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Abstract In the paper we consider the controlled continuous-time Markov chain describing
the interacting particles system with the finite number of types. The system is controlled by
two players with the opposite purposes. ThisMarkov game converges to a zero-sum differen-
tial game when the number of particles tends to infinity. Krasovskii–Subbotin extremal shift
provides the optimal strategy in the limiting game. The main result of the paper is the near
optimality of the Krasovskii–Subbotin extremal shift rule for the original Markov game.
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1 Introduction

The paper is concerned with the construction of near-optimal strategies for zero-sum two-
player continuous-timeMarkov game based on deterministic game. The term ‘Markov game’
is used for a Markov chain with the Kolmogorov matrix depending on controls of players.
These games are also called continuous-time stochastic games. Continuous-time Markov
games were first studied by Zachrisson [20]. The recent progress in the theory of continuous-
time Markov games can be found in [15,17] and references therein.

We consider the case when the continuous-time Markov chain describes the interacting
particle system. The interacting particle system converges to the deterministic system as
the number of particles tends to infinity [7,8] (see also [3,4]). The value function of the
controlled Markov chain converges to the value function of the limiting control system [8]
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(see the corresponding result for the discrete-time systems in [6]). This result is extended
to the case of zero-sum games as well as to the case of nonzero-sum games in [8]. If the
nonanticipative strategy is optimal for the differential game, then it is near optimal for the
Markov game [8]. However, the nonanticipative strategies require the knowledge of the
control of the second player. Often this information is inaccessible, and the player has only
the information about the current position. In this case, one can use feedback strategies or
control with guide strategies.

Control with guide strategies were proposed by Krasovskii and Subbotin to construct the
solution of the deterministic differential game under informational disturbances [13]. Note
that feedback strategies do not provide the stable solution of the differential game. If the
player uses control with guide strategy, then the control is formed stepwise, and the player
has a model of the system that is used to choose an appropriate control on each step. The
easiest way to construct a control with guide strategy is the extremal shift rule. The value
function is achieved in the limit when the time between control corrections tends to zero. In
the original work by Krasovskii and Subbotin, the motion of the model is governed by the
system that is a copy of the original system and the motion of the original system is close
to the motion of the model. Therefore the model can be called guide. Formally, control with
guide strategy is a strategy with memory. However, it suffices to store only the finite number
of vectors. Moreover, the player does not require the information on second player’s control.

The control with guide strategies realizing the extremal shift was used for the differential
games without Lipschitz continuity assumption on the system dynamics in [14] and for
the games governed by delay differential equations in [12,16]. Krasovskii and Kotelnikova
proposed the stochastic control with guide strategies [9–11]. In that case, the real motion
of the deterministic system is close to the auxiliary stochastic process generated by optimal
control for the stochastic differential game. The Nash equilibrium for two-player game in the
class of control with guide strategies was constructed via extremal shift in [1].

In this paper, we let the player use the control with guide strategy realizing the extremal
shift rule in the Markov game. We assume that the motion of the guide is given by the
limiting deterministic differential game.We estimate the expectation of the distance between
theMarkov chain and themotions of themodel (guide). This leads to the estimate between the
outcome of the player in the Markov game and the value function of the limiting differential
game.

The paper is organized as follows. In preliminary Sect. 2, we introduce the Markov game
describing the interacting particle system and the limiting deterministic differential game. In
Sect. 3, we give the explicit definition of control with guide strategies and formulate the main
results. Section 4 is devoted to a property of transition probabilities. In Sect. 5, we estimate
the expectation of distance between the Markov chain and the deterministic guide. Section 6
provides the proofs of the statements formulated in Sect. 3. Finally, in Sect. 7, we illustrate
the theoretical results by a simulation of some Markov chain.

2 Preliminaries

We consider the system of the finite number of particles. Each particle can be of type i ,
i ∈ {1, . . . , d}. The type of each particle is a random variable governed by a Markov chain.
To specify this chain, consider the Kolmogorovmatrix Q(t, x, u, v) = (Qi j (t, x, u, v))di, j=1.
That means that the elements of matrix Q(t, x, u, v) satisfy the following properties

– Qi j (t, x, u, v) ≥ 0 for i �= j ;
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–
Qii (t, x, u, v) = −

∑

j �=i

Qi j (t, x, u, v). (1)

Here t ∈ [0, T ], x ∈ Σd = {(x1, . . . , xd) : xi ≥ 0, x1 + · · · + xn = 1}, u ∈ U , v ∈ V .

The parameter x is used below for the state of the interacting particle system. We assume
that x = (x1, . . . , xd) is a row vector. The variables u and v are controlled by the first and
the second players, respectively.

Additionally we assume that

– U and V are compact sets;
– Q is a continuous function;
– for any t , u and v, the function x �→ Q(t, x, u, v) is Lipschitz continuous;
– for any t ∈ [0, T ], ξ, x ∈ R

n , the following equality holds true.

min
u∈U max

v∈V 〈ξ, xQ(t, x, u, v)〉 = max
v∈V min

u∈U 〈ξ, xQ(t, x, u, v)〉 (2)

Condition (2) is an analog of well-known Isaacs condition.
For fixed parameters x ∈ Σd , u ∈ U , and v ∈ V , the type of each particle is determined

by the Markov chain with the generator

(Q(t, x, u, v) f )i =
∑

j �=i

Qi j (t, x, u, v)( f j − fi ), f = ( f1, . . . , fd).

The another way to specify the Markov chain is the Kolmogorov forward equation

d

dt
P(s, t, x) = P(s, t, x)Q(t, x, u, v).

Here P(s, t, x) = (Pi j (s, t, x))di j=1 is the matrix of the transition probabilities.
Nowwe consider the controlledmean-field interacting particle system (see for details [8]).

Let ni be a number of particles of the type i . The vector N = (n1, . . . , nd) ∈ Z
d+ is the

state of the system consisting of |N | = n1 + · · · + nd particles. For i �= j and a vector
N = (n1, . . . , nd) denote by N [i j] the vector obtained from N by removing one particle of
type i and adding one particle of type j , i.e., we replace the i th coordinate with ni − 1 and
the j th coordinate with n j + 1. The mean-field interacting particle system is a Markov chain
with the generator

d∑

i, j=1

ni Qi j (t, N/|N |, u(t), v(t))
[
f
(
N [i j])− f (N )

]
.

The purpose of the first (respectively, second) player is to minimize (respectively, maximize)
the expectation of σ(N/|N |).

Denote the inverse number of particles by h = 1/|N |. Normalizing the states of the
interacting particle system, we get the generator (see [8])

Lh
t [u, v] f (N/|N |)

=
d∑

i, j=1

1

h

ni
|N |Qi j (t, N/|N |, u(t), v(t))

[
f

(
N [i j]

|N |
)

− f

(
N

|N |
)]

.
(3)
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Denote the vector N/|N | by x = (x1, . . . , xd). Thus, we have that

Lh
t [u, v] f (x) =

d∑

i, j=1

1

h
xi Qi j (t, x, u(t), v(t))[ f (x − hei + he j ) − f (x)].

Here ei is the i th coordinate vector. The vector x belongs to the set

Σh
d = {(x1, . . . , xd) : xi ∈ hZ, x1 + · · · + xd = 1} ⊂ Σd .

Further, let Udet[s] (respectively, Vdet[s]) denote the set of deterministic controls of the
first (respectively, second) player on [s, T ], i.e.,

Udet[s] = {u : [s, T ] → U measurable},
Vdet[s] = {v : [s, T ] → V measurable}.

Let (Ω,F, {Ft }, P) be a filtered probability space. Extending the definition given in [5,
p. 135] to the stochastic game case, we say that the pair of stochastic processes u and v on
[s, T ] is an admissible pair of controls if

1. u(t) ∈ U , v(t) ∈ V ;
2. the processes u and v are progressive measurable;
3. for any y ∈ Σh

d , there exists an unique {Ft }t∈[s,T ]-adapted càdlàg stochastic process
Xh(t, s, y, u, v) taking values in Σh

d , starting at y at time s and satisfying the following
condition for any f ∈ C(Σh

d )

f
(
Xh(t, s, y, u, v)

)
−
∫ t

s
Lh
t [u(τ ), v(τ )] f

(
Xh(τ, s, y, u, v)

)
dτ

is a martingale.

In particular, the third condition means that

E
h
sy f

(
Xh(t, s, y, u, v)

)
− f (y) =

∫ t

s
E
h
sy L

h
t [u(τ ), v(τ )] f

(
Xh(τ, s, y, u, v)

)
dτ. (4)

Here Eh
sy denotes the conditional expectation of corresponding stochastic processes.

The purposes of the players can be reformulated in the following way. The first (respec-
tively, second) player wishes to minimize (respectively, maximize) the payoff

E
h
syσ

(
Xh(T, s, y, u, v)

)
.

Let Uh[s] be a set of stochastic processes u taking values in U such that the pair (u, v)

is admissible for any v ∈ Vdet[s]. Analogously, let Vh[s] be a set of stochastic processes v

taking values in V such that the pair (u, v) is admissible for any u ∈ Udet[s].
Denote by Ph

sy(A) the conditional probability of an event A under condition that the
Markov chain corresponding to the parameter h starts at y at time s, i.e.,

Ph
sy(A) = E

h
sy1A

Further, let ph(s, y, t, z, u, v) denote the transition probability, i.e.,

ph(s, y, t, z, u, v) = Ph
sy

(
Xh(t, s, y, u, v) = z

)
= E

h
sy1{z}

(
Xh(t, s, y, u, v)

)
.
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The substituting 1{z} for f in (3) and (4) gives that

ph(s, y, t, z, u, v) = ph(s, y, s, z, u, v)

+ 1

h

∫ t

s
E
h
sy

d∑

i, j=1

Xh
i (τ, s, y, u, v)Qi j

(
τ, Xh(τ, s, y, u, v), u(τ ), v(τ )

)

×
[
1z
(
Xh(τ, s, y, u, v) − hei + he j

)
− 1z

(
Xh(τ, s, y, u, v)

)]
dτ. (5)

Here Xh
i (τ, s, y, u, v) denotes the i th component of Xh(τ, s, y, u, v).

Recall (see [8]) that if h → 0, then the generator Lh
t [u, v] converges to the generator

Λt [u, v] f (x) =
d∑

i=1

∑

j �=i

xi Qi j (t, x, u(t), v(t))

[
∂ f

∂x j
(x) − ∂ f

∂xi
(x)

]

=
d∑

k=1

∑

i �=k

[xi Qik(t, x, u(t), v(t)) − xk Qki (t, x, u(t), v(t))] ∂ f

∂xk
(x).

For controls u ∈ Udet[s] and v ∈ Vdet[s], the deterministic evolution generated by the
generator Λt [u(t), v(t)] is described by the equation

d

dt
ft (x) =

d∑

k=1

∑

i �=k

[xi Qik(t, x, u(t), v(t)) − xk Qki (t, x, u(t), v(t))] ∂ ft
∂xk

(x),

fs(x) = f (x), x = (x1, . . . , xd) ∈ Σd . (6)

Here the function ft (y) is equal to f (x(t)) when x(s) = y. The characteristics of (6) solve
the ODEs

d

dt
xk(t) =

∑

i �=k

[xi (t)Qik(t, x(t), u(t), v(t)) − xk(t)Qki (t, x(t), u(t), v(t))]

=
d∑

i=1

xi (t)Qik(t, x(t), u(t), v(t)), k = 1, d.

One can rewrite this system in the vector form

d

dt
x(t) = x(t)Q(t, x(t), u(t), v(t)),

t ∈ [0, T ], x(t) ∈ R
d , u(t) ∈ U, v(t) ∈ V . (7)

For given u ∈ Udet[s], v ∈ Vdet[s] denote the solution of the initial value problem for (7) and
the condition x(s) = y by x(·, s, y, u, v).

Consider the deterministic zero-sum game with the dynamics given by (7) and terminal
payoff equal to σ(x(T, s, y, u, v)). This game has a value in the class of feedback strategies
[13] that is a continuous function of the position. Denote it by Val(s, y). Recall (see [18])
that the function Val(s, y) is a minimax (viscosity) solution of the Hamilton–Jacobi PDE

∂W

∂t
+ H(t, x,∇W ) = 0, W (T, x) = σ(x). (8)

Here the Hamiltonian H is defined by the rule

H(t, x, ξ) = min
u∈U max

v∈V 〈ξ, xQ(t, x, u, v)〉.
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Remark 1 The approaches based on control with guide strategies and nonanticipative strate-
gies (see [2] for detailed presentation of this approach) are equivalent to the feedback
formalization [18]. The value function in these cases is also equal to Val.

3 Control with Guide Strategies

In this section, we introduce the control with guide strategies for the Markov game. It is
assumed that the control is formed stepwise and the player has an information about the
current state of the system, i.e., the vector x is known. Additionally, we assume that the
player can evaluate the expected state and the player’s control depends on current state of the
system and on the evaluated state. This evaluation is called guide. At each time of control
correction, the player computes the value of the guide and the control that is used up to the
next time of control correction.

Formally (see [19]), control with guide strategy of player 1 is a triple u = (u(t, x, w),

ψ1(t+, t, x, w), χ1(s, y)). Here the function u(t, x, w) is equal to the control implemented
after time t if at time t the state of the system is x and the state of the guide isw. The function
ψ1(t+, t, x, w) determines the state of the guide at time t+ under the condition that at time
t the state of the system is x and the state of the guide is w. The function χ1 initializes the
guide, i.e., χ1(s, y) is the state of the guide in the initial position (s, y).

We use the control with guide strategies for the Markov game with the generator Lh
t . Here

we assume that h > 0 is fixed. Let (s, y) be an initial position, s ∈ [0, T ], y ∈ Σh
d . Assume

that player 1 chooses the control with guide strategy u and the partition Δ = {tk}mk=0 of the
time interval [s, T ], whereas player 2 chooses the control v ∈ Vh[s]. This control can be also
formed stepwise using some second player’s control with guide strategy.

We say that the stochastic process X h
1 [·, s, y, u,Δ, v] is generated by strategy u, par-

tition Δ and the second player’s control v if for t ∈ [tk, tk+1) X h
1 [t, s, y, u,Δ, v] =

Xh(t, tk , xk, uk, v), where

– x0 = y, w0 = χ1(t0, x0), u0 = u(t0, x0, w0);
– for k = 1, r xk = Xh(tk, tk−1, xk−1, uk−1, v), wk = ψ1(tk, tk−1, xk−1, wk−1),

uk = u(tk, xk, wk).

Note that even though the state of the guide wk is determined by the deterministic function,
it depends on the random variable xk−1. Thus, wk is a random variable.

Below we define the first player’s control with guide strategy that realizes the extremal
shift rule (see [13]). Let ϕ be a supersolution of Eq. (8). That means (see [18]) that for any
(t∗, x∗) ∈ [0, T ] × Σd , t+ > t∗ and v∗ ∈ V , there exists a solution ζ1(·, t+, t∗, x∗, v∗) of the
differential inclusion

ζ̇1(t) ∈ co{ζ1(t)Q(t, ζ1(t), u, v∗) : u ∈ U }
satisfying the conditions

ζ1(t∗, t+, t∗, x∗, v∗) = x∗, ϕ(t+, ζ1(t+, t+, t∗, x∗, v∗)) ≤ ϕ(t∗, x∗).

Define the control with guide strategy û = (û, ψ̂1, χ̂1) by the following rules. If t∗, t+ ∈
[0, T ], t+ > t∗, x∗, w∗ ∈ Σd , then choose u∗, v∗ by the rules

min
u∈U max

v∈V 〈x∗ − w∗, x∗Q(t∗, x∗, u, v)〉 = max
v∈V 〈x∗ − w∗, x∗Q(t∗, x∗, u∗, v)〉, (9)

max
v∈V min

u∈U 〈x∗ − w∗, x∗Q(t∗, x∗, u, v)〉 = min
u∈U 〈x∗ − w∗, x∗Q(t∗, x∗, u, v∗)〉. (10)
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Put

(u1) û(t∗, x∗, w∗) = u∗,
(u2) ψ̂1(t+, t∗, x∗, w∗) = ζ1(t+, t+, t∗, w∗, v∗),
(u3) χ̂1(s, y) = y.

Note that if the first player uses the strategy û in the differential gamewith the dynamics given
by (7), then she guarantees the limit outcome not greater than ϕ (see [13,18]). If additionally
ϕ = Val, then the strategy û is optimal in the deterministic game.

The main result of the paper is the following.

Theorem 1 Assume that σ is Lipschitz continuous with a constant R, and the function ϕ is
a supersolution of (8). If the first player uses the control with guide strategy û determined by
(u1)–(u3), then

(i)

lim
δ↓0 sup

{
E
h
sy

(
σ
(
X h
1 [T, s, y, û,Δ, v]

))
: d(Δ) ≤ δ, v ∈ Vh[s]

}

≤ ϕ(s, y) + R
√
Dh.

(ii)

lim
δ↓0 sup

{
Ph
sy

(
σ
(
X h
1 [T, s, y, û,Δ, v]

)
≥ ϕ(s, y) + R 3

√
Dh
)

:

d(Δ) ≤ δ, v ∈ Vh[s]
}

≤ 3
√
Dh.

Here D is a constant not dependent on ϕ and σ .

The theorem is proved in Sect. 6.
Now let us consider the case when the second player uses control with guide

strategies. The control with guide strategy of the second player is a triple v =
(v(t, x, w), ψ2(t+, t, x, w), χ2(s, y)). Herew denotes the state of the second player’s guide.
The control in this case is formed also stepwise. If (s, y) is an initial position,Δ is a partition of
time interval [s, T ] and u ∈ Uh[s] is a control of player 1, then denote by X h

2 [·, s, y, v,Δ, u]
the corresponding stochastic process.

Let φ be a subsolution of Eq. (8). That means (see [18]) that for any (t∗, x∗) ∈ [0, T ]×Σd ,
t+ > t∗ and u∗ there exists a trajectory ζ2(·, t+, t∗, x∗, u∗) of the differential inclusion

ζ̇2(t) ∈ co{ζ2(t)Q(t, ζ2(t), u
∗, v) : v ∈ V }, ζ2(t∗) = x∗

satisfying the condition φ(t+, ζ2(t+, t+, t∗, x∗, u∗)) ≥ φ(t∗, x∗).
Define the strategy v̂ by the following rule. If (t∗, x∗) is a position, t+ > t∗ and w∗ ∈ Σd

is a state of the guide, then choose v∗ and u∗ by the rules

min
v∈V max

u∈U 〈x∗ − w∗, x∗Q(t∗, x∗, u, v)〉 = max
u∈U 〈x∗ − w∗, x∗Q(t∗, x∗, u, v∗)〉,

max
u∈U min

v∈V 〈x∗ − w∗, x∗Q(t∗, x∗, u, v)〉 = min
v∈V 〈x∗ − w∗, x∗Q(t∗, x∗, u∗, v)〉.

Put

(v1) v(t∗, x∗, w∗) = v∗,
(v2) ψ2(t+, t∗, x∗, w∗) = ζ2(t+, t+, t∗, x∗, u∗)
(v3) χ2(s, y) = y.
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Corollary 1 Let φ be a subsolution of (8). If the second player uses the control with guide
strategy v̂ determined by (v1)–(v3), then

(i)

lim
δ↓0 inf

{
E
h
sy

(
σ
(
X h
2 [T, s, y, û,Δ, v]

))
: d(Δ) ≤ δ, u ∈ Uh[s]

}

≥ φ(s, y) − R
√
Dh.

(ii)

lim
δ↓0 sup

{
Ph
sy

(
σ
(
X h
2 [T, s, y, v̂,Δ, u]

)
≤ φ(s, y) − R 3

√
Dh
)

:

d(Δ) ≤ δ, u ∈ Uh[s]
}

≤ 3
√
Dh.

The corollary is also proved in Sect. 6.

4 Properties of Transition Probabilities

Now we prove the following.

Lemma 1 There exists a function αh(δ) such that αh(δ) → 0 as δ → 0 and for any
t∗, t+ ∈ [0, T ], ξ, η ∈ Σd , ξ = (ξ1, . . . , ξd), ū ∈ U, v̄ ∈ Vh[t∗] the following properties
hold true

1. if η = ξ , then

ph(t∗, ξ, t+, η, ū, v̄) ≤ 1 + 1

h

d∑

k=1

∫ t+

t∗

∫

V
ξk Qkk(t∗, ξ, ū, v)ντ (dv)dτ

+αh(t+ − t∗) · (t+ − t∗);
2. if η = ξ − hei + he j , then

ph(t∗, ξ, t+, η, u, v)

≤ 1

h

∫ t+

t∗

∫

V
ξi Qi j (t∗, ξ, ū, v)ντ (dv)dτ + αh(t+ − t∗) × (t+ − t∗);

3. if η �= ξ and η �= ξ − hei + he j , then

ph(t∗, ξ, t+, η, u, v) ≤ αh(t+ − t∗) × (t+ − t∗);
Here ντ is a measure on V depending on t∗, t+, ξ , η, ū and v̄.

Proof First denote

K = sup{|Qi j (t, x, u, v)| : i, j = 1, d, t ∈ [0, T ], x ∈ Σd , u ∈ U, v ∈ Q}. (11)

For any x ∈ Σd , t ∈ [0, T ], u ∈ U , v ∈ V , the following estimates hold true

‖x‖ ≤ √
d,

∣∣∣∣∣

n∑

i=1

xi Qi j (t, x, u, v)

∣∣∣∣∣ ≤ K , ‖xQ(t, x, u, v)‖ ≤ K
√
d. (12)
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Further, let γ (δ) be a common modulus of continuity with respect to t of the functions Qi j ,
i.e., for all i , j , t ′, t ′′ ∈ [0, T ], x ∈ Σd , u ∈ U , v ∈ Q

|Qi j (t
′, x, u, v) − Qi j (t

′′, x, u, v)| ≤ γ (t ′′ − t ′) (13)

and γ (δ) → 0 as δ → 0. From (5) and (12), we obtain that

ph(t∗, ξ, t, η, u, v) ≤ ph(t∗, ξ, t∗, η, u, v) + 2Kd

h
(t − t∗). (14)

Further, for a given control v̄ ∈ Vh[t∗], let Eh
t∗ξ ;τ x denote the expectation under conditions

Xh(t∗, t∗, ξ, ū, v̄) = ξ , and Xh(τ, t∗, ξ, ū, v̄) = x .
We have that

E
h
t∗ξ f =

∑

x∈Σh
d

E
h
t∗ξ ;τ x f × ph(t∗, ξ, τ, x, ū, v̄).

From this and (5), we get

ph(t∗, ξ, t+, η, ū, v̄) = ph(t∗, ξ, t∗, η, ū, v̄)

+ 1

h

∫ t+

t∗

∑

x∈Σh
d

E
h
t∗ξ ;τ x

d∑

i, j=1

xi Qi, j (τ, x, ū, v̄(τ )) [1η(x − hei + he j ) − 1η(x)]

× ph(t∗, ξ, τ, x, ū, v̄)dτ ≤ ph(t∗, ξ, t∗, η, ū, v̄)

+ 1

h

∫ t+

t∗

∑

x∈Σh
d

E
h
t∗ξ ;τ x

d∑

i, j=1

xi Qi, j (τ, x, ū, v̄(τ )) [1η(x − hei + he j ) − 1η(x)]

× ph(t∗, ξ, t∗, x, ū, v̄)dτ + 2K 2d2

h
(t − t∗)2.

Here xi denotes the i th component of the vector x .
We have that ph(t∗, ξ, t∗, x, ū, v̄) = 1 for x = ξ and ph(t∗, ξ, t∗, x, ū, v̄) = 0 for x �= ξ .

Thus,

ph(t∗, ξ, t+, η, ū, v̄) ≤ ph(t∗, ξ, t∗, η, ū, v̄)

+ 1

h

∫ t+

t∗
E
h
t∗ξ ;τξ

d∑

i, j=1

ξi Qi, j (τ, ξ, ū, v̄(τ )) [1η(ξ − hei + he j ) − 1η(ξ)]

+ 2K 2d2

h
(t − t∗)2

≤ ph(t∗, ξ, t∗, η, ū, v̄) + 1

h

∫ t+

t∗
E
h
t∗ξ ;τξ

d∑

i, j=1

ξi Qi, j (t∗, ξ, ū, v̄(τ )) [1η(ξ − hei + he j ) − 1η(ξ)]dτ

+ 2K 2d2

h
(t − t∗)2 + 2d

h
γ (t − t∗) × (t − t∗).

Recall that for each τ v̄(τ ) is a random variable with values in V . Define the measure ντ on
V as the image measure of Pt∗ξ ;τξ by v̄(τ ), where for A ∈ F

Pt∗ξ ;τξ (A) = Et∗ξ ;τξ1A.
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We have that

Et∗ξ ;τξ Qi j (t∗, ξ, ū, v̄(τ )) =
∫

Ω

Qi j (t∗, ξ, ū, v̄(τ, ω))Pt∗ξ ;τξ (dω)

=
∫

V
Qi j (t∗, ξ, ū, v)ντ (dv).

Consequently,

ph(t∗, ξ, t+, η, ū, v̄) ≤ ph(t∗, ξ, t∗, η, ū, v̄)

+ 1

h

∫ t+

t∗

∫

V

d∑

i, j=1

ξi Qi, j (t∗, ξ, ū, v)[1η(ξ − hei + he j ) − 1η(ξ)]ντ (dv)dτ

+αh(t − t∗) × (t − t∗). (15)

Here we denote

αh(δ) = 2K 2d2

h
δ + 2d

h
γ (δ).

From (15) the second and third statements of the Lemma follow. To derive the first statement,
use the property of Kolmogorov matrixes (1). We have that

ph(t∗, ξ, t+, ξ, ū, v̄) ≤ ph(t∗, ξ, t∗, η, ū, v̄)

− 1

h

∫ t+

t∗

∫

V

d∑

i=1

∑

j �=i

ξi Qi, j (t∗, ξ, ū, v)ντ (dv)dτ + αh(t − t∗) × (t − t∗)

= 1 + 1

h

∫ t+

t∗

∫

V

d∑

i=1

ξi Qi,i (t∗, ξ, ū, v)ντ (dv)dτ + αh(t − t∗) × (t − t∗).

��

5 Key Estimate

This section provides the estimate of the distance between the controlled Markov chain and
the guide. This estimate is an analog of [13, Lemma 2.3.1].

Lemma 2 There exist constants β,C > 0, and a function �h(δ) such that �h(δ) → 0 as
δ → 0 and the following property holds true.
If

1. (t, x) ∈ [0, T ] × Σh
d , w∗ ∈ Σd , t+ > t∗,

2. The controls u∗, v∗ are chosen by rules (9) and (10) respectively,
3. w+ = ζ1(t+, t+, t∗, w∗, v∗),

then for any v ∈ Vh[t∗]
E
h
t∗x∗
(‖X (t+, t∗, x∗, u∗, v) − w+‖2)

≤ (1 + β(t+ − t∗))‖x∗ − w∗‖2 + Ch(t+ − t∗) + �h(t+ − t∗) × (t − t∗).

Proof Denote the i th component of vector x∗ by x∗i .
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We have that

E
h
t∗x∗(‖X (t+,t∗, x∗, u∗, v) − w+‖2)

=
∑

z∈Σh
d

‖z − w+‖2 ph(t∗, x∗, t+, z, u∗, v). (16)

Further,

‖z − w+‖2 = ‖(z − x∗) + (x∗ − w∗) + (w∗ − w+)‖2
= ‖x∗ − w∗‖2 + 2〈x∗ − w∗, z − x∗〉

− 2〈x∗ − w∗, w+ − w∗〉 + ‖z − x∗‖2 + ‖w+ − w∗‖2.

It follows from (12) that

∥∥∥∥
d

dt
ζ1(t+, t, t∗, w∗, v∗)

∥∥∥∥ ≤ K
√
d, ‖w+ − w∗‖2 ≤ K 2d(t+ − t∗)2. (17)

From Lemma 1, it follows that

∑

z∈Σh
d

‖z − x∗‖2 ph(t∗, x∗, t+, z, u∗, v)

≤
d∑

i=1

∑

j �=i

‖ − hei + he j‖2 1
h

∫ t+

t∗

∫

V
Qi j (t∗, x∗, u∗, v)ντ (dv)dτ

+ 2d3αh(t+ − t∗) × (t+ − t∗)
≤ 2hd2K (t+ − t∗) + 2d3αh(t+ − t∗) × (t+ − t∗).

(18)

For simplicity denote ζ∗(t) = ζ1(t, t+, t∗, w∗, u, v∗). We have that for each t there exists a
probability μt on U such that

dζ∗
dt

(t) =
∫

U
ζ∗(t)Q(t, ζ∗(t), u, v∗)μt (du).

Therefore,

∑

z∈Σh
d

〈x∗ − w∗,w+ − w∗〉ph(t∗, x∗, t+, z, u∗, v)

=
〈
x∗−w∗,

∫ t+

t∗

∫

u∈U
ζ∗(t)Q(t, ζ∗(t), u, v∗)μt (du)dt

〉
.

(19)

Define
�(δ) � sup

{
|y′′Q(t ′′, y′′, u, v) − y′Q(t ′, y′, u, v)| :

t ′, t ′′ ∈ [0, T ], y′, y′′ ∈ Σd , u ∈ U, v ∈ V,

|t ′ − t ′′| ≤ δ, ‖y′ − y′′‖ ≤ δK
√
d
}
.

(20)
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We have that �(δ) → 0, as δ → 0. From (17), (19), and (20), it follows that

∑

z∈Σh
d

〈x∗ − w∗, w+ − w∗〉ph(t∗, x∗, t+, z, u∗, v)

≥
〈
x∗ − w∗,

∫ t+

t∗

∫

u∈U
w∗Q(t∗, w∗, u, v∗)μt (du)dt

〉

− √
2d�(t+ − t∗) × (t+ − t∗).

(21)

Using Lemma 1 one more time we get the inequality

∑

z∈Σh
d

〈x∗ − w∗, z − x∗〉ph(t∗, x∗, t+, z, u∗, v)

≤
d∑

i=1

∑

j �=i

〈x∗ − w∗,−hei + he j 〉 1
h

∫ t+

t∗

∫

V
x∗i Qi j (t∗, x∗, u∗, v)νt (dv)dt

+ 2d3αh(t+ − t∗) × (t+ − t∗).

(22)

The first term in the right-hand side of (22) can be transformed as follows. Denote for
simplicity

Q̂i j =
∫ t+

t∗

∫

V
Qi j (t∗, x∗, u∗, v)νt (dv)dt.

Note that Q̂ = (Q̂i j )
d
i, j=1 is a Kolmogorov matrix. We have that

d∑

i=1

∑

j �=i

(−hei + he j )
1

h

∫ t+

t∗

∫

V
x∗i Qi j (t∗, x∗, u∗, v)νt (dv)dt

=
d∑

i=1

∑

j �=i

e j x∗,i Q̂i j −
d∑

i=1

x∗,i e
i
∑

j �=i

Q̂i j

=
d∑

i=1

d∑

j=1

e j x∗,i Q̂i j =
d∑

j=1

[
d∑

i=1

x∗,i Q̂i j

]
e j = x∗ Q̂.

This and (22) yield the estimate

∑

z∈Σh
d

〈x∗ − w∗, z − x∗〉ph(t∗, x∗, t+, z, u∗, v)

≤
〈
x∗ − w∗,

∫ t+

t∗

∫

V
x∗Q(t∗, x∗, u∗, v)νt (dv)dt

〉

+ 2d3αh(t+ − t∗) × (t+ − t∗).

(23)
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Substituting (17)–(21), (23) in (16), we get the inequality

E
h
t∗x∗(‖X (t+, t∗, x∗, u∗, v) − w+‖2) ≤ ‖x∗ − w∗‖2

+ 2

〈
x∗ − w∗,

∫ t+

t∗

∫

V
x∗Q(t∗, x∗, u∗, v)νt (dv)dt

〉

− 2

〈
x∗ − w∗,

∫ t+

t∗

∫

u∈U
w∗Q(t∗, w∗, u, v∗)μt (du)dt

〉

+ 2Kd2h(t+ − t∗) +
(
6d3αh(t+ − t∗) + √

2d�(t+ − t∗)
)

× (t+ − t∗).

(24)

LetΥ be a Lipschitz constant of the function y �→ yQ(t, y, u, v), i.e., for all y′, y′′ ∈ Σd ,
t ∈ [0, T ], u ∈ U , v ∈ Q

‖y′Q(t, y′, u, v) − y′′Q(t, y′′, u, v)‖ ≤ Υ ‖y′ − y′′‖.
We have that

2
〈
x∗ − w∗,

∫ t+

t∗

∫

V
x∗Q(t∗, x∗, u∗, v)νt (dv)dt

〉

− 2
〈
x∗ − w∗,

∫ t+

t∗

∫

u∈U
w∗Q(t∗, w∗, u, v∗)μt (du)dt

〉

≤ 2
∫ t+

t∗

∫

u∈U

∫

v∈V

[〈
x∗ − w∗, x∗Q(t∗, x∗, u∗, v)

〉

−
〈
x∗ − w∗, x∗Q(t∗, x∗, u, v∗)

〉]
νt (dv)μt (du)dt

+ 2Υ ‖x∗ − w∗‖2(t+ − t∗).

The choice of u∗ and v∗ gives that for all u ∈ U , v ∈ V

〈x∗ − w∗, x∗Q(t∗, x∗, u∗, v)〉 ≤ 〈x∗ − w∗, x∗Q(t∗, x∗, u, v∗)〉.
Consequently, we get the estimate

2
〈
x∗ − w∗,

∫ t+

t∗

∫

V
x∗Q(t∗, x∗, u∗, v)νt (dv)dt

〉

− 2
〈
x∗ − w∗,

∫ t+

t∗

∫

u∈U
w∗Q(t∗, w∗, u, v∗)μt (du)dt

〉

≤ 2Υ ‖x∗ − w∗‖2(t+ − t∗).

From this and (24), the conclusion of the Lemma follows for β = 2Υ, C = 2d2K , �h(δ) =
6d3αh(δ) + √

2d�(δ). ��

6 Near-Optimal Strategies

In this section, we prove Theorem 1 and Corollary 1.

Proof of Theorem 1 Let v ∈ Vh[s] be a control of the second player. Consider a partition
Δ = {tk}mk=1 of the time interval [s, T ]. If x0, x1, . . . , xm are vectors, x0 = y, then denote
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by p̂hr (x1, . . . , xr ,Δ) the probability of the event X h
1 [tk, s, y, û,Δ, v] = xk for k = 1, r .

Define vectors w0, . . . , wm recursively in the following way. Put

w0 � χ̂1(s, y) = y, (25)

for k > 0 put
wk � ψ̂1(tk, tk−1, xk−1, wk−1). (26)

If w0, . . . , wm are defined by rules (25), (26) and r ∈ 1,m, we set

gr (x0, . . . , xr−1,Δ) � (w0, . . . , wr ).

In addition, put g0(Δ) � y.
Below we use the transformation G(·,X h

1 [·, s, y, û,Δ, v]) of the stochastic process
X h
1 [·, s, y, û,Δ, v] defined in the following way. If xi are values of X h

1 [ti , s, y, û,Δ, v],
i = 0, . . . , r , and (w0, . . . , wr ) = gr (x0, . . . , xr−1,Δ), then we put

G(tr ,X h
1 [·, s, y, û,Δ, v]) � wr .

Generally, the stochastic process G(·,X h
1 [·, s, y, û,Δ, v]) is non-Markov.

Further, if ui = û(ti , xi , wi ), i = 0, . . . , r , and

(w0, . . . , wr ) = gr (x0, . . . , xr−1,Δ),

we write ςr (x0, . . . , xr ,Δ) � ur .
We have that for any r ∈ 1,m

E
h
sy

(
‖X h

1 [tr , s, y, û,Δ, v] − G(tr ,X h
1 [·, s, y, û,Δ, v])‖2

)

=
∑

x1,...,xr

‖xr − gr (x0, . . . , xr−1,Δ)‖2 p̂r (x0, . . . , xr ,Δ)

=
∑

x1,...,xr−1

p̂r−1(x0, . . . , xr−1,Δ) ·
∑

xr

‖xr − gr (x0, . . . , xr−1,Δ)‖2

× Ph
tr−1xr−1

(X (tr , tr−1, xr−1, ςr−1(x0, . . . , xr−1), v) = xr ).

(27)

By Lemma 2, we have that

∑

xr

‖xr − gr (x1, . . . , xr−1,Δ))‖2

× Ph
tr−1xr−1

(X (tr , tr−1, xr−1, ςr−1(x0, . . . , xr−1), v) = xr )

≤ (1 + β(tr − tr−1))‖xr−1 − gr−1(x0, . . . , xr−2,Δ)‖2
+ Ch × (tr − tr−1) + �h(tr − tr−1) × (tr − tr−1).

From this and (27), it follows that

E
h
sy

(
‖X h

1 [tr , s, y, û,Δ, v] − G(tr ,X h
1 [·, s, y, û,Δ, v])‖2

)

≤ (1 + β(tr − tr−1))E
h
sy(‖xr−1 − gr−1(x0, . . . , xr−2)‖2)

+ Ch × (tr − tr−1) + �h(tr − tr−1) × (tr − tr−1).

(28)
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Applying this inequality recursively, we get

E
h
sy

(
‖X h

1 [T, s, y, û,Δ, v] − G(T,X h
1 [·, s, y, û,Δ, v])‖2

)

≤ exp(β(T − s))Eh
sy(‖x0 − g0(Δ)‖2)

+ Ch × (T − s) + �h(d(Δ)) × (T − s).

Taking into account the equality x0 = y = g0(Δ), we conclude that

E
h
sy

(
‖X h

1 [T, s, y, û,Δ, v] − G(T,X h
1 [·, s, y, û,Δ, v])‖2

)
≤ ε(h, d(Δ)). (29)

Here we denote

ε(h, δ) � Dh + T�h(δ), D � CT .

Note that for any h ε(h, δ) → Dh, as δ → 0. Using (29) and Jensen’s inequality, we get

E
h
sy

(
‖X h

1 [T, s, y, û,Δ, v] − G(T,X h
1 [·, s, y, û,Δ, v])‖

)
≤ √ε(d(Δ), h). (30)

By construction of control with guide strategy û, the following inequalities hold true

ϕ(s, y) = ϕ(t0, g0(Δ)) ≥ ϕ(t1, g1(x0,Δ)) ≥ . . .

≥ ϕ(tm, gm(x0, . . . , xm0−1,Δ)) = σ(gm(x0, . . . , xm0−1,Δ)).

Hence,
σ(G(T,X h

1 [·, s, y, û,Δ, v])) ≤ ϕ(s, y). (31)

Since σ is Lipschitz continuous with the constant R, we have that for any partition Δ and
the second player’s control v

σ(X h
1 [T, s, y, û,Δ, v])

≤ ϕ(s, y) + R‖X h
1 [T, s, y, û,Δ, v] − G(T,X h

1 [·, s, y, û,Δ, v])‖.
This and (30) yield the inequality

E
h
syσ(X h

1 [T, s, y, û,Δ, v]) ≤ ϕ(s, y) + R
√

ε(d(Δ), h).

Passing to the limit as d(Δ) → 0 and taking into account the property ε(δ, h) → Dh, as
δ → 0, we obtain the first statement of the theorem.

Now let us prove the second statement of the theorem. Using Markov inequality and (29),
we get

P
(‖X h

1 [T, s, y, û,Δ, v] − G(T,X h
1 [·, s, y, û,Δ, v])‖ ≥ [ε(h, d(Δ))]1/3)

= P
(‖X h

1 [T, s, y, û,Δ, v] − G(T,X h
1 [·, s, y, û,Δ, v])‖2 ≥ [ε(h, d(Δ))]2/3)

≤ E
h
sy(‖X h

1 [T, s, y, û,Δ, v] − G(T,X h
1 [·, s, y, û,Δ, v])‖2)

[ε(h, d(Δ))]2/3
≤ 3
√

ε(h, d(Δ)).

Lipschitz continuity of the function σ and (31) yield the following inclusion

{σ(X h
1 [T, s, y, û,Δ, v]) ≥ ϕ(s, y) + R[ε(h, d(Δ))]1/3} ⊂
{‖X h

1 [T, s,y, û,Δ, v] − G(T,X h
1 [·, s, y, û,Δ, v])‖ ≥ [ε(h, d(Δ))]1/3}.
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Finally, for any partition Δ and any second player’s control v ∈ Vh[s], we have that
P{σ(X h

1 [T, s, y, û,Δ, v]) ≥ ϕ(s, y) + R[ε(h, d(Δ))]1/3} ≤ [ε(h, d(Δ))]1/3.
From this, the second statement of the theorem follows. ��

To prove Corollary 1, it suffices to replace the payoff function with −σ and interchange
the players.

7 Example

In this section we illustrate the theory developed above with a simulation study. Let d = 2,

Q(t, x, u, v) =
(−u u

v −v

)
,

u, v ∈ [0, 1], σ(x1, x2) = 1
2 |x1 − x2|. In this case the generator Lh

t [u, v] (see (3)) takes the
form

Lh
t [u, v] f (x1, x2)

= 1

h
[u( f (x1 − h, x2 + h) − f (x1, x2)) + v( f (x1 + h, x2 − h) − f (x1, x2))],

(32)

whereas the limiting dynamics (7) takes the form
{
ẋ1 = −x1u + x2v,

ẋ2 = x1u − x2v.
(33)

Using equality x1 + x2 = 1, we can reduce the system (33) to the ODE

ẋ2 = (1 − x2)u − x2v. (34)

The corresponding Hamiltonian for x2 ∈ [0, 1] is equal to

H(t, x2, ξ) =
{
0, ξ ≥ 0,
(1 − 2x2)ξ, ξ ≤ 0.

(35)

Further, we replace the payoff function σ with the equivalent payoff function σ̃ = |1/2 −
x2|. The solution of the Hamilton–Jacobi PDE (8) with the Hamiltonian (35) and boundary
condition given by the function σ̃ is

ϕ(t, x2) =
{
x2 − 1/2 x2 ≥ 1/2,
(1/2 − x2)e−2(T−t), x2 ≤ 1/2.

We have that the controls u∗ and v∗ satisfying condition (9) and (10) are

u∗ = v∗ =
{
0, x2 ≥ w,

1, x2 < w,

Let t∗, t+ ∈ [0, T ], x∗ ∈ [0, 1], v∗ ∈ [0, 1]. If x∗ < 1/2, then put

ζ̃1(t, t+, t∗, x∗, v∗) = 1

1 + v∗
+
(
x∗ − 1

1 + v∗

)
e−(1+v∗)(t−t0),

if x∗ ≥ 1/2 then put

ζ̃1(t, t+, t∗, x∗, v∗) = 1/2 + (x∗ − 1/2)e−2v∗(t−t0).



Dyn Games Appl (2017) 7:1–20 17

Fig. 1 Sample path of the Markov chain with N = 32

Note that ζ̃1(·, t+, t∗, x∗, v∗) is a solution of the differential inclusion

ẏ ∈ co{(1 − y)u − yv∗ : u ∈ [0, 1]}.
Moreover,

ζ̃1(t∗, t+, t∗, x∗, v∗) = x∗,

and ϕ(t∗, x∗) ≤ ϕ(t+, ζ̃1(t+, t+, t∗, x∗, v∗)). The function ζ̃1 is a second coordinate of the
function ζ defined in Sect. 3. Thus, the control with guide strategy determined by (u1)–(u3)
takes the form

û(t, x2, w) =
{
0, x2 ≥ w,

1, x2 < w,

ψ̂1(t+, t, x2, w) = ζ̃ (t+, t+, t, w, v∗) where

v∗ =
{
0, x2 ≥ w,

1, x2 < w,

χ̂1(s, y2) = y2.
To simulate the Markov chain with the generator (32), we consider the discrete-time

Markov chain defined for tk = kΔt with the transition probabilities

phΔt (tk, y1, y2, tk+1, x1, x2, u, v) =

⎧
⎪⎪⎨

⎪⎪⎩

uΔt, x1 = y1 − h, x2 = y2 + h,

vΔt, x1 = y1 + h, x2 = y2 − h,

1 − (u + v)Δt, x1 = yy, x2 = y2,
0, otherwise.

The state of the guide was computed analytically. The results of the simulation for N = 32,
t0 = 0, x0 = (7/8, 1/8), T = 1, Δt = 10−3,

v(t, x1, x2) =
{
0, x2 ≤ 1/2,
1, x2 > 1/2
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Fig. 2 Markov chain with N = 32 averaged over 100 simulations

Fig. 3 Sample path of the Markov chain with N = 128

and 100 trials are presented in Figs. 1 and 2.
Note that the value of the game is 0.0017119, whereas the average distance between the

state of the Markov chain and 1/2 is 0.08375, and the average distance between state of the
guide and 1/2 is 0.0295650. Moreover the standard deviation between state of the Markov
chain and the state of the guide is 0.0074127.

The results of the simulation of Markov chain with N = 128 particles are presented in
Figs. 3 and 4. In this case the average distance between the state of the Markov chain and
1/2 is 0.0678906, the average distance between state of the guide and 1/2 is 0.0379969, the
standard deviation between state of the Markov chain and the state of the guide is 0.0017119.



Dyn Games Appl (2017) 7:1–20 19

Fig. 4 Markov chain with N = 128 averaged over 100 simulations

Note that the ratio of the standard deviations is less than ratio of the number of particles. This
result corresponds to estimate (29).

8 Conclusion

A continuous-time Markov game describing an interacting particle system is considered. A
near-optimal guaranteeing strategy in the above Markov game is designed on the basis of an
auxiliary deterministic game derived from the Markov one. The extreme shift rule proposed
by Krasovskii and Subbotin is used for the design. The above strategy uses the model of the
Markov game defined by deterministic relations called the guide. However, it receives state
estimates of the Markov game to the input. Thus, the strategy used in the paper is a stochastic
and memory strategy. The question whether the auxiliary game has purely feedback strategy
which is near optimal in the Markov game remains open.

The study of the paper is restricted to Markov games describing interacting particle sys-
tems. The extension of the results obtained to general Markov games is the subject of future
work.
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