time, multistage game where time t is an integer varying from t1 to
T (finite horizon), or from 0 to ∞ (infinite horizon). We assume that additional players may
arrive only one at each discrete instant of time, this with a probability p and independently
fromother arrivals (a Bernoulli process), and let tm be the first stagewhere there arem players,
i. e. the stage when player numberm arrives. Once in the game, a player never leaves. (Thus,
the number of players at each instant of time is governed by a binomial law.)
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Usually, in a dynamic game there is a state x(t) ∈ R
n whose dynamics are driven by the

actions ai (·) of the players, according to some given law

x(t + 1) = f (t, x(t), a1(t), a2(t), . . . an(t)) , x(t1) = x1 .

Then the payoff of each player is

Πi =
T∑

t=t1

Li (t, x(t), a1(t), a2(t), . . . , an(t)) .

If the ai are mixed strategies, then Li is a mathematical expectation.
However, here the emphasis is not on the strategies but on computing an expected payoff

when the strategies are assumed identical for all players, and known as a function of the
number m of players present, the state and current time. In that case, a sufficient description
of the state is the sequence {tn}n≤m of past arrival times, and current time t . As a consequence,
we may dispense with the explicit dynamics, and write the payoff as a function of these
variables. We also assume that the players are identical not only in their strategy choices, but
also in their per stage payoff. (The latter justifies the former.Wewill, however, see a marginal
deviation from that hypothesis in our examples.) Their payoffs will only differ because of
their different arrival times.

Notation Let τ1 = t1 and for m ≥ 2, τm = (t2, . . . , tm) ∈ N
m−1 and therefore, τm+1 =

(τm, tm+1). Let Lm(τm, t) be the per stage payoff of each player when m players are present
as a function of the past arrival times sequence and current time. Let alsom(t) be the number
of players present at time t .

We introduce the further notation M1(t) = L1(t), and for m ≥ 2,

Tm(t) = {τm | t1 < t2 < · · · < tm ≤ t} , Mm(t) =
∑

τm∈Tm (t)

Lm(τm, t) .

(in the infinite horizon case, we will use t1 = 0). For example,

M2(t) =
t∑

t2=t1+1

L2(t2, t) , M3(t) =
t−1∑

t2=t1+1

t∑

t3=t2+1

L3(t2, t3, t) .

We may provide a graphical representation of what is going on. All possible entrance
histories, for a finite horizon, can be represented on a tree as shown in Fig. 1. Time is shown
on the bottom line. At each instant of time, and at each node of the tree for that instant, we
draw a branch going up if a new player enters at that time instant, going down if nobody
enters.We have chosen t1 = 0, shown four time steps, and labelled the nodes with the number
of players present upon reaching this node (during the time step ending there). We have noted
over each branch the per stage payoff of each player during the corresponding time step.

An history is represented by a path from the root of the tree (to the left) to a leaf. The
payoff for that history is the (“horizontal”) sum of the per stage payoffs noted on each branch
of its path (τm is denoted with a list of time instants between curly braces). For each m and
t , Mm(t) is the (“vertical”) sum of the Lm of stage t , i.e. the sum of the markings of the
branches of the stage beginning at t reaching a node labelled m.
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Fig. 1 Events tree. Lm (τm , t): per stage payoff, m: number of players, τm : sequence of past arrival times,
t : current time

One can read on this graph that:

M1(0) = L1(0) ,

M1(1) = L1(1) ,

M2(1) = L2({1}, 1) ,

M1(2) = L1(2) ,

M2(2) = L2({1}, 2) + L2({2}, 2) ,

M3(2) = L3({1, 2}, 2) ,

M1(3) = L1(3) ,

M2(3) = L2({1}, 3) + L2({2}, 3) + L2({3}, 3) ,

M3(3) = L3({1, 2}, 3) + L3({1, 3}, 3) + L3({2, 3}, 3) ,

M4(3) = L4({1, 2, 3}, 3) .

3.1 Finite horizon

To better take into account the different arrival times of the players, we introduce an explicit
discount factor r ≤ 1 and write the payoff of the nth player arrived as

Πn(τn) =
T∑

t=tn

r t−tn Lm(t)(τm(t), t).

Both m(t) and τm are random variables. Hence, we let

Πe
n (τn) = EΠn(τn).

We will prove the theorem:
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Theorem 1 The expected payoff of the discrete time, finite horizon game for player 1, is

Πe
1 =

T∑

t=t1

[r(1 − p)]t−t1
t−t1+1∑

m=1

(
p

1 − p

)m−1

Mm(t). (1)

We observe that thus the dependence of the per stage payoff on the sequence of arrival times
has been lumped into the sequence of Mm . This is directly related to the fact that, for a
Bernoulli process, at the number m of positive events given, all sequences of m arrival times
share the same (conditional) probability. Accordingly, the dependence of the expected payoff
on the per stage probability of arrival p is through the probabilities pm−1(1 − p)t−t1−m+1

of having m − 1 arrivals between t1 + 1 and t .
It appears clearly that the limit expected payoff as p goes to zero is just

Πe
1 =

T∑

t=t1

r t−t1L1(t),

as the term m = 1 only remains in the sum over m, and if p = 1,

Πe
1 =

T∑

t=t1

r t−t1Mt−t1+1(t).

Proof of the theorem The proof of the theorem is given in section “Proof of Theorems 1” of
Appendix 1. It is based upon a rather classical backward induction argument and interchanges
of orders of summations in the resulting formulas.

We may also write the equivalent formula for the payoff of the mth arriving player. We
need to introduce extra notation. For 1 ≤ m < k:

τ km = (τm+1, . . . , τk), T k
m (tm, t) = {τ km | tm < tm+1 < · · · < tk ≤ t}.

and

Mm
m (τm, t) = Lm(τm, t) and Mk

m(τm, t) =
∑

τ km∈T k
m (t)

Lk(τm, τ km, t).

Given m and tm , the maximum possible number of players is m + T − tm . By a computation
similar to the one leading to the theorem, we get:

Corollary 2 The payoff of the mth arriving player, given the sequence of arrival times τm,
is

Πe
m(τm) =

T−tm∑

�=0

(
p

1 − p

)� T∑

t=tm+�

[(1 − p)r ]t−tm Mm+�
m (τm, t),

or, equivalently

Πe
m(τm) =

T∑

t=tm

[(1 − p)r ]t−tm
t−tm∑

�=0

(
p

1 − p

)�

Mm+�
m (τm, t). (2)



368 Dyn Games Appl (2017) 7:360–385

3.2 Infinite Horizon

The same set-up is used to consider the game with an infinite horizon, i.e. a payoff

Π1 =
∞∑

t=0

r t Lm(t)(τm(t), t).

We need two new definitions:

Definition 3 The sequence of functions {Lm} is said to be

1. uniformly bounded if it has a uniform bound, denoted L:

∃L > 0 : ∀t ∈ R+, ∀m ∈ N, ∀τm ∈ Tm(t), |Lm(τm, t)| ≤ L ,

2. exponentially bounded if each Lm is uniformly bounded, but that bound is allowed to
vary exponentially with m:

∃L > 0 : ∀t ∈ R+, ∀m ∈ N, ∀τm ∈ Tm(t), |Lm(τm, t)| ≤ Lm .

Remark 4 1. If the sequence {Lm} is uniformly bounded, it is also exponentially bounded.
Indeed, let L be the uniform bound; the sequence is exponentially bounded by Lm if
L > 1 and by 1m = 1 if L ≤ 1.

2. If the sequence {Lm} is exponentially bounded by Lm with L < 1, it is also uniformly
bounded by L. However, if L > 1, it may not be uniformly bounded.

We prove the following theorem:

Theorem 5 If the sequence {Lm} is exponentially bounded by Lm and r < 1/L, or if it is
uniformly bounded, then the expected payoff of the infinite horizon game is given by

Πe
1 =

∞∑

t=0

((1 − p)r)t
t+1∑

m=1

(
p

1 − p

)m−1

Mm(t). (3)

Proof The proof, given in section “Proof of Theorems 5” of Appendix 1, is via taking the
limit in formula 1, and carefully checking that the infinite series converge.

We derive the following consequences:

Corollary 6 1. If the sequence {Lm} is exponentially bounded by Lm with 1 ≤ L < 1/r ,
then

|Πe
1 | ≤ L

1 − r L
,

2. if the sequence {Lm} is uniformly bounded by L, then

|Πe
1 | ≤ L

1 − r
,

Wemay similarly extend formula (2) to an infinite series, which converges under the same
conditions:

Corollary 7 The infinite horizon payoff of the mth arriving player is, under the same con-
ditions as in theorem 5:

Πe
m(τm) =

∞∑

t=tm

((1 − p)r)t−tm
t−tm∑

�=0

(
p

1 − p

)�

Mm+�
m (τm, t).
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4 Applications to Oligopoly Theory

We consider identical firms entering a market. The game will be played over an infinite
horizon, with a discount factor r . We investigate four different market structures, differing
in the type of equilibrium—cartel or competitive à la Cournot—hypothesized at each stage,
and in the behaviour of the incumbents and of the new entrant each time one arrives. The four
possible market structures will be called “cartel–cartel”, “cartel–Stackelberg”, “Cournot–
Cournot” and “Cournot–Stackelberg”, and will be explained in more detail below.

The per stage profits for the various equilibria considered are computed in Appendix 2.

4.1 Cartel–Cartel, or Equally Sharing a Fixed Revenue Flux

In this simple case, the incumbents form a cartel, and each arriving new firm enters the
cartel. If the optimum per stage profit feasible by a lone player on this market is c, we have
Lm(τm, t) = c/m. We assert

Theorem 8 In the cartel–cartel market structure, the expected payoff to the first player is

Πe
1 = c

pr
ln

(
1 + pr

1 − r

)
. (4)

We are therefore able to get a closed form formula. It exhibits the limit expected payoff
Πe

1 = c/(1− r) as p goes to zero, and Πe
1 → ∞ as r → 1 for fixed p. That it is decreasing

with p can be seen in the fact that the function x 	→ ln(1+ x)/x is decreasing for x ∈ [0, 1].
Proof of theorem 8 The cardinal of the set Tm(t) is

|Tm(t)| =
(

t
m − 1

)
= t !

(m − 1)!(t − m + 1)!
we obtain

Mm(t) = c
t !

m!(t − m + 1)! = c

t + 1

(
t + 1
m

)
,

and hence, applying formula (3),

Πe
1 = c

∞∑

t=0

r t (1 − p)t
1

t + 1

t+1∑

m=1

(
t + 1
m

) (
p

1 − p

)m−1

= c

pr

∞∑

t=0

r t+1(1 − p)t+1

t + 1

[(
1 + p

1 − p

)t+1

− 1

]

= c

pr

[ ∞∑

t=0

r t+1

t + 1
−

∞∑

t=0

r t+1(1 − p)t+1

t + 1

]
.

It suffices to recognize the identity, for x < 1:

∞∑

n=1

xn

n
= −ln(1 − x)

to conclude the proof. 
�
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tm−1 players tm m players tm+1

Cartel (m−1) Cartel (m) Cartel (m) or (m+1)

tm−1 players tm m players tm+1

Cartel (m−1) Stackelberg (m−1 vs 1)

Cartel (m) or

Stackelberg (mvs1)

Fig. 2 Time diagrams of the Cartel–Cartel (top) and Cartel–Stackelberg (bottom) market structures

It is possible to compute the expected payoff of the mth arriving player, but we see little
hope of simplifying it beyond the sheer repetition of the formula:

Πe
m(τm) = cr tm−t1

∞∑

t=tm

[r(1 − p)]t−tm
t−tm∑

�=0

1

m + �

(t − tm)!
�!(t − tm − �)!

(
p

1 − p

)�

,

or the slightly more appealing formula that exhibits the independence of Πe
m from τm :

Corollary 9 The payoff of the mth arriving player in the cartel–cartel market structure is

Πe
m(τm) = cr tm−t1

∞∑

n=0

rnn!
n∑

�=0

1

m + �

p�

�!
(1 − p)n−�

(n − �)! .

4.2 Cartel–Stackelberg

In this market structure, in the absence of a new entrant, firms form a cartel. However,
whenever a new firm enters the market, the incumbents still play as a cartel, but act as leaders
imposing their strategy on the new entrant who acts as a follower, in a Stackelberg scheme.
The table in the appendix shows that we may equivalently assume that the incumbents do
not take immediate notice of the new entrant, or do not take it seriously, and continue with
the same production level as before.

After a first step in that configuration, the new entrant joins the cartel for the rest of the
game. It is not its best interest. But it may be coerced to do so by the other players who threat
to revert otherwise to an all Cournot–Nash equilibrium. A kind of “grim trigger” strategy.
As soon as m > 6, they incur a loss in doing so, but not as much as the new entrant. It is
therefore a credible threat.

The difference with the cartel–cartel time structure is displayed by the simple time dia-
grams of Fig. 2, where we have assumed, for clarity, that tm−1 < tm − 1, i.e. there was no
new entrant at time tm − 1.

According to the table in the appendix, we have, for some positive number c:

Lm(τm, tm) = c

2(m − 1)
,

∀t ∈ [tm + 1, tm+1 − 1], Lm(τm, t) = c

m
.

We state the following theorem:

Theorem 10 The expected payoff of the cartel–Stackelberg scheme for the first player is

Πe
1 = c

[
1 + 2 − p

2p
ln

(
1 + pr

1 − r

)]
.



Dyn Games Appl (2017) 7:360–385 371

tm−1 players tm m players tm+1

Cournot (m−1) Cournot (m)

Cournot (m) or

Cournot (m+1)

Fig. 3 Time diagram of the Cournot–Cournot market structure

Although slightlymore complicated than in the cartel–cartel scheme, this formula shareswith
the former one most of its characters: a closed form formula, exhibiting even more clearly
its decreasing character with p and converging to Πe = c/(1 − r) as p → 0 and Πe → ∞
as r → 1.

Proof The proof, given in section “Proof of Theorems 10” of Appendix 1 involves a careful
analysis of the combinatorics of the problem, and application of the previous formulas.

Finally, the payoff to the mth arriving player at time tm can be derived from the corre-
sponding formula of the simple sharing problem, just correcting for the fact that at its first
step, it earns c/4 rather than c/m. 
�
Corollary 11 The payoff of the mth arriving player in the cartel–Stackelberg market struc-
ture is

Πe
m(tm) = r tm−t1

[
c

4
− c

m
+ c

∞∑

n=0

rnn!
n∑

�=0

1

m + �

p�

�!
(1 − p)n−�

(n − �)!

]
.

4.3 Cournot–Cournot

Wenow assume that at each time step, the firms compete in a Cournot fashion.With reference
to the diagrams shown in Fig. 2, we now have that shown in Fig. 3

As a consequence, there is a positive number C such that

Lm = C

(m + 1)2
.

We also assume a discount factor r as in the above theory. A direct application of the general
theory leads to

Theorem 12 The expected payoff of the first player in the Cournot–Cournotmarket structure
is

Πe
1 = C

∞∑

t=0

r t (1 − p)t
t∑

n=0

(
p

1 − p

)n t !
(t − n)!n!

1

(n + 2)2
. (5)

This is not a very appealing formula. Yet, it is easy to program, even on a spreadsheet, to get
a numerical approximation, computing the terms recursively. Write

u(t) = r t (1 − p)t ,

vn(t) =
(

p

1 − p

)n t !
(t − n)!n!

1

(n + 2)2
,

Πe
1,C = C

∞∑

t=0

u(t)
t∑

n=0

vn(t),
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tm−1 players tm m players tm+1

Cournot (m−1) Stackelberg (m−1 vs 1)

Cournot (m) or

Stackelberg (mvs1)

Fig. 4 Time diagram of the Cournot–Stackelberg market structure

and compute the u and vn according to the recursions u(0) = 1, v0(t) = 1/4, ∀n > t ,
vn(t) = 0, and for n ≤ t , t ≥ 1:

u(t) = r(1 − p)u(t − 1),

vn(t) = p

1 − p

(
n + 1

n + 2

)2

vn−1(t − 1) + vn(t − 1).

Computing up to the 15th term, with r = .8, we found, for p = 1/4, Πe
1,C = .822C , for

p = 1/2, Πe
1,C = .625C , and for p = 3/4, Πe

1,C = .508C . (To get the same precision,
the computation requires the more terms that p is smaller. With 50 terms, for p = 0, we get
Πe

1,C = 1.249986 instead of the theoretical 1.25. These computations were performed on a
Libre Office spreadsheet.)

4.4 Cournot–Stackelberg Scheme

We consider a scheme similar to that of the cartel–Stackelberg, but where firms compete à
la Cournot–Nash instead of forming a cartel, both in the absence of a newcomer, and within
the group of incumbents when a new firm enters the market. As in the cartel–Stackelberg
structure, the behaviour of the incumbents may be explained as ignoring the newcomer at the
first step. Then (as soon as m ≥ 2), all players profit from a reversal to the all Cournot–Nash
equilibrium.

The time diagram is now as shown in Fig. 4
We therefore have

Lm(τm, tm) = C

2m2 ,

∀t ∈ [tm + 1, tm+1 − 1], Lm(τm, t) = C

(m + 1)2
.

The analysis is completely similar to that of the cartel–Stackelberg scheme, replacing the Lm

as necessary, and leads to the following theorem:

Theorem 13 Let Πe
1,C be the Cournot expected payoff (5). The expected payoff of the

Cournot–Stackelberg scheme for the first player is

Πe
1,CS = r(2 − p)

2
Πe

1,C + C.

We may notice that the relationship of this formula to the preceding one is the same as the
corresponding one in the cartel case. It preserves the same properties as outlined above.
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5 Conclusion

In this paper, we have analyzed a model where there is, for everyone, an a priori unknown
number of players, the actual number, increasing with time, being common knowledge at
decision time. We have assumed that all the players are clones (since they adopt the same
strategy and have the same payoff at each period of time) and that the payoff law—the demand
market in our examples—and entry device (Bernoulli process) are common knowledge.
Players’ payoff differ from each other only due to the time during which they are in the
market. In this setting we are able to calculate the payoff of each player in finite and infinite
horizon games. Four simple examples in microeconomics show that the theory is indeed
operative. The formulas obtained are not very simple, but they allow for efficient numerical
implementations.

Yet, we may point out a set of weaknesses of the theory, each of which points to possible
further investigations.

– We are limited to a clone economy. Dealing with an unlimited number of players, the
game has to be anonymous. But we might want to have several classes of players, such
as done in many studies of population uncertainty and anonymous games.

– To keep with the simple formulas of the Bernoulli process, we impose a constant entry
probability p. It would be more realistic to have it depend on the number of players
already on the market, as the benefit of entry decreases with that number. This is chiefly
true in our examples where the size of the market is constant. We shall take up that issue
in a forthcoming article.

– In our four examples, the players’ per stage payoff depend on the number of players,
and only very mildly on the sequence of past arrival times. (In the one-step Stackelberg
games, where we need to distinguish the case t = tm from the case t > tm .) A more
complex dependence such as alluded to at the beginning of Sect. 3, say because a resource
is consumed by the players, requires, to remain manageable by our theory, that it be
explicit enough to let us compute the sums Mm . A rather severe restriction on the models
we are able to deal with.

– We do not allow for players leaving the market. Yet, in many applications, this would be
more realistic.

But as it is, the theory can probably be used as a Rubinstein “fable” ([29,30]) to investigate
some real life economic problems.
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conversations and comments that improved the paper. We received very useful suggestions from Sylvain Béal.
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literature survey (mean field games and stopping by vote).

Appendix 1: Proofs of the Theorems

Proof of Theorem 1

We remark the maximum number of players is T − t1 + 1, and can only be attained at time
T , and only if a player has arrived at each instant of time. We then have

Πe
T−t1+1(t1, t1 + 1, . . . , T ) = LT−t1+1(T ) = MT−t1+1(T ).
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For m ≤ T − t1 and a compatible τm , we have

Jm(τm) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

T∑

t=tm

r t−tm Lm(τm, t) if tm+1 > T,

tm+1−1∑

t=tm

r t−tm Lm(τm, t) + r tm+1−tm Jm+1(τm, tm+1) if tm+1 ≤ T .

Now, tm+1 > T with a probability (1− p)T−tm , and the occurrence of a given tm+1 ≤ T has
a probability p(1 − p)tm+1−tm−1. Hence, writing t+ for tm+1:

Πe
m(τm) = (1 − p)T−tm

T∑

t=tm

r t−tm Lm(τm, t)

+
T∑

t+=tm+1

p(1 − p)t+−tm−1

⎡

⎣
t+−1∑

t=tm

r t−tm Lm(τm, t) + r t+−tmΠe
m+1(τm, t+)

⎤

⎦ .

Introduce the notation q = 1 − p. Interchanging the order of summation,

Πe
m(τm) = qT−tm

T∑

t=tm

r t−tm Lm(τm , t)

+
T−1∑

t=tm

r t−tm Lm(τm , t)
T∑

t+=t+1

pqt+−tm−1 +
T∑

t+=tm+1

pqt+−tm−1r t+−tmΠe
m+1(τm , t+).

Using classical formulas for the sum of a geometric series and regrouping terms, we obtain
for m ≤ T − t1:

Πe
m(τm) =

T∑

t=tm

qt−tm
[
r t−tm Lm(τm, t) + pr tm+1−tmΠe

m+1(τm, t + 1)
]
,

being agreed that Πe
m+1(τm, T + 1) = 0. A more useful form of this formula for the sequel

is as follows:

Πe
m(τm) =

T∑

t=tm

(qr)t−tm Lm(τm, t) + p

q

T∑

tm+1=tm+1

(qr)tm+1−tmΠe
m+1(τm, tm+1), (6)

where the second term of the right-hand side is absent if tm = T .

Remark 14 It is a not-so-easy calculation to check that if Lm(τm, t) ≤ L andΠe
m+1(τm, tm+1)

≤ (T − tm+1 + 1)L , then this formula implies, as it should, Πe
m(τm) ≤ (T − tm + 1)L .

A hint about how to make the above check is as follows: in the second term of the formula,
write

T∑

t=tm+1

qt−tm (T − t + 1) =
(
T − tm + 1 − (1 − p)

d

dp

) T∑

t=tm+1

(1 − p)t−tm ,

and use the classic formula for the sum of the (finite) geometric series.
We use formula (6) recursively: write first Πe

1 as a function of Πe
2 , and using again the

same formula substitute for Πe
2 as a function of Πe

3 , and again for Πe
3 as a function of Πe

4 .
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Then interchange the order of the summations, placing them in the order t, t2, t3, t4. In the
following formula, every time the lower bound of a sum is larger than the upper bound, the
term is just absent. We obtain

Πe
1 =

T∑

t=t1

(qr)t−t1L1(t1, t) + p

q

T∑

t=t1+1

(qr)t−t1
t∑

t2=t1+1

L2(t1, t2, t)

+
(
p

q

)2 T∑

t=t1+2

(qr)t−t1
T∑

t2=t1+1

t∑

t3=t2+1

L3(t1, t2, t3, t)

+
(
p

q

)3 T∑

t2=t1+1

T∑

t3=t2+1

T∑

t4=t3+1

(qr)t4−t1Πe
4 (t1, t2, t3, t4).

Continuing in the same way up to m = T − t1 + 1, we obtain

Πe
1 =

T−t1∑

m=1

(
p

q

)m−1 T∑

t=t1+m−1

(qr)t−t1Mm(t) +
(
p

q

)T−t1
(qr)T−t1LT−t1+1(T ).

The last term can be identified as the term m = T − t1 + 1 of the first sum, as the range of
t in the embedded (second) sum is limited to t = T , and we have seen that LT−t1+1(T ) =
MT−t1+1(T ). It suffices now to shift m by one unit to obtain the formula

Πe
1 =

T−t1+1∑

m=1

(
p

1 − p

)m−1 T∑

t=t1+m−1

[(1 − p)r ]t−t1Mm(t).

And interchanging a last time the order of the summations, formula (1). 
�
Remark 15 As a consequence of formula (1), if for some fixed L , for all m, τm and t ,
Lm(τm, t) = L , thenΠe

1 = [(1−rT−t1+1)/(1−r)]L (whose limit as r → 1 is (T −t1+1)L),
and if Lm(τm, t) ≤ L , then Πe

1 is bounded above by that number.

Proof of Theorem 5

We start with formula (1) where we set t1 = 0, and recall by a superscript (T ) that it is a
formula for a finite horizon T , the horizon we want to let go to infinity:

Πe
1
(T ) =

T∑

t=0

(1 − p)t r t
t+1∑

m=1

(
p

1 − p

)m−1

Mm(t).

The only task left to prove the theorem is to show that the series obtained as T → ∞
converges absolutely. To do this, we need an evaluation of Mm(t). Observe that the cardinal
of the set Tm(t) is simply the combinatorial coefficient

|Tm(t)| =
(

t
m − 1

)
= t !

(m − 1)! (t − m + 1)! .

As a consequence, if |Lm | ≤ Lm , we have

|Mm(t)| ≤
(

t
m − 1

)
Lm
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and

∣∣∣∣∣

t+1∑

m=1

(
p

1 − p

)m−1

Mm(t)

∣∣∣∣∣ ≤
t+1∑

m=1

(
p

1 − p

)m−1

|Mm(t)| (7)

≤
t+1∑

m=1

(
t

m − 1

) (
p

1 − p

)m−1

Lm (8)

= L

(
p

1 − p
L + 1

)t

. (9)

Therefore,

(1 − p)t r t
t+1∑

m=1

(
p

1 − p

)m−1

|Mm(t)| ≤ Lrt (pL + 1 − p)t .

The series converges absolutely provided that

r
(
p(L − 1) + 1

)
< 1 ,

which is always true if L ≤ 1, and ensured for all p ≤ 1 if r L < 1. This proves the theorem
for the case exponentially bounded.

In the case uniformly bounded, with |Lm | ≤ L , we obtain similarly

|Mm(t)| ≤
(

t
m − 1

)
L

and

(1 − p)t r t
t+1∑

m=1

(
p

1 − p

)m−1

|Mm(t)| ≤ Lrt (1 − p)t
(

p

1 − p
+ 1

)t

= Lrt ,

and the series is always absolutely convergent. 
�
Proof of Theorem 10

We aim to apply formula (3). The term t = 0 requires a special treatment: the only term in
the sum over m is m = 1 and M1(0) = L1(0) = c. For t > 0, we have three cases:

1. For m = 1, there has not been any new entrant; therefore, L1(t) = c.
2. For 1 < m < t + 1, we sum first over the τm such that tm < t , i.e. τm ∈ Tm(t − 1), then

over the τm such that tm = t ; there the sum is over the values of τm−1 ∈ Tm−1(t − 1).
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3. Form = t+1, there have been new entrants at each time step. Therefore, Lt+1(τt+1, t) =
c/2t . We summarize this in the following calculation:

for m = 1, M1(t) = c = c
(t − 1)!

(m − 1)!(t − m + 1)!
1

m
,

for 1 < m < t + 1, Mm(t) =
∑

τm∈Tm (t−1)

c

m
+

∑

τm−1∈Tm−1(t−1)

c

2(m − 1)

= c
(t − 1)!

(m − 1)!(t − m + 1)!
1

m

+ c
(t − 1)!

(m − 2)!(t − m + 1)!
1

2(m − 1)
,

for m = t + 1, Mt+1(t) = c

2t
= c

(t − 1)!
(m − 2)!(t − m + 1)!

1

2(m − 1)
.

We therefore obtain, for t > 0:

t+1∑

m=1

(
p

q

)m−1

Mm(t) =
t∑

m=1

(
p

q

)m−1
(t − 1)!

(m − 1)!(t − m)!
c

m

+ 1

2

t+1∑

m=2

(
p

q

)m−1
(t − 1)!

(m − 2)!(t − m + 1)!
c

m − 1

=
(
1 + p

2q

) t∑

m=1

(
p

q

)m−1
(t − 1)!

(m − 1)!(t − m)!
c

m
.

Finally, summing over t as in formula (3), without forgetting the term t = 0,

Πe
1 = c +

(
1 + p

2q

) ∞∑

t=1

r tqt
t∑

m=1

(
p

q

)m−1
(t − 1)!

(m − 1)!(t − m)!
c

m
.

It suffices to take out one power of rq from the sum over t , shift the summation index by one
unit, recognize the expected payoff of the simple sharing scheme and replace it by formula
(4) to prove the theorem.

Appendix 2: Static Equilibria

We consider n identical firms (a clone economy) sharing a market with a linear inverse
demand function, linking the price P to the total production level Q as

P = b − aQ .

Production costs have been lumped into b and so doing normalized at zero. We compute
the optimal production level Q, and resulting price P and profit Π of each firm for various
equilibria.
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5.2 Cartel

In a pure cartel, firms behave as a single player, only sharing the optimal production level
equally among them. Let Q be that level. The profit of the (fictitious) single player is

Π = Q(b − aQ) = −a

(
Q − b

2a

)2

+ b2

4a
.

Hence, the optimal production level is Q = b/(2a), to be equally divided among the firms,
as well as the profit Π = b2/(4a). The price is then P = b/2, and the individual production
level q and profit Πi are

q = b

2an
, Πi = b2

4an
.

Cartel–Stackelberg

We investigate the case where n − 1 firms form a cartel, behaving as a leader vis à vis one
firm acting as a follower.

Let qL be the quantity produced by each incumbent, qF that of the follower. Hence,
Q = (n − 1)qL + qF . The follower’s profit is

ΠF = qF [b − a(n − 1)qL − aqF ] = −a

[
q2F −

(
b

a
− (n − 1)qL

)
qF

]

hence

ΠF = −a

[
qF − 1

2

(
b

a
− (n − 1)qL

)]2
+ a

4

(
b

a
− (n − 1)qL

)2

.

Therefore, the optimal reaction curve qF as a function of qL is

qF = 1

2

(
b

a
− (n − 1)qL

)
.

With such a strategy, each incumbents’ profit is

ΠL = qL

[
b − a(n − 1)qL − 1

2
b − 1

2
a(n − 1)qL)

]

= −a(n − 1)

2

[
q2L − b

a(n − 1)
qL

]

= −a(n − 1)

2

[
qL − b

2a(n − 1)

]2
+ b2

8a(n − 1)
.

Therefore, the optimal production level of each incumbent and their profit are

qL = b

2a(n − 1)
, ΠL = b2

8a(n − 1)
.

Placing this back into the optimal follower’s reaction curve, its production level and profit
are

qF = b

4a
, ΠF = b2

16a
.

and the price of the commodity is P = b/4. All these results will be summarized in a table
in the last section.



Dyn Games Appl (2017) 7:360–385 379

Cournot–Nash

Wehave n identical firms competing à la Cournot. The Cournot–Nash equilibrium is obtained
as follows. Let q be the individual production level, therefore Q = nq , and P the resulting
price:

P = b − naq.

The individual profit of player i is

Πi = qi [b − a(qi + (n − 1)q)]

= −a

[
qi − 1

2

(
b

a
− (n − 1)q

)]2
+ a

4

(
b

a
− (n − 1)q

)2

.

It follows that the optimum qi is

qi = 1

2

(
b

a
− (n − 1)q

)
,

but we seek a symmetric equilibrium where qi = q , and therefore,

q = b

(n − 1)a
.

Placing this back into the law for P , we find

P = b

(n + 1)
, Π = b2

a(n + 1)2
.

Cournot–Stackelberg

We finally consider n − 1 firms competing à la Cournot–Nash within their group, producing
a quantity qL each, but that group behaving as a leader vis à vis a single follower, producing
a quantity qF . We therefore have

P = b − a(n − 1)qL − aqF .

The calculations are similar to the previous ones. The follower’s profit is therefore

ΠF = − a

[
q2F −

(
b

a
− (n − 1)qL

)
qF

]

= − a

[
qF − 1

2

(
b

a
− (n − 1)qL

)]2
+ a

4

(
b

a
− (n − 1)qL

)2

.

Hence,

qF = 1

2

(
b

a
− (n − 1)qL

)
, ΠF = a

4

(
b

a
− (n − 1)qL

)2

.

With this strategy,

P = 1

2

(
b − a(n − 1)qL

)
= 1

2

(
b − a(n − 2)qL − aqi

)
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Consequently, for player i , one of the leaders,

Πi = −a

2

[
q2i −

(
b

a
− (n − 2)qL

)
qi

]

= −a

2

[
qi − 1

2

(
b

a
− (n − 2)qL

)]2
+ a

8

(
b

a
− (n − 2)qL

)2

.

It follows that

qi = qL = 1

2

(
b

a
− (n − 2)qL

)
⇒ qL = b

an
,

Πi = a

8

(
b

a
− (n − 2)qL

)2

⇒ Πi = b2

2an2
,

while P = b/(2n), and

qF = b

2an
and ΠF = b2

4an2
.

Summary

We regroup the results of these calculations in the following table:

Market structure # of firms Quantity Price Profit

Cartel n
b

2an

b

2

b2

4an

Cartel–Stackelberg n
3b

4a

b

4

each leader n − 1
b

2a(n − 1)

b2

8a(n − 1)

follower 1
b

4a

b2

16a

Oligopoly à la Cournot n
b

a(n + 1)

b

(n + 1)

b2

a(n + 1)2

Cournot–Stackelberg n
b(n + 1/2)

an

b

2n

each leader n − 1
b

an

b2

2an2

follower 1
b

2an

b2

4an2
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Appendix 3: Complexity

In this appendix, we undertake to count the number of arithmetic operations involved in
computing Πe

1 for a finite horizon by four different methods: (direct) path enumeration,
backward dynamic programming, path enumeration and forward dynamic programming,
and use of formula (1). To ease the calculations, we let t1 = 1, so that T is the number of
time steps. We shall refer to the tree shown in Fig. 1.

If we assume no regularity in their definition, the data are made of the collection of all
Lm(t), t = 1, . . . , T , that is, as many numbers as there are branches in the tree, i.e.

T∑

t=1

2t−1 = 2T − 1

numbers. As all must be used, there is no way in which a general method could involve less
than that number of arithmetic operations. Therefore, we expect a complexity of the order
of 2T (of the order of 106 for T = 20 and 1015 for T = 50, a completely unrealistic case!),
and the difference between methods can only be in the coefficient multiplying that number.

Path Enumeration

The tree counts 2T−1 paths from the root to a leaf. Let ν ∈ [1, 2T−1] number them. We
denote by πν the path number ν, and let mν be the number of player present at the end of
path πν . Each path has a probability of being followed

P(πν) = pmν−1(1 − p)T−mν .

Let Lν(t) denote the Ln(τn, t) on path πν . Each path involves a payoff

Π1(πν) =
T∑

t=1

Lν(t).

And we have

Πe
1 =

2T−1∑

ν=1

P(πν)J (πν). (10)

A direct method of evaluating Πe is therefore as follows:

1. Compute theP(π(ν)) for each ν. The computation of each involves T−2multiplications.2

Therefore, that step involves 2T−1(T − 2) arithmetic operations.
2. Compute theΠ(πν). Each involves T−1 additions; therefore, this step involves 2T−1(T−

1) arithmetic operations.
3. Compute Πe

1 according to formula (10), involving 2T−1 multiplications and as many
additions (-1), that is, 2T operations.

Therefore, the total number of arithmetic operations is

N = 2T−1(T − 2 + T − 1 + 2) = (T − 1

2
)2T ,

that is of the order of T 2T .

2 We count powers as sequences of multiplications
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Dynamic Programming (DP)

Denote the nodes of the tree by the sequence σ(t) of t indices, 0 or 1, the 1 denoting the times
when an arrival occurred, a branch sloping up in our figure. (All sequences σ(t) begin with
a one.) The possible successors of a given σ(t) are (σ (t), 0) and (σ (t), 1) that we denote as

σ(t + 1) = (σ (t), i(t)) , i(t) ∈ {0, 1}.
Denote by L(σ (t)) the Lm of the branch reaching the node σ(t).

Backward DP

Let V (σ (t)) be the expected future payoff when at node σ(t). It obeys the dynamic program-
ming equation

V (σ (t)) = p[L(σ (t), 1) + V (σ (t), 1)] + (1 − p)[L(σ (t), 0) + V (σ (t), 0)],
and Πe

1 = V (root) = V (1) + L1(1).
There are thus four arithmetic operations to perform at each node of the tree (not counting

the leaves), that is,

N = 4
T∑

t=1

2t−1 = 4 × (2T − 1)

arithmetic operations, i.e. of the order of 4 × 2T .

Path Enumeration and Forward DP

This is a variant of the path enumeration method (10) on two counts:

1. Compute once each probability pm−1(1 − p)T−m and store it. This costs T (T − 2)
arithmetic operations.

2. Compute the Π(πν) according to the forward dynamic programming method

Π(σ(t − 1), i(t − 1)) = Π(σ(t − 1)) + L(σ (t − 1), i(t − 1)).

This is one addition at each node of the tree, i.2. 2T operations.

It remains to implement formula (10), using 2T arithmetic operations, for a total of 2T+1 +
T (T − 2). This is of the order of 2 × 2T .

Using the Mm(t)

We rewrite formula (1) as

Πe
1 =

T∑

t=1

t∑

m=1

pm−1(1 − t)t−mMm(t). (11)
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Computing the Mm(t)

The first task is to compute the collection of Mm(t). For each t , there are 2t−1 Lm(t) to
combine in t terms, that is, 2t−1 − t additions. There is no computation for the steps 1 and
2. The total number of additions there is therefore

T∑

t=3

(2t−1 − t) = 2T − T (T + 1)

2
− 1.

Computing the pm−1(1 − p)t−m

We set

um(t) = pm−1(1 − p)t−m .

We compute them according to the following method:

u1(1) = 1,

∀t ∈ [2, T ], u1(t) = (1 − p)u1(t − 1),

∀m ∈ [1, t], um+1(t) = pum(t − 1).

Counting the arithmetic operations, this leads to T − 1 multiplications to compute the u1(t),
and to

T∑

t=3

(t − 1) = T (T − 1)

2
− 3

multiplications to compute the rest of the um(t). That is for this step

T (T − 1)

2
+ T − 4

arithmetic operations.

5.2.1 Applying Formula (11)

Finally, there are T (T + 1)/2 terms in formula (11), each involving a multiplication and an
addition, i.e. T (T + 1) arithmetic operations (minus one addition)

Summing all steps, this is

N = 2T + T 2 + T − 6

i.e. of the order of 2T arithmetic operations, half as many as in the best DP method.

Simple Case

In the case where the Lm(τm, t) are actually independent from τm , the computation of each
Mm requires just amultiplication by a combinatorial coefficient, that is, an overall complexity
for all Mm of T (T − 1)/2 or T (T − 1) depending on whether the combinatorial coefficients
are given or to be computed (via the Pascal Triangle algorithm). Then the complexity of our
method drops to 2T 2 or 2.5T 2. A huge simplification makes it possible to actually compute
the result for large T .
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Conclusion

Our theory gives the fastest algorithm for this general “unstructured” case, half as many
algebraic operations as in the next best. But of course, its main advantage is elsewhere, in
allowing one to take advantage of any regularity in the definitions of the Lm , and also in
allowing for closed formulas for the infinite horizon case. Formula (4) is a typical example.

A general remark is that going from the “direct” method, in T 2T arithmetic operations
to one with a constant coefficient, in a typical computer science tradeoff, we trade computer
time for storage space. However, if the Lm need to be stored as data (as opposed to being
given by some explicit formula), then in all the faster methods, they are used only once so
that their memory space can be reused for intermediate results.
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