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Abstract This paper analyzes two incentive schemes available for a closed-loop supply
chain (CLSC) in which a manufacturer and a retailer contribute to the return rate dynamics
through their investments in green activity programs. Both firms have economic motivations
to perform the return rate because customers who return end-of-use goods also repurchase
new ones. In addition, the manufacturer exploits the returns’ residual value in operations to
increase profits. Because the manufacturer has both operational and marketing motivations
to close the loop, he can provide an incentive to the retailer to boost her investments in
green activity programs. The incentive can be either state dependent or control dependent.
The former assumes that the incentive depends on the fraction of customers who are willing
to return end-of-use products; the latter is proportional to the retailer’s green activity pro-
grams efforts. Our results show that a state-dependent incentive is profit-Pareto-improving
only when the retailer’s environmental effectiveness is large. In contrast, a control-dependent
incentive mechanism is profit-Pareto-improving for low incentive values, high retailer’s envi-
ronmental effectiveness, and customers’ repurchasing intention. In all other cases, players
have divergent preferences and neither mechanism coordinates the CLSC.

Keywords Closed-loop supply chain · Coordination · State-dependent incentive ·
Control-dependent incentive · Feedback strategies

1 Introduction

The recent trend of closed-loop supply chain (CLSC) research has focused substantial atten-
tion on coordination, with a particular emphasis on the type of incentive that manufacturers
(or remanufacturers) should transfer to other participants to enhance their willingness to close
the loop [4]. The engagement of CLSC partners is a prerequisite to succeed in the integration
of forward and backward activities into a unique system, as several atypical processes such as
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product acquisition, reverse logistics, points of use and disposal, testing, sorting, refurbish-
ing, recovery, recycling, re-marketing, and re-selling coexist with the classical management
of forward activities [12,15,16,25]. While traditional coordination schemes aim at increas-
ing the economic performance for all chain participants (see [2,17] for exhaustive reviews),
CLSCs mainly use coordination mechanisms to achieve cost savings as well as high return
rates and profits [23]. The rationale behind the implementation of a CLSC is that production
bymeans of virginmaterial is more expensive than production bymeans of returned products,
and thus, cost savings and return rates establish the economic and the environmental benefits
of closing the loop [15]. Saving cost targets vary according to the industry, for instance,
Kodak reaches cost saving close to 40–60%, while IBM and Xerox achieve cost saving up
to 80 and 65%, respectively.

Along with these operational reasons to close the loop, additional pressures come from
the growing interests of consumers, who are highly concerned about firms’ environmen-
tal responsibility. The latter links to the depletion of natural resources, the accumula-
tion of waste products, and the impairment of environmental systems [24]. The need
to reacquire end-of-use products and thus protect the environment in the eyes of con-
sumers creates new managerial challenges for manufacturers, who are asked to invest
in various green activity programs. These activities may include marketing expenditures
(e.g., green advertising, eco-efficiency, green labeling) to increase the customers’ aware-
ness of the end-of-use product return policy [5] as well as operational activities (e.g.,
collection points, remanufacturing process, recycling capability) to increase remanufac-
turing efficiency and create a suitable reverse logistics network [21]. In addition, manu-
facturers actively involve downstream players (retailers) in the collection process as they
exert some further motivations to close the loop. Retailers contribute to acquiring end-
of-use products through organizing in-store collection and drop-off points, and advertise
their environmental initiatives to inform consumers about their environmental commit-
ments [19]. This leads to increasing the number of visits and store preferences and cre-
ating a green image for their stores to influence consumers’ purchasing intention and
shopping value [27]. Therefore, firms in CLSCs initiate several types of green policies
to successfully close the loop, although their decisions are driven by different motiva-
tions [25].

This paper investigates pricing and green activity program decisions made in a CLSC by
onemanufacturer and one retailer to increase profits and enhance environmental performance
through the return rate. The latter is modeled as a dynamic equation and represents the
fraction of customers who are willing to return end-of use products. Both firms invest in
green activity programs to perform the return rate. While the manufacturer invests in green
investments to save costs in production, the retailer contributes to the return rate because
customers who return end-of-use products also repurchase new ones. A few examples of
product categories that fit with this model are cartridges, tires, and cell phones. Therefore,
the return rate is also a proxy of consumers’ repurchasing intention. Consequently, firms’
interests for closing the loop are misaligned because the manufacturer benefits from a high
return rate in terms of cost savings and higher sales, while the retailer only exploits the return
rate as a mean for increasing sales. Under such conditions, incentive alignment is worth
investigating.

Incentive alignment in CLSC is meant as the implementation of an agreement (e.g., a
contract) to properly engage a firm in the collection process and perform the return rate.
An appropriate incentive should be designed for collectors to make all CLSC players eco-
nomically better off [10]. Incentive alignment in CLSCs has been extensively investigated to
properly set out various policies such as outsourcing [8,21], quality (durability) strategy [9],
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competition [20,22], interactions among products’ range [11], innovation [14], and sharing
agreements [5,7]. To reach coordination, most of the literature in CLSC model per-return
incentive schemes according to which the collector receives a fixed amount per-product
returned (see [3,7,8,13,21,22]). Although this incentive scheme is quite intuitive and has
been shown to be extremely successful (e.g., [21]), we seek to develop other alternative forms
of incentives.

Thus, our study contributes to this research stream by constructing two original incentive
mechanisms to support the product acquisition process. Starting from a benchmark model
with no incentive,we investigate the effect of incentive schemes onCLSCmembers’ decisions
and profits while departing from the classical per-return incentive assumption. Rather, we
establish incentive schemes that depend on players’ strategies and CLSC environmental
performance. The incentives are provided by the manufacturer to the retailer—as only the
former exploits the return rate for operational and marketing motivations—and can be either
a function of the return rate (state-dependent incentive) or a function of the retailer’s GAP
efforts (control-dependent incentive). These two forms of incentives have not been explored
in the literature. The first incentive scheme is a function of the return rate and thus depends on
the CLSC environmental performance. This is the first incentive scheme in the literature that
depends on the stock of a state variable, and thus, it aims to reinforce the idea suggested by
Savaskan et al. [21] according to which CLSC needs to be studied as a dynamic phenomenon
as the product acquisition process refers to the amount of past sold products a firm collects
in the future. Although that statement seems to be quite appealing, the literature mainly
deals with static games as well as static incentive schemes (e.g., [11,20–22]). Therefore, this
research will contribute to this body of knowledge for which dynamic forms of incentives
still need to be explored.

The second scheme implies that only the retailer is responsible for the incentive, which
depends on the amount of money the retailer invests to enhance the return rate: The higher
the retailer’s GAP efforts, the higher the incentive. This form of incentive has been inspired
by the recent debate on supply chain and marketing channel initiated by Cachon [2] and
continued by De Giovanni and Roselli [6] on the nature of an incentive. When a firm will
know its incentives only after having decided its strategies (e.g., under a revenue sharing con-
tract, the sharing parameter can be endogenous [18]), it will underperform from an economic
perspective as compared to the case inwhich the incentive is common knowledge. Both incen-
tive schemes are demand independent; therefore, retailer’s rewards do not depend on other
players’ strategies (e.g., pricing) and demand. Interestingly, while in the control-dependent
incentive the retailer exclusively determines the amplitude of the incentive deciding on the
GAP efforts, the state-dependent incentive is based on the overall capacity of a CLSC to
perform the return rate, which depends on the entire history of players’ contributions to the
state. The comparison of strategies and profit functions in the three scenarios allows the
identification of changes in players’ strategies and profits when the CLSC moves from a
no-incentive to an incentive scenario as well as on the existence of an incentive mechanism
that turns out to be profit-Pareto-improving. The findings will therefore be positioned in the
literature of CLSC that has investigated similar research questions while looking at classical
incentive schemes, such as per-return incentives (e.g., [3,7,8,13,21,22]).

The remainder of the paper is organized as follows. Section 2 introduces the models
and notations. Section 3 characterizes equilibria in those models and presents some results.
Section 4 presents a numerical simulation to compare strategies and profits and discusses
some managerial implications. Section 5 provides some concluding remarks and suggestions
for the future research.



Dyn Games Appl (2016) 6:20–54 23

2 Model Description

In our analysis, a CLSC is composed of a remanufacturer, player M , and a retailer, player R.
From this point onward, we will refer to the remanufacturer as he and to the retailer as she.
Both players seek to maximize their profits through selling new and remanufactured prod-
ucts to a market in which customers cannot distinguish between products versions. Player
M sells products to R at a wholesale price, ω (t) , while R sells products to the market at
a retail price p (t). Wholesale and retail price are determined by M and R, respectively. In
addition, M acquires past sold products from the market and uses these returns to make new
products. The return process is characterized as a dynamic equation that expresses the per-
centage of customers who is willing to return products that reach the end-of-use stage. Both
players contribute to that dynamics through their green activity programs (GAPs) strategies,
Ai (t) , i = M, R. These activities consist of several atypical processes such as prod-
uct acquisition, reverse logistics, points of use and disposal, testing, sorting, refurbishing,
recovery, recycling, re-marketing, and re-selling that coexist with the classical forward activ-
ities [12,15,16]. For mathematical tractability, we follow the formal convexity assumption
for these strategies; thus, GAP efforts will assume the following quadratic cost function:

Ci (t) = κi

2
Ai (t)2 (1)

where κi is the marginal penalty associated with the profits function of any additional dollar
spent in greenness.1 Among other targets, GAP strategies contribute to increasing people’s
awareness on the benefits in health and quality of life obtainable through their contributions
to the return process. The percentage of the overall population who is willing to contribute
to the environment changes according to the exposure to some GAP. Therefore, we model
that fraction through the dynamic equation:

ṙ (t) = a AM (t) + bAR (t) − δr (t) , r0 = r (0) > 0 (2)

where a > 0 and b > 0 represent M’s and R’s GAP efforts effectiveness, respectively;
these parameters show the contribution that one dollar invested in GAP exercises on the
amount of people who are willing to preserve the environment through returning end-of-
use products. δ > 0 is the forgetting effect and represents the number of people who have
changed their mind or simply forgets to return end-of-use products. The rationale behind
the state Eq. (2) is that firms create awareness and push customers to return their end-of-use
products to preserve the environment. Several media sources can be used for that reason,
such as sustainability reports, green advertising, and green branding [5,27]. Indeed, firms
can have different motivations to sponsor products return. On one hand, manufacturers gain
operational benefit since using returned products to producing new ones is cheaper than
making new products by means of virgin materials. This is the key assumption for firms to
implement a reverse logistics policy. Assume that M faces a marginal production cost cp
when producing by means of raw materials and ce when producing by means of returns. M
faces a marginal production cost that assumes the following form:

Cp (r (t)) = cp − (
cp − ce

)
r (t) (3)

This cost function has been used in Savaskan et al. [21], Savaskan and van Wassenhove
[22] and De Giovanni and Zaccour [7] and highlights the saving cost that M has an advantage

1 We assume κi = 1 as it will be always possible to evaluate the marginal impact on profits function through
the effectiveness that GAP strategies exert inside the state equation.
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Table 1 Correlations between
purchases and returns in
2006–2010 (Our developments
on data EPA 2011)

Product category Pearson correlation

Computer .94

Computer displays .94

Hard copy devices .93

Keyboards and mice .95

TVs .92

Mobile devices .97

when r (t) > 0, because cp > ce by construction. When r (t) = 0, M faces a full marginal
production cost for all new goods; when r (t) = 1, all products are manufactured at a lower
production cost. cp−ce represents the saving costs for M and then his economic convenience
of closing the loop. Because cp and ce are given parameters for our model, we approximate
the benefits from reverse logistics as follows:

πe (r (t)) = Δr (t) (4)

where Δ > 0 is the per-return benefit that M gains. Δ can be interpreted as the average
value of a return, which is independent of the number of times a return can be used for
remanufacturing activities as well as of its overall conditions. For instance, Kodak can use
a batch of parts (e.g., the mechanical parts, the batteries, and the plastic components) of
a returned camera to make a new one. Δ is the value of this batch and corresponds to the
(saved) expenses that Kodak would have faced if the collection process had not been in place.
Finally, through Eq. (4), we investigate remanufacturing as a profit center rather than as a
cost center, though the usage of Eq. (3) in our game would not change the overall findings.

Besides operational benefits, all CLSC partners sponsor product return as a mean to
increase sales. When a customer returns an end-of-use product, we assume that he needs
to purchase a new one to continue satisfying his needs. This assumption is in line with the
management of some products categories such as durable and electronic goods, which are
replaced by new ones when they reach their end-of-life stage. The Environmental Protection
Agency’s (EPA) report shows the shape of sales and returns for some product categories in
the US market (www.epa.gov). Using this data, we show that there is a strong correlation
between end-of-life returns and new purchases. Table 1 displays the Pearson correlation
between purchases and returns for several product categories.

These empirical results support the assumption that customers who return some products
need to purchase a new one to continue to satisfy their needs. Therefore, we model a demand
function that includes customer’s repurchases and assumes the following form:

D (p (t) , r (t)) = α − βp (t) + θr (t) (5)

where α > 0 and β > 0 represent the market potential and the customers’ sensitivity to price,
respectively, and follow the standard assumptions in economics. Further, θ ≥ 0 describes the
number of products that customers who returned end-of use products purchase. The latter is
the key motivations for CLSC to be in favor of a return policy. Good performance in the prod-
uct return process translates into higher sales; thus, all suppliers have an economic interest in
performing the return rate. In a traditional CLSC, M retains all economic rewards of closing
the loop. M’s marginal revenue is given by πM (ω (t) , r (t)) = ω (t)+Δr (t) , and R’s mar-
ginal revenue is given by πR (p (t) , ω (t)) = p (t)−ω (t). Therefore, M diversifies his total
revenues through forward and reverse business that are expressed by D (p (t) , r (t)) ω (t)

www.epa.gov
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Table 2 Notations
α Market potential

β Customer’s sensitivity to price

θ Customers’ repurchasing intention

Δ Return residual value

r (t) Return rate

ω (t) Wholesale price

p (t) Retail price

Ai (t) GAP efforts with i = M, R

a M’s GAP effectiveness

b R’s GAP effectiveness

δ Customers’ forgetting effect

ρ Discount factor

πi Player i’s profit margins

μ Marginal incentive

and D (p (t) , r (t)) r (t)Δ, respectively, though that D (p (t) , r (t)) r (t) is the number of
returns. In contrast, R obtains the total revenues D (p (t) , r (t)) (p (t) − ω (t)) from forward
activities only. Table 2 summarizes the notations used throughout the study.

We first introduce the no-incentive model whereby M does not provide any incentive to
R. Players’ objective functions for this game are given by

JM =
∫ +∞

0
e−ρt

(

(α + r (t) θ − βp (t)) (ω (t) + r (t) Δ) − (AM (t))2

2

)

dt (6)

JR =
∫ +∞

0
e−ρt

(

(α + r (t) θ − βp (t)) (p (t) − ω (t)) − (AR (t))2

2

)

dt (7)

subject to Eq. (2). ρ is the discount factor for the game and it is assumed to be equal between
the two players. Objective function (6) maximizes the profits of M through sales as well as
remanufacturing activities, while objective function (7) maximizes the profits of R through
sales only. R’s interest in performing the return rate depends on customers’ repurchasing
intention: High return flow translates into higher profits (through sales) even when M does
not supply any specific incentive based on r (t). The game is played á la Stackelberg where
M is the leader. The game evolves according to the following moves: M announces the
feedback wholesale price and GAP strategies, ω (r) and AM (r) ; R sets the feedback pric-
ing and GAP strategies, p

(
r | ω, AM

)
and AR

(
r | ω, AM

)
to optimally respond to M’s

announced decisions; M incorporates R’s reaction functions into its optimal control prob-
lem and solves for the wholesale ω (r) and his GAP strategy AM (r). Observe that ω (r)

and p (r) appear in the integrand but not also in the dynamics of (2). Thus, players can
maximize pricing-decision variables as if they solved a static optimization problem. In con-
trast, GAP strategies affect the evolution of the state. The solution to the no-incentive prob-
lem yields the equilibrium feedback strategies ω∗ (r) and A∗

M (r) for M . Once we have
the solution ω∗ (r) and A∗

M (r), we can express R’s feedback price and GAP strategies as
p∗ (r) = ω

(
r | ω∗, A∗

M

)
and A∗

R (r) = AR
(
r | ω∗, A∗

M

)
. Strategies p∗ (r) , ω∗ (r) , A∗

M (r)

and A∗
R (r) constitute a feedback Stackelberg equilibrium, which is time consistent. Using
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these strategies in Eq. (2), it will result the return rate r∗ (t) , t ≥ 0, and the related decisions
will be p∗ (r∗) , ω∗ (r∗) , A∗

M (r∗) and A∗
R (r∗).

After establishing the equilibrium for the no-incentive game that represents a benchmark,
we also formulate two incentive problems in which M supplies an economic premium to
R to encourage the player to better perform the return process. While the literature has
deeply investigated several coordination mechanisms that depend on the past demand, we
implement coordination mechanisms that depend either on the return rate r (t) or on the R’s
GAP efforts AR (t); thus, the former depends on the state, while the latter depends on R’s
control. Therefore, the incentive mechanisms will assume the following forms:

State-dependent incentive : ϕS (r (t)) = μr (t) (8)

Control-dependent incentive : ϕC (AR (t)) = μAR (t) (9)

whereμ > 0 is given and represents the amount that M transfers to R as a form of fixed mar-
ginal incentive. The state-dependent incentive, ϕS (r (t)), possesses an interesting property of
being based on the overall CLSC environmental performance, for which both players provide
a contribution to the state. Because the incentive is state dependent, R receives an economic
rewards ϕS (r (t)) = μr (t) that depends on the fraction of customers who are willing to
return end-of-use products. As a counterpart, M expects R to enhance the return rate through
increasing AR (t). Many operational interactions emerge from this problem. Yet, M faces a
trade-off due to the effect of r (t) on his objective function: The return rate positively impacts
on sales (through customer’s repurchasing intention, θ ) and profitmargins (through the return
residual value, Δ) while it negatively affects M’s profits through the incentive ϕS (r (t)). On
her side, R has the advantage of the return rate through its positive effect on sales as well
as through the incentive ϕS (r (t)) , and thus, she has a dual benefit from the return policy.
Contrary to the literature that reports various forms of incentive schemes that mainly depend
on the returns (e.g., [8,21]), here we focus on the overall environmental performance of a
CLSC.

We then formulate a second problem in which the incentive depends on R’s contribution
to the state, AR (t). Contrary to the previous incentive mechanism, M supplies an economic
reward that exclusively varies according to R’s GAP efforts, ϕC (AR (t)) = μAR (t). Con-
trary to the state-dependent case where M influences the incentive through optimally setting
his GAP policy, in this scenario, R explicitly determines the incentive she will get through
setting her optimal GAP efforts. Although M loses some decisional power (though as the
missed possibilities to influence ϕC ), he will not face any trade-off: The return rate does not
negatively influence his payoff function.

Note that we do not consider an incentive game that consists of a combination of control-
and state-dependent incentives. Although this option is theoretically doable, it never finds
applicability in practice. Firms in CLSC supply incentives according to one feature only.
For example, Kodak offers a per-returned-camera incentive [21]; Pitney–Bowes remanu-
factures off-lease products by offering a trade-in program [10]; Staples supplies a fixed
incentive for each cartridge returned (www.staple.com); Expert International GmbH offers a
rebate to all stakeholders who return electronic products to be used to repurchase new ones
(www.expert-italia.it). This is also confirmed by approaches taken by Savaskan et al. [21],
that construct the incentive for collectors only according to the return rate, rather than simul-
taneously considering return rate, pricing, and green promotion. Similar directions have been
taken by other research such as Corbett and DeCroix [3], Corbett and DeCroix [7,8], Corbett
and DeCroix [13] and Savaskan and van Wassenhove [22].

www.staple.com
http://www.expert-italia.it
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In the incentive games, the players’ objective functions are given by

JM =
∫ +∞

0
e−ρt

(

(α + r (t) θ − βp (t)) (ω (t) + r (t) Δ) − ϕς − (AM (t))2

2

)

dt (10)

JR =
∫ +∞

0
e−ρt

(

(α + r (t) θ − βp (t)) (p (t) − ω (t)) + ϕς − (AR (t))2

2

)

dt (11)

subject to Eq. (2) where ς = S, C. As for the benchmark game, ρ is the discount factor and
it is assumed to be equal between the two players and across the incentive games. Objective
functions (10) and (11)maximize the players’ profits through sales aswell as remanufacturing
activities. Note that ϕς can assume the form introduced in (8) and (9). R’s interest in perform-
ing the return rate depends on customers’ repurchasing intention and incentive: High return
rate translates into higher profits even when customers do not repurchase end-of-use products
(e.g., θ = 0). Both incentive games are played á la Stackelberg where M is the leader and
the nature of the game and the related moves follow the benchmark game structure. The solu-
tion to the incentive problems yield the equilibrium feedback strategies ως∗ (rς ) and Aς∗

M (r)

for M . Once we have the solution ως∗ (rς ) and Aς∗
M (rς ), we can express R’s feedback price

and GAP strategies as pς∗ (rς ) = pς
(
rς | ως∗, Aς∗

M

)
and Aς∗

R (r) = Aς∗
R

(
r j | ως∗, Aς∗

M

)
.

Strategies pς∗ (r) , ως∗ (r) , Aς∗
M (r) and Aς∗

R (r) constitute a feedback Stackelberg equilib-
rium, which is time consistent. Using these strategies in Eq. (2), it will result the return
rate rς∗ (t) , t ≥ 0, and the related decisions will be pς∗ (rς∗) , ως∗ (rς∗) , Aς∗

M (rς∗) and
Aς∗

R (rς∗).

3 Analysis

In this section, we optimally solve the games described earlier. We restrict our attention to
feedback Stackelberg solutions where the optimal strategies depend on the state. Because the
game is played in an infinite time horizon with time-independent parameters, we focus on
stationary equilibrium since feedback strategies will not explicitly depend on time t .

3.1 Benchmark: No-Incentive Game

The optimal solution to this problem is given in Proposition 1 where we use the superscript
B to characterize the (Benchmark) no-incentive game.

Proposition 1 Assuming an interior solution, strategies and profit functions in the no-
incentive case are as follows:

AB
M

(
r B

)
= a

(
d1r B + d2

)
(12)

AB
R

(
r B

)
= b

(
f1r B + f2

)
(13)

ωB
(

r B
)

= α + r B (θ − Δβ)

2β
(14)

pB
(

r B
)

= 3α + r B (3θ − Δβ)

4β
(15)
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V B
M

(
r B

)
=

(
α + r B (θ + Δβ)

)2

8βρ

+
(
d1r B + d2

) (
a2

(
d1r B + d2

) + 2b2
(

f1r B + f2
) − 2δr B

)

2ρ
(16)

V B
R

(
r B

)
=

(
α + r B (θ + Δβ)

)2

16βρ

+
(

f1r B + f2
) (
2a2

(
d1r B + d2

) + b2
(

f1r B + f2
) − 2δr B

)

2ρ
(17)

where d1, d2, f1, and f2 are the coefficients of the conjectured value functions

V B
M

(
r B

)
= d1

2
r B2 + d2r B + d3 (18)

V B
R

(
r B

)
= f1

2
r B2 + f2r B + f3 (19)

Proof See the “Appendix 1”. ��
From Proposition 1, we observe that all strategies are state dependent. While GAP efforts

always increase in the return rate, pricing strategies increase in the state only when θ > Δβ.
Specifically, three cases can be analyzed:

Case 1 θ ≤ Δβ
3 . When the customers’ repurchasing intention is low, the advantages of

an efficient return process should be transferred to customers who have marginal attitudes
toward repurchasing returned products. The return process is a pure operational device that
allows firms to benefits from the returns residual value in production while CLSCs should
only rely on traditional marketing strategies (e.g., pricing) to increase sales.

Case 2 θ ∈ (
Δβ
3 ,Δβ]. When the customers’ repurchasing intention is medium, a CLSC

eliminates internal marginalization inefficiencies as the wholesale price decreases in the
return rate. Nevertheless, high environmental performance boosts the price that customers
will pay. An efficient return process allows the reduction of the first marginalization while it
enhances the second marginalization; thus, it only mitigates internal inefficiency.

Case 3 θ > βΔ. When the customers’ repurchasing intention is high, an efficient return
process implies higher wholesale price and retail price strategies. An environmentally ori-
entedpolicypenalizes newcustomerswhowill pay ahigher pricewhen theCLSCsuccessfully
performs its return process. In such a case, CLSC members seek to increase profits through
customers’ repurchasing intention, in the spirit that firms focus on generating profits through
their current customers portfolio rather than looking for new buyers. The chain suffers from
a double marginalization effect, as both players charge higher prices at all CLSC levels.

In equilibrium, there is a compensation effect between pricing strategies and GAP efforts:
Although sales would decrease due to higher price, customers who repurchase products
lead sales to always be positive. This compensation effect mainly depends on customers’

repurchasing intention and existswhen θ > 0, (e.g., DB
(
r B

) = α+r B (θ+Δβ)
4 ).Note thatwhen

θ = 0, wholesale and pricing strategies given in Eqs. (14) and (15) decrease in the state and
thus r B contributes to increasing sales through a lower price. It is straightforward to analyze
some comparative statics with respect to pricing-decision strategies: ωB(r B) and pB(r B)

increase in the market size (e.g., ∂ωB (r B )
∂α

= 1
2β > 0, ∂pB (r B )

∂α
= 3

4β > 0) and in customers’
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repurchasing intention (e.g., ∂ωB (r B )
∂θ

= r B

2β > 0, ∂pB (r B )
∂θ

= 3r B

4β > 0), while decrease in the

customers ’ sensitivity to price (e.g., ∂ωB (r B )
∂β

= −α+r Bθ
2β2 < 0, ∂pB (r B )

∂β
= − 3(α+r Bθ)

4β2 < 0). In

addition, the optimal pricing-decision strategies lead to the margins: π B
M (r B) = α+r B (θ+Δβ)

2β

and π B
R (r B) = α+r B (θ+Δβ)

4β . M has the advantage of his position of CLSC leader to gain

more margins than R, specifically π B
M (r B) = 2π B

R (r B).
Note that because the identified parameters d1 and f1 are coupled (see “Appendix 1”),

solving Eqs. (18) and (19) and analyzing AB
i

(
r B

)
, V B

i

(
r B

)
are non-trivial problems. We

carried out numerical optimization to obtain insights into the solutions of this problem. First,
we numerically solve the set of Riccati equations related to the problem (see “Appendix 1”,
Eqs. 48–53) to identify the solution that ensures positive strategies and value functions as
well as r B ∈ (0, 1]. We fix the following baseline parameter values: α = β = 1, a = .5, b =
1, θ = .3, Δ = .5, δ = .4, ρ = .9.2 The system has four solutions but only two of them
turn out to be good candidates. If fact, it results that:

• Solution I, dI
1 = .1016, f I1 = .05, dI

2 = .1702, f I2 = .0834.

• Solution II, dII
1 = 1.993, f II1 = 0.5607, dII

2 = −1.118, f II2 = −.2355.

• Solution III, dIII
1 = 7.067, f III1 = −.0447, dIII

2 = 2.419, f III2 = −.1728.

• Solution IV, dIV
1 = −.0954, f IV1 = 1.701, dIV

2 = −.465, f IV2 = 0.259.

Solutions III and IV are not good candidates because at least one of the previous
assumptions is violated. For the purpose of this analysis, it is sufficient to focus on GAP
strategies, return rates, and value functions, given the fact that pricing strategies take the
same shape of the state. “Appendix 2” displays these violated assumptions in bold. Instead,
solutions I and II are good candidates because all positivity assumptions aremet, alongwith
admissible values for the return rate at the steady state, specifically, r B ∈ (0, 1]. Second, we
check the robustness of solutions I and II to figure out which of them should be used over the
research. Therefore, we evaluate the changes of GAP efforts, return rates, and profits when
a parameter value is changed, to identify the circumstances under which the assumptions
are violated. The full numerical analysis, which is displayed in “Appendix 3”, shows that
solution I is more robust than solution II; thus, it is the good solution to be used from now
on. Therefore, we will refer to solution I such as d∗

1 > 0, f ∗
1 > 0, d∗

2 > 0, f ∗
2 > 0. Now

that we have established a positive sign for d∗
1 , f ∗

1 , d∗
2 , f ∗

2 , and we can check that all model
conditions and assumptions are satisfied in the following Corollary:

Corollary 1 In equilibrium, all players’ strategies are positive in the return rate when θ >

Δβ. Then

1. The optimal path of the state variable is always monotonous, the steady state (SS) of
r B

SS ∈ (0, 1] and r B (t) ∈ [r0, r B
SS] if r0 < r B

SS or r B (t) ∈ [r B
SS, r0, ] if r0 > r B

SS;

2. AB
i

(
r B

SS

)
is positive and nondecreasing in r B

SS;

3. ωB
(
r B

SS

)
and pB

(
r B

SS

)
increase in r B

SS if θ − Δβ > 0;

2 As it will be demonstrated later, M is willing to incentivize R to perform the return rate as long as she
shows a larger operational effectiveness.
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4. DB
(
r B

SS

)
and V B

i

(
r B

SS

)
are positive and nondecreasing in r B

SS.

Proof Substituting Eqs. (12) and (13) in (2) leads to ṙ B = a2d2+b2 f2+(
a2d1 + b2 f1 − δ

)

r B (t) ;the stability condition requires to have a2d1 + b2 f1 − δ < 0. The return rate at the

steady state is given by r B
SS = a2d2+b2 f2

δ−a2d1−b2 f1
> 0. The solution d∗

1 > 0, d∗
2 > 0, f ∗

1 > 0

and f ∗
2 > 0 also satisfies the assumption that r B

SS ≤ 1 (see the “Appendix 3”) and thus
r B

SS ∈ (0, 1]. To check the stability of r B
SS∀t ∈ [0,∞), solve Eq. (2) to get r B (t) = (1

−e(a2d1+b2 f1−δ))r B
SS+e(a2d1+b2 f1−δ)t r0; from this expression, it becomes clear that condition

a2d1 + b2 f1 − δ < 0 is needed to ensure that r B monotonously converges from r0 to r B
SS

when the initial value of the return rate is lower than the steady-state value (r0 < r B
SS) as

the time goes to infinite, while r B monotonously decreases from r0 to r B
SS when the initial

value of the return rate is greater than the steady-state value (r0 > r B
SS). This solution

ensures that AB
i

(
r B

SS

) ≥ 0, with i = M, R, is stable as well as that
∂ AB

M

(
r B

SS

)

∂r B
SS

= ad1 > 0

and
∂ AB

R

(
r B

SS

)

∂r B
SS

= b f1 > 0. Previous results on r B
SS guarantee positive ωB

(
r B

SS

)
and pB

(
r B

SS

)
.

θ−Δβ > 0 is a sufficient condition to get pricing-decision strategies increasing in r B
SS (see the

earlier case analysis). Substitute (15) in Eq. (5) to show that DB
(
r B

SS

) = α+r B
SS(θ+Δβ)

4 > 0

and then
∂ DB

(
r B

SS

)

∂r B
SS

= θ+Δβ
4 > 0 for all model parameter values. Finally, conditions that

ensure AB
i

(
r B

SS

)
> 0 also guarantee that V B

i

(
r B

SS

)
> 0,

∂V B
M

(
r B

SS

)

∂r B
SS

= d1r B
SS + d2 > 0 and

∂V B
R

(
r B

SS

)

∂r B
SS

= f1r B
SS + f2 > 0. ��

The game that we analyze in this research carries out some specific properties that make
the traditional per-return incentives ineffective. A per-return incentive loses its beneficial
effects because both players are able to set their optimal wholesale and pricing strategies by
also considering the role of incentives. This mutual adjustment sterilizes the effectiveness
of a per-return incentive. This results from De Giovanni and Zaccour [7] who have fixed
the wholesale price to gain benefits from remanufacturing. In addition, the missing links
between GAP and pricing also nullify the per-return incentive efficiency due to the dynamic
return component. In fact, Savaskan et al. [21] and Savanskan and van Wassenhove [22]
have demonstrated the value created by a per-return policy in static games, while in dynamic
games, several adjustments have been introduced: fix wholesale price [7], interfaces between
pricing and GAP [8], and revenue sharing contract agreements [5].

Proposition 2 A per-return incentive3 is an inefficient mechanism to coordinate a dynamic
CLSC as it results that V P

M

(
r P

SS

) = V B
M

(
r B

SS

)
and V P

R

(
r P

SS

) = V B
R

(
r B

SS

)
.

Proof See the “Appendix 1”. ��
The result in Proposition 2 compels us to look into different types of incentivemechanisms

to coordinate a dynamic CLSC. Therefore, we have investigated both state- and control-
dependent incentives.

3.2 Scenario S: State-Dependent Incentive

As the incentive in the state-dependent problemdoes not involve players’ policies, all controls
assume the same shape as in the no-incentive scenario. Because the incentive ϕS (r (t)) is

3 We use the superscript P to refer to a per-return incentive.
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linear in the state, only the linear coefficients will be affected while the optimal solution to
this problem is given in Proposition 3.

Proposition 3 Assuming an interior solution, strategies and profit functions in the state-
dependent incentive game are as follows:

AS
M

(
r S

)
= a

(
m1r S + m2

)
(20)

AS
R

(
r S

)
= b

(
n1r S + n2

)
(21)

ωS
(

r S
)

= α + r S (θ − Δβ)

2β
(22)

pS
(

r S
)

= 3α + r S (3θ − Δβ)

4β
(23)

V S
M

(
r S

)
=

(
α + r S (θ + Δβ)

)2

8βρ

+
(
mS

1r S + m2
) (

a2
(
m1r S + m2

) + 2b2
(
n1r S + n2

) − 2δr S
)

2ρ
(24)

V S
R

(
r S

)
=

(
α + r S (θ + Δβ)

)2

16βρ

+
(
n1r S + n2

) (
2a2

(
m1r S + m2

) + b2
(
n1r S + n2

) − 2δr S
)

2ρ
(25)

where m1, m2, n1, and n2 are the coefficients of the conjectured value functions

V S
M

(
r S

)
= m1

2
r S2 + m2r S + m3 (26)

V S
R

(
r S

)
= n1

2
r S2 + n2r S + n3 (27)

Proof See the “Appendix 1”. ��
The qualitative analysis of players’ controls and customer demand is somewhat similar to

the discussion in benchmark scenario as the analytical solution follows the same structure.

Remark 1 In equilibrium, results in Corollary 1 also apply to the state-incentive scenario,
that is:

1. The optimal path of the state variable is always monotonous, r S
SS ∈ (0, 1] and r S (t) ∈

[r0, r S
SS] if r0 < r S

SS or r S (t) ∈ [r S
SS, r0] if r0 > r S

SS;
2. AS

i

(
r S

SS

)
is positive and nondecreasing in r S

SS;
3. ωS

(
r S

SS

)
and pS

(
r S

SS

)
increase in r S

SS if θ − Δβ > 0;
4. DS

(
r S

SS

)
and V S

i

(
r S

SS

)
are positive and nondecreasing in r S

SS.

Interestingly, the results in Remark 1 hold because the incentive parameter μ does not
play any role inside the constants m1 and n1, which have the same structure as the quadratic
coefficients in the benchmark scenario [see “Appendix 1”, Eqs. (48), (51), (79), and (82)].

Therefore, it results that m∗
1 = d∗

1 , n∗
1 = f ∗

1 , and then
∂m∗

1
∂μ

= 0 and
∂n∗

1
∂μ

= 0. Because m1

and n1 are μ − independent, m2 and n2 can be simply derived from the Riccati equations:

B2 + 4β
[
b2m∗

1n2 + (B1 − μ) m2
] = 0
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Table 3 The relationships
between the incentive parameter,
μ, and m2, n2

m2 n2

μ = .025 .1669 .0851

μ = .05 .1638 .0868

μ = .2 .1475 .0994

B2 + 8β
[
a2m2n∗

1 + (B1 + μ) n2
] = 0

(see the “Appendix 1”) where B1 = a2m∗
1 + b2n∗

1 − δ − ρ < 0 and B2 = α (θ + Δβ) > 0.
Analytically, it is easy to derive the sign ofm∗

2, n∗
2 oncewe have established thatm∗

1 = d∗
1 > 0

and n∗
1 = f ∗

1 > 0.

The solution gives m∗
2 = b2m∗

1−2μ−2B1

8β
(
B2
1−μ2−a2b2m∗

1n∗
1

) B2 > 0 and n∗
2 = μ−B1+2a2n∗

1
8β

(
B2
1−μ2−a2b2m∗

1n∗
1

) B2 >

0, from which we can derive that ∂m2
∂μ

= −μ
(
μ−b2m∗

1

)+(B1+2μ)B1−a2b2m∗
1n∗

1

4β
(
μ2−B2

1+a2b2m∗
1n∗

1

)2 B2 ≤ 0 and

∂n2
∂μ

= 2μ
(
2a2n∗

1+μ−B1
)+[

B2
1−μ2−a2b2m∗

1n∗
1

]

8β
(
μ2−B2

1+a2b2m∗
1n∗

1

)2 B2 ≥ 0. Although these results apply in general

for all parameter values, a numerical analysis is reported in the Table 3 below, while further
simulations are displayed in “Appendix 3” to clarify these signs.

Numerical ExampleTo clarify the results ∂m2
∂μ

≤ 0, ∂n2
∂μ

≥ 0,we use the baseline parameter
values previously fixed. Then, forμ = (.025, .05, .2) , the solution form2, n2 gives the results
displayed in Table 3.

Now that we have established the signs each coefficient of the solution, we substitute
Eqs. (20) and (21) in (2) to have ṙ S (t) = a2m2+b2n2+

(
a2m1 + b2n1 − δ

)
r S (t) , forwhich

the stability condition imposes a2m1 + b2n1 − δ < 0. Therefore, r S
SS = a2m2+b2n2

δ−a2m1−b2n1
> 0

and solution m∗
1 > 0, m∗

2 > 0, n∗
1 > 0 and n∗

2 > 0 also ensures that r S
SS ≤ 1 (see the

“Appendix 3”). Finally, r S
SS ∈ (0, 1]. The stability of r S

SS∀t ∈ [0,∞) can be checked by

solving Eq. (2) and get r S (t) =
(
1 − e

(
a2m1+b2n1−δ

)
t
)

r S
SS + e

(
a2m1+b2n1−δ

)
t r0; from this

expression, it results clear that r S monotonously converges from r0 to r S
SS when the initial

value of the return rate is lower than the steady-state value (r0 < r S
SS) as the time goes to

infinite, while r S monotonously decreases from r0 to r S
SS when the initial value of the return

rate is greater than the steady-state value (r0 > r S
SS). Consequently, AS

i

(
r S

SS

) ≥ 0 is also stable

∀t ∈ [0,∞), while
∂ AS

M

(
r S

SS

)

∂r S
SS

= am1 > 0 and
∂ AS

R

(
r S

SS

)

∂r S
SS

= bn1 > 0. Because r S
SS ∈ (0, 1]

ensures positive ωS
(
r S

SS

)
and pS

(
r S

SS

)
, DS

(
r S

SS

) = α+r S
SS(θ+Δβ)

4 > 0,
∂ DS

(
r S

SS

)

∂r S
SS

= θ+Δβ
4 >

0,while the impact of r S
SS onωS

(
r S

SS

)
and pS

(
r S

SS

)
is established by the relationships between

consumers’ repurchasing intention and sensitivity to price as well as returns’ residual value.

Finally, conditions that ensure AS
i

(
r S

SS

)
> 0 also guarantee that V S

i

(
r S

SS

)
> 0,

∂V S
M

(
r S

SS

)

∂r S
SS

=
m1r S

SS + m2 > 0 and
∂V S

R

(
r S

SS

)

∂r S
SS

= n1r S
SS + n2 > 0.

It is now possible to establish the impact of a state-dependent incentive on the return rate
through the following proposition:

Proposition 4 In equilibrium, the steady state of return rate r S
SS is positive and nondecreasing

in μ when a2
∣∣∣ ∂m2

∂μ

∣∣∣ < b2 ∂n2
∂μ

.
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Proof Plug (20) and (21) inside (2) and compute the return rate at the steady state as r S
SS =

a2m2+b2n2
δ−a2m1−b2n1

> 0; it results that ∂r S
SS

∂μ
= 1

δ−a2m1−b2n1

(
a2 ∂m2

∂μ
+ b2 ∂n2

∂μ

)
≥ 0 ⇔ a2

∣
∣
∣ ∂m2

∂μ

∣
∣
∣ <

b2 ∂n2
∂μ

. When this condition holds, the return rate increases in the incentive μ. ��
R’s GAP effectiveness b plays a key role in the establishment of conditions to increase

the return rate through a state-dependent incentive. Therefore, supplying a state-dependent
incentive seems to be a necessary but not also a sufficient condition to perform higher return
rates. Intuitively, M’s willingness to perform the return rate through incentives decreases
when R’s GAP effectiveness is small as R’s contribution to the state will be marginal even
when the incentive is sufficiently high. When these conditions apply, it becomes straight-

forward to show
∂ AS

R

(
r S

SS

)

∂μ
≥ 0, as

∂r S
SS

∂μ
≥ 0 and ∂n2

∂μ
≥ 0 ; thus, R invests more in

GAP when a state-dependent incentive is put in place. Finally, insert r S
SS in (21) to obtain

AS
R

(
r S

SS

) = b
(
δ−a2m1

)
n2+a2m2n1

δ−a2m1−b2n1
. In contrast, the sign of

∂ AS
M

(
r S

SS

)

∂μ
is not as easy to establish

as
∂r S

SS
∂μ

≥ 0 and ∂m2
∂μ

≤ 0. Note that, M would invest less in GAP efforts because he has
lower economic resources on hand when a state-dependent incentive is supplied. Further,
he expects R to invest more in GAP efforts to perform the return rate and contribute to her
profits. A state-dependent incentive determines the conditions under which both players can

be economically better off. Plug r S
SS in (20) and derive AS

M

(
r S

SS

) = a
(
δ−b2n1

)
m2+b2m1n2

δ−a2m1−b2n1
.

Finally, the implementation of a state-dependent incentive leads to higher environmental
performance conditionally to R’s sufficiently large GAP effectiveness.

Finally, in “Appendix 3”, we numerically verify that r S
SS ∈ (0, 1] as well as positivity of

GAP strategies and profits.

Proposition 5 In equilibrium, a state-dependent incentive always leads to higher environ-
mental performance when b ≥ b∗.

Proof Compute the difference between steady state return rates in state-dependent and bench-

mark scenarios as r S
SS−r B

SS = − B1
[
2a2μ+b2μ+(

2a2−b2
)
B1

]+a2b2
[(

b2−2a2
)
m∗
1n∗

1−(m∗
1+μn∗

1)μ
]

8β
(
a2b2m∗

1n∗
1−B2

1

)(
μ2−B2

1+a2b2m∗
1n∗

1

) μB2.

There exists a sufficiently large b = b∗ for which r S
SS > r B

SS, ∀μ > 0. To prove
that statement, assume that b is sufficiently large and results b2 = 2a2, which implies
that R’s GAP effectiveness is twice M’s GAP effectiveness; it turns out that r S

SS − r B
SS

= − 2B1−(m∗
1+μn∗

1)a2

8β
(
a2b2m∗

1n∗
1−B2

1

)(
μ2−B2

1+a2b2m∗
1n∗

1

)μ2b2B2 > 0∀μ > 0, as B1 < 0. ��
While GAP strategies have opposite changes over increasing incentive values, pricing-

decision policies would eventually have the same sign. Assume that
∂r S

SS
∂μ

> 0, relationships
among customers’ repurchasing intentions θ , return residual value Δ, and customers’ sensi-
tivity to price β establish these signs, specifically, three cases can be identified.
Case 1 θ ≤ Δβ

3 . When the customer’s repurchasing intention is low, high incentive low-
ers both the wholesale price and the retail price, and thus, it negatively impacts on the first
and the second marginalization. When M supplies a state-dependent incentive, he reduces
the first marginalization and charges a lower wholesale price. In these circumstances, a
state-dependent incentive also provides an implicit motivation for R to boost returns while
substantially lowering the internal inefficiency. Similarly, R charges a lower price to cus-
tomers, for whom a state-dependent mechanism is beneficial—though they will pay a lower
price. A state-dependent incentive plays the dual role of performing higher environmental
performance (return rate) and higher social performance (customers pay lower prices).
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Case 2 θ ∈ (
Δβ
3 ,Δβ]. When the customer’s repurchasing intention is medium, a higher

incentive implies lower wholesale price and higher retail price, and thus, it negatively impacts
on the first marginalization, while it positively influences the second marginalization. A
state-dependent incentive reduces the first marginalization; therefore, M will charge a lower
wholesale price. In these circumstances, a state-dependent incentive also provides an implicit
motivation for M to boost returns while substantially lowering the internal inefficiency. In
contrast, R charges a higher price to customers, for whom a state-dependent mechanism is
not beneficial—though they will pay a higher price.
Case 3 θ > Δβ. When the customer’s repurchasing intention is high, an increasing incentive
implies higher wholesale price and retail price; therefore, higher quantity purchased by green
customers compensates the lower amounts sold to new customers. Increasing fixed incentives
penalize the business through boosting the doublemarginalization effects. Because customers
are environmentally conscious, repurchases are less sensitive to price increase; thus, the
double marginalization effect does not negatively influence sales.

Because the identified parameters m2 and n2 are both positive, the pair of constants
(m3, n3) will always be positive for any model parameter value and their changes in the
incentive will depend on m2 and n2 (see the “Appendix 3”). This leads to V S

i

(
r S

SS

) ≥ 0.

3.3 Scenario C: Control-Dependent Incentive

As the incentive in the control-dependent game only involves R’s GAP efforts, pricing deci-
sions and M’s GAP efforts assume the structure as in the no-incentive scenario. Because the
incentive is linear in AC

R

(
rC

)
, only the linear and the constant coefficient of the conjectured

value functions will be influenced, whereas the optimal solution to this problem is given in
Proposition 6.

Proposition 6 Assuming an interior solution, strategies and profit functions in the control
incentive game are as follows:

AC
M

(
rC

)
= a

(
l1rC + l2

)
(28)

AC
R

(
rC

)
= b

(
k1rC + k2

)
+ μ (29)

ωC
(

rC
)

= α + rC (θ − Δβ)

2β
(30)

pC
(

rC
)

= 3α + rC (3θ − Δβ)

4β
(31)

V C
M

(
rC

)
=

(
α + rC (θ + Δβ)

)2

8βρ
+

(
b

(
l1rC + l2

)
− μ

) (
b

(
k1rC + k2

)
+ μ

)

+
(

l1rC + l2
)(

a2
(
l1rC + l2

)

2
− δrC

)

(32)

V C
R

(
rC

)
=

(
α + rC (θ + Δβ)

)2

16βρ
+

(
b

(
k1rC + k2

) + μ
)2

2

+
(

k1rC + k2
) (

a2
(

l1rC + l2
)

− δrC
)

(33)
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where l1, l2, k1, and k2 are the coefficients of the conjectured value functions

V C
M

(
rC

)
= l1

2
rC2 + l2rC + l3 (34)

V C
R

(
rC

)
= k1

2
rC2 + k2rC + k3 (35)

Proof See the “Appendix 1”. ��
The qualitative analysis of players’ controls and customer demand follows somewhat the

discussion in the benchmark scenario as the analytical solution follows the same structure.

Remark 2 In equilibrium, results in Corollary 1 also apply to the control incentive scenario,
that is:

1. The optimal path of the state variable is always monotonous, rC
SS ∈ (0, 1] and rC ∈

(r0, rC
SS] if r0 < rC

SS or rC ∈ (rC
SS, r0] if r0 > rC

SS;

2. AC
i

(
rC

SS

)
is positive and nondecreasing in rC

SS;

3. ωC
(
rC

SS

)
and pC

(
rC

SS

)
increase in rC

SS if θ − Δβ > 0;

4. DC
(
rC

SS

)
and V C

i

(
rC

SS

)
are positive and nondecreasing in rC

SS.

As for the state-incentive case, the incentive parameter μ does not play any role inside
the quadratic-state constants k1 and l1. Note that although the incentive is control depen-
dent, it is only a function of R’s GAP efforts rather than of other strategies. Therefore, the
quadratic terms of conjectured value functions take the same structure of previous scenarios
[see “Appendix 1”, Eqs. (48), (51), (79), (82), (101), and (104)]. Thus, l∗1 = d∗

1 > 0 and

k∗
1 = f ∗

1 > 0, from which it turns out that
∂l∗1
∂μ

= 0 and
∂k∗

1
∂μ

= 0. While l1 and k1 are
μ independent, l2 and k2 are affected by a control-dependent incentive and can be simply
derived from the Riccati equations:

B2 + 4β
[
bμ (l1 − k1) + b2l1k2 + B1l2

] = 0

B2 + 8β
[
a2 (l2k1 + l1k2) + B1k2 + bμk1

] = 0

(see the “Appendix 1”). The solution gives l2

= 8b3βμk1l1+8μβb
(
B1+a2l1

)
(k1−l1)−

(
2B1+

(
2a2−b2

)
l1

)
B2

8β
(
B2
1−a2l1(b2k1−B1)

) > 0 and k2

= −B2
(
B1−2a2k1

)+8bβμk1
(
a2(l1−k1)−B1

)

8β
(
B2
1−a2l1(b2k1−B1)

) > 0,where the denominator B2
1−a2l1

(
b2k1 − B1

)
>

0. The derivatives with respect to the incentive μ will be ∂l2
∂μ

= b
(
B1+a2l1

)
(k1−l1)+b3k1l1

B2
1+a2B1l1−a2b2k1l1

≥ 0

and ∂k2
∂μ

= a2b(l1−k1)−bB1
B2
1+a2B1l1−a2b2k1l1

k1 ≥ 0. The numerical analysis reported in Table 4 as well as

the simulations displayed in “Appendix 3” confirm that these results apply in general and
independent of the parameter values.

Numerical Example 2 To clarify the results ∂l2
∂μ

≥ 0, ∂k2
∂μ

≥ 0, for μ = (.025, .05, .2) ,

solutions for l2, k2 give the results displayed in Table 4.
After establishing the signs each coefficient of the solution, we substitute Eqs. (28) and

(29) in (2) to have ṙC (t) = a2l2 + b2k2 + (
a2l1 + b2k1 − δ

)
rC (t) , for which the stability

condition imposes a2l1 + b2k1 − δ < 0. Therefore, rC
SS = a2l2+b2k2

δ−a2l1−b2k1
> 0 and solution
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Table 4 The relationships
between the incentive parameter,
μ, and l2, k2

l2 k2

μ = .025 .1705 .0835

μ = .05 .1708 .08366

μ = .2 .1724 .08444

l∗1 > 0, l∗2 > 0, k∗
1 > 0 and k∗

2 > 0 also ensures that rC
SS ≤ 1 (see the “Appendix 3”).

Finally, rC
SS ∈ (0, 1]. The stability of rC

SS∀t ∈ [0,∞) can be checked by solving Eq. (2)

and get rC (t) =
(
1 − e

(
a2l1+b2k1−δ

)
t
)

rC
SS + e

(
a2l1+b2k1−δ

)
t r0, from which it results that

condition a2l1 + b2k1 − δ < 0 ensures that rC monotonously converges from r0 to rC
SS when

r0 < rC
SS , while rC monotonously decreases from r0 to rC

SS when r0 > rC
SS. Consequently,

AC
i

(
rC

SS

) ≥ 0 is also stable ∀t ∈ [0,∞), while
∂ AC

M

(
rC

SS

)

∂rC = al1 > 0 and
∂ AC

R

(
rC

SS

)

∂rC = bk1 > 0.

Because rC
SS ∈ (0, 1] ensures positive ωC

(
rC

SS

)
and pC

(
rC

SS

)
, DC

(
rC

SS

) = α+rC
SS(θ+Δβ)

4 >

0,
∂ DC

(
rC

SS

)

∂rC
SS

= θ+Δβ
4 > 0, while the impact of rC

SS on ωC
(
rC

SS

)
and pC

(
rC

SS

)
depends on the

relationships between consumers’ repurchasing, consumers’ sensitivity to price and returns’
residual value. Finally, conditions that ensure AC

i

(
rC

SS

)
> 0 also guarantee V C

i

(
rC

SS

)
>

0,
∂V C

M

(
rC

SS

)

∂rC
SS

= l1rC
SS + l2 > 0 and

∂V C
R

(
rC

SS

)

∂rC
SS

= k1rC
SS + k2 > 0.

Interestingly, contrary to the state-dependent incentive, a control-dependent incentive
pushes both players’ to increase their GAP efforts. It is intuitive that R increases her GAP
efforts.On one hand, she has higher economic resources to boost her profits; on the other hand,
she determines the incentive through her GAP efforts decision. In addition, M contributes
more to the return rate dynamics even if he has fewer economic resources to invest in GAP.
A control-dependent incentive allows the engagement of R’s efforts independent of AC

M ;
therefore, enhancing GAP efforts will not directly deteriorate M’s profits. Rather, M will
spend more in GAP to exploit both the operational and the marketing benefits that the state
supplies. It is now easy to establish the impact of a control-dependent incentive inside the
return rate, as it is summarized in the following proposition

Proposition 7 In equilibrium, the steady state of return rate r S
SS is positive and nondecreasing

in μ.

Proof Plug (28) and (29) inside (2) and compute the return rate at the steady state as

rC
SS = a2l2+b2k2

δ−a2l1−b2k1
> 0; because it results that ∂l1

∂μ
= ∂k1

∂μ
= 0, it turns out that

∂rC
SS

∂μ
= 1

δ−a2l1−b2k1

(
a2 ∂l2

∂μ
+ b2 ∂k2

∂μ

)
≥ 0 for all parameter values.

In the control-dependent incentive game, both players’ GAP effectivenessa and b estab-
lish the conditions under which a CLSC performs better return rates. The implementation of a
control-dependent incentive does guarantee higher environmental performance for all model
parameter values. Thus, M always has a highwillingness to supply a control-dependent incen-
tive: This result depends on the influence that M exerts on the incentive itself, which is null as
R is the only one responsible for the incentive she will get. Finally, insert rC

SS in (28) and (29)

to obtain AC
M

(
rC

SS

) = a
(
δ−b2k1

)
l2+b2k2l1

δ−a2l1−b2k1
and AC

R

(
rC

SS

) = bk1
(
a2l2+b2k2

)+(
δ−a2l1−b2k1

)
(bk2+μ)

δ−a2l1−b2k1
.

Further, in “Appendix 3”, we numerically verify that rC
SS ∈ (0, 1] as well as positivity

of GAP strategies and profits. As for the previous scenarios, pricing-decision policies are
driven by the return rate while the relationships among customers’ repurchasing intentions θ ,



Dyn Games Appl (2016) 6:20–54 37

return residual value Δ, and customers’ sensitivity to price β establish the impact of a return
process in the first πM and second marginalization πR . Note that the qualitative analysis
follows the findings in the previous game. Because the identified parameters l2 and k2 are
both positive, the pair of constants (l3, k3) will always be positive for any model parameter
value as quadratic and linear coefficients are all positive and their changes in the incentive
will depend on changes of l2 and k2 (see “Appendix 3”). This ensures that V C

i

(
rC

SS

)
> 0.

4 Comparison Among Scenarios

In this section, we run a simulation analysis to compare state, strategies, and profits over
the three scenarios. In the previous sections, we have analytically characterized the players’
strategies and outcomes and extrapolate some findings. Given the model’s structure, not sur-
prisingly, we obtained the equilibrium wholesale and retail prices have the same structure
across all scenarios while their difference mainly depends on the state. This implies that
any difference in players’ strategies depends on the influence that an incentive has on the
state. As strategies and outcomes cannot be compared analytically, we shall proceed numer-
ically. These features supply relevant managerial insights and their investigation provides
new contributions to the literature. We start from a baseline parameters whose values have
been taken from the literature: α = β = 1, a = 0.5, b = 1, Δ = .5, θ = 0.3; δ = .4, ρ =
.9, μ = .05. Then, for the purpose of our research, we investigate how the differences among
outcomes change according to all parameter values. Nevertheless, among all parameters, we
have put more attention to the marginal incentive μ, customers’ repurchasing intention θ,

and R’s GAP effectiveness b, whose analysis provides a contribution to the literature.
We start from a comparison of the return rate at the steady state across the three scenarios,

which is displayed in Table 5. That table should be read as follows: How an element in the
main column changes when one feature in the main row is changed. For instance, r S − r B

in the main column and α in the main row indicates that the difference between return rates
in scenarios S and B decreases when the market potential increases.

When the business expands, an incentive mechanism based on the overall CLSC’s envi-
ronmental performance marginally engages firms as compared to an incentive based on
single player’s actions. For instance, a control-dependent incentive leads to better return
rates when an expansion of the market α and an efficient conservation of return residual
value Δ occur. In these cases, a CLSC performs the environment either through forward or
through reverse activities. In contrast, increasing customers’ sensitivity to price β would sug-

Table 5 Changes in the
comparison among return rates at
the steady state

r S
SS − r B

SS rC
SS − r B

SS r S
SS − rC

SS

α(1.1;1.2;1.3) − + −
β(1.1;1.2;1.3) + − +
Δ(.6;.7;.8) − + −
θ (.4;.5;.6) − + −
a(.6;.7;.8) − + −
b(1.1;.1.2;1.3) + + +
δ(.5;.6;.7) + − +
ρ(.95;.97;.99) − + −
μ(.025;.05;.2) − + −
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gest the implementation of a state-dependent incentive; both pricing decisions and demand
heavily depend on the state; thus, a state-dependent incentive involves the entire CLSC. Sim-
ilarly, high customers’ repurchasing intention θ promotes a control-dependent incentive for
performing the return rate because it directly influences the demand. Remember that when
θ ≤ βΔ (e.g., θ = 0), firms exploit the return rate to charge lower prices and double mar-
ginalization rather than expanding their marginal revenues. When firms’ sales are ensured
through repurchases, sufficiently high return rates are performed without a state-dependent
incentive towhich all firms contribute. A similar result is obtainedwith respect to themarginal
fixed incentive μ: If it is low, engagement of other firms will be difficult and then only possi-
ble through a state-dependent incentive. A rapid loss of customers’ willingness to contribute
to the environment δ pushes a CLSC to the implementation of a state-dependent incentive,
while future discounts with high rates ρ pushes through the adoption of a control-dependent
incentive that acts on the players’ contributions to the dynamics.

Interestingly, players’ GAP effectiveness follow different directions. M’s high GAP effec-
tiveness encourages the adoption of a control-dependent incentive; intuitively, M does not
want to transfer money to R if he has substantially contributed to the return rate. In con-
trast, providing an incentive is always environmentally convenient for R’s sufficiently large
GAP effectiveness, b. Finally, a sufficiently large R’s GAP effectiveness is alone sufficient
to guarantee better environmental performance through the adoption of an incentive mech-
anism. Increasing R’s GAP effectiveness favors the adoption of a state-dependent incentive
as it ensures that both players will substantially contribute to the return rate.

It is worth recalling that pricing and demand are state dependent; thus, the qualitative study
developed so far also remains valid for their analysis. Although moving from one incentive
to another either deteriorates or ameliorates the trade-off between pricing and demand, firms
should aim at maximizing environmental performance: It generates higher sales, although it
also increases the prices. Closing the loop through optimal recovery programs also entails
other sides of the market, such as the social aspects and implications due to the adoption
of an incentive mechanism, which can be captured through the investigation of consumers’
demand [8]. In fact, it iswell documented thatwhenfirms invest in environment protection and
preservation, consumers are more willing to purchase from them (e.g., [1,27]). The selection
of an incentive mechanism can also be seen as a decision to impact the social outcomes,
although consumers do not play any active role in the developed games. However, CLSC
members should consider both their sensitivity to price as well as repurchasing intentions
when deciding the optimal pricing and GAP strategies (check the cases developed earlier)
along with the market potential and returns’ residual value (e.g., for all scenarios it results
D = α+r(θΔ+β)

4 ). The implementation of a control-dependent incentive improves the social
outcomes when the market expands and closing the loop is an appealing business, while
firms should avoid the adoption of a state-dependent incentive because they show opposite
willingness to invest in green programs.

Results in Tables 6 and 7 display how players’ GAP efforts change at the steady state
according to the model parameters. Changes in the model parameter values have opposite
impacts on the amounts that M invests in GAP. Compared to the no-incentive scenario, the
implementation of a control-dependent incentive pushes M to invest more in GAP according
to increasing market size α, return residual value Δ, and customers’ repurchasing intentions
θ . This entails M to exploit the operational and marketing advantages of closing the loop.
In line with these findings, high customers sensitivity to price imposes on firms to recon-
sider their pricing strategies (e.g.,θ ≤ βΔ) rather than using remanufacturing to boost sales
through repurchasing behaviors. A different finding results from themarginal incentiveμ, for
which M expects R to invest more in GAP efforts when he offers a control-dependent incen-
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Table 6 Changes in the comparison among M’s GAP efforts at the steady state

AS
M

(
r S
SS

)
− AB

M

(
r B
SS

)
AC

M

(
rC
SS

)
− AB

M

(
r B
SS

)
AS

M

(
r S
SS

)
− AC

M

(
rC
SS

)

α(1.1;1.2;1.3) − + −
β(1.1;1.2;1.3) + − +
Δ(.6;.7;.8) − + −
θ (.4;.5;.6) − + −
a(.6;.7;.8) + − +
b(1.1;.1.2;1.3) + + +
δ(.5;.6;.7) + − +
ρ(.95;.97;.99) + − +
μ (.025; .05; .2) − + −

Table 7 Changes in the comparison among R’s GAP efforts at the steady state

AS
R

(
r S
SS

)
− AB

R

(
r B
SS

)
AC

R

(
rC
SS

)
− AB

R

(
r B
SS

)
AS

R

(
r S
SS

)
− AC

R

(
rC
SS

)

α(1.1;1.2;1.3) + + +
β(1.1;1.2;1.3) − − −
Δ(.6;.7;.8) + + +
θ (.4;.5;.6) + + +
a(.6;.7;.8) + + −
b(1.1;.1.2;1.3) + + +
δ(.5;.6;.7) − − −
ρ(.95;.97;.99) − − −
μ(.025;.05;.2) + + +

tive. In contrast, high forgetting effects δ and discount rate ρ discourage GAP investments
as M expects R to compensate for these inefficiencies by investing more as a counterpart to
receiving an incentive. M has no advantages to provide an incentive when his GAP substan-
tially influences the state; therefore, he invests less under a control-dependent incentive. In
the case of R’s high GAP contribution to the state, a control-dependent inventive allows M
to use remanufacturing to increase profits, and thus, he invests more in GAP as the incentive
directly pushes R to increase her efforts as well.

Except for R’s GAP effectiveness, any change in the model parameter values that occurs
under a state-dependent incentive has an opposite effect on M ’s GAP decisions from the
change that might eventually occur under a control-dependent incentive: Because M also
contributes to the state he is more reluctant to coordinate the CLSC when the business
marginally improves. This implies a large incentive that M would not eventually transfer.
Therefore, increasing market size, return residual value, customer’s repurchasing intention,
as well as decreasing discount rate, customers’ willingness to return products and price
sensitivity lead M to invest less efforts in GAP when a state-dependent incentive is offered.
Intuitively, a high marginal incentive implies lower availability of monetary resources and
thus reduction in M’s GAP efforts. For high GAP effectiveness, M invests less under a state-
dependent incentive as he expects R to increase her efforts because he also contributes to
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Table 8 Changes in the comparison among M’s profits at the steady state

V S
M

(
r S
SS

)
− V B

M

(
r B
SS

)
V C

M

(
rC
SS

)
− V B

M

(
r B
SS

)
V S

M

(
r S
SS

)
− V C

M

(
rC
SS

)

α(1.1;1.2;1.3) − + −
β(1.1;1.2;1.3) + − +
Δ(.6;.7;.8) − + −
θ (.4;.5;.6) − + −
a(.6;.7;.8) − − −
b(1.1;.1.2;1.3) + + −
δ(.5;.6;.7) + − +
ρ(.95;.97;.99) + − +
μ(.025;.05;.2) + − −

the incentive. As in the control-dependent incentive, M lowers his investments in GAP as
R’s effectiveness improves: Lower M’s investments in GAP are then compensated by R’s
efforts.

Table 7 displays the comparison of R’s GAP at the steady state over the three scenarios.
Interestingly, amarginal improvement of the CLSC business pushes R to investmorewhen an
incentive is provided.Then,marginal increase inmarket size, return residual value, customer’s
repurchasing intention, aswell asmarginal reduction on discount rate, customer’s willingness
to return products and price sensitivity lead R to invest more efforts in GAP independent of
the nature of the incentive. This is for the purpose of providing an incentive in a CLSC: Boost
R’swillingness to domore in atypical CLSCactivities. For any change in themodel parameter
values, R′s GAP investments across the three scenarios turn out to be AS

R > AC
R > AB

R .

Interestingly, the amounts AS
M − AC

M in Table 6 and AS
R − AC

R in Table 7 change in
different directions for any change in the model parameters. Generally speaking, when the
business improves (e.g., higher market potential) M (R) invests more (less)when a control-
dependent incentive is put in place as the responsibility for the final incentive amount only
depends on R′s GAP investments.

M’s payoffs comparison, as reported in Table 8, follows the earlier discussion for M’s
GAP strategy. That is, when the CLSC business improves through an increase in market
size, return residual value, or customers repurchasing intention as well as through a decrease
in discount rate, customer’s price sensitivity, and willingness to return end-of-use products,
M will be economically better off through the adoption of a control-dependent incentive. A
state–control incentive seems far to be economically sustainable because M also participates
in its formation through optimally deciding on theGAP. In addition, M’swillingness to supply
an incentive decreases according to the fixed incentive amountμ and M’s GAP effectiveness,
independent of nature of incentive. M prefers to exclusively manage the return process when
his capability to perform the return rate is sufficiently large, while high fixed term incentives
make coordination marginally appealing. In contrast, M will always be economically better
off through coordination when R’s GAP effectiveness is sufficiently high, independent on
the incentive nature. Finally, M should always optional for a control-dependent over a state-
dependent incentive as the business improves and players’ performance enlarges.

Table 9 displays R’s payoffs comparison at the steady state over the analyzed scenarios.
The findings follow the results shown for R’s GAP strategy as it is displayed in Table 7.When
the CLSC business expands, R will always be economically better off through coordination,
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Table 9 Changes in the comparison among R’s profits at the steady state

V S
R

(
r S
SS

)
− V B

R

(
r B
SS

)
V C

R

(
rC
SS

)
− V B

R

(
r B
SS

)
V S

R

(
r S
SS

)
− V C

R

(
rC
SS

)

α(1.1;1.2;1.3) + + −
β(1.1;1.2;1.3) − − +
Δ(.6;.7;.8) + + −
θ (.4;.5;.6) + + −
a(.6;.7;.8) + + −
b(1.1;.1.2;1.3) + + −
δ(.5;.6;.7) − − +
ρ(.95;.97;.99) − − +
μ(.025;.05;.2) + + −

independent of the nature of an incentive. R′s willingness to participate in closing the loop
increases in the incentive and players’ GAP effectiveness: R will gainmorewith coordination
independent of the players’ contribution to the state. In comparison with the no-incentive
scenario, R should always optional for a coordinated CLSC. However, she should prefer a
control-dependent over a state-dependent incentive as the business improves and players’
performance enlarges. This finding is due to the dependency of an incentive: In a control-
dependent incentive, M does not contribute to the determination of R’s premium.

From the analysis of Tables 8 and 9, one result emerges: There exists a profit-Pareto-
improving region when coordination of CLSC makes both players economically better off.
Tables 10 and 11 show the comparison of profits over the three scenarios when changes occur
in return residual value, customers’ repurchasing intention, and marginal fixed incentive.
These model parameters have been shown to modify the findings for our games. Therefore,
we focus the simulation analysis on these three parameters. Other simulations will be sup-
plied upon request. We have used high and low values for the three parameters, in particular
μ (.025, .05; .2) , b (.5, 1, 1.5), and θ (0, .3, .6)while other parameters are kept at the bench-
mark level. Notice that values set for θ allow one to explore the cases in which the return rate
influences pricing-related strategies, e.g., the return policy has no impact on pricing strategies
(e.g., θ ≤ Δβ

3 ), or it only mitigates internal CLSC inefficiency on the first marginalization

(e.g., θ ∈ (
Δβ
3 ,Δβ]), or it entails a higher double marginalization effect (e.g., θ >

Δβ
3 ).

Interestingly, the profit-Pareto-improving region, which is displayed in bold characters, can
be identified in accordance with M’s improvement space. In fact, R is always economically
better off under CLSC coordination, independent of the supplied incentive.

Table 10 displays the cases in which M is economically better off under a state-dependent
incentive. Independent of the amountμ, M is always better off in the case of R’s sufficiently
large GAP effectiveness b and independent of other model parameter. When this condition
does not apply, M is economically worse off as his contribution to the state is not counterbal-
anced by sufficient economic rewards. Customers’ repurchasing intention and fixed incentive
simply become less important in the identification of a profit-Pareto-improving region. In
this case, the CLSC leader opts for a state-dependent incentive according to R’s operational
performance. Notice that when the incentive is not sufficiently high, M is not economically
better off even in case R’s substantially influences the state. Therefore, the incentive should
be properly negotiated before the game starts to ensure that M can engage R in closing the
loop.
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16
78

−.
03

29
84

9
.0
33

40
04

b
=

1.
5,

θ
=

0
.0
01
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33
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02
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76

.0
01

92
48

8
.0
05

71
59

−.
02

54
62

6
.0
39

67

b
=

.5
,
θ

=
.3

.0
00

42
8

.0
01

48
1

−.
00

05
30

74
.0
03

65
9

−.
03

54
16

.0
31

34

b
=

1,
θ

=
.3

.0
01

93
16

5
.0
02

76
34

9
.0
02

48
29

2
.0
06

22
89

−.
02

31
97

4
.0
41

76
2

b
=

1.
5,

θ
=

.3
.0
05
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57

.0
04

89
1

.0
09
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70

.0
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49
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.0
06

76
05

.0
59

19
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b
=

.5
,
θ

=
.6

.0
00

95
61

1
.0
02

01
70

.0
00

52
66

7
.0
04

73
2

−.
03

11
46

.0
35

68
1

b
=

1,
θ

=
.6

.0
04

77
97

.0
03

60
62

.0
08

19
67

4
.0
09

93
31

.0
00

08
33

42
.0
56

85
9

b
=

1.
5,

θ
=

.6
.2
55

59
9

.1
01

11
.5
11

90
9

.2
03

68
6

.4
22

99
9

.2
31

88
3
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Under a control-dependent incentive, M has a broader region inside which he is eco-
nomically better off. Because R influences the final incentive through the GAP efforts, high
marginal rewards μ make M economically worse off. Contrary to a state-dependent incen-
tive, the fixed incentive drives M ′s preferences for a control-dependent incentive according
to the influence of R’s GAP effectiveness and customers’ repurchasing intention. Three cases
are possible:

1. Whenμ is sufficiently low, coordination through a control-dependentmechanism is possi-
ble. A sufficient condition is that either R’sGAP effectiveness or customers’ repurchasing
intention is medium or high: Although both features lead to a profit-Pareto-improving
situation, increasing b enhances profits more than increasing θ .

2. When μ is medium, coordination is reached when R’s GAP efforts is large, independent
of customers’ repurchasing intentions. Nevertheless, a large attitude for repurchasing
new products after returning old ones always leads to coordination through a control-
dependent incentive mechanism.

3. When μ is large, coordination is reached when R’s GAP efforts is large, while cus-
tomers’ repurchasing intention is simply less important. Nevertheless, when customers’
repurchasing intention is null, a control-dependent incentive never coordinates the CLSC.

Although M loses some control on the incentive comparated to the state-dependent
scheme, a control-dependent incentive imposes less restrictions in the identification of the
profit-Pareto-improving region.

5 Conclusions and Future Research

In this paper, we have characterized optimal wholesale price, retail price, andGAPs strategies
for a CLSC with a dynamic return rate that serves to recover the residual value of end-of-use
products as well as increase sales through customers’ repurchasing intention. We believe
that the latter assumption supplies interesting insights into the coordination game literature
in CLSC, as for several product categories, customers who return a product are very likely
to repurchase a new one (e.g., cartridges, batteries, cameras, tires). Our work provides the
basis to enrich the literature by exploring some coordination mechanisms that depart from
the classical per-return-incentive scheme (e.g., [21]). We have demonstrated that a classical
per-return incentive never coordinates our chain, and thus, we explored two alternative types
of incentives. The first is a state-dependent incentive and implies that a retailer receives an
incentive according to the return rate, that is, considering the overall CLSC environmental
performance. The second mechanism is a control-dependent incentive and implies that a
retailer receives an incentive according to her GAP efforts. While a state-dependent incentive
depends on the contribution that all players provide to the return rate, a control-dependent
exclusively depends on the amount that the retailer invests in GAP. We compare strategies,
profits, and return rates of these incentive games with a benchmark (no-incentive) scenario,
in which the retailer does not receive any type of incentive.

We use the return rate as a proxy to check CLSC environmental performance, as it con-
sists of the number of products that have been returned to the manufacturers’ plants to be
remanufactured instead of being dispersed in the environment. Our results show that as the
business expands (e.g., higher market potential, lower customers’ sensitivity to price), the
CLSC should adopt a control-dependent incentive scheme to perform the environment. In
this case, all CLSCmembers invest more in GAP as the retailer is the only one responsible for
the incentive amount she receives. A state-dependent incentive discourages a manufacturer
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from investing more in GAP because the retailer benefits from an incentive that depends on
the overall performance of the CLSC, for which all players have contributed. Interestingly,
the retailer always invests more in GAP efforts when an incentive is supplied independent
of its nature, while the manufacturer is discouraged under a state-dependent incentive. The
environmental performance is important to establish changes of wholesale and retail prices
as both depend on the return rate. When an incentive mechanism leads to higher return rate,
the impact on pricing-related decisions changes according to the customers’ repurchasing
intention. When customers’ repurchasing intention is low, performing the environment leads
to lower wholesale and retail prices and reduces the double marginalization: Firms focus
on attracting new customers through lower pricing. When customers’ repurchasing inten-
tion is sufficiently large, higher return rates imply higher prices: Firms focus on increasing
profits through selling green products to environmentally conscious established customers
rather than attracting new ones. Then, CLSCs perform positive profits even when the double
marginalization persists.

We show that when coordination is an option, players’ preferences do not always converge
to the implementation of the same incentive mechanism. The manufacturer marginally bene-
fits from a state-dependent incentive because the premium that the retailer receives depends
on the CLSC’s environmental performance. Ideally, the retailer will receive an incentive
even if she optimally sets GAP efforts at a marginal level. This can substantially penalize
the manufacturer who also contributes to the return rate. A sufficiently high retailer’s GAP
effectiveness is a necessary condition for a manufacturer to prefer a state-dependent incen-
tive. In fact, when the retailer substantially influences the state even with a marginal GAP
investment, the manufacturer will be economically better off independent of other model
parameter values such as customers’ repurchasing intention and marginal incentive. The
adoption of a control-dependent incentive supplies a greater chance to improve profits to the
manufacturer. A necessary condition to better perform profits depends on sufficiently low-
fixed incentive. Because the retailer has full control over the incentive premium she gets,
large fixed amounts penalize the manufacturer’s profit function. Then, in all cases in which
the return rate increases while the fixed incentive is low, the manufacturer is economically
better off even if the second marginalization is large. When the fixed incentive is medium,
the manufacturer has a preference for a control-dependent incentive when the return rate
boosts both the first and the second marginalization and always when the retailer’s GAP
effectiveness is sufficiently high. In all cases in which the fixed incentive is too large, high
retailer’s GAP effectiveness is a necessary but not a sufficient condition for a manufacturer
to be better off through a control-dependent incentive. While the triple incentive, retailer’s
GAP effectiveness, and customers’ repurchasing intention drives the manufacturer’s prefer-
ences for the adoption of a coordination mechanism, the retailer always prefers coordination
independent of the incentive scheme that the CLSC adopts. Therefore, the identification of
a profit-Pareto-improving region passes through the analysis of regions inside which the
manufacturer is economically better off through coordination.

While our results provide useful insights into this emerging area of coordination inCLSCs,
some of our assumptions could be relaxed for wider applicability. For example, a penalty
can be added to reflect situations in which firms face some penalty cost per non-returned
products. This will lead firms to consider this penalty functionwhen setting their GAP efforts.
The deterministic problem presented here could also be extended to the case of return rate
presents a random component. Although our research shows the effect of various operational
aspects (e.g., returns’ residual value) on the optimal strategies, it might be interesting to
include a detailed operations framework to address the direct impact of some decisions
such as product durability and perishability. In fact, the return rate is influenced by the
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performance of products and increases with products’ incapability to perform as customers
wish. Competition might be another challenging factor to be considered. Firms’ decisions
within a CLSC are influenced by decisions in other CLSCs. CLSCs compete in the collection
of end-of-use products; thus, the presence of a competitor might influence strategies and
payoffs of firms. In addition, we assumed that returned products are remanufactured and
sold as new. In reality, most remanufactured products are sold in a secondary market and
enhances the risk of cannibalization. Finally, other forms of coordination can be explored
while keeping the same model assumptions, such as a revenue sharing contract and joint
profit maximization incentive.

Acknowledgments I wish to thank three anonymous reviewers and Editor Georges Zaccour for very helpful
comments. Any remaining errors are the responsibility of the author.

6 Appendix 1

Proof of Proposition 1 In the non-coordinated scenario, we search for a pair of bounded and
continuously differentiable value functions V B

M

(
r B

)
, V B

R

(
r B

)
for which a unique solution

for r B (t) does exist, and the Hamilton–Jacobi–Bellman (HJB) equations:

ρV B
M

(
r B

)
=

(
α + r Bθ − βpB

) (
ωB + r BΔ

)
− AB2

M

2
+ V B′

M

(
a AB

M + bAB
R − δr B

)

(36)

ρV B
R

(
r B

)
=

(
α + r Bθ − βpB

) (
pB − ωB

)
− AB2

R

2
+ V B′

R

(
a AB

M + bAB
R − δr B

)

(37)

are satisfied for any value of r B ∈ (0, 1]. Maximization of the R’s HJB gives pricing and
R’s GAP strategies.

pB
(

r B
)

= α + r Bθ + βωB

2β
(38)

AB
R = bV B′

R (39)

Substituting Eqs. (38) and (39) inside M’s HJB provides:

ρV B
M

(
r B

)
=

(
α + r Bθ − βωB

2

) (
ωB + r BΔ

)
− AB2

M

2
+ V B′

M

(
a AB

M + b2V B′
R − δr B

)

(40)
Maximization of Eq. (40) with respect to M ′s GAP strategies and wholesale price gives

AB
M = aV B′

M (41)

ωB
(

r B
)

= α + r B (θ − Δβ)

2β
(42)

Substituting Eq. (42) in (38), pricing results:

pB
(

r B
)

= 3α + r B (3θ − Δβ)

4β
(43)
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Plagging Eqs. (43), (42), (39), and (41) in Eqs. (40) and (37), it provides

ρV B
M

(
r B

)
= 1

2β

(
α + r B (θ + Δβ)

2

)2

+ V B′
M

(
a2V B′

M

2
+ b2V B′

R − δr B

)

(44)

ρV B
R

(
r B

)
= 1

β

(
α + r B (θ + Δβ)

4

)2

+ V B′
R

(

a2V B′
M + b2V B′

R

2
− δr B

)

(45)

We conjecture quadratic value functions V B
M

(
r B

) = d1
2 r B2 + d2r B + d3 and V B

R

(
r B

) =
f1
2 r B2 + f2r B + f3, where the pairs

(
d j , f j

)
, j = 1 . . . 3 are the constant parameters to be

identified. Substituting our conjectures and their derivatives in Eqs. (44) and (45) gives

8βρ

(
d1
2

r B2 + d2r B + d3

)
=

(
α + r B (θ + Δβ)

)2

+ 4β
(

d1r B + d2
) (

a2
(

d1r B + d2
)

+ 2b2
(

f1r B + f2
)

− 2δr B
)

(46)

16βρ

(
f1
2

r B2 + f2r B + f3

)
=

(
α + r B (θ + Δβ)

)2

+ 8β
(

f1r B + f2
) (

2a2
(

d1r B + d2
)

+ b2
(

f1r B + f2
)

− 2δr B
)

(47)

By identification, the constant parameters can be derived by solving the following set of
coupled algebraic Riccati equations:

Δβ (2θ + Δβ) + θ2 + 4β
(
2b2 f1 − 2δ − ρ

)
d1 + 4a2βd2

1 = 0 (48)

2
(
α (θ + Δβ) + 4b2βd1 f2 + 4β

(
a2d1 + b2 f1 − δ − ρ

)
d2

) = 0 (49)

α2 + 4β
(
2b2 f2 + a2d2

)
d2 − 8βρd3 = 0 (50)

(
Δβ (2θ + Δβ) + θ2 + 8β

(
2a2d1 − 2δ − ρ

)
f1 + 8b2β f 21

) = 0 (51)

2
(
α (θ + Δβ) + 8a2βd2 f1 + 8β

(
a2d1 + b2 f1 − δ − ρ

)
f2

) = 0 (52)

α2 + 8β
(
2a2d2 + b2 f2

)
f2 − 16ρβ f3 = 0 (53)

To derive the coefficients, we can start from Eq. (48) and obtain f1 as a function of d1 : f1
= f (d1) where

f (d1) = 4βd1
(
2δ + ρ − a2d1

) − B3

8βb2 f1d1
= Ω1 (54)

with B3 = Δβ (2θ + Δβ) + θ2. Substituting Eq. (54) for Eqs. (49) and (52), we can derive
both d2 and f2 as a function of d1

d2 (d1) = b2d1 − 2B4

8β
(
B2
1 − a2b2d1Ω1

) B2 = Ω2 (55)

f2 (d1) = 2a2
1Ω − B4

8β
(
B2
1 − a2b2d1Ω1

) B2 = Ω3 (56)

with B1 = a2m∗
1 + b2n∗

1 − δ − ρ < 0, B2 = α (θ + Δβ) > 0, B4 = a2d1 + b2Ω1 − δ − ρ.
We then substitute Eqs. (55) and (56) in Eqs. (50) and (53) to derive d3 and f3 as a function
of d1:

d3 (d1) = α2 + 4β
(
2b2Ω3 + a2Ω2

)
Ω2

8βρ
= Ω4 (57)
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f3 (d1) = α2 + 8β
(
2a2Ω2 + b2Ω3

)
Ω3

16ρβ
= Ω5 (58)

Finally, replacing Eq. (54) into (51) gives a nonlinear equation that we have solved numeri-
cally in Mathematica 6.0. ��
Proof of Proposition 2 To show the inefficiency of a per-return incentive mechanism, we
need to search for a pair of bounded and continuously differentiable value functions
V P

M

(
r P

)
, V P

R

(
r P

)
for which a unique solution for r P (t) exists, and theHJBs are as follows:

ρV P
M

(
r P

)
=

(
α + r Pθ − βpP

) (
ωP + r PΔ − μr P

)

− AP2

M

2
+ V P ′

M

(
a AP

M + bAP
R − δr P

)
(59)

ρV P
R

(
r P

)
=

(
α + r Pθ − βpP

) (
pP − ωP + μr P

)

− AP2

R

2
+ V P ′

R

(
a AP

M + bAP
R − δr P

)
(60)

Because the coordination game also has a leader–follower structure where M is the leader,
we start from the maximization of R’s HJB with respect to price and GAP strategies:

pP
(

r P
)

= α + βωP + (θ − βμ) r P

2β
(61)

AP
R = bV P ′

R (62)

Substituting Eqs. (61) and (62) inside M’s HJB gives

ρV P
M

(
r P

)
=

(
α − βωP + (θ + βμ) r P

2

) (
ωP + r PΔ − μr P

)
− AP2

M

2

+V P ′
M

(
a AP

M + bAP
R − δr P

)
(63)

whose maximization with respect to wholesale price and GAP strategies yields:

ωP
(

r P
)

= α + (θ + (2μ − Δ) β) r P

2β
(64)

AP
M = aV P ′

M (65)

Plugging Eq. (64) in Eq. (61) leads to

pP
(

r P
)

= 3α + r P (3θ − Δβ)

4β
(66)

Subsituiting Eqs. (64), (65), (66) and (62) in (63) and (60) gives

ρV P
M

(
r P

)
=

(
α + (θ + Δβ) r P

)2

8β
+ V P ′

M

(
a2V P ′

M

2
+ b2V P ′

R − δr P

)

(67)

ρV P
R

(
r P

)
=

(
α + (θ + Δβ) r P

)2

16β
+ V P ′

R

(

a2V P ′
M + b2V P ′

R

2
− δr P

)

(68)

from which it turns out that V B
M

(
r B

) = V P
M

(
r P

)
and V B

R

(
r B

) = V P
R

(
r P

)
, and thus, the

implementation of a per-return incentive does not lead to any form of coordination. ��
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Proof of Proposition 3 Here we follow the same steps as in the proof of Proposition 1 to
derive the equilibrium strategies under the assumption that the CLSC is coordinated through
a state-dependent incentive mechanism. The HJBs for this game are given by

ρV S
M

(
r S

)
=

(
α + r Sθ − βpS

) (
ωS + r SΔ

)
− μr S − AS2

M

2
+ V S′

M

(
a AS

M + bAS
R − δr S

)

(69)

ρV S
R

(
r S

)
=

(
α + r Sθ − βpS

) (
pS − ωS

)
+ μr S − AS2

R

2
+ V S′

R

(
a AS

M + bAS
R − δr S

)

(70)

Maximization of R’s HJB with respect to pricing and GAP strategies gives

pS
(

r S
)

= α + r Sθ + βωS

2β
(71)

AS
R = bV S′

R (72)

These expressions must be satisfied by the pricing and R’s GAP strategies. Replacing
Eqs. (71) and (72) inside Eq. (69), it gives the following expression:

ρV S
M

(
r S

)
=

(
α + r Sθ − βωS

2

) (
ωS + r SΔ

)
− μr S

−
(

AS
M

)2

2
+ V S′

M

(
a AS

M + b2V S′
R − δr S

)
(73)

M’s GAP equilibrium strategy is characterized by

ωS
(

r S
)

= α + r S (θ − Δβ)

2β
(74)

AS
M = aV S′

M (75)

Plugging Eq. (74) inside (71), it gives

pS
(

r S
)

= 3α + r S (3θ − Δβ)

4β
(76)

Substituting, (72), (74) and (75), (76) inside Eqs. (70), and (73), the HBJ become:

ρV S
M

(
r S

)
= 1

2β

(
α + r S (θ + Δβ)

2

)2

− μr S + V S′
M

(
a2V S′

M

2
+ b2V S′

R − δr S

)

(77)

ρV S
R

(
r S

)
= 1

β

(
α + r S (θ + Δβ)

4

)2

+ μr S + V S′
R

(

a2V S′
M + b2V S′

R

2
− δr S

)

(78)

We can conjecture quadratic value functions also in this scenario, specifically: V S
M

(
r S

) =
m1
2 r S2 + m2r S + m3 and V S

R

(
r S

) = n1
2 r S2 + n2r S + n3, where the pairs

(
m j , n j

)
, j =

1 . . . 3 are the constant parameters to be identified. Substituting the value functions and their
derivatives inside Eqs. (77) and (78), the constant parameters can be identified solving the
following set of coupled Riccati equations:

Δβ (2θ + Δβ) + θ2 + 4β
(
2b2n1 − 2δ − ρ

)
m1 + 4a2βm2

1 = 0 (79)



50 Dyn Games Appl (2016) 6:20–54

2
(
α (θ + Δβ) + 4b2βm1n2 + 4β

(
a2m1 + b2n1 − δ − ρ − μ

)
m2

) = 0 (80)

α2 + 4β
(
2b2n2 + a2m2

)
m2 − 8βρm3 = 0 (81)

(
Δβ (2θ + Δβ) + θ2 + 8β

(
2a2m1 − 2δ − ρ

)
n1 + 8b2βn2

1

) = 0 (82)

2
(
α (θ + Δβ) + 8a2βm2n1 + 8β

(
a2m1 + b2n1 − δ − ρ + μ

)
n2

) = 0 (83)

α2 + 8β
(
2a2m2 + b2n2

)
n2 − 16ρβn3 = 0 (84)

The coefficients can be simply derived as m1 = d1 and n1 = f1. Thus, we can obtain n1

as a function of d1 : n1 = f1 = f (d1) = Ω1 as it is displayed in Eq. (54). Substituting
Eq. (54) for Eqs. (80) and (83), we can derive both m2 and n2 as a function of d1

m2 (d1) = b2d1 − 2μ − 2B4

8β
(
B2
4 − μ2 − a2b2d1Ω1

) B2 = Ω6 (85)

n2 (d1) = 2a2
1Ω + μ − B4

8β
(
B2
4 − μ2 − a2b2d1Ω1

) B2 = Ω7 (86)

We then substitute Eqs. (85) and (86) in Eqs. (81) and (84) to derive m3 and n3 as a function
of d1:

m3 (d1) = α2 + 4β
(
2b2Ω7 + a2Ω6

)
Ω6

8βρ
= Ω8 (87)

n3 (d1) = α2 + 8β
(
2a2Ω6 + b2Ω7

)
Ω7

16ρβ
= Ω9 (88)

See Proof of Proposition 1 to check the solution for d1. ��
Proof of Proposition 6 This proof follows the proof for Proposition 2, with the difference
that the incentive depends on the control AC

R

(
rC

)
. The HJB functions should be written as

follows:

ρV C
M

(
rC

)
=

(
α + rCθ − βpC

) (
ωC + rCΔ

)
− μAC

R

− AC2

M

2
+ V C ′

M

(
a AC

M + bAC
R − δrC

)
(89)

ρV C
R

(
rC

)
=

(
α + rCθ − βpC

) (
pC − ωC

)
+ μAC

R

− AC2

R

2
+ V C ′

R

(
a AC

M + bAC
R − δrC

)
(90)

Maximization of R’s HJB gives pricing and R’s GAP strategies:

pC
(

rC
)

= α + rCθ + βωC

2β
(91)

AR = bV C ′
R + μ (92)

Substituting these strategies inside Eq. (89) to get

V C
M

(
rC

)
=

(
α + rCθ − βωC

2

) (
ωC + rCΔ

)
− μ

(
bV C ′

R + μ
)

− AC2

M

2

+ V C ′
M

(
a AC

M + b
(

bV C ′
R + μ

)
− δrC

)
(93)
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First-order condition for M’s GAP strategy gives

ωC
(

rC
)

= α + rC (θ − Δβ)

2β
(94)

AC
M = aV C ′

M (95)

Plugging Eq. (94) inside (91) gives

pC
(

rC
)

= 3α + rC (3θ − Δβ)

4β
(96)

Substitute Eqs. (92), (94), (95), (96) in (90) and (93) to get

ρV C
M

(
rC

)
= 1

2β

(
α + rC (θ + Δβ)

2

)2

+
(

bV C ′
M − μ

) (
bV C ′

R + μ
)

+ V C ′
M

(
a2V C ′

M

2
− δrC

)

(97)

ρV C
R

(
rC

)
= 1

β

(
α + rC (θ + Δβ)

4

)2

+
(

bV C ′
R + μ

)2

2
+ V C ′

R

(
a2V C ′

M − δrC
)
(98)

To obtain a solution for this game, we conjectured quadratic value functions, V C
M

(
rC

)

= l1
2 rC2 + l2rC + l3 and V C

R

(
rC

) = k1
2 rC2 + k2rC + k3, where

(
l j , k j

)
, j = 1 . . . 3,

are the constant parameters to be identified. Replacing our conjectures and their derivatives
into Eqs. (97) and (98), it gives

8βρ

(
l1
2

rC2 + l2rC + l3

)
=

(
α + rC (θ + Δβ)

)2 + 8β
(

bV C ′
M − μ

) (
bV C ′

R + μ
)

+ 4βV C ′
M

(
a2V C ′

M − 2δrC
)

(99)

16βρ

(
k1
2

rC2 + k2rC + k3

)
=

(
α + rC (θ + Δβ)

)2 + 8β
(

bV C ′
R + μ

)2

+ 16βV C ′
R

(
a2V C ′

M − δrC
)

(100)

We identified the constant parameters from the following set of coupled algebraic Riccati
equations:

Δβ (2θ + Δβ) + θ2 + 4β
(
2b2k1 − 2δ − ρ

)
l1 + 4βa2l21 = 0 (101)

2
(
α (θ + Δβ) + 4β

(
b2k2l1 + (

a2l1 + b2k1 − δ − ρ
)

l2
) + bμ (l1 − k1)

) = 0 (102)
(
α2 + 4β

((
2bμ + 2b2k2 + a2l2

)
l2 − 2μ (μ + bk2)

)) − 8βρl3 = 0 (103)

Δβ (2θ + Δβ) + θ2 + 8β
(
2a2l1 − 2δ − ρ

)
k1 + 8βb2k21 = 0 (104)

2
(
α (θ + Δβ) + 8β

(((
a2l1 + b2k1 − δ − ρ

)
k2

) + a2k1l2
) + bμk1

) = 0 (105)
(
α2 + 8βμ2 + 8β

(
2a2l2 + 2bμ + b2k2

)
k2

) − 16βρk3 = 0 (106)

As for the state-dependent case, the coefficients li , ki , i = 1 . . . 3 can be simply derived as
l1 = d1 and k1 = f1. Thus, we can obtain k1 as a function of d1 : k1 = f1 = f (d1) = Ω1

as it is reported in Eq. (54). Substituting Eq. (54) for Eqs. (102) and (105), we can derive
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both l2 and k2 as a function of d1

l2 (d1) = 8b3βμΩ1d1 + 8μβb
(
B4 + a2d1

)
(Ω1 − d1) − (

2B4 + (
2a2 − b2

)
Ω1

)
B2

8β
(
B2
4 − a2d1

(
b2Ω1 − B4

))

= Ω10 (107)

k2 (d1) = −B2
(
B4 − 2a2Ω1

) + 8bβμk1
(
a2 (d1 − Ω1) − B4

)

8β
(
B2
4 − a2d1

(
b2Ω1 − B4

)) = Ω11 (108)

We then substitute Eqs. (107) and (108) in Eqs. (103) and (106) to derive l3 and k3 as a
function of d1:

l3 (d1) = α2 + 4β
((
2bμ + 2b2Ω11 + a2Ω10

)
Ω10 − 2μ (μ + bΩ11)

)

8βρ
= Ω12 (109)

k3 (d1) = α2 + 8βμ2 + 8β
(
2a2Ω10 + 2bμ + b2Ω11

)
Ω11

16ρβ
= Ω13 (110)

See Proof of Proposition 1 to check the solution for d1. ��

Appendix 2

SolutionI SolutionII SolutionIII SolutionIV

AB
M

(
r B

SS

)
.2096 .4397 .1098 −.4544

AB
R

(
r B

SS

)
.1028 .2027 −.1582 .0687

r B
SS .3881 .7816 −.3268 −.1121

V B
M

(
r B

SS

)
.192 .5309 1.123 .0284

V B
R

(
r B

SS

)
.0953 .2008 −.0509 .0873

Steady-state (SS) value of GAP efforts, return rates, and profits in scenario B.Bold values
highlight the positivity assumptions that solutions III and IV violate

Appendix 3

Parameter values AB
M

(
r B

SS

) ≥ 0 AB
R

(
r B

SS

) ≥ 0 r B
SS ∈ (0, 1] V B

M

(
r B

SS

) ≥ 0 V B
R

(
r B

SS

) ≥ 0 δ − a2d1 − b2 f1 > 0

α(1.1;1.2;1.3) .23;.252;.272 .11;.12;.134 .426;.46;.505 .235;.284;.337 .115;.138;.134 .324;.324;.324
β(1.1;1.2;1.3) .204;.2;.197 .1;.098;.097 .378;.371;.365 .176;.163;.152 .085;.079;.073 .322;.320;.317
Δ(.6;.7;.8) .261;.329;.426 .127;.159;.204 .4812;.604;.777 .226;.287;.407 .109;.138;.194 .3025;.276;.246
θ(.4;.5;.6) .261;.329;.426 .127;.159;.204 .4812;.604;.777 .226;.287;.407 .109;.138;.194 .3025;.276;.246
a(.6;.7;.8) .22;.234;.253 .109;.117;.128 .471;.58;.726 .211;.24;.289 .104;.12;.146 .312;.297;.28
b(1.1;.1.2;1.3) .221;.235;.252 .107;.113;.12 .464;.555;.667 .211;.238;.277 .101;.113;.13 .313;.3;.287
ρ(.95;.97;.99) .199;.195;.191 .097;.096;.094 .368;.361;.354 .177;.172;.167 .086;.084;.081 .327;.328;.329
δ(.5;.6;.7) .179;.158;.143 .088;.078;.071 .265;.196;.152 .169;.16;.154 .083;.078;.076 .433;.54;.646

Sensitivity analysis on Solution I in scenario B. Note that m1 and n1 are not influenced by α (see “Appendix 1”)
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Parameter values AB
M

(
r B

SS

) ≥ 0 AB
R

(
r B

SS

) ≥ 0 r B ∈ (0, 1] V B
M

(
r B

SS

) ≥ 0 V B
R

(
r B

SS

) ≥ 0 δ − a2d1 − b2 f1 < 0

α(1.1;1.2;1.3) .484;.528;.572 .223;.243;.263 .86;.937;1.02 .559;.568;.551 .225;.247;.266 −1.32;−1.32;−1.32
β(1.1;1.2;1.3) .43;.425;.422 .198;.195;.193 .76;.754;.747 56;.499;.486 .19;.184;.178 −1.322;−1.323;−1.324
Δ(.6;.7;.8) .581;.798;1.17 .363;.354;.514 1.022;1.34;2.02 .433;−.242;−3.6 .21;.105; −.626 −1.327;−1.333;−1.339
θ (.4;.5;.6) .581;.798;1.17 .363;.354;.514 1.022;1.34;2.02 .433;−.242;−3.6 .21;.105; −.626 −1.327;−1.333;−1.339
a(.6;.7;.8) .471;.515;.579 .225;.257;.302 .987; 1.27;1.68 .412;.207;−.268 .198;.106;−.27 −1.312;−1.30;−1.287
b(1.1;.1.2;1.3) .481;.533;.599 .215;.23;.25 .95; 1.16;1.43 .461;.173;−.6 .195;.172;.11 −1.33;−1.34;−1.35
ρ(.95;.97;.99) .411;.4;.39 .19;.186;.181 .733;.715;.697 .525;.521;.518 .19;.188;.18 −1.371;−1.391;−1.411
δ(.5;.6;.7) .369;.327;.298 .172;.153;.141 .528;.392;.308 .471;.388;.327 .164;.135;.117 −1.42;−1.518;−1.617

Sensitivity analysis on SolutionII in the B-scenario. Bold values indicate that some positivity assumptions as well as assumptions on r B ∈ (0, 1] are not met.
Note that m1 and n1 are not influenced by α (see “Appendix 1”) while stability condition for Solution II requires δ − a2d1 − b2 f1 < 0 as d2 < 0 and f2 < 0

Parameter values AB
M

(
r B

SS

) ≥ 0 AB
R

(
r B

SS

) ≥ 0 r B ∈ (0, 1] V B
M

(
r B

SS

) ≥ 0 V B
R

(
r B

SS

) ≥ 0 δ − a2d1 − b2 f1 < 0

α(1.1;1.2;1.3) .484;.528;.572 .223;.243;.263 .86;.937;1.02 .559;.568;.551 .225;.247;.266 −1.32;−1.32;−1.32

β(1.1;1.2;1.3) .43;.425;.422 .198;.195;.193 .76;.754;.747 56;.499;.486 .19;.184;.178 −1.322;−1.323;−1.324

Δ(.6;.7;.8) .581;.798;1.17 .363;.354;.514 1.022;1.34;2.02 .433;−.242;−3.6 .21;.105; −.626 −1.327;−1.333;−1.339

θ (.4;.5;.6) .581;.798;1.17 .363;.354;.514 1.022;1.34;2.02 .433;−.242;−3.6 .21;.105; −.626 −1.327;−1.333;−1.339

a(.6;.7;.8) .471;.515;.579 .225;.257;.302 .987; 1.27;1.68 .412;.207;−.268 .198;.106;−.27 −1.312;−1.30;−1.287

b(1.1;.1.2;1.3) .481;.533;.599 .215;.23;.25 .95; 1.16;1.43 .461;.173;−.6 .195;.172;.11 −1.33;−1.34;−1.35

ρ(.95;.97;.99) .411;.4;.39 .19;.186;.181 .733;.715;.697 .525;.521;.518 .19;.188;.18 −1.371;−1.391;−1.411

δ(.5;.6;.7) .369;.327;.298 .172;.153;.141 .528;.392;.308 .471;.388;.327 .164;.135;.117 −1.42;−1.518;−1.617

Sensitivity analysis on Solution II in the B-scenario. Bold values indicate that some positivity assumptions as well as assumptions on r B ∈ (0, 1] are
not met. Note that m1 and n1 are not influenced by α (see “Appendix 1”) while stability condition for Solution II requires δ − a2d1 − b2 f1 < 0 as

d2 < 0 and f2 < 0

Parameter values AC
M

(
rC

SS

) ≥ 0 AC
R

(
rC

SS

) ≥ 0 rC ∈ (0, 1] V C
M

(
rC

SS

) ≥ 0 V C
R

(
rC

SS

) ≥ 0 δ − a2l1 − b2k1 > 0

α(1.1;1.2;1.3) .23;.25;.275 .114;.124;.135 .43;.47;.51 .214;.265;.321 .158;.184;.21 .324;.324;.324
β(1.1;1.2;1.3) .223;.202;.199 .101;.099;.097 .383;.375;.369 .152;.138;.127 .126;.119;.114 .322;.320;.317
Δ(.6;.7;.8) .265;.334;.434 .129;.162;.208 .488;.614;.791 .208;.276;.407 .155;.188;.25 .3025;.276;.246
θ(.4;.5;.6) .265;.334;.434 .129;.162;.208 .488;.614;.791 .208;.276;.407 .155;.188;.25 .3025;.276;.246
a(.6;.7;.8) .223;.238;.257 .11;.12;.129 .477;.588;.736 .188;.219;.269 .146;.163;.191 .312;.297;.28
b(1.1;.1.2;1.3) .224;.239;.257 .109;.115;.122 .47;.564;.678 .191;.223;.267 .146;.16;.18 .313;.3;.287
ρ(.95;.97;.99) .201;.197;.193 .099;.097;.095 .373;.366;.358 .154;.149;.145 .125;.122;.118 .327;.328;.329
δ(.5;.6;.7) .18;.16;.144 .089;.079;.0716 .268;.198;.154 .143;.132;.126 .123;.116;.113 .433;.54;.646
μ(.025;.05;.2) .210;.210;.212 .1029;.103;.104 .388;.390;.393 .194;.195;.168 .096;.099;.135 .324;.324;.324

Sensitivity analysis in the C-scenario. Note that all values for the stability condition are the same as in the benchmark as l1 = d1 and k1 = f1,
which are also μ-independent
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