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Abstract In this paper, we analyze the mean number E(n, d) of internal equilibria in a
general d-player n-strategy evolutionary game where the agents’ payoffs are normally dis-
tributed. First, we give a computationally implementable formula for the general case. Next,
we characterize the asymptotic behavior of E(2, d), estimating its lower and upper bounds
as d increases. Then we provide a closed formula for E(n, 2). Two important consequences
are obtained from this analysis. On the one hand, we show that in both cases, the probability
of seeing the maximal possible number of equilibria tends to zero when d or n, respectively,
goes to infinity. On the other hand, we demonstrate that the expected number of stable equi-
libria is bounded within a certain interval. Finally, for larger n and d , numerical results are
provided and discussed.

Keywords Evolutionary game · Multi-player games · Multiple strategies ·
Random polynomials · Number of equilibria · Random games

1 Introduction

Evolutionary game theory is the suitable mathematical framework whenever there is
frequency-dependent selection—the fitness of an individual does not only depend on its strat-
egy, but also on the composition of the population in relation with (multiple) other strategies
[17,27,28]. The payoff from the games is interpreted as individual fitness, naturally leading
to a dynamical approach. As in classical game theory with the Nash equilibrium [25,26], the
analysis of properties of equilibrium points in evolutionary game theory has been of special
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interest [5,10,27]. Herein, equilibrium points of a dynamical system predict the composition
of strategy frequencies, where all the strategies have the same average fitness. Biologically,
these points can predict a coexistence of different types in a population and the maintenance
of polymorphism.

Recently, some attention has been paid to both numerical and analytical studies of equi-
librium points and their stability in random evolutionary games [10,18]. The focus was on
analyzing the probability of observing a certain number of equilibria (whether counting all
equilibria or only the stable ones) if the payoff entries are randomly drawn. This probability
allows one to predict the complexity of the interactions as the number of strategies and the
number of players in the game increase, especially when the environments are unknown or
changing rapidly over time [8,9]. Furthermore, these studies have paid substantial attention
to themaximal number of equilibrium points and the attainability of the patterns of evolution-
arily stable strategies, as knowing them is insightful, and historically, they have been studied
extensively, not only in classical and evolutionary game theory, but also in other fields such
as population genetics [2–6,10,12,18–20,27,37–39]. However, as the studies deal with the
concrete numbers of equilibrium points, they need to take a direct approach that consists of
solving a system of polynomial equations, the degree of which increases with the number of
players in a game. As such, the mathematical analysis was mostly restricted to evolutionary
games with a small number of players, due to the impossibility of solving general polynomial
equations of a high degree [1,18].

In this paper, we ask instead the question: what is the mean or expected number of equilib-
ria that one can observe if the payoffmatrix entries of the game are randomly drawn?Knowing
themean number of equilibria not only gives important insights into the overall complexity of
the interactions as the number of participating players in the game and the potential strategies
that the players can adopt aremagnified. It also enables us to predict the boundaries of the con-
crete numbers of (stable) equilibriumpoints such as themaximal one aswe show later on in the
paper. By connecting to the theory of random polynomials [7], we first provide an exact, com-
putationally implementable formula for the expected number of equilibria in a general multi-
player multi-strategy random game when the payoff entries are normally distributed. Sec-
ondly, we derive lower and upper bounds of such a formula for the case of two-player games
and provide an explicit formula for the case of two-strategy games. As a consequence, we
can derive similar bounds when considering only equilibrium points that are stable. Finally,
numerical results are provided and discussed when there are more players and strategies.

The rest of the paper is structured as follows. In Sect. 2, we introduce themodels andmeth-
ods: The replicator equations in evolution game theory and the random polynomial theory
are summarized in Sects. 2.1 and 2.2, respectively. The link between them, which is a major
aspect of our method, is described in Sect. 2.3. The main results of this paper are presented in
Sect. 3, starting with two-strategy games in Sect. 3.1, thenwith two-player games in Sect. 3.2,
and lastly, with the general case of games with arbitrary numbers of players and strategies in
Sect. 3.3. We compare our results with related ones in the literature and discuss some future
directions in Sect. 4. Finally, some detailed computations are given in the “Appendix.”

2 Models and Methods

2.1 Evolutionary Game Theory and Replicator Dynamics

The classical approach to evolutionary games is replicator dynamics [17,28,32,35,41],
describing that whenever a strategy has a fitness larger than the average fitness of the popu-
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lation, it is expected to spread. Formally, let us consider an infinitely large population with n
strategies, numerated from 1 to n. They have frequencies xi , 1 ≤ i ≤ n, respectively, satis-
fying that 0 ≤ xi ≤ 1 and

∑n
i=1 xi = 1. The interaction of the individuals in the population

is in randomly selected groups of d participants, that is, they play and obtain their fitness
from d-player games. We consider here symmetric games (e.g., the public goods games and
their generalizations [13–15,30,33]) in which the order of the participants is irrelevant. Let
α
i0
i1,...,id−1

be the payoff of the focal player, where i0 (1 ≤ i0 ≤ n) is the strategy of the focal
player, and let ik (with 1 ≤ ik ≤ n and 1 ≤ k ≤ d−1) be the strategy of the player in position
k. These payoffs form a (d − 1)-dimensional payoff matrix [10], which satisfies (because of
the game symmetry)

α
i0
i1,...,id−1

= α
i0
i ′1,...,i ′d−1

, (1)

whenever {i ′1 . . . , i ′d−1} is a permutation of {i1 . . . , id−1}. This means that only the fraction
of each strategy in the game matters.

The average payoff or fitness of the focal player is given by

πi0 =
n∑

i1,...,id−1=1

α
i0
i1,...,id−1

d−1∏

k=1

xik . (2)

By abuse of notation, let us denote α
i0
k1,...,kn

:= α
i0
i1,...,id−1

, where ki , 1 ≤ i ≤ n, with
∑n

i=1 ki = d − 1, is the number of players using strategy i in {i1, . . . , id−1}. Hence, from
Eq. (1), the fitness of strategy i0 can be rewritten as follows

πi0 =
∑

0≤k1,...,kn≤d−1,∑n
i=1 ki=d−1

α
i0
k1,...,kn

(
d − 1

k1, ..., kn

) n∏

i=1

xkii for i0 = 1, . . . , n, (3)

where

(
d − 1

k1, . . . , kn

)

= (d−1)!∏n
k=1 ki ! are the multinomial coefficients.

Now the replicator equations for games with n strategies can be written as follows [17,31]

ẋi = xi (πi − 〈π〉) for i = 1, . . . , n − 1, (4)

where 〈π〉 =∑n
k=1 xk πk is the average payoff of the population. The equilibrium points of

the system are given by the points (x1, . . . , xn), satisfying the condition that the fitness of all
strategies are the same. That is, they are represented by solutions of the system of equations

πi = πn for all 1 ≤ i ≤ n − 1. (5)

Subtracting fromeachof the equations the termπn ,we obtain a systemofn−1polynomials
of degree d − 1

∑

0≤k1,...,kn≤d−1,∑n
i=1 ki=d−1

β i
k1,...,kn−1

(
d − 1

k1, ..., kn

) n∏

i=1

xkii = 0 for i = 1, . . . , n − 1, (6)

where β i
k1,...,kn−1

:= αi
k1,...,kn

− αn
k1,...,kn

. Assuming that all the payoff entries have the same

probability distribution, then all β i
k1,...,kn−1

, i = 1, . . . , n − 1, have symmetric distributions,
i.e., with mean 0 (see also the proof in [18]).

In the following analysis, we focus on internal equilibrium points [10,18], i.e., 0 < xi < 1
for all 1 ≤ i ≤ n − 1. Hence, by using the transformation yi = xi

xn
, with 0 < yi < +∞



Dyn Games Appl (2016) 6:324–346 327

and 1 ≤ i ≤ n − 1, dividing the left hand side of the above equation by xd−1
n , we obtain the

following equation in terms of (y1, . . . , yn−1) that is equivalent to (6)

∑

0≤k1,...,kn−1≤d−1,
∑n−1

i=1 ki≤d−1

β i
k1,...,kn−1

(
d − 1

k1, ..., kn

) n−1∏

i=1

ykii = 0 for i = 1, . . . , n − 1. (7)

As stated, one of the main goals of this article was to compute the expected number of
(internal) equilibria in a general n-strategy d-player random evolutionary game. That consists
in computing the expected number of solutions (y1, . . . , yn−1) ∈ R+n−1 of the system of
(n − 1) polynomials of degree (d − 1) in (7). Furthermore, herein our analysis focuses on
payoff matrices with normally distributed entries. It is known that, even for n = 2, it is
impossible to analytically solve the system whenever d > 5 [1], as seen in [18]. Hence, it
is not feasible to use this direct approach of analytically solving the system if one wants to
deal with games with a large number of players and with multiple strategies. In this work,
we address this issue by connecting to the theory of random polynomials described in the
following section.

2.2 Random Polynomial Theory

Keeping the form of Eq. (7) in mind, we consider a system of n − 1 random polynomials of
degree d − 1,

∑

0≤k1,...,kn−1≤d−1,
∑n−1

i=1 ki≤d−1

aik1,...,kn−1

n−1∏

i=1

ykii = 0 for i = 1, . . . , n − 1, (8)

where aik1,...,kn−1
are independent and identically distributed (i.i.d.) multivariate normal ran-

dom vectors with mean zero and covariance matrix C . Denote by v(y) the vector whose
components are all the monomials

{∏n−1
i=1 ykii

}
where 0 ≤ ki ≤ d −1 and

∑n−1
i=1 ki ≤ d −1.

Let A denote the randommatrix whose i−th row contains all coefficients aik1,...,kn−1
. Then (8)

can be rewritten as
Av(y) = 0. (9)

The following theorem is the starting point of the analysis of this paper.

Theorem 1 [7, Theorem 7.1] Let U be any measurable subset ofRn−1. Assume that the rows
of A are i.i.d. multivariate normal random vectors with mean zero and covariance matrix C.
The expected number of real roots of the system of Eqs. (9) that lie in the set U is given by

π− n
2 Γ
(n

2

) ∫

U

(

det

[
∂2

∂xi∂y j
(log v(x)T Cv(y))

∣
∣
y=x=t

]

i j

) 1
2

dt.

2.3 From Random Polynomial Theory to Evolutionary Game Theory

Let E(n, d) be the number of internal equilibria in a d-player random game with n strategies.
As has been shown in Sect. 2.1, E(n, d) is the same as the number of positive solu-

tions of Eq. (7). We will apply Theorem 1 with aik1,...,kn−1
= β i

k1,...,kn−1

(
d − 1

k1, ..., kn

)

and

U = [0,∞)n−1 ⊂ R
n−1.
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Suppose that all β i
k1,...,kn−1

are Gaussian distributions with mean 0 and variance 1, then

for each i (1 ≤ i ≤ n − 1), Ai =
{

β i
k1,...,kn−1

(
d − 1

k1, ..., kn

)}

is a multivariate normal random

vector with mean zero and covariance matrix C given by

C = diag

((
d − 1

k1, ..., kn

)2
)

0≤ki≤d−1,
∑n−1

i=1 ki≤d−1

. (10)

We obtain the following lemma, which is a direct application of Theorem 1.

Lemma 1 Assume that {Ai }1≤i≤n−1 are independent normal random vectors with mean zero
and covariance matrix C as in (10). The expected number of internal equilibria in a d-player
n-strategy random game is given by

E(n, d) = π− n
2 Γ
(n

2

) ∫ ∞

0
. . .

∫ ∞

0︸ ︷︷ ︸
n−1 times

(

det

[
∂2

∂xi y j
(log v(x)T Cv(y))

∣
∣
y=x=t

]

i j

) 1
2

dt,

(11)
where

v(x)T Cv(y) =
∑

0≤k1,...,kn−1≤d−1,
∑n−1

i=1 ki≤d−1

(
d − 1

k1, . . . , kn

)2 n∏

i=1

xkii ykii . (12)

Denote by L the matrix with entries

Li j = ∂2

∂xi y j
(log v(x)T Cv(y))

∣
∣
y=x=t ,

then E(n, d) can be written as

E(n, d) = π− n
2 Γ
(n

2

) ∫ ∞

0
. . .

∫ ∞

0︸ ︷︷ ︸
n−1 times

(det L)
1
2 dt. (13)

It has been shown that a d-player n-strategy game has at most (d − 1)n−1 isolated internal
equilibria (and this bound is sharp) [18].We denote by pi , 1 ≤ i ≤ (d−1)n−1, the probability
that the game has exactly i such equilibria. Then E(n, d) can also be defined through pi as
follows

E(n, d) =
(d−1)n−1
∑

i=1

i · pi . (14)

3 Results

We start with the case where there are two strategies (n = 2), analytically deriving the
upper and lower bounds for E(2, d). Next we derive exact results for games with two players
(d = 2). Finally, we provide numerical results and discussion for the general case with an
arbitrary number of players and strategies. For ease of representation, we start by assuming
that the coefficientsβ i

k1,...,kn−1
are standard normal distributions.We then show that the results

do not change if they have arbitrary identical normal distributions.
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3.1 Multi-player Two-Strategy Games

We first consider games with an arbitrary number of players, but having only two strategies,
i.e., n = 2. In this case, Eq. (7) is simplified to the following univariate polynomial equation
of degree d − 1 with y ∈ R+

d−1∑

k=0

βk

(
d − 1
k

)

yk = 0. (15)

The following lemma describes a closed form of E(2, d).

Lemma 2 Assume that βk are independent Gaussian distributions with variance 1 andmean
0. Then the number of internal equilibria, E(2, d), in a d-player random game with two
strategies is given by

E(2, d) =
∫ ∞

0
f (t) dt, (16)

where

f (t) = 1

π

⎡

⎢
⎢
⎢
⎢
⎣

∑d−1
k=1 k

2
(
d − 1
k

)2
t2(k−1)

∑d−1
k=0

(
d − 1
k

)2

t2k
−

⎛

⎜
⎜
⎜
⎝

∑d−1
k=1 k

(
d − 1
k

)2

t2k−1

∑d−1
k=0

(
d − 1
k

)2

t2k

⎞

⎟
⎟
⎟
⎠

2
⎤

⎥
⎥
⎥
⎥
⎦

1
2

. (17)

Proof Since βk has Gaussian distribution with variance 1 and mean 0, βk

(
d − 1
k

)

has

Gaussian distribution with variance

(
d − 1
k

)2

and mean 0. According to Lemma 1, the

equality (16) holds with

f (t) = 1

π

[
∂2

∂x∂y

(
log v(x)T Cv(y)

) ∣
∣
∣
y=x=t

] 1
2

, (18)

where the vector v and the matrix C (covariance matrix) are given by

v(x) =

⎛

⎜
⎜
⎜
⎝

1
x
...

xd−1

⎞

⎟
⎟
⎟
⎠

, C = (Ci j )i, j=1,...,d−1 with Ci j = δi j

(
d − 1
i

)(
d − 1

j

)

, (19)

where δi j is the Kronecker notation,

δi j =
{
1 if i = j,

0 if i 	= j.

A straightforward calculation gives

v(x)T Cv(y) =
d−1∑

k=0

(
d − 1
k

)2

xk yk,
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and

∂2

∂x∂y

(
log v(x)T Cv(y)

)
=
∑d−1

k=1 k
2
(
d − 1
k

)2

xk−1yk−1

∑d−1
k=0

(
d − 1
k

)2
xk yk

−

(
∑d−1

k=1 k

(
d − 1
k

)2

xk yk−1

)(
∑d−1

k=1 k

(
d − 1
k

)2

xk−1yk
)

(
∑d−1

k=0

(
d − 1
k

)2

xk yk

)2 .

Substituting this expression into (18), we obtain (17). 
�
Example 1 For the cases d = 2 and d = 3, we have

E(2, 2) = 1

π

∫ ∞

0

1

1 + t2
dt = 1

π
lim

t→+∞ tan−1(t) = 0.5,

E(2, 3) = 2

π

∫ ∞

0

√
t4 + t2 + 1

t4 + 4t2 + 1
dt ≈ 0.77.

The following proposition presents some properties of the density function f (t), which will
be used later for estimating the asymptotic behavior of E(2, d).

Proposition 1 The following properties hold

1.

f (t) = d − 1

π

√∑2d−4
k=0 ak t2k

∑d−1
k=0

(
d − 1
k

)2
t2k

, (20)

where

ak =
∑

1≤i≤d−1
1≤ j≤d−2
i+ j=k

(
d − 1
i

)2 (
d − 2

j

)2
−

∑

1≤i ′≤d−2
1≤ j ′≤d−2
i ′+ j ′=k

(
d − 2
i ′
)(

d − 1
i ′ + 1

)(
d − 2
j ′
)(

d − 1
j ′ + 1

)

,

(21)

ak =a2d−4−k, for all 0 ≤ k ≤ 2d − 4, a0 = a2d−4 = 1, ak ≥ 1. (22)

2. f (0) = d−1
π

, f (1) = d−1
2π

1√
2d−3

.

3. f (t) = 1
2π

[ 1
t G

′(t)
] 1
2 , where

G(t) = t
d
dt Md(t)

Md(t)
= t

d

dt
logMd(t).

4. t �→ f (t) is a decreasing function.
5. f

( 1
t

) = t2 f (t).
6.

E(2, d) = 2
∫ 1

0
f (t)dt = 2

∫ ∞

1
f (t) dt. (23)
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Proof 1. Set

Md(t) =
d−1∑

k=0

(
d − 1
k

)2

t2k, Ad(t) =
d−1∑

k=1

k2
(
d − 1
k

)2

t2(k−1), (24)

Bd(t) =
d−1∑

k=1

k

(
d − 1
k

)2

t2k−1. (25)

Then

f (t) = 1

π

√
Ad(t)Md(t) − Bd(t)2

Md(t)
.

Using

k

(
d − 1
k

)

= (d − 1)

(
d − 2
k − 1

)

,

we can transform

Ad (t) = (d − 1)2
d−1∑

k=1

(
d − 2
k − 1

)2

t2(k−1) = (d − 1)2
d−2∑

k=0

(
d − 2
k

)2

t2k = (d − 1)2Md−1(t),

Bd (t) = (d − 1)
d−1∑

k=1

(
d − 2
k − 1

)(
d − 1
k

)

t2k−1 = (d − 1)t
d−2∑

k=0

(
d − 2
k

)(
d − 1
k + 1

)

t2k .

Therefore,

Ad(t)Md(t) − Bd(t)
2

= (d − 1)2
[(

d−2∑

k=0

(
d − 2
k

)2

t2k
)(

d−1∑

k=0

(
d − 1
k

)2

t2k
)

−t2
(
d−2∑

k=0

(
d − 2
k

)(
d − 1
k + 1

)

t2k
)2⎤

⎦

= (d − 1)2
2d−4∑

k=0

ak t
2k,

where

ak =
∑

0≤i≤d−1
0≤ j≤d−2
i+ j=k

(
d − 1
i

)2 (
d − 2

j

)2

−
∑

0≤i ′≤d−2
0≤ j ′≤d−2
i ′+ j ′=k−1

(
d − 2
i ′
)(

d − 1
i ′ + 1

)(
d − 2
j ′
)(

d − 1
j ′ + 1

)

.

For the detailed computations of ak and the proof of (22), see “Appendix.”
2. The value of f (0) is found directly from (20). For the detailed computations of f (1),

see “Appendix.”
3. It follows from (24)–(25) that

Bd(t) = 1

2
M ′

d(t), Ad(t) = 1

4t
(tM ′

d(t))
′, (26)
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where ′ is derivative with respect to t . Hence,

f (t) = 1

2π

(
1
t (tM

′
d(t))

′Md(t) − M ′
d(t)

2

Md(t)2

) 1
2

= 1

2π

(
(tM ′

d(t))
′Md(t) − tM ′

d(t)
2

tMd(t)2

) 1
2

= 1

2π

(
1

t
G ′(t)

) 1
2

,

where G(t) = t
M ′

d (t)
Md (t) .

4. Since Md(t) contains only even powers of t with positive coefficients, all of its roots are
purely imaginary. Suppose that

Md(t) =
d−1∏

i=1

(t2 + ri ),

where ri > 0 for all 1 ≤ i ≤ d − 1. It follows that

G(t) = t
M ′

d(t)

Md(t)
=

d−1∑

i=1

2t2

t2 + ri
,

and hence,

(2π f (t))2 = 1

t
G ′(t) =

d−1∑

i=1

4ri
(t2 + ri )2

. (27)

Since ri > 0 for all i = 1, . . . , d − 1, the above equality implies that f (t) is decreasing
in t ∈ [0,∞).

5. Set

g(t) :=
√
Ad(t)Md(t) − Bd(t)2,

Then

f (t) = 1

π

g(t)

Md(t)
. (28)

It follows from the symmetric properties of the binomial coefficients that

Md

(
1

t

)

= 1

t2(d−1)
Md(t).

Similarly, from (22), we have

g

(
1

t

)

= 1

t2(d−2)
g(t).

Therefore,

f

(
1

t

)

= 1

π

g(1/t)

Md(1/t)
= 1

π
t2

g(t)

Md(t)
= t2 f (t).
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6. By change of variable, s = 1
t , and from (5), we have

∫ ∞

1
f (t) dt =

∫ 0

1
f

(
1

s

) −1

s2
ds =

∫ 1

0
f (s) ds.

Therefore,

E(2, d) =
∫ ∞

0
f (t) dt =

∫ 1

0
f (t) dt +

∫ ∞

1
f (t) dt = 2

∫ 1

0
f (t) dt.


�
Remark 1 Weprovide an alternative proof of the fifth property in the above lemma in “Appen-
dix.”

Remark 2 Besides enabling a significantly less complex numerical computation of E(2, d)

(see already our numerical results using this formula in Table 1), the equality (23) reveals an
interesting property: The expected number of zeros of the polynomial P(y) in two intervals
(0, 1) and (1,∞] are the same. Equivalently, the expected numbers of internal equilibria in
two intervals (0, 1

2 ] and ( 12 , 1) are equal since y = x
1−x . Indeed, this result also confirms

the observation that by swapping indices between the two strategies (n = 2), we move
equilibrium from x to 1 − x , thereby not resulting in change in the number of equilibria.

Based on the analytical formula of E(2, d), we now provide upper and lower bounds for
the mean number of equilibria as the payoff entries of the game are randomly drawn.

Theorem 2 E(2, d) satisfies the following estimate

d − 1

π
√
2d − 3

≤ E(2, d) ≤ 1

π

√
d − 1

√

1 + π

2

√
d − 1. (29)

Proof Since f (t) is decreasing, we have f (0) ≥ f (t) ≥ f (1) for t ∈ [0, 1]. As a conse-
quence,

E(2, d) ≥ 2
∫ 1

0
f (1) dt = 2 f (1) = d − 1

π
√
2d − 3

.

To obtain the upper bound, we proceed as follows.

E(2, d)2 = 4

(∫ 1

0
f (t) dt

)2

≤ 4
∫ 1

0
f (t)2 dt (by Jensen’s inequality)

= 1

π2

∫ 1

0

1

t
G ′(t) dt

(27)= 1

π2

∫ 1

0

d−1∑

i=1

4ri
(t2 + ri )2

dt

= 1

π2

d−1∑

i=1

∫ 1

0

4ri
(t2 + ri )2

dt

= 1

π2

d−1∑

i=1

(
2

ri + 1
+ cot−1(

√
ri )√

ri

)

. (30)
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Note that if ab = 1, then
1

a + 1
+ 1

b + 1
= 1. (31)

We observe that if z is a zero ofMd(t), then 1
z is also a zero becauseMd(t) = t2(d−1)Md(1/t).

This implies that the sequence {ri , i = 1, . . . , d − 1} can be grouped into d−1
2 pairs of the

form
(
a, 1

a

)
. Using (31), we obtain

1

π2

d−1∑

i=1

2

ri + 1
= 1

π2 (d − 1). (32)

For the second term, since cot−1(z) ≤ π
2 for all z ≥ 0, we have

d−1∑

i=1

cot−1(
√
ri )√

ri
≤ π

2

d−1∑

i=1

1√
ri

= π

2

∑d−1
i=1

∏
j 	=i

√
r j

∏d−1
i=1

√
ri

= π

2

d−1∑

i=1

∏

j 	=i

√
r j

≤ π

2

√
√
√
√(d − 1)

d−1∑

i=1

∏

j 	=i

r j

= π

2
(d − 1)

3
2 , (33)

where we have used the Cauchy-Schwartz inequality
(

n∑

i=1

bi

)2

≤ n
n∑

i=1

b2i ,

and the fact that
∏d−1

i=1 ri = 1 and
∑d−1

i=1
∏

j 	=i r j = (d − 1)2 according to Vieta’s theorem
for the roots {ri } of Md .

From (30), (32) and (33), we have

E(2, d)2 ≤ 1

π2

(
(d − 1) + π

2
(d − 1)

3
2

)
= 1

π2 (d − 1)(1 + π

2

√
d − 1),

or equivalently

E(2, d) ≤ 1

π

√
d − 1

√

1 + π

2

√
d − 1.


�
In Fig. 1a, we show the numerical results for E(2, d) in comparison with the obtained upper
and lower bounds.

Corollary 1 1. The expected number of equilibria increases unboundedly when d tends to
infinity

lim
d→∞ E(2, d) = +∞. (34)
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2. The probability pm of observing m equilibria, 1 ≤ m ≤ d − 1, is bounded by

pm ≤ E(2, d)

m
≤ 1

πm

√
d − 1

√

1 + π

2

√
d − 1. (35)

In particular,

pd−1 ≤ 1

π

√
1 + π

2

√
d − 1

√
d − 1

, and lim
d→∞ pd−1 = 0.

Proof 1. This is a direct consequence of (29), as the lower bound of E(2, d) tends to infinity
when d tends to infinity.

2. This is again a direct consequence of (29) and definition of E(2, d). For any 1 ≤ m ≤
d − 1, we have

E(2, d) =
d−1∑

i=1

pi · i ≥ pm · m.

In particular,

pd−1 ≤ E(2, d)

d − 1
≤ 1

π

√
1 + π

2

√
d − 1

√
d − 1

.

As a consequence, lim
d→∞ pd−1 = 0. More generally, we can see that this limit is true for

pk for any k = O(d) as d → ∞.

�

From this corollary, we can see that, interestingly, although the mean number of equilibria
tends to infinity when the number of players d increases, the probability to see the maximal
number of equilibria in a d-player system converges to 0. There has been extensive research
studying the maximal number of equilibrium points of a dynamical system [2,3,5,19,20,27,
37–39]. Our results suggest that the possibility to reach such a maximal number is very small
when d is sufficiently large.

Corollary 2 The expected number of stable equilibrium points in a random game with d
players and two strategies is equal to E(2,d)

2 and is thus bounded within to the following
interval

[
d − 1

2π
√
2d − 3

,
1

2π

√
d − 1

√

1 + π

2

√
d − 1

]

.

Proof From [18, Theorem 3], it is known that an equilibrium in a random game with two
strategies and an arbitrary number of players is stable with probability 1/2. Hence, the
corollary is a direct consequence of Theorem 2. 
�
3.2 Two-player Multi-strategy Games

In this section, we consider games with two players, i.e., d = 2, and arbitrary strategies. In
this case, (7) is simplified to a linear system

{∑
j β

i
j y j = 0, for i = 1, . . . , n − 1,

∑
j y j = 1,

(36)



336 Dyn Games Appl (2016) 6:324–346

where β i
j have Gaussian distributions with mean 0 and variance 1. The main result of this

section is the following explicit formula for E(n, 2).

Theorem 3 We have

E(n, 2) = 1

2n−1 . (37)

This theorem can be seen as a direct application of [18, Theorem 1] and the definition of
E(n, d) in Eq. (14). Indeed, according to [18, Theorem 1], the probability that Eq. (36) has
a (unique) isolated solution is p1 = 21−n , and the probability of having no solution is 0. By
(14), E(n, 2) = p1, and hence, E(n, 2) = 21−n .

To demonstrate further the usefulness of our approach using the random polynomial
theory, we present here an alternative proof that can directly obtain E(n, 2), i.e., without
computing the probability of observing concrete numbers of equilibria. Our proof requires
an assumption that {Ai = (β i

j ) j=1,...,n−1; i = 1, . . . , n−1} are independent random vectors.
We will elaborate and discuss this assumption in Remark 4. The main ingredient of our proof
is the following lemma, whose proof is given in “Appendix.”

Lemma 3 Let t1, . . . , tn−1 be real numbers, and let L be the matrix with entries

Lii = 1

1 +∑n−1
k=1 t

2
k

− t2i
(
1 +∑n−1

k=1 t
2
k

)2 ,

Li j = −ti t j
(
1 +∑n−1

k=1 t
2
k

)2 ∀i 	= j.

It holds that

det L = 1
(
1 +∑n−1

k=1 t
2
k

)n . (38)

Proof (Proof of Theorem 3 under the assumption that {Ai = (β i
j ) j=1,...,n−1; i = 1, . . . , n

− 1} are independent random vectors.)
Let L be the matrix in Lemma 3. According to Lemma 1 and Lemma 3, we have

E(n, 2) = π− n
2 Γ
(n

2

) ∫ ∞

0
. . .

∫ ∞

0︸ ︷︷ ︸
n−1 times

(det L)1/2 dt1 . . . dtn−1

= π− n
2 Γ
(n

2

) ∫ ∞

0
. . .

∫ ∞

0︸ ︷︷ ︸
n−1 times

(

1 +
n−1∑

k=1

t2k

)−n/2

dt1 . . . dtn−1

= 1

2
π− n−1

2 Γ

(
n − 1

2

)∫ ∞

0
. . .

∫ ∞

0︸ ︷︷ ︸
n−2 times

(

1 +
n−2∑

k=1

t2k

)−(n−1)/2

dt1 . . . dtn−2

. . .

= 1

2n−1 π− 1
2 Γ

(
1

2

)

= 1

2n−1 ,
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where we have repeatedly used the equality (with a > 0 and p > 1)

∫ ∞

0
(a + t2)−pdt =

√
π Γ (p − 1

2 )

2 Γ (p)
a

1
2−p.


�

Remark 3 Note that, as in [18, Theorem 2], it is known that the probability that a two-
player n-strategy random game has a stable (internal) equilibrium is at most 2−n . Hence, the
expected number of stable equilibrium points in this case is at most 2−n . From [18, Theorem
2], we also can show that this bound is sharp only when n = 2.

Remark 4 Let M be the number of sequences (k1, . . . , kn−1) such that
∑n−1

j=1 k j ≤ d − 1.

For each i = 1, . . . , n − 1, we define a random vector Ai = (β i
k1,...,kn−1

) ∈ R
M . Recalling

from Sect. 2 that β i
k1,...,kn−1

= αi
k1,...,kn

− αn
k1,...,kn

, where αi
i1,...,id−1

is the payoff of the focal
player, with i (1 ≤ i ≤ n) being the strategy of the focal player, and ik (with 1 ≤ ik ≤ n
and 1 ≤ k ≤ d − 1) is the strategy of the player in position k. The assumption in Lemma
1 is that A1, . . . , An−1 are independent random vectors, and each of them has mean 0 and
covariance matrix C . This assumption clearly holds for n = 2. For n > 2, the assumption
holds only under quite restrictive conditions such as αn

k1,...,kn
is deterministic or αi

k1,...,kn
are

essentially identical. Nevertheless, from a purelymathematical point of view (see for instance
[21,22] and Sect. 4 for further discussion), it is important to investigate the number of real
zeros of the system (7) under the assumption of independence of {Ai } since this system has
not been studied in the literature. As such, the investigation provides new insights into the
theory of zeros of systems of random polynomials. In addition, it also gives important hint
on the complexity of the game theoretical question, i.e., the number of expected number
of equilibria. Indeed, for d = 2 and arbitrary n, the assumption does not affect the final
result as shown in Theorem 3. We recall that [7, Theorem 7.1] also required that the rows
{Ai } are independent random vectors. Hence, to treat the general case, one would need to
generalize [7, Theorem 7.1] and this is a difficult problem as demonstrated in [21,22]. With
this motivation, in the next section, we keep the assumption of independence of {Ai } and
leave the general case for future research. We numerically compute the number of zeros of
the system (7) for n ∈ {2, 3, 4}. Again, as we shall see, the numerical results under the given
assumption lead to outcomes closely corroborated by previous works in [10,18].

3.3 Multi-player Multi-strategy Games

We now move to the general case of multi-player games with multiple strategies. We pro-
vide numerical results for this case. For simplicity of notation in this section, we write∑

k1,...,kn−1

instead of
∑

0≤k1,...,kn−1≤d−1,
∑n−1

i=1 ki≤d−1

and
∑

k1,...,kn−1|ki1 ,..,kim

instead of
∑

0≤ki≤d−1 ∀i∈S\R,
1≤k j≤d−1 ∀ j∈R,
∑n−1

i=1 ki≤d−1

where

S = {1, . . . , n − 1} and R = {i1, . . . , im} ⊆ S.
According to Lemma 1, the expected number of internal equilibria in a d-player random

game with n strategies is given by
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E(n, d) = π− n
2 Γ
(n

2

) ∫

U

(

det

[
∂2

∂xi y j
(log v(x)T Cv(y))

∣
∣
y=x=t

]

i j

) 1
2

dt

= π− n
2 Γ
(n

2

) ∫

U
(det L)

1
2 dt,

where Γ is the Gamma function, and L denotes the matrix with entries

Li j = ∂2

∂xi y j
(log v(x)T Cv(y))

∣
∣
y=x=t .

We have

v(x)T Cv(y) =
∑

k1,...,kn−1

(
d − 1

k1, . . . , kn

)2 n∏

i=1

xkii ykii .

Set Π(x, y) :=
n−1∏

l=1
xkll ykll . Then

∂2

∂xi y j
(log v(x)T Cv(y)) =

1
xi y j

∑
k1,...,kn−1|ki ,k j ki k j

(
d − 1

k1, . . . , kn−1

)2

Π(x, y)

∑
k1,...,kn−1

(
d − 1

k1, . . . , kn−1

)2

Π(x, y)

−

(

1
xi

∑
k1,...,kn−1|ki ki

(
d − 1

k1, . . . , kn

)2

Π(x, y)

)(

1
y j

∑
k1,...,kn |k j k j

(
d − 1

k1, . . . , kn

)2

Π(x, y)

)

(
∑

k1,...,kn−1

(
d − 1

k1, . . . , kn

)2

Π(x, y)

)2 .

Therefore,

Li j =
1
ti t j

∑
k1,...,kn−1|ki ,k j ki k j

(
d − 1

k1, . . . , kn

)2∏
l t

2kl
l

∑
k1,...,kn−1

(
d − 1

k1, . . . , kn

)2∏
l t

2kl
l

(39)

−

(

1
ti

∑
k1,...,kn−1|ki ki

(
d − 1

k1, . . . , kn

)2∏
l t

2kl
l

)(

1
t j

∑
k1,...,kn−1|k j k j

(
d − 1

k1, . . . , kn

)2∏
l t

2kl
l

)

(
∑

k1,...,kn−1

(
d − 1

k1, . . . , kn

)2∏
l t

2kl
l

)2 .

(40)

So far in the paper, we have assumed that all the β i
k1,...,kn−1

in Eq. (7) are standard normal
distributions. The following lemma shows, as a consequence of the above described formula,
that all the results obtained so far remain valid if they have a normal distribution with mean
zero and arbitrary variance (i.e., the entries of the game payoff matrix have the same, arbitrary
normal distribution).

Lemma 4 Suppose β i
k1,...,kn−1

have normal distributions with mean 0 and arbitrary variance

σ 2. Then, Li j as defined in (39) does not depend on σ 2.
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Proof In this case,β i
k1,...,kn−1

(
d − 1
k

)

has aGaussiandistributionwith varianceσ 2
(
d − 1
k

)2

and mean 0. Hence,

v(x)T Cv(y) =
∑

k1,...,kn−1

σ 2
(

d − 1
k1, . . . , kn

)2 n∏

i=1

xkii ykii .

Repeating the same calculation, we obtain the same Li j as in (39), which is independent
of σ . 
�
This result suggests that when dealing with random games as in this article, it is sufficient
to consider that payoff entries are from the interval [0, 1] instead of from an arbitrary one,
as done numerically in [10]. A similar behavior has been observed in [18] for the analysis
and computation with small d or n, showing that results are not dependent on the interval
where the payoff entries are drawn. Furthermore, it is noteworthy that this result confirms
the observation that multiplying a payoff matrix by a constant does not change the equilibria
[17], provided a one-to-one mapping from [0,1] to the arbitrary interval.

Example 2 (d-players with n = 3 strategies)

L11 =
1
t21

∑
k1=1,k2=0 k

2
1

(
d − 1
k1, k2

)2

t2k11 t2k22

∑
k1,k2

(
d − 1
k1, k2

)2

t2k11 t2k22

−

(

1
t1

∑
k1=1,k2=0 k1

(
d − 1
k1, k2

)2

t2k11 t2k22

)2

(
∑

k1,k2

(
d − 1
k1, k2

)2

t2k11 t2k22

)2 ,

L12 =
1
t1t2

∑
k1=1,k2=1 k1k2

(
d − 1
k1, k2

)2

t2k11 t2k22

∑
k1,k2

(
d − 1
k1, k2

)2

t2k11 t2k22

−

(

1
t1

∑
k1=1,k2=0 k1

(
d − 1
k1, k2

)2

t2k11 t2k22

)(

1
t2

∑
k1=0,k2=1 k2

(
d − 1
k1, k2

)2

t2k11 t2k22

)

(
∑

k1,k2

(
d − 1
k1, k2

)2

t2k11 t2k22

)2 ,

L21 =L12,

L22 =
1
t22

∑
k1=0,k2=1 k

2
2

(
d − 1
k1, k2

)2

t2k11 t2k22

∑
k1,k2

(
d − 1
k1, k2

)2

t2k11 t2k22

−

(

1
t2

∑
k1=0,k2=1 k2

(
d − 1
k1, k2

)2

t2k11 t2k22

)2

(
∑

k1,k2

(
d − 1
k1, k2

)2

t2k11 t2k22

)2 .

Therefore,

E(3, d) = π− 3
2 Γ

(
3

2

)∫ ∞

0

∫ ∞

0

√
L11L22 − L12L21 dt1dt2.

Next we provide some numerical results. We numerically compute E(n, d) for n ∈ {2, 3, 4}
and show them in Table 1 (for d ≤ 10) and Figs. 1b (for d ≤ 20). We also plot the lower
and upper bounds for E(2, d) obtained in Theorem 2 and compare them with its numerical
computation, see Fig. 1a. We note that for small n and d (namely, n ≤ 5 and d ≤ 4),
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Table 1 Expected number of internal equilibria for some values of d and n

d 2 3 4 5 6 7 8 9 10

n = 2 0.5 0.77 0.98 1.16 1.31 1.47 1.60 1.73 1.84

n = 3 0.25 0.57 0.92 1.29 1.67 2.06 2.46 2.86 3.27

n = 4 0.125 0.41 0.84 1.39 2.05 2.81 3.67 4.62 5.66

Fig. 1 a Expected number of equilibria, E(2, d), for varying the number of players in the game, and the upper
and lower bounds obtained in Theorem 2. b Expected number of equilibria, E(n, d), for varying the number
of players and strategies in the game. We plot for different number of strategies: n = 2, 3 and 4. The payoff
entries of the d-player n-strategy game are randomly drawn from the normal distribution. In general, the larger
the number of players in the game, the higher the number of equilibria one can expect if the payoff entries of
the game are randomly chosen. We observe that for small d, E(n, d) increases with n, while it decreases for
large d (namely, d ≥ 5, see also Table 1). The results were obtained numerically using Mathematica

E(n, d) can also be computed numerically via the probabilities pi of observing exactly i
equilibria using (14). This direct approach has been used in [18] and [10], which our results
are compatible with. Furthermore, as a consequence of Corollary 2, we can derive the exact
expected number of stable equilibria for n = 2, which is equal to half of the expected number
of equilibria given in the first row of Table 1.

4 Discussion

In the evolutionary game literature, mathematical results have been mostly provided for two-
player games [17,28], despite the abundance of multi-player game examples in nature [5,10].
The mathematical study for multi-player games has only attracted more attention recently,
apparently because the resulting complexity and dynamics from the games are significantly
magnified with the number of the game participants [5,18,40]. As seen from our analysis,
multi-player games introduce nonlinearity into the inducing equations, because the fitness
functions are polynomial instead of linear as in the pairwise interactions [10,17,40]. It is even
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more so if we consider scenarios in which the payoff matrix is nonlinear naturally, such as for
public goods games with nonlinear returns [30], as observed in animal hunting [29,34]. In
addition, as the number of strategies increases, one needs to deal with systems of multivariate
polynomials. This seemingly complexity of the general multi-player multi-strategy games
makes the analysis of the equilibrium points extremely difficult. For instance, in [18], as the
analysis was based on an explicit calculation of the zeros of systems of polynomials, it cannot
go beyond games with a small number of players (namely, d ≤ 5), even for the simplest case
of n = 2. Here we have taken a different approach based on the well-established theory of
random polynomials. We have derived a computationally implementable formula, E(n, d),
of the mean number of equilibria in a general random d-player game with n strategies. For
n = 2 and with an arbitrary d , we have derived asymptotic upper and lower bounds of
E(2, d). An interesting implication of these results is that although the expected number of
equilibria tends to infinity when d increases, the probability of seeing the maximal possible
number of equilibria tends to 0. This is a notable observation since knowing the maximal
number of equilibrium points in an evolutionary process is insightful and has been of special
focus in biological contexts [10,24]. Furthermore, for d = 2 with an arbitrary n, we have
derived the exact value E(n, 2) = 21−n , recovering results obtained in [18]. In the general
case, based on the formula that we have derived, we have been able to numerically calculate
E(n, d), thereby going beyond the analytical and numerical computations from previous
work that made use of the direct approach. As a consequence of the results obtained for the
extreme cases, we could also derive the boundaries for the expected number of equilibrium
points when counting only the stable ones. Note that some studies have been carried out to
study the stable equilibrium points or evolutionary stable strategies (ESS) [27] in a random
evolutionary game, but it has been mostly done for two-player games, see for example
[11,16,23]. As such, we have provided further understanding with respect to the asymptotic
behavior of the expected number of stable equilibria for multi-player random games, though
with only two strategies, leaving the more general case for future study.

On the other hand, in the random polynomial literature, the study of distribution of zeros of
system of random polynomials as described in (8), especially in the univariate case, has been
carried out by many authors, see for instance [7] for a nice exposition and [36] for the most
recent results. The most well-known classes of polynomials are flat polynomials or Weyl

polynomials for ai := 1
i ! , elliptic polynomials or binomial polynomials for ai :=

√(
d − 1
i

)

and Kac polynomials for ai := 1. We emphasize the difference between the polynomial

studied in this paper with the elliptic case: ai =
(
d − 1
i

)

are binomial coefficients, not their

square root. In the elliptic case, v(x)T Cv(y) =∑d−1
i=1

(
d − 1
i

)

xi yi = (1+ xy)d−1, and as

a result E = E(2, d) = √
d − 1. While in our case, because of the square in the coefficients,

v(x)T Cv(y) = ∑d−1
i=1

(
d − 1
i

)2

xi yi is no longer a generating function. Whether one can

find an exact formula for E(2, d) is unclear. For the multivariate situation, the exact formula
for E(n, 2) is interesting by itself and we could not be able to find it in the literature. Due to
the complexity in the general case d, n ≥ 3, further research is required.

In short, we have described a novel approach to calculating and analyzing the expected
number of (stable) equilibrium points in a general random evolutionary game, giving insights
into the overall complexity of such dynamical systems as the players and the strategies in the
game increase. Since the theory of random polynomials is rich, we envisage that our method
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could be extended to obtain results for other more complex scenarios such as games having
a payoff matrix with dependent entries and/or with general distributions.
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Appendix

Properties of ak

In the following, we prove that a2d−4−k = ak for all 0 ≤ k ≤ 2d − 4, i.e., (22). First, we
transform ak as follows

ak =
∑

0≤i≤d−1
0≤ j≤d−2
i+ j=k

(
d − 1
i

)2 (
d − 2

j

)2

−
∑

0≤i ′≤d−2
0≤ j ′≤d−2
i ′+ j ′=k−1

(
d − 2
i ′
)(

d − 1
i ′ + 1

)(
d − 2
j ′
)(

d − 1
j ′ + 1

)

=
(
d − 2
k

)2

+
∑

0≤i≤d−2
0≤ j≤d−2
i+ j=k−1

(
d − 1
i + 1

)2 (
d − 2

j

)2

−
∑

0≤i ′≤d−2
0≤ j ′≤d−2
i ′+ j ′=k−1

(
d − 2
i ′
)(

d − 1
i ′ + 1

)(
d − 2
j ′
)(

d − 1
j ′ + 1

)

=
(
d − 2
k

)2

+
∑

0≤i≤d−2
0≤ j≤d−2
i+ j=k−1

(
d − 1
i + 1

)(
d − 2

j

)((
d − 1
i + 1

)(
d − 2

j

)

−
(
d − 2
i

)(
d − 1
j + 1

))

=
(
d − 2
k

)2

+
∑

0≤i≤ j≤d−2
i+ j=k−1

((
d − 1
i + 1

)(
d − 2

j

)

−
(
d − 2
i

)(
d − 1
j + 1

))2

Now we prove that a2d−4−k = ak . Indeed, we have

a2d−4−k =
(

d − 2
2d − 4 − k

)2

+
∑

0≤i≤ j≤d−2
i+ j=2d−k−5

((
d − 2
i + 1

)(
d − 2

j

)

−
(
d − 2
i

)(
d − 1
j + 1

))2

(we use here the transformations i = d − 3 − i and j = d − 3 − j)

=
(

d − 2
2d − 4 − k

)2

+
∑

−1≤ j≤i≤d−3
i+ j=k−1

((
d − 1
i + 1

)(
d − 2
j + 1

)

−
(
d − 2
i + 1

)(
d − 1
j + 1

))2

=
(

d − 2
2d − 4 − k

)2

+
∑

−1≤ j≤i≤d−3
i+ j=k−1

((
d − 1
i + 1

)(
d − 2

j

)

−
(
d − 2
i

)(
d − 1
j + 1

))2
.

Since for j = −1 and i = k, we have

((
d − 1
i + 1

)(
d − 2

j

)

−
(
d − 2
i

)(
d − 1
j + 1

))2

=
(
d − 1
k

)2

,
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and for j = d − 2 and i = k − 1 − (d − 2), we have

((
d − 1
i + 1

)(
d − 2

j

)

−
(
d − 2
i

)(
d − 1
j + 1

))2
=
((

d − 1
k − (d − 2)

)

−
(

d − 2
k − 1 − (d − 2)

))2

=
(

d − 2
k − (d − 2)

)2

=
(

d − 2
2d − 4 − k

)2

,

it follows that a2d−4−k = ak for all 0 ≤ k ≤ 2d − 4.

Detailed Computation of f (1)

We use the following identities involving the square of binomial coefficients.

Md(1) =
d−1∑

k=0

(
d − 1
k

)2

=
(
2(d − 1)
d − 1

)

,

Ad(1) = (d − 1)2Md−1(1) = (d − 1)2
(
2(d − 2)
d − 2

)

,

Bd(1) =
d−1∑

k=1

k

(
d − 1
k

)2

= d − 1

2

(
2(d − 1)
d − 1

)

.

Therefore, we have

f (1) = 1

π

√
Ad(1)Md(1) − Bd(1)2

Md(1)

= 1

π

√

(d − 1)2
(
2(d − 1)
d − 1

)[(
2(d − 2)
d − 2

)

− 1
4

(
2(d − 1)
d − 1

)]

(
2(d − 1)
d − 1

)

= d − 1

π
×

√
√
√
√
√
√
√

(
2(d − 2)
d − 2

)

(
2(d − 1)
d − 1

) − 1

4

= d − 1

π
×
√

d − 1

2(2d − 3)
− 1

4

= d − 1

2π
√
2d − 3

,

where we have used the identity

(
2(n + 1)
n + 1

)

= n+1
2(2n+1)

(
2n
n

)

.

Alternative Proof of the Fifth Property in Lemma 2

We show here an alternative proof of the fifth property without using the first one in Lemma 2.
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Since Md
( 1
t

) = t2(1−d)Md (t), we have

M ′
d

(
1

t

)

= −t3−2d [2(1 − d)Md(t) + tM ′
d(t)

]
,

M ′′
d

(
1

t

)

= t4−2d [2(3 − 2d)(1 − d)Md(t) + 2(3 − 2d)tM ′
d(t) + t2M ′′

d (t)
]
.

Therefore, from (26), we have

Bd

(
1

t

)

= 1

2
M ′

d

(
1

t

)

= −t3−2d
[

(1 − d)Md(t) + 1

2
tM ′

d(t)

]

,

and

Ad

(
1

t

)

= t

4

[

M ′
d

(
1

t

)

+ 1

t
M ′′

d

(
1

t

)]

= 1

4
t4−2d [4(1 − d)2 + (5 − 4d)tM ′

d(t) + t2M ′′
d (t)

]
.

Hence,

Ad

(
1

t

)

Md

(
1

t

)

− Bd

(
1

t

)2
= 1

4
t6−2d [4(1 − d)2Md(t)

2 + (5 − 4d)tM ′
d(t)Md(t)

+t2M ′′
d (t)Md(t)

]− t6−4d
[

(1 − d)Md(t) + 1

2
tM ′

d(t)

]2

= 1

4
t6−2d [tMd(t)M

′
d(t) + t2Md(t)M

′′
d (t) − t2M ′

d(t)
2]

= 1

4
t8−2d

[
1

t
Md(t)M

′
d(t) + Md(t)M

′′
d (t) − M ′

d(t)
2
]

.

Therefore,

f

(
1

t

)

= 1

π

√

Ad
( 1
t

)
Md
( 1
t

)− Bd
( 1
t

)2

Md
( 1
t

)

= 1

π

t4−2d
√

1
4t

[
Md(t)M ′

d(t) + tMd(t)M ′′
d (t) − tM ′

d(t)
2
]

t2−2dMd(t)

= t2
1

π

√
1
4t

[
Md(t)M ′

d(t) + tMd(t)M ′′
d (t) − tM ′

d(t)
2
]

Md(t)

= t2 f (t).
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Proof of Lemma 3

Denoting Σ = 1 +∑n−1
k=1 t

2
k , we have

det L = 1

Σ2(n−1)
det

⎛

⎜
⎜
⎝

Σ − t21 −t1t2 . . . −t1tn−1

−t2t1 Σ − t22 . . . −t2tn−1

. . . . . . . . . . . .

−tn−1t1 −tn−1t2 . . . Σ − t2n−1

⎞

⎟
⎟
⎠

= 1

t1 . . . tn−1

1

Σ2(n−1)
det

⎛

⎜
⎜
⎝

t1(Σ − t21 ) −t1t22 . . . −t1t2n−1
−t2t21 t2(Σ − t22 ) . . . −t2t2n−1
. . . . . . . . . . . .

−tn−1t21 −tn−1t22 . . . tn−1(Σ − t2n−1)

⎞

⎟
⎟
⎠

= 1

t1 . . . tn−1

1

Σ2(n−1)
det

⎛

⎜
⎜
⎝

t1 −t1t22 . . . −t1t2n−1
t2 t2(Σ − t22 ) . . . −t2t2n−1
. . . . . . . . . . . .

tn−1 −tn−1t22 . . . tn−1(Σ − t2n−1)

⎞

⎟
⎟
⎠

= 1

Σ2(n−1)
det

⎛

⎜
⎜
⎝

1 −t22 . . . −t2n−1
1 Σ − t22 . . . −t2n−1
. . . . . . . . . . . .

1 −t22 . . . Σ − t2n−1

⎞

⎟
⎟
⎠

= 1

Σ2(n−1)
det

⎛

⎜
⎜
⎝

1 −t22 . . . −t2n−1
0 Σ . . . 0
. . . . . . . . . . . .

0 0 . . . Σ

⎞

⎟
⎟
⎠

= 1

Σn
.
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