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Abstract In this paper, we extend the evolutionary games framework by considering a pop-
ulation composed of communities with each having its set of strategies and payoff functions.
Assuming that the interactions among the communities occur with different probabilities,
we define new evolutionarily stable strategies (ESS) with different levels of stability against
mutations. In particular, through the analysis of two-community two-strategy model, we
derive the conditions of existence of ESSs under different levels of stability. We also study
the evolutionary game dynamics both in its classic form and with delays. The delays may be
strategic, i.e., associated with the strategies, spatial, i.e., associated with the communities, or
spatial strategic. We apply our model to the Hawk–Dove game played in two communities
with an asymmetric level of aggressiveness, and we characterize the regions of ESSs as func-
tion of the interaction probabilities and the parameters of the model. We also show through
numerical examples how the delays and the game parameters affect the stability of the mixed
ESS.

Keywords Evolutionarily stable strategy · Replicator dynamics · Delay ·
Hawk–dove game

1 Introduction

In recent years, evolutionary game theory has become a powerful tool for predicting and even
designing evolution in many fields [27,35,40]. Its origin comes from biology where it was
introducedby [22] tomodel competitions amonganimals. It differs fromclassical game theory
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by: (i) its focusing on the evolution dynamics of the fraction ofmembers of the population that
uses a given strategy and (ii) in the notion of evolutionarily stable strategy [35]which includes
robustness against a deviation of a whole small fraction of the population; this is in contrast
to the standard Nash equilibrium that only incorporates robustness against deviation of a
single player. Recently, however, evolutionary game theory has become of increased interest
to social scientists [9,27]. In computer science, evolutionary game theory is appearing; some
examples of applications can be found inmultiple access protocols [14,39,40], multi-homing
[34] and resources competition in the Internet [45].

The ESS is a static concept that abstracts how the equilibrium is reached; it relies on a
criterion of immunity against the penetration of mutant into population but does not rely
on a dynamic process that describe the evolution of strategies into the population. Many
and various dynamics are proposed in the literature to model the evolution of the popula-
tion composition over time. Formally, this is accomplished by means of mechanisms called
revision protocols. These dynamics describe when and how an individual decides to switch
strategies, and they implicitly specify what information agents use to make these decisions.
The central concept in the evolutionary games is the replicator dynamics [38,42], which is
the most studied one. In this dynamic, the percentage growth rate of a strategy currently used
is equal to the difference between that strategy’s payoff and the expected payoff obtained by
all individuals in the population. Thus, strategies leading to a payoff that is higher than the
average become more abundant.

Initially, evolutionary game framework and replicator dynamics concept have been used
to study biological systems and economic problems. Recently, this rich framework offers
good capabilities to study large interaction networks of decision makers. In evolutionary
game theory (EGT), the success of a given strategy depends on the frequency of all strategies
represented in the population, and successful strategies spread over the population. Unfortu-
nately, the theory developed in this field has mostly focused on the homogeneous population
in which a given individual equally likely interacts with any other member of the popu-
lation. Then, the success of any individual depends on the frequency of all other strategies
represented in the population. In many examples such that social networks, however, the pop-
ulation is composed of several communities or groups that can be seen as clusters [2,21,33].
Therefore, community strategies are influenced by interactions inside the community and
also with other communities [7]. Besides, the interactions among individuals are inherently
nonuniform, and individuals are more likely to interact with some agents than others because
of spatial barriers, language or cultural differences [44]. In biology, some animal species
are strongly territorial [8], and territories vary in quality [11]. Hence, an animal may fight
against animals from different species and the payoff depends on the species. For example,
the probability that an animal being hurt or killed is higher if it meets a larger animal than
smaller animal.

The major question posed in the EGT literature is related to the stability of a steady state
which leads to a refinement of the Nash equilibrium. Much of work on evolution has studied
the relationship between the steady state of the replicator dynamics and the ESS concept.
Taylor and Jonker [38] established conditions under which one may infer the existence of a
stable state under the replicator dynamics given an evolutionarily stable strategy. However,
this can fail to be true for multi-populations or more than two strategies [28,30]. In the last
two decades, there have been several attempts to relax the assumption derived by Taylor and
Jonker [38] in order to explore games in which agents only interact with their neighbors on a
lattice [13,17,23] or on a randomgraph [24–26,31,36]. Thesemodifications on the replicators
dynamics lead to lose the connection between the stable equilibrium of the replicator and
ESS. Indeed, under some payoffs, stable states have no corresponding analogue neither in the
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replicator dynamics nor in the analysis of ESS. In this paper, we aim to connect the analysis
of the stability in a static concept and the steady state of the replicator dynamics. Instead of
considering well-mixed population, we explore games in which the population is composed
of several communities or groups. Each group has its own set of strategies, payoff matrix and
resulting outcomes. In addition, each group may interact with any other group with different
interacting probabilities. Our work focuses on different types of individuals, such that any
pairwise interaction does not lead to the same fitness, depending on the type of individuals
that are competing, and not only the strategy used. We study the existence of ESSs with
different levels of stability defined as follows:

– Strong ESS The stability condition guarantees that no alternative strategy can invade the
population. This condition states that all groups or communities have an incentive to
remain at the ESS when a rare alternative strategy is used by mutants in all groups that
form the population.

– Weak ESS The stability condition guarantees the stability against a fraction of mutants in
a single group.

– Intermediate ESS This equilibrium focuses on the global fitness of the whole population
instead of a single group. It guarantees that all the population cannot earn a higher total
payoff when deviating from the ESS.

We show that any fully mixed Nash equilibrium is not a strong ESS wherein all communities
using this equilibrium cannot be invaded by a small group from all communities with a
mutant strategy. But under some assumptions on the payoff and interaction probabilities,
this mixed equilibrium is an ESS when we consider the global fitness of all the population
instead of the fitness of each community. Furthermore, we analyze one of the most studied
examples in evolutionary games, that of the Hawk and the Dove, a model for determining
the degree of aggressiveness in the population. Our new model allows to study the evolution
of aggressiveness within different species of animals.

For the evolutionary dynamics, we introduce the replicator dynamics in structured popula-
tions and under nonuniform interactions in communities. We study the relationship between
the steady state of the replicator dynamics and the ESSs with different levels of stability.
In particular, we show that the fullymixed intermediate ESS is asymptotically stable in the
replicator dynamics. In contrast, the condition of weak stability does not ensure the stability
condition of the replicator dynamics.

The majority of works in evolutionary dynamics have studied the replicator dynamics
without taking into account the delay effect. Many examples in biology and economics show
that the impact of actions is not immediate and their effects only appear at some point in
the future. Therefore, a more realistic model of the replicator dynamics would take into
consideration some time delay. The authors in [43] studied the effect of symmetric time
delays in the replicator dynamics in a population model with two strategies. They assumed
that an individual’s fitness at the current time is equal to the expected payoff value of the
strategy used by this individual at some previous time. The authors proved that the unique
interior steady point becomes unstable for sufficiently large values of the delay. A similar
result was proved by the authors in [1] in their social-type model. In the reference [41],
the authors studied the replicator dynamics with asymmetric delays across the strategies
and showed that for large delays the instability occurs. On the other hand, the author in
[20] examined the effect of heterogeneously distributed delays among the individuals, and
he derived conditions under which the mixed ESS is asymptotically stable in the replicator
dynamics for any delay distribution.
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In this work, we study the effect of time delays on the stability of the replicator dynamics
in a population composed of communities. Two types of time delays can be distinguished:
strategic delay which is the delay associated with the strategies of players and spatial delay
which is the delay associated with the communities of the competing players. As in one
population scenario, we show that for large strategic delays, the mixed intermediate ESSmay
become an unstable state for the replicator dynamics. In contrast, the replicator dynamics
converge to the intermediate ESS for any value of the spatial delay. Spatial delays come from
the latency induced by the individuals type when they interact. In fact, we can assume that
in some situations, the delay of a pairwise interaction between individuals from the same
community can be lower than when individuals from different communities are interacting.
For example, in a social network, individuals from the same communitywill share faster same
content/information as there is some kind of confidence between them, whereas a content
coming from an individual from another community may yield to a careful behavior and then
increases the outcome delay of the interaction.

The paper is structured as follows. First in Sect. 2, we present new ESS definitions with
different levels of stability in multi-community settings. Section 3 is devoted to the study
of nonuniform interactions between two communities. In Sect. 4, we study the replicator
dynamics, both in its classical form and with strategic and spatial delays. We apply our
model to the Hawk–Dove game in Sect. 5. Finally, we conclude the paper in Sect. 6.

2 Evolutionarily Stable Strategies

We consider a large population of players or individuals divided into N communities and
each community has its own set of strategies, payoff matrices and interacting probabili-
ties. Random matching occurs through pairwise interactions and may engage individuals
from the same community or from different communities. Let p = (p1, . . . , pN ) where
pi = (pi1, . . . , piN ) is the vector describing the interaction probabilities of community i
with other communities. Here pi j denotes the probability that an individual in community i
involved in an interaction, interacts with an individual in community j and

∑
j pi j = 1 (Fig.

1).We assume there are ni pure strategies for each community i and a strategy of an individual
is a probability distribution over the pure strategies. We denote by Ai j = (ai jkl )k=1...ni ,l=1...n j

the payoff matrix. If a player of community i using pure strategy k interacts with a player of
community j using pure strategy l, its payoff is ai jkl . Let s = (s1, . . . , sN ) be the population
profile where si is the column vector describing the distribution of pure strategies in commu-
nity i (sik is the frequency of the pure strategy k in community i). We denote by Ui (k, s, p)
the expected payoff of pure strategy k in community i , which depends on the frequency of
strategies in community i and in the other communities. The payoff function Ui is given by:

Ui (k, s, p) =
N∑

j=1

pi j ek A
i j s j , (1)

where ek is a row vector corresponding to the kth element of the canonical basis of Rni . The
expected payoff of a player from community i using a mixed strategy z, when the profile of
the population is s, is given by:

Ūi (z, s, p) =
ni∑

k=1

zkUi (k, s, p). (2)
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Fig. 1 Spatial interactions
between two communities

Our model covers the many situations as:

• The probabilities of interactions may depend on the size of the communities. An individ-
ual is more likely to meet and interact with an opponent from the larger community. For
example, if α1 and α2 are the size of groups 1 and 2, respectively, then the probability
for an individual from group 1 interacts with an opponent, uniformly randomly picked,
from the same group is p11 = α1

α1+α2
while the probability to interact with an individual

from the other group is p12 = α2
α1+α2

. Similarly, the probability for an individual from
group 2 interacting with an individual from group 2 is p22 = α2

α1+α2
and the probability

to interact with a player from group 1 is p22 = α1
α1+α2

.
• The probabilities of interactions may also depend on spatial aspects, in which an individ-

ual is more likely to interact with individuals in his neighborhood. If we consider that the
rate of interaction is uniform, denoted by γ , then the total rate of inter-group interactions
in group 1 and 2 are given by α1γ p12 and α2γ p21, respectively. Since the total rate of
inter-group interactions should be the same, we have p12 = p21

α2
α1
. This gives us the

relationship between the probabilities of inter-group interactions in both groups.

In the following, we present different ESS characterizations that differ in the stability
level.

2.1 Strong ESS

A strong ESS is a strategy that, when adopted by the entire population, cannot be invaded by
a sufficiently small group composed from all communities and using an alternative strategy.
The incumbent players following the strong ESS will get a strictly higher expected payoff
when playing against the population composed of incumbents and mutants, than the mutants
will get. The following definition can be stated:

Definition 1 A strategy s∗ is a strong ESS, if for all s �= s∗, there exists an ε(s) > 0 such
that for all i = 1, . . . , N and ε ≤ ε(s),

Ūi (si , εs + (1 − ε)s∗, p) < Ūi (s
∗
i , εs + (1 − ε)s∗, p). (3)

This strong ESS must in fact have a uniform invasion barrier [42] or threshold where any
proportion of invaders using an alternative strategy is repelled. An alternative definition can
be established as follows:
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Definition 2 A strategy s∗ is a strong ESS if it meets two conditions for all i and for all
s �= s∗,

◦ Ūi (si , s∗, p) ≤ Ūi (s
∗
i , s∗, p), (4)

◦ if Ūi (si , s∗, p) = Ūi (s
∗
i , s∗, p), then Ūi (si , s, p) < Ūi (s

∗
i , s, p) where s is the

vector composed, for each community, of the strict equilibrium if exists

or of the alternative best reply otherwise. (5)

Proposition 1 The Definitions 1 and 2 are equivalent.

Proof See Appendix “Proof of Proposition 1”. ��
A strong ESS yields a higher expected payoff than any alternative strategy when played
against itself [condition (4)]. If there is a strategy that yields the same payoff as the strong
ESSwhen played against the ESS, then this strategywill yield a strictly lower expected payoff
when played against itself than the ESS, and cannot spread in the population [condition (5)].

2.2 Weak ESS

In this subsection, we assume that mutants arise in one community and we introduce an
alternative ESS version with a weaker stability condition. A weak ESS is a strategy that,
when adopted by the entire population, each community resists invasion by a sufficiently
small group of mutants using an alternative strategy in that community. The definition of the
weak ESS is given by:

Definition 3 A strategy s∗ is a weak ESS if for all s �= s∗ and for all i = 1, . . . , N , there
exists εi (s) > 0 such that for all εi ≤ εi (s),

Ūi (si , (εi si + (1 − εi )s
∗
i , s∗−i ), p) < Ūi (s

∗
i , (εi si + (1 − εi )s

∗
i , s∗−i ), p), (6)

where (εi si + (1 − εi )s∗
i , s∗−i ) is the profile of the population where the i th community is

composed of the fraction εi of mutants using an alternative strategy si and the fraction 1− εi
of incumbent players using s∗

i , and the remaining of the population follows the ESS s∗−i .

An equivalent definition of the weak ESS can be stated as follows:

Definition 4 A strategy s∗ is a weak ESS if, for all i and for all s �= s∗,

◦ Ūi (si , s∗, p) ≤ Ūi (s
∗
i , s∗, p), (7)

◦ if Ūi (si , s∗, p) = Ūi (s
∗
i , s∗, p), then Ūi (si , (si , s∗−i ), p) < Ūi (s

∗
i , (si , s∗−i ), p), (8)

where Ūi (si , s∗, p) is the expected payoff of a mutant in community i using si , and
Ūi (s∗

i , s∗, p) is the expected payoff of an incumbent player in community i using s∗
i when

the profile of the population is s∗.

Proposition 2 The Definitions 3 and 4 are equivalent.

Proof See Appendix “Proof of Proposition 2”. ��
This ESS definition is different from that of Cressman, referred to as Cressman ESS in the
literature [12,29], which considers invasion of the communities by a fraction of mutants
from all communities. For a state to be a Cressman ESS, it is enough that one community
resist invasion from a mutant strategy. In our definition, we consider invasion of a single
community by a small local group of mutants. In Sect. 3, we introduce a particular example
with two communities and we show that a weak ESS cannot be a Cressman ESS in this case.



Dyn Games Appl (2017) 7:131–156 137

2.3 Intermediate ESS

In the intermediate ESS version [37,42], the focus is the total payoff of the whole population
instead of the fitness of each community. An intermediate ESS is a strategy that, when adopted
by the entire population, for any small group using amutant strategy, the total expected payoff
of the incumbent strategies in all the communities is strictly higher than that of the mutant
strategy. The formal definition of an intermediate ESS is given by:

Definition 5 A strategy s∗ is an intermediate ESS if for all s �= s∗, there exists an ε(s) > 0
such that for all ε ≤ ε(s),

N∑

i=1

Ūi
(
si , εs + (1 − ε)s∗, p

)
<

N∑

i=1

Ūi
(
s∗
i , εs + (1 − ε)s∗, p

)
. (9)

Equivalently, we have the following definition:

Definition 6 A strategy s∗ is an intermediate ESS if for all s �= s∗,

◦
N∑

i=1

Ūi
(
si , s∗, p

) ≤
N∑

i=1

Ūi
(
s∗
i , s∗, p

)
, (10)

◦ if
N∑

i=1

Ūi
(
si , s∗, p

)=
N∑

i=1

Ūi
(
s∗
i , s∗, p

)
, then

N∑

i=1

Ūi (si , s, p)<
N∑

i=1

Ūi
(
s∗
i , s, p

)
. (11)

The condition (10) defines the best reply requirement according to which a mutant strategy
cannot yield a better total payoff than the ESS. When the comparison in this condition is
an equality, i.e., in case of an alternative best reply, the condition (11) guarantees that the
population profile does not shift away from the ESS. It means that all the population have a
positive incentive to remain at the ESS when there is a mutant strategy.

Proposition 3 The Definitions 5 and 6 are equivalent.

Proof The proof follows by carrying out exactly the same procedure as done in
Proposition 2. ��
2.4 Relationship Between the ESS Concepts

In this section, we discuss the relationship between different concepts of ESS introduced
earlier. We explain how these ESS concepts are overlapped one into another. Note that every
ESS from strong to weak stability is a Nash equilibrium. However, a strict Nash equilibrium
must be a strong ESS, and therefore, the strict Nash equilibrium is an intermediate and weak
ESS. We note that the second condition of the ESS (stability) comes into play only in the
case of alternative best replies. Hence, with strict Nash equilibrium, there is no alternative to
play another strategy that get the same payoff.

Now, let us discuss the relationship between different ESSs based on their stabilities. The
definition of the strong ESS makes it clear that strong ESS is an intermediate and also a weak
ESS. Indeed, if we suppose there is a small fraction ofmutants from all the communities using
an alternative strategy, the strong ESS, when adopted by all the population, would resist this
invasion because incumbent players would get a strictly higher expected payoff thanmutants.
The total expected payoff of the strong ESS in all the communities would also be strictly
higher than that of the mutant strategy, and therefore, the strong ESS is an intermediate ESS.
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A similar argument explains why an intermediate ESS is also a weak ESS. In fact, if we
suppose there is a small fraction of mutants in a single community, an intermediate ESS
would resist this invasion by definition and also a weak ESS; therefore, an intermediate ESS
is a weak ESS. In the next section, we will show through the study of two communities that
(i) an intermediate ESS is not always a strong ESS and (ii) a weak ESS is not always an
intermediate ESS. We then have the following relationships between the different concepts
of ESS considering interacting communities:

Strong ESS ⇒ Intermediate ESS ⇒ Weak ESS.

We note that all these definitions are obviously identical when there is a single community.

3 Two-Community Two-Strategy Model

For the sake of clarity, we focus only on the case where there are two communities that
interact in a nonuniform manner. All results obtained with two communities are still valid
for more than two communities.

We consider two communities inwhich each individual from community i = 1, 2 involved
in an interaction may interact with an individual from the same community with probability
pi or with an individual from the other community with probability 1 − pi . In addition, we
consider that each community i has two strategies {Gi , Hi }. Since there are two possible
strategies in each community, the population profile can be defined by s = (s1, s2) where si
is the frequency of strategy Gi in community i (so 1− si is the frequency of strategy Hi ). In
fact, in the two-strategy setting, we have s12 = 1− s11 and s22 = 1− s21 and the population
state can then be completely defined by the vector s = (s1, s2) where s1 and s2 are scalars.
The pairwise interactions inside the communities are described by the matrices A and D:

A =
(
G1 H1

G1 a1 b1
H1 c1 d1

)

, D =
(
G2 H2

G2 a2 b2
H2 c2 d2

)

.

The interactions between individuals from different communities are described by the fol-
lowing matrices:

B =
(
G2 H2

G1 a12 b12
H1 c12 d12

)

, C =
(
G1 H1

G2 a21 b21
H2 c21 d21

)

.

Using Eqs. (1) and (2), we can derive the expected payoffs of players from either community.
In addition, we define in Table 1 the parameters which will be used to analyze the model.

The parameters L1, L2, L12 and L21 depend on the payoffs. The parameters K1, K2, Δ and
Δ1 depend on the payoffs and the interaction probabilities.

3.1 Fully Mixed Nash Equilibrium and ESS

In this subsection, we characterize the existence of fully mixed ESSs under different levels of
stability.At the fullymixedESS, all strategies in both communities coexist, that is, 0 < s∗

i < 1
for i = 1, 2. The following theorem summarizes results on the existence of fully mixed ESSs.
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Table 1 Parameters of the model Parameter Value

L1 a1 − b1 − c1 + d1
L2 a2 − b2 − c2 + d2
L12 a12 − b12 − c12 + d12
L21 a21 − b21 − c21 + d21
K1 p1(b1 − d1) + (1 − p1)(b12 − d12)

K2 p2(b2 − d2) + (1 − p2)(b21 − d21)

Δ p1 p2L1L2 − (1 − p1)(1 − p2)L12L21

Δ1 4p1 p2L1L2 − (
(1 − p1)L12 + (1 − p2)L21

)2

Theorem 1 Let s∗ = (s∗
1 , s

∗
2 ) with

s∗
1 = (1 − p1)L12K2 − p2L2K1

Δ
and s∗

2 = (1 − p2)L21K1 − p1L1K2

Δ
.

We have the following results on s∗:

• s∗ is a unique fully mixed Nash equilibrium, i.e., 0 < s∗
1 < 1 and 0 < s∗

2 < 1, if

– 0 < Δ, 0 < (1 − p1)L12K2 − p2L2K1, (1 − p1)L12K2 − p2L2K1 < Δ,
0 < (1 − p2)L21K1 − p1L1K2, and (1 − p2)L21K1 − p1L1K2 < Δ, or

– Δ < 0 , (1 − p1)L12K2 − p2L2K1 < 0, Δ < (1 − p1)L12K2 − p2L2K1,
0 < (1 − p2)L21K1 − p1L1K2 < 0, and Δ < (1 − p2)L21K1 − p1L1K2.

• s∗ cannot be a strong ESS.
• s∗ is a weak ESS if L1 < 0 and L2 < 0.
• s∗ is an intermediate ESS if L1 < 0, L2 < 0 and Δ1 > 0.

Proof See Appendix “Proof of Theorem 1”. ��
Theorem 1 establishes that any fully mixed strong ESS does not exist. Indeed, the stability
condition (5) in Definition 2 cannot be satisfied for a fully mixed equilibrium. In contrast,
the fully mixed equilibrium can be an intermediate or a weak ESS under some conditions
on the payoffs and the interaction probabilities. We also note that for a weak ESS to be an
intermediate ESS, it is required that the condition Δ1 > 0 be satisfied. This condition cannot
be always satisfied. As an example, we consider the following payoffs:

A =
(−1 8

0 4

)

, D =
(−1 8

0 4

)

, B =
( 1

2 8
0 16

3

)

, C =
(−3 8

0 8
3

)

.

When p1 = 0.9 and p2 = 0.35, there exists a unique fully mixed equilibrium given by
s∗
1 = 0.85 and s∗

2 = 0.14. The conditions L1 < 0 and L2 < 0 are satisfied; therefore,
s∗ = (s∗

1 , s
∗
2 ) is a weak ESS. However, Δ1 is strictly negative and consequently s∗ is not an

intermediate ESS. When p1 = 0.75 and p2 = 0.6, then for the same values of payoffs we
have s∗ = (0.9, 0.51) andΔ1 > 0. Therefore, s∗ is a weak and intermediate ESS. In addition,
s∗ cannot be a Cressman ESS because neither community would resist invasion from a small
fraction of mutants composed of all the communities.

When p1 = p2 = 1, the two communities are fully independent, and s∗
1 = − b1−d1

L1
,

s∗
2 = − b2−d2

L2
and Δ1 = 4L1L2. We find the classical case of a single community: If L1 < 0



140 Dyn Games Appl (2017) 7:131–156

and L2 < 0, then s∗ = (s∗
1 , s

∗
2 ) is an evolutionarily stable strategy. When p1 = p2 = 0,

the evolutionary game is fully asymmetric and s∗
1 = − b21−d21

L21
, s∗

2 = − b12−d12
L12

and Δ1 =
−(L12 + L21)

2 which is strictly negative. Therefore, s∗ = (s∗
1 , s

∗
2 ) is neither an intermediate

nor a weak ESS. In [18,32], the authors show that no mixed evolutionarily stable strategy can
exist in asymmetric games. In [18], the authors introduced the notion of Nash–Pareto pairs in
asymmetric games,which is an equilibrium characterized by the concept of Pareto optimality:
It is not possible for players from both groups to simultaneously profit from a deviation from
the equilibrium. The mixed equilibrium s∗ is a Nash–Pareto pair if L12L21 < 0 [18].

We note that an ESS s∗ = (s1, s2) may also be completely pure if si ∈ {0, 1} for i = 1, 2,
or partially mixed when s∗

1 = 0 or s∗
1 = 1 and 0 < s∗

2 < 1 (or the inverse). In Appendices
“Completely Pure ESSs” and “Partially mixed ESSs”, we study the conditions of existence
of completely pure and partially mixed ESS, respectively.

Having studied the existence of the ESS with different levels of stability in the two-
community model, we are now interested in examining the relation of this static notion
with the replicator dynamics. Indeed, the concept of evolutionarily stable strategy is deeply
connected to the replicator dynamics. In the next section, we study the stability of the ESSs
in the replicator dynamics.

4 Replicator Dynamics in Two-Community Two-Strategy Model

We introduce the replicator dynamics which describe the evolution of the various strategies
in the communities. Replicator dynamics is one of the most studied dynamics in evolutionary
game theory [18,38,42]. In this dynamics, the proportion of a given strategy in the population
grows at a rate equal to the difference between the expected payoff of that strategy and the
average payoff in the population [19,42]. Thus, successful strategies increase in frequency
in the population.

4.1 Replicator Dynamics Without delay

The replicator dynamics equation writes, for i = 1, 2:

ṡi (t) = si (t)
[
Ui (Gi , s(t), p) − Ūi (si (t), s(t), p)

]
,

= si (t)(1 − si (t))
[
Ui (Gi , s(t), p) −Ui (Hi , s(t), p)],

with s(t) = (s1(t), s2(t)), which yields the following pair of nonlinear ordinary differential
equations:

ṡ1(t) = s1(t)(1 − s1(t))
[
p1s1(t)L1 + (1 − p1)s2(t)L12 + K1

]
,

ṡ2(t) = s2(t)(1 − s2(t))
[
p2s2(t)L2 + (1 − p2)s1(t)L21 + K2

]
. (12)

There are nine stationary points at which both ṡ1 = 0 and ṡ2 = 0, which are: (0, 0),
(1, 1), (0, 1), (1, 0), (0,− K2

p2L2
), (− K1

p1L1
, 0), (1,− (1−p2)L21+K2

p2L2
), (− (1−p1)L12+K1

p1L1
, 1) and

the interior point s∗ defined in Theorem 1. Recall that the strict Nash equilibrium is locally
asymptotically stable in the replicator dynamics and the stationary points are a Nash equi-
libria. The dynamic property of s∗ is brought out in the next theorem.

Theorem 2 The interior stationary point s∗ is asymptotically stable in the replicator dynam-
ics if L1 < 0, L2 < 0, and Δ > 0.

Proof See Appendix “Proof of Theorem 2”. ��
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The next corollary about the asymptotic stability of the fullymixed intermediate ESS follows.

Corollary 1 The fully mixed intermediate ESS is asymptotically stable in the replicator
dynamics.

Proof See Appendix “Proof of Corollary 1”. ��
This result confirms that the ESS with the intermediate level of stability is asymptotically
stable in the replicator dynamics. In contrast, for the weak ESS to be asymptotically stable, it
is required that the conditionΔ > 0, which depends on the payoffmatrices and the interacting
probabilities be satisfied.

Remark 1 Weconsider the numerical example inSect. 3.1. For p1 = 0.9 and p2 = 0.35, there
exists a unique fullymixed equilibriumgivenby s∗ = (0.85, 0.14) and it is not an intermediate
ESS because we have Δ1 < 0 (Theorem 1). However, s∗ is asymptotically stable in the
replicator dynamics (conditions in Theorem 2 are satisfied). Therefore, an asymptotically
stable point in the replicator dynamics is not necessarily an intermediate ESS.

In the next theorem, we study the asymptotic stability of strong ESSs.

Theorem 3 • The partially mixed strong ESSs are asymptotically stable in the replicator
dynamics.

• The completely pure strong ESSs are asymptotically stable in the replicator dynamics.

Proof See Appendix “Proof of Theorem 3”. ��
This theorem establishes that all strong ESSs are asymptotically stable in the replicator
dynamics. In the next section, we study the stability of the fully mixed intermediate ESS in
the replicator dynamics with delays.

4.2 Replicator Dynamics with Strategic Delay

In this section, we examine the impact of time delays of strategies on the dynamics. An action
taken today will have some effect after some time [6,40]. We assume the strategies take a
delay τst . The replicator dynamics for the first community is then given by:

ṡ1(t) = s1(t)(1 − s1(t))
[
U1(G1, s(t − τst ), p) −U1(H1, s(t − τst ), p)

]
.

Then we get:

ṡ1(t) = s1(t)(1 − s1(t))
[
p1L1s1(t − τst ) + (1 − p1)L12s2(t − τst ) + K1

]
.

Doing the same with the second group, we get:

ṡ2(t) = s2(t)(1 − s2(t))
[
p2L2s2(t − τst ) + (1 − p2)L21s1(t − τst ) + K2

]
.

We introduce a small perturbation around s∗ defined by x1(t) = s1(t) − s∗
1 and x2(t) =

s2(t) − s∗
2 . We then make a linearization of the two above equations around the interior

equilibrium point s∗ = (s∗
1 , s

∗
2 ), and we study the linearized system. We get the following

system:

ẋ1(t) = γ1
(
p1L1x1(t − τst ) + (1 − p1)L12x2(t − τst )

)
,

ẋ2(t) = γ2
(
p2L2x2(t − τst ) + (1 − p2)L21x1(t − τst )

)
,
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with γ1 = s∗
1 (1 − s∗

1 ) and γ2 = s∗
2 (1 − s∗

2 ). Taking the Laplace transform of the system
above, we obtain the following characteristic equation:

λ2 − λ
[
p1γ1L1 + p2γ2L2

]
e−λτst + γ1γ2

[
p1 p2L1L2 − (1 − p1)(1 − p2)L12L21

]
e−2λτst = 0. (13)

The zero solution is asymptotically stable if all solutions of (13) have negative real parts [4].
Equation (13) is typical for a linear system of two equations of the form ẋ(t) = Ax(t − τst )

whichwas studied by the authors in [10,16]. Based on their results, we establish the following
theorem on the asymptotic stability of the intermediate ESS in the presence of symmetric
strategic delays.

Theorem 4 The fully mixed intermediate ESS is asymptotically stable in the delayed repli-

cator dynamics if τst < τ̄st = min( π
2|λ+| ,

π
2|λ−| ), with λ± = p1γ1L1+p2γ2L2±

√
D

2 , and D =
[
p1γ1L1 + p2γ2L2

]2 − 4γ1γ2
[
p1 p2L1L2 − (1 − p1)(1 − p2)L12L21

]
.

Proof See Appendix “Proof of Theorem 4”. ��
Theorem 4 gives an upper bound on strategic delays for which the intermediate ESS remains
asymptotically stable in the population. Beyond this delay bound, the stability is lost and
persistent oscillations around the ESS occur.

4.3 Replicator Dynamics with Spatial Delay

In this section,we assume the delays are not associatedwith the strategy used by an individual,
but rather with the opponent with which an individual interacts [5]. Spatial delays arise when
two individuals from different communities get involved in an interaction and are denoted
by τsp . The replicator dynamics with spatial delays is given by:

ṡ1(t) = s1(t)(1−s1(t))
[
U1(G1, (s1(t), s2(t−τsp)), p) −U1(H1, (s1(t), s2(t − τsp)), p)

]
,

ṡ2(t) = s2(t)(1−s2(t))
[
U2(G2, (s1(t−τsp), s2(t)), p) −U2(H2, (s1(t − τsp), s2(t)), p)

]
.

Following the same procedure as in the previous sections, we get the following characteristic
equation:

λ2 − (p1γ1L1 + p2γ2L2)λ + γ1γ2 p1 p2L1L2 − γ1γ2(1 − p1)(1 − p2)L12L21e
−2λτsp = 0.

Or equivalently:

λ2 + αλ + β + δe−λτ = 0, (14)

where τ = 2τsp , α = −(p1γ1L1 + p2γ2L2), β = γ1γ2 p1 p2L1L2, δ = −γ1γ2(1− p1)(1−
p2)L12L21. Now, we summarize the stability property of the mixed ESS for the delayed
replicator dynamics in the following theorem which is based on the results of the authors in
[15] related to the location of the roots of the characteristic equation (14) .

Theorem 5 The fully mixed intermediate ESS is asymptotically stable in the replicator
dynamics with spatial delays for any τsp ≥ 0.

Proof See Appendix “Proof of Theorem 5”. ��
Spatial delays do not affect the stability of the mixed ESS. Indeed, for any value of the delay
τsp , the frequency of strategies in the population converges to the mixed intermediate ESS
after some possible damped oscillations.



Dyn Games Appl (2017) 7:131–156 143

4.4 Replicator Dynamics with Spatial Strategic Delays

In this section, we study the stability of the replicator dynamics with both strategic and spatial
delays. In particular, we aim to study whether the spatial delay has a stabilizing effect on the
replicator dynamics with strategic delay. We define the delays as follows:

• τst is the strategic delay, that is, the delay associated with the strategies;
• τsp is the spatial delay associated with the inter-community interactions.

The expected payoffs of strategies G1 and H1 in community 1 then write:

U1(G1, (s1(t − τst ), s2(t − τst − τsp)), p) = p1
[
s1(t − τst )a1 + (1 − s1(t − τst )) × b1

]

+ (1 − p1)
[
s2(t − τst − τsp)a12 + (1 − s2(t − τst − τsp))b12

]
.

and

U1(H1, (s1(t − τst ), s2(t − τst − τsp)), p) = p1
[
s1(t − τst )c1 + (1 − s1(t − τst )) × d1

]

+ (1 − p1)
[
s2(t − τst − τsp)c12 + (1 − s2(t − τst − τsp))d12

]
.

Hence, the equation governing the evolution of the proportion of players using strategy G1

in the first community is given by:

ṡ1(t) = s1(t)(1 − s1(t))
[
p1L1s1(t − τst ) + (1 − p1)L12s2(t − τst − τsp) + K1

]
.

Doing the same with the second community, we obtain:

ṡ2(t) = s2(t)(1 − s2(t))
[
p2L2s2(t − τst ) + (1 − p2)L21s1(t − τst − τsp) + K2

]
.

Following the same procedure in the previous sections, we get the following characteristic
equation with mixed delays:

λ2 − λ[p1γ1L1 + p2γ2L2]e−τstλ + p1 p2γ1γ2L1L2e
−2τstλ

−(1 − p1)(1 − p2)γ1 × γ2L12L21e
−2(τst+τsp)λ = 0. (15)

When τsp = 0, we find the characteristic equation (13) obtained when there is only a strategic
delay. Equation (15) can be solved numerically.

Equation (15) can be simplified by making the assumption of small time delays. By
substituting the exponential term with a Taylor series expansion and keeping only linear
terms in τst and τsp in the above equation, we obtain the following second-order equation:

(1 + Aτst )λ
2 + λ(−A − 2Bτst + 2C(τst + τsp)) + B − C = 0,

where A = p1γ1L1+ p2γ2L2, B = p1 p2γ1γ2L1L2, andC = (1− p1)(1− p2)γ1γ2L12L21.
We can establish the following proposition:

Proposition 4 If τst < − 1
p1γ1L1+p2γ2L2

and Δτst −Cτsp < − p1γ1L1+p2γ2L2
2 , then the fully

mixed intermediate ESS is asymptotically stable.

Proof The fully mixed intermediate ESS is asymptotically stable if all the roots of the char-
acteristic equation have negative real parts. Since we have a second-order equation, the
roots have negative real parts if their product is positive and their sum is negative, that is,

if (i) B−C
1+Aτst

= Δ
1+Aτst

> 0 and (ii) A+2Bτst−2C(τst+τsp)

1+Aτst
< 0. By virtue of Corollary 1, we

have Δ > 0 and then condition (i) yields τst < − 1
p1γ1L1+p2γ2L2

and condition (ii) yields

Δτst − Cτsp < − p1γ1L1+p2γ2L2
2 . ��
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5 Application to Hawk–Dove Game

In the classical Hawk–Dove game [3,35], two individuals compete for a scarce resource. A
player may use a Hawk strategy (H ) or a Dove strategy (D). The strategy H stands for an
aggressive behavior that fights for the resource while the strategy D represents a peaceful
behavior which never fights. The matrix that gives the outcome for such competition is given
as follows:

(
H D

H V−C
2 V

D 0 V
2

)

,

where C > 0 and V > 0. V represents the value of the resource for which the players
compete, andC represents the cost incurred by a hawk when fighting for the resource against
a hawk. The coefficients of the payoff matrix can be interpreted as follows: If two doves
meet, they share equally the resource and each one obtains as a payoff V

2 . If two hawks meet,
they fight until one of them gets injured and the other takes the whole resource. When a hawk
and a dove meet, the dove withdraws and the hawk takes the whole resource. If C < V , then
the strategy H is dominant and the entire population will adopt the aggressive behavior. If
C > V , there exists a mixed ESS given by ( VC , 1 − V

C ), at which both behaviors coexist.
We apply our model to the Hawk–Dove game played in a population composed of two

communities of hawks and doves with different levels of aggressiveness and which interact
in a nonuniform fashion. Let:

• p1 (resp. p2) be the probability that an individual from Community 1 (resp. 2), involved
in an interaction, competes with an individual from the same community;

• 1 − p1 (resp. 1 − p2) be the probability that an individual from Community 1 (resp. 2)
competes with an inter-community opponent.

Furthermore, the interactions inside the communities 1 and 2 are described by thematrices
A and D:

(
H1 D1

H1
V−C
2 V

D1 0 V
2

)

,

(
H2 D2

H2
V−C
2 V

D2 0 V
2

)

.

The inter-community interactions are described by the following matrices:

(
H2 D2

H1
V−CSW

2 V
D1 0 αV

)

,

(
H1 D1

H2
V−CWS

2 V
D2 0 (1 − α)V

)

.

We introduce the parameters CSW , CWS and α into the payoff matrices to incorporate the
disparity in the levels of aggressiveness of the two communities. These parameters can be
defined as follows:

• C is the fighting cost incurred by a hawk when fighting against a hawk from the same
community;

• CSW is the fighting cost incurred by a hawk from the more aggressive community when
fighting against a hawk from the other community;

• CWS is the fighting cost incurred by a hawk from the less aggressive community when
fighting against a hawk from the other community;

• α is the resource part that takes a dove from the more aggressive community when com-
peting with a dove from the other community.
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The parameters satisfy: 0 < CSW < C < CWS and 0.5 ≤ α < 1. When two hawks from
different communities compete for a resource, they do not incur the same cost aswhenfighting
against an intra-community hawk. Also, when two doves from different communities meet,
they share the resource unevenly. In particular, with these parameters, the first community is
more aggressive than the second community: Hawks in community 1 provoke more injuries
than hawks in the other community, and doves in community 1 take more resource than those
in community 2. When CSW = CWS and α = 0.5, the two communities have the same
degree of aggressiveness. We aim to illustrate with numerical examples (i) the effect of the
interaction probabilities and the parameters of the game on the existence of ESSs and (ii) the
impact of these parameters and delays on the convergence to the fully mixed intermediate
ESS in the replicator dynamics.

5.1 ESSs in the Hawk–Dove Game

In Fig. 2, we plot the region of ESSs in function of the interaction probabilities p1 and p2 for
the parameter values C = 6, CSW = 5, CWS = 9, α = 0.7 and for two different values of
the resource: V = 2 in the left subfigure and V = 4 in the right subfigure. We observe that in
both subfigures, the fully mixed intermediate ESS exists for the higher values of p1 and p2,
that is, when the intra-group interactions are more probable than inter-group interactions in
both communities. This region allows all strategies in both communities to coexist. For the
lower values of p1 and p2, we observe in both subfigures, the existence of completely pure
strong ESS. The area between these two regions is characterized by the existence of partially
mixed strong ESS, that is, an ESS which is pure in one community and mixed in the other.
We also note the existence of fully mixed weak ESS in a small region in both figures.

Furthermore, we plot in Fig. 3 the region of ESSs in function of p1 and α for two values
of p2: p2 = 0.2 in the left subfigure and p2 = 0.6 in the right subfigure. When p2 = 0.2, we
note that any fully mixed intermediate ESS does not exist. We observe that fully mixed weak
ESSs exist for a small range of higher values of p1 and α. The completely pure and partially
mixed strong ESS exist for a large range of values of p1 and α. In the right subfigure, when
p2 = 0.6, we note the appearance of fully mixed intermediate ESSs for the higher values of
p1.
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Fig. 2 Regions of ESSs in the interaction probabilities plane (p1, p2) for the parameter valuesC = 6,CSW =
5, CWS = 9, α = 0.7. The plus signs represent fully mixed intermediate ESS, the squares represent fully
mixed weak ESSs, the circles represent partially mixed strong ESS, and the diamonds represent completely
pure strong ESS
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Fig. 3 Regions of ESSs in the plane (p1, α) for the parameter values C = 6, CSW = 5, CWS = 9, and
V = 4. The plus signs represent fully mixed intermediate ESS, the squares represent fully mixed weak ESSs,
the circles represent partially mixed strong ESS, and the diamonds represent completely pure strong ESS

5.2 Replicator Dynamics in the Hawk–Dove Game

In this subsection, we study the effects of delays and the game parameters on the convergence
of the replicator dynamics to the fully mixed intermediate ESS. For the parameter values
C = 6, CSW = 5, CWS = 9, α = 0.7, V = 4, p1 = 0.7, p2 = 0.6, we conclude from
Fig. 2b that there exists a fully mixed intermediate ESS which is given by s∗ = (0.73, 0.42).
Furthermore, s∗ is asymptotically stable in the replicator dynamics (Corollary 1). We plot in
Fig. 4, the evolution of the proportion of hawks in both communities over time according to
the replicator dynamics with strategic delays where the initial (arbitrary) population profile
is given by (0.6, 0.2). Each strategy has a delay of τst . We observe in the left subfigure the
convergence to the ESS for τst = 1.6 time units after some damped oscillations, whereas
we observe permanent oscillations around the ESS in the right subfigure for τst = 2.5 time
units. From Theorem 4, the maximum value of the strategic delay for which the fully mixed
intermediate ESS is asymptotically stable is τ̄st = 2.4 time units. Therefore, the asymptotic
stability of the ESS is lost for τst = 2.5 time units.

Furthermore, we study the effect of spatial delays on the convergence to the ESS in the
replicator dynamics. Spatial delays appear in inter-community interactions only. In Fig. 5a,
we observe a convergence to the intermediate ESS. Indeed, from Theorem 5, the replicator
dynamics converges to the fully mixed intermediate ESS for any value of τsp . When both
delays exist, spatial delay (τsp = 1.4 time units) and strategic delay (τst = 2.5), we observe
in Fig. 5b persistent oscillations (Fig. 5).

In addition, we study the effect of the resource value on the convergence to the ESS.
For a fixed strategic delay value of τst = 2.2 time units, we observe in Fig. 6a oscillations
around the fully mixed intermediate ESS when V = 3. For the same value of the strategic
delay and when V = 4, we observe the convergence to the ESS (Fig. 6b). We note that
increasing the resource value had a stabilizing effect. Furthermore, we illustrate in Fig. 7 the
effect of the intra-community fighting cost C on the convergence to the fully mixed ESS in
the replicator dynamics. In the left subfigure, for C = 6, we observe the convergence to the
mixed ESS whereas in the right subfigure, for C = 8, we note persistent oscillations around
the ESS and the loss of stability. Therefore, increasing the intra-community fighting cost had
a destabilizing effect.
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Fig. 4 Replicator dynamics with strategic delays τ̄st = 2.4 time units,C = 6,CSW = 5,CWS = 9, α = 0.7,
V = 4, p1 = 0.7, p2 = 0.6
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Fig. 5 Replicator dynamics with purely spatial delays (left) and spatial strategic delays (right). C = 6,
CSW = 5, CWS = 9, α = 0.7, V = 4, p1 = 0.7, p2 = 0.6
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Fig. 6 Effect of the resource value on the convergence to the ESS for the same strategic delay value τst = 2.2
time units. C = 6, CSW = 5, CWS = 9, α = 0.7, p1 = 0.7, p2 = 0.6
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Fig. 7 Effect of the intra-community fighting cost on the convergence to the ESS for the same strategic delay
value τst = 2.2 time units. V = 4, CSW = 5, CWS = 10, α = 0.7, p1 = 0.7, p2 = 0.6

6 Conclusion

In this paper, we developed a novel mathematical tool to model the evolution of a population
composed of several communities that interact in a nonuniform manner. We defined three
ESSs with different levels of stability against mutations: strong, weak and intermediate ESS.
Through the analysis of two-community two-strategy model, we show that any fully mixed
strong ESS cannot exist; fully mixed intermediate and weak ESS may exist under some con-
ditions on the payoffs and the interaction probabilities. In addition, we studied the replicator
dynamics in its classic form and with delays. We defined strategic delays, spatial delays and
spatial strategic delays. For the Hawk–Dove game played between two communities with an
asymmetric level of aggressiveness, we characterized the regions of ESS in function of the
interaction probabilities and the game parameters. We illustrated through numerical exam-
ples how the value of delays and the game parameters affect the convergence to the ESS in
the replicator dynamics.

Appendix

Proof of Proposition 1

Let us first prove that Definition 1 implies Definition 2. Since the condition in Definition 1
holds for any sufficiently small ε, as ε → 0, Ūi (si , εs + (1 − ε)s∗, p) < Ūi (s∗

i , εs + (1 −
ε)s∗, p) for all i = 1, . . . , N , implies Ūi (si , s∗, p) ≤ Ūi (s∗

i , s∗, p) for all i = 1, . . . , N .
Therefore, the first condition in Definition 2 is established. Now we suppose there exists i
such that Ūi (si , s∗, p) = Ūi (s∗

i , s∗, p). Since the expected utility is linear in s, the condition
Ūi (si , εs+ (1− ε)s∗, p) < Ūi (s∗

i , εs+ (1− ε)s∗, p) can be written as εŪi (si , s, p) + (1−
ε)Ūi (si , s∗, p) < εŪi (s∗

i , s, p) + (1 − ε)Ūi (s∗
i , s∗, p). Since Ūi (si , s∗, p) = Ūi (s∗

i , s∗, p),
the last inequality can be written εŪi (si , s, p) < εŪi (s∗

i , s, p); which yields Ūi (si , s, p) <

Ūi (s∗
i , s, p) since ε > 0. Therefore, the second condition in Definition 2 is established.

Let us now prove that the Definition 2 implies Definition 1. We have for all i and for
any s �= s∗, Ūi (si , s∗, p) ≤ Ūi (s∗

i , s∗, p). If for some i , this inequality is strict, then the
condition in Definition 1 is satisfied for ε = 0 and so for sufficiently small ε. If for some i ,
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Ūi (si , s∗, p) = Ūi (s∗
i , s∗, p), then the second condition inDefinition 2 implies Ūi (si , s, p) <

Ūi (s∗
i , s, p). If we multiply this relation by ε and add (1 − ε)Ūi (si , s∗, p) to the left-hand

side, and (1 − ε)Ūi (s∗
i , s∗, p) to the right-hand side, we get the condition in Definition 1.

Proof of Proposition 2

First, let us prove that theDefinition 3 implies theDefinition 4. If we take εi → 0 inDefinition
3, we get: Ūi (si , s∗, p) ≤ Ūi (s∗

i , s∗, p) for all i , and so condition (7). Now, to establish the
condition (8) inDefinition 4,we suppose there exists i such that Ūi (s∗

i , s∗, p) = Ūi (si , s∗, p),
we need to prove that Ūi (si , (si , s∗−i ), p) < Ūi (s∗

i , (si , s∗−i ), p). We can write condition (6)
as follows:

Ūi
(
si ,

(
εi s

∗
1 + (1 − εi )s

∗
1 , . . . , εi si + (1 − εi )s

∗
i , . . . , εi s

∗
N + (1 − εi )s

∗
N

)
, p

)

< Ūi
(
s∗
i ,

(
εi s

∗
1 + (1 − εi )s

∗
1 , . . . , εi si + (1 − εi )s

∗
i , . . . , εi s

∗
N + (1 − εi )s

∗
N

)
, p

)
.

By exploring the linearity of Ūi , we get:

εi Ūi (si , (s
∗
1 , . . . , si , . . . , s

∗
N ), p) + (1 − εi )Ūi (si , s∗, p)

< εi Ūi (s
∗
i , (s∗

1 , . . . , si , . . . , s
∗
N ), p) + (1 − εi )Ūi (s

∗
i , s∗, p).

Since we have εi > 0 and we suppose Ūi (s∗
i , s∗, p) = Ūi (si , s∗, p), the above inequality

yields:

Ūi (si , (si , s∗−i ), p) < Ūi (s
∗
i , (si , s∗−i ), p),

and so condition (8).
Now we prove that the Definition 4 implies the Definition 3. We have for all i and for all
s �= s∗

Ūi (si , s∗, p) ≤ Ūi (s
∗
i , s∗, p).

If this inequality is strict for all i , then condition (6) holds for εi = 0 and thus for sufficiently
small εi . If there exists i such that the comparison in (7) is an equality, then we obtain
Ūi (si , (si , s∗−i ), p) < Ūi (s∗

i , (si , s∗−i ), p) [condition (8)]. We multiply both sides by εi , and
by observing that Ūi (si , s∗, p) = Ūi (s∗

i , s∗, p), we add (1 − εi )Ūi (si , s∗, p) to the left side
and (1 − εi )Ūi (s∗

i , s∗, p) to the right side, we get condition (6).

Proof of Theorem 1

• There exists a mixed Nash equilibrium strategy s∗ = (s∗
1 , s

∗
2 ), when users from any group

are indifferent from playing strategy Gi or Hi , i.e., all (pure) strategies are equally fit. At
the equilibrium, we have the following system of equations:

{
U1(G1, s∗, p) = U1(H1, s∗, p),
U2(G2, s∗, p) = U2(H2, s∗, p).

Thus, we obtain the following system:
{
p1s∗

1 L1 + (1 − p1)s∗
2 L12 + K1 = 0, (a)

p2s∗
2 L2 + (1 − p2)s∗

1 L21 + K2 = 0, (b)

where L1 = a1 − b1 − c1 + d1, L12 = a12 − b12 − c12 + d12, L2 = a2 − b2 −
c2 + d2, L21 = a21 − b21 − c21 + d21, K1 = p1(b1 − d1) + (1 − p1)(b12 − d12),
K2 = p2(b2 − d2) + (1 − p2)(b21 − d21). The solution of this system is given by
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s∗ = (s∗
1 , s

∗
2 ), with s∗

1 = (1−p1)L12K2−p2L2K1
Δ

and s∗
2 = (1−p2)L21K1−p1L1K2

Δ
; where

Δ = p1 p2L1L2 − (1 − p1)(1 − p2)L12L21. Clearly, 0 < s∗
i < 1, i = 1, 2, if:

◦ 0 < Δ, 0 < (1 − p1)L12K2 − p2L2K1, (1 − p1)L12K2 − p2L2K1 < Δ,
0 < (1 − p2)L21K1 − p1L1K2, and (1 − p2)L21K1 − p1L1K2 < Δ, or
◦ Δ < 0 , (1 − p1)L12K2 − p2L2K1 < 0, Δ < (1 − p1)L12K2 − p2L2K1,
0 < (1 − p2)L21K1 − p1L1K2 < 0, and Δ < (1 − p2)L21K1 − p1L1K2.

• Let us check for which conditions s∗ = (s∗
1 , s

∗
2 ), if exists, is a strong ESS. Assume there

is a small proportion of “mutants” that uses another strategy s = (s1, s2). Using the
definition of the expected utility, we obtain:

Ū1(s
∗
1 , s

∗, p) − Ū1(s1, s∗, p) = (s∗
1 − s1)(p1s

∗
1 L1 + (1 − p1)s

∗
2 L12 + K1) = 0.

Following the same procedure for group 2, we obtain

Ū2(s
∗
2 , s

∗, p) − Ū2(s2, s∗, p) = 0.

From (5), s∗ is a strong ESS if Ūi (s∗
i , s, p) − Ūi (si , s, p) > 0 for i = 1, 2. But

Ū1(s∗
1 , s, p) − Ū1(s1, s, p) = (s∗

1 − s1)
(
p1s1L1 + (1 − p1)s2L12 + K1

)
,

Ū2(s∗
2 , s, p) − Ū2(s2, s, p) = (s∗

2 − s2)
(
p2s2L2 + (1 − p2)s1L21 + K2

)
.

We define fi , i=1,2 as follows:
{
f1(s1, s2) = (s∗

1 − s1)
(
p1s1L1 + (1 − p1)s2L12 + K1

)
,

f2(s1, s2) = (s∗
2 − s2)

(
p2s2L2 + (1 − p2)s1L21 + K2

)
.

We have ∇ f1T = [
2p1L1(s∗

1 − s1) + (1 − p1)L12(s∗
2 − s2), (1 − p1)L12(s∗

1 − s1)
]
.

Hence, ∂2 f1
∂s12

∂2 f1
∂s22

− ∂2 f1
∂s1∂s2

∂2 f1
∂s2∂s1

= −(1 − p1)
2L212 < 0 at s∗ (if p1 �= 1). Consequently, s∗ is

a saddle point. Since f1(s∗) = 0, f1 changes the sign around s∗. Therefore, the first
community cannot resist invasions by mutants. Following the same procedure with f2,
we find that (s∗

1 , s
∗
2 ) is a saddle point. Therefore, the condition of stability (5) does not

hold and consequently s∗ is not a strong ESS.
• Now, let us study for which condition s∗ = (s∗

1 , s
∗
2 ) is a weak ESS. s∗ = (s∗

1 , s
∗
2 )

is a weak ESS if Ū1(s∗
1 , (s1, s

∗
2 ), p) > Ū1(s1, (s1, s∗

2 ), p) and Ū2(s∗
2 , (s

∗
1 , s2), p) >

Ū2(s2, (s∗
1 , s2), p). But

Ū1(s
∗
1 , (s1, s

∗
2 ), p) − Ū1(s1, (s1, s

∗
2 ), p) = −p1L1(s

∗
1 − s1)

2.

which is strictly positive if L1 < 0. Following the same procedure with the second
population, we get:

Ū2(s
∗
2 , (s

∗
1 , s2), p) − Ū2(s2, (s

∗
1 , s2), p) = −p2L2(s

∗
2 − s2)

2.

which is strictly positive if L2 < 0. Therefore, if L1 < 0 and L2 < 0, s∗ is a weak ESS.
• Finally, s∗ is an intermediate ESS if Ū1(s1, s, p) + Ū2(s2, s, p) < Ū1(s∗

1 , s, p) +
Ū2(s∗

2 , s, p). Let g(s1, s2) = Ū1(s∗
1 , s, p) + Ū2(s∗

2 , s, p) − Ū1(s1, s, p) − Ū2(s2, s, p),
we have:

g(s1, s2) = (s∗
1 − s1)(p1s1L1 + (1 − p1)s2L12 + K1) + (s∗

2 − s2)(p2s2L2

+ (1 − p2)s1L21 + K2).
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The Hessian matrix of g is given by:

H(g) =
( −2p1L1 −(1 − p1)L12 − (1 − p2)L21

−(1 − p1)L12 − (1 − p2)L21 −2p2L2

)

.

The determinant ofH(g) is Δ1 = 4p1 p2L1L2 − (
(1− p1)L12 + (1− p2)L21

)2. Hence,
g is strictly positive for all s1 �= s∗

1 , s2 �= s∗
2 , if L1 < 0, L2 < 0 and Δ1 > 0.

Completely Pure ESSs

Proposition 5 • s∗ = (1, 1) is a completely pureweakESS if p1L1+(1−p1)L12+K1 > 0
or if (p1L1+(1− p1)L12+K1 = 0 and L1 < 0) and also if p2L2+(1− p2)L21+K2 > 0
or if (p2L2 + (1 − p2)L21 + K2 = 0 and L2 < 0).

• s∗ = (1, 1) is an intermediate ESS if it is a weak ESS and if p1L1+(1− p1)L12+K1 > 0,
p2L2 + (1 − p2)L21 + K2 > 0, or if (p1L1 + (1 − p1)L12 + K1 = 0, p2L2 + (1 −
p2)L21 + K2 = 0, and Δ1 > 0).

• s∗ = (1, 1) is a strong ESS if it is an intermediate ESS and also if p1L1 + (1− p1)L12 +
K1 > 0 or p2L2 + (1 − p2)L21 + K2 > 0.

• s∗ = (0, 1) is a weak ESS if (1 − p1)L12 + K1 < 0 or ((1 − p1)L12 + K1 = 0 and
L1 < 0); and also if p2L2 + K2 > 0 or (p2L2 + K2 = 0 and L2 < 0).

• s∗ = (0, 1) is an intermediate ESS if it is a weak ESS and if (1 − p1)L12 + K1 < 0,
p2L2 + K2 > 0, or ((1 − p1)L12 + K1 = 0, p2L2 + K2 = 0 and Δ1 > 0).

• s∗ = (0, 1) is a strong ESS if it is an intermediate ESS and if (1 − p1)L12 + K1 < 0 or
p2L2 + K2 > 0.

• s∗ = (1, 0) is a weak ESS if p1L1 + K1 > 0 or if (p1L1 + K1 = 0 and L1 < 0) and also
if (1 − p2)L21 + K2 < 0 or ((1 − p2)L21 + K2 = 0 and L2 < 0).

• s∗ = (1, 0) is an intermediate ESS if it is a weak ESS and if p1L1 + K1 > 0, (1 −
p2)L21 + K2 < 0, or (p1L1 + K1 = 0, (1 − p2)L21 + K2 = 0, and Δ1 > 0).

• s∗ = (1, 0) is a strong ESS if it is an intermediate ESS and if p1L1 + K1 > 0 or
(1 − p2)L21 + K2 < 0.

• s∗ = (0, 0) is a weak ESS if K1 < 0 or (K1 = 0 and L1 < 0) and also if K2 < 0 or
(K2 = 0 and L2 < 0).

• s∗ = (0, 0) is an intermediate ESS if it is a weak ESS and if K1 < 0, K2 < 0, or (K1 = 0,
K2 = 0, and Δ1 > 0).

• s∗ = (0, 0) is a strong ESS if it is an intermediate ESS and if K1 < 0 or K2 < 0.

Proof • s∗ = (1, 1) is a weak ESS if

• Ū1(s1, (1, 1), p) ≤ U1(G1, (1, 1), p), and

• if Ū1(s1, (1, 1), p) = U1(G1, (1, 1), p) then Ū1(s1, (s1, 1), p) < U1(G1, (s1, 1), p),

• Ū2(s2, (1, 1), p) ≤ Ū2(G2, (1, 1), p), and

• if Ū2(s2, (1, 1), p) = Ū2(G2, (1, 1), p) then Ū2(s2, (1, s2), p) < Ū2(G2, (1, s2), p).

The conditions above yield, for the first community p1L1 + (1− p1)L12 + K1 > 0 or (
p1L1+(1− p1)L12+K1 = 0 and L1 < 0 ); for the second community, we have p2L2+
(1−p2)L21+K2 > 0or (p2L2+(1−p2)L21+K2 = 0 and L2 < 0). Furthermore, s∗ is an
intermediate ESS if Ū1(s1, s∗, p)+ Ū2(s2, s∗, p) ≤ U1(G1, s∗, p)+U2(G2, s∗, p), and
if there exists an s forwhich this condition is an equality then Ū1(s1, s, p)+Ū2(s2, s, p) <

U1(G1, s, p) + U2(G2, s, p). These conditions yield: p1L1 + (1 − p1)L12 + K1 > 0
or ( p1L1 + (1 − p1)L12 + K1 = 0 and L1 < 0) and p2L2 + (1 − p2)L21 + K2 > 0



152 Dyn Games Appl (2017) 7:131–156

or (p2L2 + (1 − p2)L21 + K2 = 0 and L2 < 0) or (p1L1 + (1 − p1)L12 + K1 = 0,
p2L2 + (1 − p2)L21 + K2 = 0, L1 < 0, L2 < 0, and Δ1 > 0). Therefore, s∗ is an
intermediate ESS if it is a weak ESS and if either (p1L1 + (1 − p1)L12 + K1 > 0 or
p2L2 + (1 − p2)L21 + K2 > 0), or (p1L1 + (1 − p1)L12 + K1 = 0 and p2L2 + (1 −
p2)L21 + K2 = 0, and Δ1 > 0). Finally, s∗ is a strong ESS if for all s �= s∗

• Ū1(s1, s∗, p) < U1(G1, s∗, p), and

• Ū2(s2, s∗, p) < U2(G2, s∗, p).

Or if

• Ū1(s1, s∗, p) = U1(G1, s∗, p) and Ū1(s1, (s1, 1), p) < U1(G1, (s1, 1), p)

• Ū2(s2, s∗, p) < U2(G2, s∗, p).

Or if

• U1(s1, s∗, p) < U1(G1, s∗, p), and

• U2(s2, s∗, p) = U2(G2, s∗, p) and Ū2(s2, (1, s2), p) < Ū2(G2, (1, s2), p).

Or if

• U1(s1, s∗, p) = U1(G1, s∗, p), and U2(s2, s∗, p) = U2(G2, s∗, p) and
• Ū2(s2, (s1, s2), p) < Ū2(G2, (s1, s2), p) and Ū2(s2, (s1, s2), p) < Ū2(G2, (s1, s2), p).

The conditions above yield p1L1+(1− p1)L12+K1 > 0 or ( p1L1+(1− p1)L12+K1 =
0 and L1 < 0) and p2L2 + (1 − p2)L21 + K2 > 0 or (p2L2 + (1 − p2)L21 + K2 = 0
and L2 < 0). Therefore, s∗ is strong ESS if it is an intermediate ESS and if either
p1L1 + (1 − p1)L12 + K1 > 0 or p2L2 + (1 − p2)L21 + K2 > 0.
We can follow the same procedure for determining the conditions of existence of all fully

pure ESS. ��
Partially mixed ESSs

Proposition 6 • s∗ = (1, s∗
2 ) where s

∗
2 = − (1−p2)L21+K2

p2L2
is a weak ESS if p1L1 + (1 −

p1)L12s∗
2 + K1 > 0 and L2 < 0; or if p1L1 + (1 − p1)L12s∗

2 + K1 = 0, L1 < 0, and
L2 < 0.

• s∗ = (1, s∗
2 ) is an intermediate ESS if it is weak and either p1L1+(1−p1)L12s∗

2+K1 > 0
or Δ1 > 0.

• s∗ = (1, s∗
2 ) is a strongESS if it is an intermediateESSand if p1L1+(1−p1)L12s∗

2+K1 >

0.
• s∗ = (0, s∗

2 ) where s
∗
2 = − K2

p2L2
is a weak ESS if (1 − p1)s∗

2 L12 + K1 < 0 and L2 < 0,
or if (1 − p1)s∗

2 L12 + K1 = 0, L1 < 0, and L2 < 0.
• s∗ = (0, s∗

2 ) s
∗ is an intermediate ESS if it is a weak ESS and either (1− p1)s∗

2 L12+K1 <

0 or Δ1 > 0.
• s∗ = (0, s∗

2 ) is a strong ESS if it is an intermediate ESS and if (1− p1)s∗
2 L12 + K1 < 0.

• s∗ = (s∗
1 , 1)where s

∗
1 = − (1−p1)L12+K1

p1L1
is a weak ESS if p2L2+(1− p2)L21s∗

1 +K2 > 0
and L1 < 0; or if p2L2 + (1 − p2)L21s∗

1 + K2 = 0, L1 < 0 and L2 < 0.
• s∗ = (s∗

1 , 1) is an intermediate ESS if it is a weak ESS and either p2L2+(1− p2)L21s∗
1 +

K2 > 0 or Δ1 > 0.
• s∗ = (s∗

1 , 1) is a strong ESS if it is an intermediate ESS and p2L2+(1− p2)L21s∗
1 +K2 >

0.
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• s∗ = (s∗
1 , 0) with s

∗
1 = − K1

p1L1
is a weak ESS if (1− p2)L21s∗

1 + K2 < 0 and L1 < 0 or
if (1 − p2)L21s∗

1 + K2 = 0, L1 < 0 and L2 < 0.
• s∗ = (s∗

1 , 0) is an intermediate ESS if it is a weak ESS and either (1− p2)L21s∗
1 +K2 < 0

or Δ1 > 0.
• s∗ = (s∗

1 , 0) is a strong ESS if it is an intermediate ESS and (1 − p2)L21s∗
1 + K2 < 0.

Proof • s∗ = (1, s∗
2 ) where s

∗
2 = − (1−p2)L21+K2

p2L2
is a weak ESS if either:

• Ū1(s1, s∗, p) < U1(G1, s∗, p) ; Ū2(s2, s∗, p) = Ū2(s∗
2 , s

∗, p), and Ū2(s2, (1, s2), p) <

Ū2(s∗
2 , (1, s2), p) for all s �= s∗ (since the equilibrium ismixed in the second community);

or • if Ū1(s1, s∗, p) = U1(G1, s∗, p) and Ū1(s1, (s1, s∗
2 ), p) < U1(G1, (s1, s∗

2 ), p) and
Ū2(s2, s∗, p) = Ū2(s∗

2 , s
∗, p), and Ū2(s2, (1, s2), p) < Ū2(s∗

2 , (1, s2), p). The first set
of conditions yields p1L1 + (1 − p1)L12s∗

2 + K1 > 0 and L2 < 0. The second set of
conditions yields p1L1 + (1 − p1)L12s∗

2 + K1 = 0, L1 < 0, and L2 < 0.

• s∗ = (1, s∗
2 )where s

∗
2 = − (1−p2)L21+K2

p2L2
is an intermediate ESS if: • Ū1(s1, (1, s∗

2 ), p)+
Ū1(s2, 1, s∗

2 ), p) ≤ U1(G1, (1, s∗
2 ), p)+ Ū2(s∗

2 , (1, s
∗
2 ), p) . • If there exists s for which

the above condition is an equality, then Ū1(s1, s, p) + Ū2(s2, s, p) < Ū1(s∗
1 , s, p) +

Ū2(s∗
2 , s, p). We conclude that the conditions of existence of the intermediate ESS are

either L2 < 0 and p1L1+ (1− p1)L12s∗
2 +K1 > 0, or p1L1+ (1− p1)L12s∗

2 +K1 = 0,
L1 < 0, L2 < 0 and Δ1 > 0. Therefore, s∗ is an intermediate ESS if it is a weak ESS
and either p1L1 + (1 − p1)L12s∗

2 + K1 > 0 or Δ1 > 0.
• s∗ = (1, s∗

2 ) is a partially mixed strong ESS if

Ū1(s1, (1, s
∗
2 ), p) < Ū1(G1, (1, s

∗
2 ), p)

Ū2(s2, (1, s
∗
2 ), p) = Ū2(s

∗
2 , (1, s

∗
2 ), p) and Ū2(s2, (1, s2), p) < Ū2(s

∗
2 , (1, s2), p).

or if

Ū1(s1, (1, s
∗
2 ), p) = Ū1(G1, (1, s2

∗), p) and Ū1(s1, (s1, s2), p) < U1(G1, (s1, s2), p)

Ū2(s2, (s1, s2), p) < Ū2(s
∗
2 , (s1, s2), p)

The first set of conditions yield p1L1+(1− p1)L12s∗
2 +K1 > 0 and L2 < 0. The second

set of conditions cannot be satisfied (saddle point). We conclude that s∗ is a strong ESS
if its an intermediate ESS and if p1L1 + (1 − p1)L12s∗

2 + K1 > 0.
We follow the same procedure for determining the conditions of existence of the other

partially mixed ESS. ��
Proof of Theorem 2

In order to examine the stability of the interior stationary point, we make a linearization of
the system (12) around s∗ and observe how the linearized system behaves. We introduce a
small perturbation around s∗ defined by x1(t) = s1(t) − s∗

1 and x2(t) = s2(t) − s∗
2 . The

replicator dynamics then writes:

ẋ1(t) = (x1(t) + s∗
1 )(1 − x1(t) − s∗

1 )
(
p1x1(t)L1 + (1 − p1)x2(t)L12

)
,

ẋ2(t) = (x2(t) + s∗
2 )(1 − x2(t) − s∗

2 )
(
p2x2(t)L2 + (1 − p2)x1(t)L21

)
.

Keepingonly linear terms in x1 and x2,weobtain a linearized systemof the form ẋ(t) = Ax(t)
where xt = (x1, x2),

A =
(

γ1 p1L1 γ1(1 − p1)L12

γ2(1 − p2)L21 γ2 p2L2

)

,
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γ1 = s∗
1 (1 − s∗

1 ), and γ2 = s∗
2 (1 − s∗

2 ). The linearized system is asymptotically stable if
all the eigenvalues of A have negative real parts. The eigenvalues of A are the roots of the
characteristic polynomialXA = λ2− tr(A)λ+det (A), with tr(A) = γ1 p1L1+γ2 p2L2 and
det (A) = γ1γ2(p1 p2L1L2 − (1− p1)(1− p2)L12L21). We check that if Δ = p1 p2L1L2 −
(1 − p1)(1 − p2)L12L21 > 0, L1 < 0 and L2 < 0, then the two eigenvalues of A have
negative real parts and the stability follows.

Proof of Corollary 1

We aim to prove that a mixed intermediate ESS is asymptotically stable in the replicator
dynamics. From Theorem 1, the interior equilibrium s∗ is an intermediate ESS if L1 < 0,
L2 < 0 andΔ1 > 0. In addition, fromTheorem 2, s∗ is asymptotically stable if L1 < 0, L2 <

0, andΔ > 0.Wecan thenprove that ifΔ1 = 4p1 p2L1L2−((1−p1)L12+(1−p2)L21)
2 > 0,

then Δ = p1 p2L1L2 − (1 − p1)(1 − p2)L12L21 > 0 (or equivalently 4Δ > 0). We have:

4p1 p2L1L2 − ((1 − p1)L12 + (1 − p2)L21)
2 − 4

(
p1 p2L1L2 − (1 − p1)(1 − p2)L12L21

)

= −((1 − p1)L12 − (1 − p2)L21)
2 < 0.

The proof follows.

Proof of Theorem 3

Let us prove that the partially mixed ESS s∗ = (1, s∗
2 ) with s∗

2 = − (1−p2)L21+K2
p2L2

is asymp-
totically stable. We make a linearization of the replicator dynamics around s∗ and we study
the Jacobian matrix. If all the eigenvalues of the Jacobian matrix have negative real parts then
the asymptotic stability follows. The Jacobian matrix is given by:

A =
(−p1L1 − (1 − p1)s∗

2 L12 − K1 0
γ2(1 − p2)L21 γ2 p2L2

)

,

with γ2 = s∗
2 (1−s∗

2 ). The eigenvalues of the Jacobianmatrix are the solutions of the following
characteristic polynomial: XA = λ2 − tr(A)λ + det (A). We check that s∗ is asymptotically
stable if p1L1 + (1 − p1)s∗

2 L12 + K1 > 0 and L2 < 0. Therefore, by virtue of Proposition
6, the strong ESS s∗ is asymptotically stable.
Similarly, we can prove this result for all other partially mixed and completely pure strong
ESSs.

Proof of Theorem 4

We showed in Appendix “Proof of Theorem 2” that the eigenvalues of A which are solutions
of λ2 − tr(A)λ+det (A) = 0 have negative real parts when Δ = p1 p2L1L2 − (1− p1)(1−
p2)L12L21 > 0, L1 < 0 and L2 < 0; the mixed intermediate ESS is asymptotically stable
when τst = 0 (Corollary 1). For the remaining of the proof that gives the bound on τst for
which the stability is unaffected, the reader should refer to [16], pp.82, Theorem 3.4.

Proof of Theorem 5

The proof of this theorem is based on that given by Freedman and Kuang (Theorem 4.1, page
202), related to the location of roots of the characteristic equation (14), and stated as follows:

• If β2 < δ2, ⇒ if s∗ is unstable for τ = 0, then it is unstable for any τ ≥ 0; if s∗ is stable
at τ = 0, then it remains stable for τ inferior than some τs ≥ 0. But, if s∗ is stable at
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τ = 0, then Δ = p1 p2L1L2 − (1 − p1)(1 − p2)L12L21 > 0 ⇒ β2 > δ2. Therefore,
this case is excluded.

• If β2 > δ2, 2β−α2 > 0, and
(
2β−α2

)2
> 4(β2−δ2), then the stability of the stationary

point can change a finite number of times at most as τ is increased, and eventually it
becomes unstable. But

2β − α2 = 2γ1γ2 p1 p2L1L2 − (p1γ1L1 + p2γ2L2)
2

= −p21γ
2
1 L

2
1 − p22γ

2
2 L

2
2. < 0

Therefore, this case is excluded in our model.
• Otherwise, (this is the only case when s∗ is stable at τ = 0), the stability of the stationary

point s∗ does not change for any τ ≥ 0.
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