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Abstract We study a class of dynamic decision problems of mean-field type with time-
inconsistent cost functionals and derive a stochastic maximum principle to characterize sub-
game perfect equilibrium points. Subsequently, this approach is extended to a mean-field
game to construct decentralized strategies and obtain an estimate of their performance.
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1 Introduction

In dynamic decision-making problems, a policy is time consistent if whenever it is optimal at
time t , it remains optimal when implemented at a later time s > t . In optimal control, this is
known as the Bellman principle. A time-inconsistent policy need not be optimal at later time
s > t , even if it is optimal at time t . Time inconsistency occurs for examplewhen a hyperbolic
discount rate is preferred to an exponential discount rate or when the performance criterion
is a nonlinear function of the expected utility such as the variance in the standard Markowitz
investment problem. For a recent review of time consistency in dynamic decision-making
problems, we refer to Ekeland and Lazrak [14], Ekeland and Lazrak [15], and Zaccour [39].
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In his work on a deterministic Ramsay problem, Strotz [33] was the first to formulate
the dynamic time-inconsistent decision problem as a game theoretic problem where it is
natural to look for sub-game perfect equilibria. Pollak [32], Phelps and Pollak [31], Peleg
and Menahem [29] and Goldman [17] extended this framework to discrete and continuous
time dynamics. The recent works by Ekeland and Lazrak [14] and Ekeland and Pirvu [15]
apply this game theoretic approach to an optimal investment and consumption problem under
hyperbolic discounting for deterministic and stochastic models. Among their achievements,
they provide a precise definition of the equilibrium concept in continuous time, using a
Pontryagin type “spike variation” formulation (that we recall in Sect. 2 below) and derive
among other things, an extension of the Hamilton–Jacobi–Bellman (HJB) equation along
with a verification theorem that characterizes Markov (or feedback type) sub-game perfect
equilibria. Their work is extended by Björk and Murgoci [6] and Björk et al. [7] to perfor-
mance functions that are nonlinear functions of expected utilities for dynamics driven by a
quite general class of Markov processes. Hu et al. [19] followed by Bensoussan et al. [4]
characterize sub-game perfect equilibria using a Pontryagin type stochastic maximum prin-
ciple (SMP) approach to a time-inconsistent stochastic linear-quadratic control problem of
mean-field type, where the performance functional is a conditional expectation with respect
to the history Ft of the system up to time t . They derive a general sufficient condition for
equilibria through a new class of flows of forward-backward stochastic differential equations
(FBSDEs). The properties of this class of flows of FBSDEs are far from being well under-
stood and deserve further investigation. Both the extended HJB equation provided in Björk
and Murgoci [6] and Björk, Murgoci and Zhou [7] and the sufficient condition suggested
by Hu et al. [19] give explicit expression of the equilibria only in very few cases. In a more
recent work, Yong [37] studied a class of linear-quadratic models with very general weight
matrices in the cost, and time-consistent equilibrium control is constructed by the stochastic
maximum principle approach and Riccati equations. Yong [37] also considered closed-loop
equilibrium strategies by discretization of time for the game.

In this paper, we suggest an SMP approach to time-inconsistent decision problems for
dynamics that is driven by diffusion processes of mean-field type that are not necessarily
Markov and whose performance criterion is a nonlinear function of the conditional expecta-
tion of a utility function, given the present location of the state process. We do not condition
on the whole history Ft of the system as in Hu et al. [19] because for all practical purposes,
in the best conditions, the decision-maker can only observe the current state of the system.
She can never provide a complete and explicit form of the history Ft (which is a σ -algebra)
of the system, simply because this is a huge set of information, except in trivial situations.
Our model generalizes the one studied in Ekeland and Pirvu [15] and Björk et al. [6,7].

In the first main result of the paper, the sub-game perfect equilibria (not necessarily of
feedback type) are fully characterized as maximizers of the Hamiltonian associated with
the system in a similar fashion as in the SMP for diffusions of mean-field type obtained in
Andersson and Djehiche [1] and Buckdahn et al. [8]. This approach is illustrated by several
examples, and the explicit solutions are obtained.

Next, we address the time-inconsistency issue in a mean-field game of N players. The
players in such games are individually insignificant and interact via an aggregate effect gen-
erated by the population. There has existed a substantial literature on this class of games.
Huang et al. [21–23] introduced an approach based on consistent mean-field approximations
to design decentralized strategies where each player solves a localized optimal control prob-
lem by dynamic programming. These strategies have an ε-Nash equilibrium property when
applied to a large but finite population. Closely related developments were presented by Lasry
and Lions [26] who introduced the name mean-field game, and Weintraub et al. [35] studied
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oblivious equilibria in a Markov decision setup. Within the linear-quadratic setup, various
explicit solutions can be obtained; see, e.g., [2,5,23,27]. Tembine et al. [34] introduced risk
sensitive costs for mean-field games and analyzed the linear exponential quadratic Gaussian
model in detail. For games with dynamics modelled by nonlinear diffusions, Carmona and
Delarue [12] developed a probabilistic approach, and Kolokoltsov et al. [25] presented a very
general mean-field game modeling framework via nonlinear Markov processes. Gomes et al.
[18] considered games with discrete time and discrete states. For additional information, the
reader may consult an overview of this area by Buckdahn et al. [8], and Bensoussan et al.
[3].

To display an overall picture of various past developments in a mean field context, we
briefly remark on the difference between mean-field type optimal control and mean-field
games. For the former (see, e.g., [1,16,36]), there is only a single decision-maker who can
instantly affect the mean of the underlying state process. In contrast, a player in a mean-field
game with all comparably small players (called peers) has little influence on a mean-field
term such as X (N ) = 1

N

∑N
i=1 Xi . An exception is games with a major player whose control

can affect everyone notably; see, e.g., [20,28].
So far, most existing research on mean-field games deals with time consistent cost func-

tionals. The state feedback strategies based on consistent mean-field approximations are
sub-game perfect in the infinite population limit model and so no individual has the incentive
to revise its strategy when time moves forward. In a recent work, Bensoussan et al. [4] con-
sidered time-inconsistent quadratic cost functionals in a mean-field game with a continuum
population and linear dynamics. A so-called time consistent optimal strategy is derived based
on spike variation which is followed by a consistency condition on the mean field generated
by an infinite population.

The novelty and main contributions of paper are summarized as follows.

(i) Under the notion of sub-game perfect equilibrium control, we present a characterization
of time-consistent control via a stochastic maximum principle for general nonlinear
diffusion models. The associated adjoint equations are indexed by the time-state pair
which the system has just evolved to.

(ii) The notion of δN -sub-game perfect equilibrium is introduced for a mean-field game of
N -players with time-inconsistent costs. By combining mean-field approximations and
the SMP, we obtain strategies using only local information of a player. The performance
of the set of strategies is characterized via a δN -sub-game perfect equilibrium, which
implies, for large N , no individual player has notable incentive to revise its strategy
during its execution while interacting with other players.

(iii) The computational aspect of our approaches is illustrated by various examples.

Themean-field gamewhich wewill analyze involves nonlinear dynamics, and each player
is cost coupled with others by their average state X (−i) = 1

N−1

∑N
k �=i Xk . Time inconsistency

arises from the conditioning in the cost functional. Our approach for strategy design is to
use a freezing idea so that the coupling term is approximated by a deterministic function X̄ .
This naturally introduces an optimal control problem with a time inconsistent cost which in
turn is handled by the SMP approach. After finding the equilibrium strategy for the limiting
control problem, we determine X̄ by a consistency condition. The remaining important issue
is to analyze the performance of the obtained strategies when applied by N players.

The organization of the paper is as follows. In Sect. 2, we state the SMP approach for
our game problem and the associated adjoint equations. Section 3 characterizes the equilib-
rium point by an SMP (Theorem 1). Section 4 is devoted to some examples illustrating the
main results. In Sect. 5, we extend the previous results to a system of N decision-makers
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(Theorem 2). Section 6 provides the proof of Theorem 2. Section 7 presents explicit compu-
tations in a mean-field LQG game with time-inconsistent costs.

To streamline the presentation, we only consider the one-dimensional case for the state.
The extension to the multidimensional case is by now straightforward. For the reader’s
convenience, we make a convention on notation. The analysis of the mean-field game uses
C as a generic constant which may change from place to place, but depends on neither the
population size N nor the parameter ε of the spike variation.

2 Notation and Statement of the Problem

Let T > 0 be a fixed time horizon and (Ω,F,F,P) be a given filtered probability space
whose filtration F = {Fs, 0 ≤ s ≤ T } satisfies the usual conditions of right continuity
and completeness, on which a one-dimensional standard Brownian motion W = {Ws}s≥0 is
given. We assume that F is the natural filtration of W augmented by P-null sets of F .

An admissible strategy u is an F-adapted and square-integrable process with values in
a non-empty subset U of R. We denote the set of all admissible strategies over [0, T ] by
U[0, T ].

For each admissible strategyu ∈ U[0, T ],we consider the dynamics givenby the following
SDE of mean-field type, defined on (Ω,F,F,P),

⎧
⎨

⎩

dXu(s) = b(s, Xu(s), E[Xu(s)], u(s))ds
+ σ(s, Xu(s), E[Xu(s)], u(s))dW (s), 0 < s ≤ T,

Xu(0) = x0 (∈ R).

(2.1)

We consider decision problems related to the following cost functional

J (t, x, u) = E

[∫ T

t
h
(
s, Xu,t,x (s), E[Xu,t,x (s)], u(s)

)
ds + g

(
Xu,t,x (T ), E[Xu,t,x (T )])

]

,

(2.2)
associatedwith the state process Xu,t,x , parametrized by (t, x) ∈ [0, T ]×R, whose dynamics
is given by the SDE

⎧
⎨

⎩

dXu,t,x (s) = b(s, Xu,t,x (s), E[Xu,t,x (s)], u(s))ds
+ σ(s, Xu,t,x (s), E[Xu,t,x (s)], u(s))dW (s), t < s ≤ T,

Xu,t,x (t) = x (∈ R),

(2.3)

where

b(s, y, z, v), σ (s, y, z, v), h(s, y, z, v) : [0, T ] × R × R × U −→ R,

g(y, z) : R × R −→ R, s ∈ [0, T ], y ∈ R, z ∈ R, v ∈ U.

We note that Xu,0,x0 = Xu . The mean of the state process appears in (2.1)–(2.3). This mean-
field type model involves a single decision-maker, and a motivating example is the mean-
variance portfolio optimization problem. And also because of its simplicity, in Remark 5
below, we mention possible extensions to more general classes of mean-field coupling. The
inclusion of the average state of a finite number of decision-makers will be considered later
in Sect. 5. Under some conditions, such an average converges to a mean term as well.

The dependence of (2.2)–(2.3) on the term E[Xu,t,x (s)] makes the system (2.2)–(2.3)
time-inconsistent in the sense that the Bellman Principle for optimality does not hold, i.e.,
the t-optimal policy u∗(t, x, ·) which minimizes J (t, x, u) may not be optimal after t : The
restriction of u∗(t, x, ·) on [t ′, T ] does not minimize J (t ′, x ′, u) for some t ′ > t when the
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state process is steered to x ′ by u∗. Therefore, as noted by Ekeland et al. [14,15], time-
inconsistent optimal solutions (although they exist mathematically) are irrelevant in practice.
The decision-maker would not implement the t-optimal policy at a later time, if he/she is not
forced to do so. The review paper by Zaccour [39] gives a nice guided tour to the concept of
time consistency in differential games.

Following Ekeland et al. [14,15], and Björk and Murgoci [6], we may view the problem
as a game and look for a sub-game perfect equilibrium point û in the following sense:

(i) Assume that all players (selves) s, such that s > t , use the strategy û(s).
(ii) Then it is optimal in a certain sense for player (self) t to also use û(t).

When the players use feedback strategies, depending on t and on the position x in space,
player t will choose a strategy of the form u(t):=ϕ(t, x), where ϕ is a deterministic function,
so the action chosen by player t is given by the mapping x −→ ϕ(t, x). The cost to player t
is given by the functional J (t, x, ϕ). It is clear that J (t, x, ϕ) does not depend on the actions
taken by any player s for s < t , so in fact J depends only on the restriction of the strategy
u to the time interval [t, T ]. The strategy ϕ can thus be viewed as a complete description of
the chosen strategies of all players in the game.

If feedback strategies are to be used, a deterministic function ϕ̂ : [0, T ] × R −→ U is a
sub-game perfect equilibrium point when the following actions are performed:

(i) Assume that all players (selves) s, such that s > t , use the strategy ϕ̂(s, ·).
(ii) Then it is optimal in a certain sense for player (self) t to also use ϕ̂(t, ·).

Although the t-self is intuitively assigned the cost J (t, x, u) for the initial time-state pair
(t, x), one cannot obtain the equilibriumstrategy in this continuous timemodel by considering
the unilateral perturbation of u(t)while the controls of all s-selves, s ∈ (t, T ], are fixed. This
is due to the fact that J (t, x, u) is insensitive to the modification of u(·) at a single point of
time t . To characterize the equilibrium strategy û, Ekeland et al. [14,15] suggest the following
definition that uses a “local” spike variation in a natural way.

Define the admissible strategy uε as the “local” spike variation of a given admissible
strategy û ∈ U[0, T ] over the set [t, t + ε],

uε(s):=
⎧
⎨

⎩

u(s), s ∈ [t, t + ε],

û(s), s ∈ [t, T ] \ [t, t + ε],
(2.4)

where u ∈ U[0, T ] and t ∈ [0, T ] are arbitrarily chosen.We view [t, t +ε] as an infinitesimal
coalition Co[t, t + ε] of s-selves which is associated with the dynamics (2.3) and the cost
J (t, x, uε(·)) and which is able to choose its strategy u(s), s ∈ [t, t + ε]. All future s-selves,
s > t +ε affect J (t, x, uε(·)) by their controls on (t +ε, T ]. Let U[r, s] denote the restriction
of U[0, T ] on [r, s] for 0 ≤ r ≤ s ≤ T . Then the strategy space of Co[t, t + ε] may be
denoted by U[t, t + ε].

Hu et al. [19] suggest the following open-loop form of the local spike variation:

uε(s):=û(s) + ν1[t,t+ε](s), s ∈ [t, T ], (2.5)

where ν ∈ L2(Ω,Ft ,P;Rl) is arbitrarily chosen. This form is suitable only when U is a
linear space.

For either form of local spike variation, we have the following

Definition 1 The admissible strategy û is a sub-game perfect equilibrium for the system
(2.2)–(2.3) if

lim
ε↓0

J (t, x, û) − J (t, x, uε)

ε
≤ 0 (2.6)
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for all u ∈ U[0, T ], x ∈ R and a.e. t ∈ [0, T ]. The corresponding equilibrium dynamics
solves the SDE

{
dXû(s) = b(s, Xû(s), E[Xû(s)], û(s))ds + σ(s, Xû(s), E[Xû(s)], û(s))dW (s), 0 < s ≤ T,

Xû(0) = x0.
(2.7)

If feedback strategies are to be used, the previous definition reduces to the following

Definition 2 A deterministic function ϕ̂ : [0, T ] × R −→ U is a sub-game perfect equi-
librium for the system (2.2)–(2.3) if

lim
ε↓0

J (t, x, û) − J (t, x, uε)

ε
≤ 0 (2.8)

for all u ∈ U[0, T ], x ∈ R and a.e. t ∈ [0, T ], where û(s):=ϕ̂(s, X̂(s)), 0 ≤ s ≤ T and X̂ is
given by (2.9). The associated equilibrium dynamics solves the SDE

⎧
⎨

⎩

dX̂(s) = b(s, X̂(s), E[X̂(s)], ϕ̂(s, X̂(s)))ds
+σ(s, X̂(s), E[X̂(s)], ϕ̂(s, X̂(s)))dW (s), 0 < s ≤ T,

X̂(0) = x0.
(2.9)

For brevity, sometimes we simply call û an equilibrium point when there is no ambiguity.
The purpose of this study is to characterize sub-game perfect equilibria for the system

(2.2)–(2.3) by evaluating the limit (2.6) in terms of a stochastic maximum principle criterion.
We will apply the general stochastic maximum principle for SDEs of mean-field type derived
in Buckdahn et al. [10].

The following assumptions (imposed in [10]) will be in force throughout Sects. 2–3. These
assumptions can be made weaker, but we do not focus on this here.

Assumption 1 (i) The functions b, σ, h, g are continuous in (y, z, u), and bounded.
(ii) The functions b, σ, h, g are twice continuously differentiable with respect to (y, z), and

their derivatives up to the second order are continuous in (y, z, u), and bounded.

Although we are interested in characterizing sub-game perfect equilibrium points by
considering the action of player t at a deterministic position x , we perform the analysis for
the more general case where player t has a random variable ξ ∈ L2(Ω,Ft ,P;R) as a state.

For a given admissible strategy u ∈ U[0, T ], if player t has ξ ∈ L2(Ω,Ft ,P;R) as its
state, (2.3) becomes

⎧
⎨

⎩

dXu,t,ξ (s) = b(s, Xu,t,ξ (s), E[Xu,t,ξ (s)], u(s))ds
+ σ(s, Xu,t,ξ (s), E[Xu,t,ξ (s)], u(s))dW (s), t < s ≤ T,

Xu,t,ξ (t) = ξ,

(2.10)

and the associated cost functional (2.2) becomes

J (t, ξ, u)=E

[∫ T

t
h
(
s, Xu,t,ξ (s), E[Xu,t,ξ (s)], u(s)

)
ds + g

(
Xu,t,ξ (T ), E[Xu,t,ξ (T )])

]

.

(2.11)

Remark 1 Definitions 1 and 2 can be accordingly generalized by replacing (t, x) by (t, ξ)

and the inequality condition takes the form

lim
ε↓0

J (t, ξ, û) − J (t, ξ, uε)

ε
≤ 0 (2.12)

for all u ∈ U[0, T ], ξ ∈ L2(Ω,Ft ,P;R) and a.e. t ∈ [0, T ].
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It is a well-known fact, see, e.g., Karatzas and Shreve ([24], pp. 289–290), that under
Assumption 1, for any u ∈ U[0, T ], the SDE (2.10) admits a unique strong solution. More-
over, there exists a constant C > 0 which depends only on the bounds of b, σ and their first
derivatives w.r.t. y, z, such that, for any t ∈ [0, T ], u ∈ U[0, T ] and ξ, ξ ′ ∈ L2(Ω,Ft ,P;R),
we also have the following estimates, P − a.s.

E
[
supt≤s≤T |Xu,t,ξ (s)|2|Ft

] ≤ C(1 + |ξ |2 + E[|ξ |2]),
E
[
supt≤s≤T |Xu,t,ξ (s) − Xu,t,ξ ′

(s)|2|Ft

]
≤ C(|ξ − ξ ′|2 + E[|ξ − ξ ′|2]). (2.13)

Moreover, the performance functional (2.11) is well defined and finite.
For convenience, we will use the following notation throughout the paper. We will denote

by Xt,ξ :=Xu,t,ξ the solution of the SDE (2.10), associated with the strategy u, and accord-
ingly, X̂ t,ξ :=Xû,t,ξ associated with û.

For ϕ = b, σ, h, g, we define
⎧
⎪⎪⎨

⎪⎪⎩

δϕt,ξ (s) = ϕ(s, X̂ t,ξ (s), E[X̂ t,ξ (s)], u(s)) − ϕ(s, X̂ t,ξ (s), E[X̂ t,ξ (s)], û(s)),

ϕ
t,ξ
y (s) = ∂ϕ

∂y (s, X̂ t,ξ (s), E[X̂ t,ξ (s)], û(s)), ϕ
t,ξ
yy (s) = ∂2ϕ

∂y2
(s, X̂ t,ξ (s), E[X̂ t,ξ (s)], û(s)),

ϕ
t,ξ
z (s) = ∂ϕ

∂z (s, X̂ t,ξ (s), E[X̂ t,ξ (s)], û(s)), ϕ
t,ξ
zz (s) = ∂2ϕ

∂z2
(s, X̂ t,ξ (s), E[X̂ t,ξ (s)], û(s)).

(2.14)
Let us introduce the Hamiltonian associated with the r.v. X ∈ L1(Ω,F,P):

H(s, X, u, p, q):=b(s, X, E[X ], u)p + σ(s, X, E[X ], u)q − h(s, X, E[X ], u). (2.15)

3 Adjoint Equations and the Stochastic Maximum Principle

In this section, we introduce the adjoint equations involved in the SMP which characterize
the equilibrium points û ∈ U[0, T ] of our problem.

The first-order adjoint equation is the following linear backward SDE of mean-field
type parametrized by (t, ξ) ∈ [0, T ] × L2(Ω,Ft ,P;R), satisfied by the processes
(pt,ξ (s), qt,ξ (s)), s ∈ [t, T ],

{
dpt,ξ (s) = −

{
Ht,ξ

y (s) + E
[

Ht,ξ
z (s)

]}
ds + qt,ξ (s)dWs,

pt,x (T ) = −gt,ξ
y (T ) − E[gt,ξ

z (T )],
(3.1)

where, in view of the notation (2.14), for j = y, z,

Ht,ξ
j (s):= bt,ξ

j (s)pt,ξ (s) + σ
t,ξ
j (s)qt,ξ (s) − ht,ξ

j (s). (3.2)

This equation reduces to the standard one, when the coefficients do not explicitly depend
on the expected value (or the marginal law) of the underlying diffusion process. Under
Assumption 1 on b, σ, h, g, by an adaptation of Theorem 3.1 in Buckdahn et al. [9], by
keeping track of the parametrization (t, ξ), Eq. (3.1) admits a unique F-adapted solution
(pt,ξ , qt,ξ ). Moreover, there exists a constant C > 0 such that, for all t ∈ [0, T ] and
ξ, ξ ′ ∈ L2(Ω,Ft ,P;R), we have the following estimate, P − a.s.,

E
[
sups∈[t,T ] |pt,ξ (s)|2 + ∫ T

t |qt,ξ (s)|2 ds|Ft

]
≤ C(1 + |ξ |2 + E[ξ2]). (3.3)

The second order adjoint equation is the classical linear backward SDE, parametrized by
(t, ξ) ∈ [0, T ] × L2(Ω,Ft ,P;R), which appears in Peng’s stochastic maximum principle
(see Peng [30]):
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⎧
⎪⎪⎨

⎪⎪⎩

d Pt,ξ (s) = −
(

2bt,ξ
y (s)Pt,ξ (s) +

(
σ

t,ξ
y (s)

)2
Pt,ξ (s) + 2σ t,ξ

y (s)Qt,ξ (s) + Ht,ξ
yy (s)

)

ds

+ Qt,ξ (s) dWs,

Pt,ξ (T ) = −gt,ξ
yy (T ),

(3.4)
where in view of (2.14),

Ht,ξ
yy (s) = bt,ξ

yy (s)pt,ξ (s) + σ t,ξ
yy (s)qt,ξ (s) − ht,ξ

yy (s). (3.5)

This is a standard linear backward SDE, whose unique F-adapted solution (Pt,ξ , Qt,ξ ) sat-
isfies the following estimate: There exists a constant C > 0 such that, for all t ∈ [0, T ] and
ξ, ξ ′ ∈ L2(Ω,Ft ,P;R),

E

[

sup
s∈[t,T ]

|Pt,ξ (s)|2 +
∫ T

t
|Qt,ξ (s)|2 ds|Ft

]

≤ C(1 + |ξ |2 + E[ξ2]), P − a.s. (3.6)

The SDEs (3.1) and (3.4) have a unique solution for any fixed control u ∈ U[0, T ] and
the corresponding estimates (3.3) and (3.6) hold. However, for Theorem 1 below, only the
equilibrium control û is substituted into the two equations. The following theorem is the first
main result of the paper.

Theorem 1 (Characterization of equilibrium strategies) Let Assumption 1 hold. Then û is an
equilibrium strategy for the system (2.10)–(2.11) if and only if there are pairs of F-adapted
processes (p, q) and (P, Q) which satisfy (3.1)–(3.3) and (3.4)–(3.6), respectively, and for
which

H(t, ξ, v, pt,ξ (t), qt,ξ (t)) − H(t, ξ, û(t), pt,ξ (t), qt,ξ (t))

+ 1

2
Pt,ξ (t)

(
σ(t, ξ, E[ξ ], v) − σ(t, ξ, E[ξ ], û(t))

)2 ≤ 0,

for all v ∈ U, ξ ∈ L2(Ω,Ft ,P;R), a.e. t ∈ [0, T ], P − a.s. (3.7)

In particular, we have

H(t, x, v, pt,x (t), qt,x (t)) − H(t, x, û(t), pt,x (t), qt,x (t))

+ 1

2
Pt,x (t)

(
σ(t, x, x, v) − σ(t, x, x, û(t))

)2 ≤ 0,

for all v ∈ U, x ∈ R, a.e. t ∈ [0, T ], P − a.s. (3.8)

For feedback strategies, the deterministic function ϕ̂ : [0, T ] × R −→ U is an equilibrium
strategy for the system (2.11)–(2.10) if and only if there are pairs of F-adapted processes
(p, q) and (P, Q) which satisfy (3.1)–(3.3) and (3.4)–(3.6), respectively, and for which

H(t, x, v, pt,x (t), qt,x (t)) − H(t, x, ϕ̂(t, x), pt,x (t), qt,x (t))

+ 1

2
Pt,x (t)

(
σ(t, x, x, v) − σ(t, x, x, ϕ̂(t, x))

)2 ≤ 0,

for all v ∈ U, x ∈ R, a.e. t ∈ [0, T ], P − a.s. (3.9)

Proof Denote

δHt,ξ (s):=H(s, X̂ t,ξ (s), u(s), pt,ξ (s), qt,ξ (s)) − H(t, X̂ t,ξ (s), û(s), pt,ξ (s), qt,ξ (s))
(3.10)
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where the Hamiltonian H is given by (2.15). By Theorem 2.1 in Buckdahn et al. [8], keeping
track of the parametrization (t, ξ), the key relation between the cost functional (2.11) and
the associated Hamiltonian (2.15) reads

J (t, ξ, û) − J (t, ξ, uε) = E

[∫ t+ε

t
δHt,ξ (s) + 1

2
Pt,ξ (s)(δσ t,ξ (s))2 ds

]

+ R(ε), (3.11)

for arbitrary u ∈ U[0, T ] and (t, ξ) ∈ [0, T ] × L2(Ω,Ft ,P;R), where

|R(ε)| ≤ ερ̄(ε),

for some function ρ̄ : (0,∞) → (0,∞) such that ρ̄(ε) ↓ 0 as ε ↓ 0; see Eq. (3.53) of [8]
for a similar upper bound estimate of the error term R(ε).

Dividing both sides of (3.11) by ε and then passing to the limit ε ↓ 0, in view of Assump-
tion 1, (3.3) and (3.6), we obtain

lim
ε↓0

J (t, ξ, û) − J (t, ξ, uε)

ε
= E

[

δHt,ξ (t) + 1

2
Pt,ξ (t)(δσ t,ξ (t))2

]

. (3.12)

Now, if (3.7) holds, by setting v:=u(t) for arbitrary u ∈ U[0, T ], we also have

H(t, ξ, u(t), pt,ξ (t), qt,ξ (t)) − H(t, ξ, û(t), pt,ξ (t), qt,ξ (t))

+ 1

2
Pt,ξ (t)

(
σ(t, ξ, E[ξ ], u(t)) − σ(t, ξ, E[ξ ], û(t))

)2 ≤ 0, P − a.s.

Therefore, by (3.12) we obtain (2.12), i.e., û is an equilibrium point for the system (2.10)–
(2.11).

Conversely, assume that (2.12) holds. Then, in view of (3.12), we have

E

[

δHt,ξ (t) + 1

2
Pt,ξ (t)(δσ t,ξ (t))2

]

≤ 0, (3.13)

for all u ∈ U[0, T ], ξ ∈ L2(Ω,Ft ,P;R) and a.e. t ∈ [0, T ]. Now, let A be an arbitrary set
of Ft and set

u(s):=v1A + û(s)1Ω\A, t ≤ s ≤ T,

for an arbitrary v ∈ U . Obviously, u is an admissible strategy. Moreover, we have, for every
s ∈ [t, T ],
δHt,ξ (s) =

(
H(s, X̂ t,ξ (s), v, pt,ξ (s), qt,ξ (s)) − H(s, X̂ t,ξ (s), û(s), pt,ξ (s), qt,ξ (s)))

)
1A,

and

δσ t,ξ (s) =
(
σ(s, X̂ t,ξ (s), E[X̂ t,ξ (s)], v) − σ(s, X̂ t,ξ (s), E[X̂ t,ξ (s)], û(s))

)
1A.

Hence, in view of (3.13), we have

E
[(

H(t, X̂ t,ξ (t), v, pt,ξ (t), qt,ξ (t)) − H(t, X̂ t,ξ (t), û(t), pt,ξ (t), qt,ξ (t))
)
1A
]

+ 1

2
E
[
Pt,ξ (t)

(
σ(t, X̂ t,ξ (t), E[X̂ t,ξ (t)], v) − σ(t, X̂ t,ξ (t), E[X̂ t,ξ (t)], û(t))

)2
1A
] ≤ 0,

which in turn yields inequality (3.7) since v ∈ U and the set A ∈ Ft are arbitrary.
Finally, both (3.8) and (3.9) follow from (3.7), by replacing ξ ∈ L2(Ω,Ft ,P;R) with

x ∈ R. ��
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Remark 2 Theorem 1 does not address uniqueness. It is possible to have multiple controls
to satisfy (2.10), (3.1)–(3.7), and then each control is an equilibrium strategy.

Remark 3 Define the so-called H-function associated with (û(t), pt,ξ (t), qt,ξ (t), Pt,ξ (t))

H(t, ξ, v) := H(t, ξ, v, pt,ξ (t), qt,ξ (t)) − 1

2
Pt,ξ (t)σ 2(t, ξ, E[ξ ], û(t))

+ 1

2
Pt,ξ (t)

(
σ(t, ξ, E[ξ ], v) − σ(t, ξ, E[ξ ], û(t))

)2
.

Then, it is easily checked that inequality (3.7) is equivalent to

H(t, ξ, û(t)) = max
v∈U

H(t, ξ, v), for all ξ ∈ L2(Ω,Ft ,P;R), a.e. t ∈ [0, T ], P − a.s.

(3.14)

For all practical purposes, it would be nice to find or characterize equilibrium points,
through only maximizing the Hamiltonian H , which amounts to only solving the first-order
adjoint equation (3.1). In fact, this happens in the special case where the diffusion coefficient
does not contain the control variable, i.e.,

σ(s, y, z, v) ≡ σ(s, y, z), (s, y, z, v) ∈ [0, T ] × R × R × U,

whence, manifestly, inequality (3.7) is equivalent to

H(t, ξ, û(t), pt,ξ (t), qt,ξ (t)) = max
v∈U

H(t, ξ, v, pt,ξ (t), qt,ξ (t)),

for all ξ ∈ L2(Ω,Ft ,P;R), a.e. t ∈ [0, T ], P − a.s.
Another very useful case, which we will use in some examples below, is described in the

following

Proposition 1 Assume that U is a convex subset of R, and the coefficients b, σ and h satisfy
Assumption 1, and are locally Lipschitz in u. Then, the admissible strategy û is an equilibrium
point for the system (2.10)–(2.11) if and only if there is a pair of F-adapted processes(

pt,ξ , qt,ξ
)

that satisfies (3.1)–(3.3) and for which

H(t, ξ, û(t), pt,ξ (t), qt,ξ (t)) = max
v∈U

H(t, ξ, v, pt,ξ (t), qt,ξ (t)),

for all ξ ∈ L2(Ω,Ft ,P;R), a.e. t ∈ [0, T ], P − a.s.

Proof In view of (3.14), it suffices to show thatH and H have the same Clark’s generalized
gradient in û. But, this follows for instance from Lemma 5.1. in Yong and Zhou [38], since
U is a convex subset of R and the coefficients b, σ and h are locally Lipschitz in u and, by
Assumption 1, their derivatives in y are continuous in (y, u). Hence, û is a maximizer of
H(t, ξ, ·, pt,ξ (t), qt,ξ (t)) if and only if it is a maximizer of H(t, ξ, ·, pt,ξ (t), qt,ξ (t)). ��
Remark 4 In fact, both Theorem 1 and Proposition 1 extend to the following cost functionals
parametrized by (t, ξ) ∈ [0, T ] × L2(Ω,Ft ,P;R):

J (t, ξ, u)=E

[∫ T

t
h
(
t, ξ, s, Xt,ξ (s), E[Xt,ξ (s)], u(s)

)
ds+g

(
t, ξ, Xt,ξ (T ), E[Xt,ξ (T )])

]

,

where both h and g are allowed to explicitly depend on (t, x). This is due to the fact that the
spike variation and the subsequent Taylor expansions that are used to derive (3.11) are not
affected by this extra dependence of h and g on (t, ξ).
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Remark 5 Theorem 1 and Proposition 1 extend to more general mean-field couplings than
the mean. For couplings of the form E[φ(Xt,ξ (s))] with sufficiently smooth functions φ, the
SMP developed in Andersson and Djehiche [1] may be used to derive similar results. For the
more general coupling involving the probability distribution L(Xt,ξ (s)) of Xt,ξ (s), the SMP
derived in Carmona and Delarue [13] together with the flow properties of solutions of (2.3)
obtained recently by Buckdahn et al. [11] are to be used to obtain a similar characterization
of the sub-game perfect equilibrium points.

4 Some Applications

In this section, we illustrate the above results through some examples discussed in Björk
and Murgoci [6] and Björk et al. [7], using an extended Hamilton–Jacobi–Bellman equation.
In these examples, we look for equilibrium strategies of feedback type, i.e., deterministic
function ϕ̂ : [0, T ] × R −→ U which satisfy (3.9). The corresponding equilibrium point is
û(s):=ϕ̂(s, X̂(s)), where, X̂ is corresponding to the equilibrium dynamics given by the SDE

⎧
⎨

⎩

dX̂(s) = b(s, X̂(s), E[X̂(s)], ϕ(s, X̂(s)))ds
+ σ(s, X̂(s), E[X̂(s)], ϕ(s, X̂(s)))dW (s), 0 < s ≤ T,

X̂(0) = x0.

Although Assumption 1 does not hold for the cost functionals (for instance, the quadratic
cost) of this section, the stochastic maximum principle in Theorem 1 can still be proved in a
similar manner by exploiting the current linear dynamics. These details are omitted here.

4.1 Mean-Variance Portfolio Selection with Constant Risk Aversion

The dynamics over [0, T ] defined on (Ω,F,F,P) is given by the following SDE:

dX (s) = (r X (s) + (α − r) u(s)) ds + σu(s)dW (s), X (0) = x0 (∈ R), (4.1)

where r, α and σ are real constants, and α > r .
The cost functional is given by

J (t, x, u) = γ

2
V ar(Xt,x (T )) − E[Xt,x (T )]

= E
(γ

2

(
Xt,x (T )

)2 − Xt,x (T )
)

− γ

2

(
E[Xt,x (T )])2 , (4.2)

where the constant γ > 0 is the risk aversion coefficient. The associate dynamics, parame-
trized by (t, x) ∈ [0, T ] × R, is

dXt,x (s) = (r Xt,x (s) + (α − r) u(s)
)
ds+σu(s)dW (s), t < s ≤ T, Xt,x (t) = x . (4.3)

The Hamiltonian associated to this system is

H(t, x, u, p, q) = (r x + (α − r) u) p + σuq,

and the H-function is

H(t, x, v):= H(t, x, v, p, q) − 1

2
P(σ ϕ̂(t, x))2 + 1

2
Pσ 2 (v − ϕ̂(t, x)

)2
.

The equation for P takes the form

dPt,x (s) = −2r Pt,x (s)ds + Qt,x (s)dWs, (4.4)
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where Pt,x (T ) = −γ . We obtain Pt,x (s) = −γ e2r(T −s) for s ∈ [t, T ].
In view of Remark 3, ϕ̂ is an equilibrium point if and only if it maximizes theH-function.

Such a maximum exists if and only if

(α − r)p + σq = 0. (4.5)

Therefore, to characterize the equilibrium points, we only need to consider the first-order
adjoint equation: {

dpt,x (s) = −r pt,x (s)ds + qt,x (s)dW (s),

pt,x (T ) = 1 − γ
(

X̂ t,x (T ) − E[X̂ t,x (T )]
)

.
(4.6)

We try a solution of the form

pt,x (s) = Cs − As

(
X̂ t,x (s) − E[X̂ t,x (s)]

)
, (4.7)

where As and Cs are deterministic functions such that

AT = γ, CT = 1.

Identifying the coefficients in (4.3) and (4.6), we get, for s ≥ t ,

(2r As + Ȧs)
(

X̂ t,x (s) − E[X̂ t,x (s)]
)

+ (α − r)As(ϕ̂(s, X̂ t,x (s)) − E[ϕ̂(s, X̂ t,x (s))])
= Ċs + rCs, (4.8)

qt,x (s) = −Asσ ϕ̂(s, X̂ t,x (s)). (4.9)

In view of (4.5), we have
(α − r)pt,x (t) + σqt,x (t) = 0. (4.10)

Now, from (4.7), we have
pt,x (t) = Ct ,

which is deterministic and independent of x . Hence, from (4.5), we get

qt,x (t) = −α − r

σ
Ct .

In view of (4.9), the equilibrium point is the deterministic function

ϕ̂(s):=α − r

σ 2

Cs

As
, 0 ≤ s ≤ T . (4.11)

It remains to determine As and Cs .
Indeed, inserting (4.11) in (4.8), we obtain

( Ȧs + 2r As)(X̂(s) − E[X̂ t,x (s)]) = Ċs + rCs,

giving the equations satisfied by As and Cs

{
Ȧs + 2r As = 0, AT = γ,

Ċs + rCs = 0, CT = 1.

The solutions of these equations are

As = γ e2r(T −s), Cs = er(T −s), 0 ≤ s ≤ T .
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Whence, we obtain the following explicit form of the equilibrium point:

ϕ̂(s) = 1

γ

α − r

σ 2 e−r(T −s), 0 ≤ s ≤ T,

which is identical to the one obtained in Björk and Murgoci [6] by solving an extended HJB
equation.

4.2 Mean-Variance Portfolio Selection with State Dependent Risk Aversion

Consider the same state process over [0, T ] as in Sect. 4.1. Namely,

dX (s) = (r X (s) + (α − r) u(s)) ds + σu(s)dW (s), X (0) = x0, (4.12)

where r, α and σ are real constants. The modified cost functional takes the form

J (t, x, u) = γ (x)
2 V ar(Xt,x (T )) − E[Xt,x (T )],

where the risk aversion coefficient γ (x) > 0 is made dependent on the current wealth x . We
refer to Björk et al. [7] for an economic motivation of this dependence.

The associated dynamics, parametrized by (t, x) ∈ [0, T ] × R, is

dXt,x (s) = (r Xt,x (s) + (α − r) u(s)
)
ds + σu(s)dW (s), t < s ≤ T, Xt,x (t) = x .

(4.13)
Now, since γ (x) is assumed strictly positive for all x , the equilibrium points of J are the

same as the ones of the cost functional

J̄ (t, x, u) = 1

2
V ar(Xt,x (T )) − γ −1(x)E[Xt,x (T )]. (4.14)

Therefore, we will find feedback equilibrium points associated with (4.14).
The Hamiltonian associated to this system is

H(t, x, u, p, q) = (r x + (α − r) u) p + σuq.

and the H-function is

H(t, x, v):=H(t, x, v, p, q) − 1

2
P(σ ϕ̂(t, x))2 + 1

2
Pσ 2 (v − ϕ̂(t, x)

)2
.

Again, in viewofRemark 3, ϕ̂ is a equilibriumpoint if and only if itmaximizes theH-function.
Such a maximum exists if and only if

(α − r)p + σq = 0. (4.15)

Therefore, to characterize the equilibrium points, we only need to consider the first-order
adjoint equation:

⎧
⎪⎨

⎪⎩

dpt,x (s) = −r pt,x (s)ds + qt,x (s)dW (s),

pt,x (T ) = γ −1(x) −
(

X̂ t,x (T ) − E[X̂ t,x (T )]
)

,

(4.16)

We try a solution of the form

pt,x (s) = Csγ
−1(x) − As

(
X̂ t,x (s) − E[X̂ t,x (s)]

)
, (4.17)

where As, Bs , and Cs are deterministic functions such that

AT = CT = 1.
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Identifying the coefficients in (4.13) and (4.16), we get for s ≥ t ,

( Ȧs + 2r As)
(

X̂ t,x (s) − E[X̂ t,x (s)]
)

+ (α − r)As

(
ϕ̂(s, X̂ t,x (s)) − E[ϕ̂(s, X̂ t,x (s))]

)

= (Ċs + rCs)γ
−1(x), (4.18)

qt,x (s) = −Asσϕ(s, X̂ t,x (s)), (4.19)

and, by (4.15), we have
(α − r)pt,x (t) + σqt,x (t) = 0, (4.20)

But, from (4.17), we have
pt,x (t) = Ctγ

−1(x).

Therefore, we get from (4.20)

qt,x (t) = −α − r

σ
Ctγ

−1(x), (4.21)

which together with (4.19) suggests an equilibrium point ϕ̂ of the form

ϕ̂(s, y) = α − r

σ 2

Cs

As
γ −1(y), 0 ≤ s ≤ T . (4.22)

It remains to determine As and Cs .
Indeed, inserting (4.22) in (4.18), we obtain,

( Ȧs + 2r As)
(

X̂ t,x (s) − E[X̂ t,x (s)]
)

+ (α − r)2

σ 2 Cs

(
γ −1(X̂ t,x (s)) − E[γ −1(X̂ t,x (s))]

)

= (Ċs + rCs)γ
−1(x). (4.23)

Manifestly, from (4.23), it is hard to draw any conclusion about the form of the determin-
istic functions As and Cs unless we have an explicit form of the function γ (x). In fact, a
closer look at (4.23) suggests that a feasible identification of the coefficients is possible, for
instance, when γ (x) = γ

x . Let us examine this case.

4.2.1 The Case γ (x) = γ
x

Let us consider the particular case when

γ (x) = γ

x
.

In this special case, (4.23) becomes
(

Ȧs + 2r As + (α − r)2

γ σ 2 Cs

)
(
Xt,x (s) − E[Xt,x (s)])− (Ċs + rCs)

x

γ
= 0.

This suggests that the functions As, Bs and Cs solve the following system of equations:
⎧
⎪⎨

⎪⎩

Ȧs + 2r As + (α−r)2

γ σ 2 Cs = 0,

Ċs + rCs = 0,
AT = CT = 1,

(4.24)

which admits the following explicit solution:

As = e2r(T −s) + (α − r)2

rγ σ 2

(
e2r(T −s) − er(T −s)

)
, Cs = er(T −s), 0 ≤ s ≤ T .
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Hence, the equilibrium point ϕ̂ is explicitly given by

ϕ̂(s, y) = α − r

γ σ 2

Cs

As
y

= α − r

γ σ 2

(

er(T −s) + (α − r)2

rγ σ 2

(
er(T −s) − 1

))−1

y, (s, y) ∈ [0, T ] × R.

4.3 Time-Inconsistent Linear-Quadratic Regulator

We consider the following variant of a time-inconsistent linear-quadratic regulator discussed
in Björk andMurgoci [6].We refer to recent work by Bensoussan et al. [4], Yong [36], andHu
et al. [19], where more general models are considered. The state process over [0, T ] defined
on (Ω,F,F,P) is a scalar with dynamics

dX (s) = (aX (s) + bu(s)) ds + σdW (s), X (0) = x0, (4.25)

where a, b, and σ are real constants. The cost functional is given by

J (t, x, u) = 1

2
E

[∫ T

t
u2(s) ds

]

+ γ

2
E
[(

Xt,x (T ) − x
)2
]
,

where γ is a positive constant. The associated dynamics, parametrized by (t, x) ∈ [0, T ]×R,
is

dXt,x (s) = (aXt,x (s) + bu(s)
)
ds + σdW (s), t < s ≤ T, Xt,x (t) = x . (4.26)

As mentioned in Björk and Murgoci [6], in this time-inconsistent version of the linear-
quadratic regulator, we want to control the system so that the final state Xt,x (T ) stays as close
as possible to Xt,x (t) = x , while at the same time, we keep the control energy (expressed
by the integral term) small. The time-inconsistency stems from the fact that the target point
Xt,x (t) = x is changing with time.

The Hamiltonian associated to this system is

H(s, x, u, p, q):= (ax + bu) p + σq − 1

2
u2. (4.27)

and the H-function is

H(t, x, v):=H(t, x, v, p, q) − 1

2
Pσ 2.

Again, in view of Remark 3, ϕ̂ is an equilibrium point if and only if it maximizes the H-
function. Such a maximizer is

ϕ̂ = bp. (4.28)

Therefore, to characterize the equilibrium points, we only need to consider the first-order
adjoint equation: ⎧

⎨

⎩

dpt,x (s) = −apt,x (s)ds + qt,x (s)dW (s),

pt,x (T ) = γ (x − Xt,x (T )).

(4.29)

We try a solution of the form

pt,x (s) = βs x − αs X̂ t,x (s), (4.30)

where αs and βs are deterministic functions such that

αT = βT = γ.
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Identifying the coefficients in (4.26) and (4.29), we get, for s ≥ t ,

(α̇s + 2aαs)X̂ t,x (s) + bαs ϕ̂(s, X̂ t,x (s)) = (β̇s + aβs)x, (4.31)

and
qt,x (s) = −σαs .

On the other hand, in view of (4.28)

ϕ̂(t, x) = bpt,x (t).

Thus, by (4.30), the function ϕ which yields the equilibrium point has the form

ϕ̂(s, y) = b(βs − αs)y, (s, y) ∈ [0, T ] × R. (4.32)

Therefore, (4.31) reduces to

(α̇s + (2a + b2βs)αs − b2α2
s )X̂ t,x (s) = (β̇s + aβs)x,

suggesting that (αs, βs) solves the system of equations
⎧
⎨

⎩

β̇s + aβs = 0,
α̇s + (2a + b2βs)αs − b2α2

s = 0,
αT = γ, βT = γ.

(4.33)

The first equation in (4.33) yields the solution

βs = γ ea(T −s).

The second equation is of Riccati type whose solution is αs := vs
ws

, where (v,w) solves the
following system of linear differential equation:

(
v̇s

ẇs

)

=
(−2a 0

−b2 b2βs

)(
vs

ws

)

,

(
vT

wT

)

=
(

γ

1

)

.

which is obviously solvable.

5 Extension to Mean-Field Game Models

In this section, we extend the SMP approach to an N -player stochastic differential game of
mean-field type where the i th player would like to find a strategy to optimize her own cost
functional regardless of the other players’ cost functionals.

Let X = (X1, . . . , X N ) describe the states of the N players and u = (u1, . . . , uN ) ∈∏N
i=1 Ui [0, T ] be the ensemble of all the individual admissible strategies. Each ui takes

values in a non-empty subset Ui of R, and the class of admissible strategies is given by

Ui [0, T ] =
{

ui : [0, T ] × Ω −→ Ui ; ui is F-adapted and square integrable
}
. (5.1)

To simplify the analysis, we consider a population of uniform agents so that Ui = U and
they have the same initial state Xi (0) = x0 at time 0 for all i ∈ {1, . . . , N }. In this case,
the N sets Ui [0, T ] are identical and equal to U[0, T ] . Let the dynamics be given by the
following SDE:

dXi (s) = b(s, Xi (s), E[Xi (s)], ui (s))ds + σ(s, Xi (s), E[Xi (s)])dWi (s), (5.2)

where the strategy ui does not enter the diffusion coefficient σ .
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For notational simplicity, we do not explicitly indicate the dependence of the state on
the control by writing Xui

i (s). We take F to be the natural filtration of the N -dimensional
standard Brownian motion (W1, . . . , WN ) augmented by P-null sets of F .

Denote

(u−i , v):= (u1, . . . , ui−1, v, ui+1, . . . , uN ), i = 1, . . . , N .

Then, the i th player selects ui ∈ U[0, T ] to evaluate her cost functional

v �→ J i,N (t, xi ; u−i , v):=J i,N (t, xi ; u1, . . . , ui−1, v, ui+1, . . . , uN ),

where

J i,N (t, xi ; u) = E

[∫ T

t
h
(

s, Xt,xi
i (s), E[Xt,xi

i (s)], X (−i)(s), ui (s)
)
ds

+ g
(

Xt,xi
i (T ), E[Xt,xi

i (T )], X (−i)(T )
) ]

. (5.3)

The associated dynamics, parametrized by (t, xi ), is
⎧
⎨

⎩

dXt,xi
i (s) = b(s, Xt,xi

i (s), E[Xt,xi
i (s)], ui (s))ds

+ σ(s, Xt,xi
i (s), E[Xt,xi

i (s)])dWi (s), t < s ≤ T,

Xt,xi (t) = xi .

(5.4)

The i th player interacts with others through the mean-field coupling term

X (−i) = 1

N − 1

N∑

k �=i

Xk, i ∈ {1, . . . , N },

which models the aggregate impact of all other players.
Note that the i th player assesses her cost functional over [t, T ] seen from her local state

Xi (t) = xi and she knows only the initial states of all other players at time 0, (Xk(0) = x0,
k �= i). Thus the game may be cast as a decision problem where each player has incomplete
state information about other players. The development of a solution framework in terms of
a certain exact equilibrium notion is challenging. Our objective is to address this incomplete
state information issue and design a set of individual strategies which has a meaningful inter-
pretation. This will be achieved by using the so-called consistent mean-field approximation.

For a large N , even if each player has full state information of the system, the exact
characterization of the equilibrium points, based on the SMP, will have high complexity
since each player leads to a variational inequality for the underlying Hamiltonians similar
to (3.7) which is further coupled with the state processes of all other players. Therefore, we
should rely on the mean-field approximation of our system.

We note that J i,N depends on not only ui , but also all other players’ strategies u−i through
themean-field coupling term X (−i). This suggests that we extendDefinition 1 to the N -player
case as follows.

Definition 3 The admissible strategy û = (û1, . . . , ûN ) is a δN -sub-game perfect equilib-
rium point for N players in the system (5.2)–(5.3) if for every i ∈ {1, . . . , N },

lim
ε↓0

J i,N (t, xi ; û) − J i,N (t, xi ; û−i , uε
i )

ε
≤ O(δN ), (5.5)

for each given ui ∈ Ui [0, T ], xi ∈ R and a.e. t ∈ [0, T ], where uε
i is the spike variation

(2.4) of the strategy ûi of the i th player using ui and 0 ≤ δN → 0 as N → ∞.
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The error term O(δN ) is due to the mean-field approximation to be introduced below for
designing û.

5.1 The Local Limiting Decision Problem

Let X (−i) be approximated by a deterministic function X̄(s) on [0, T ]. Denote the cost
functional

J̄ i (t, xi ; ui ) = E

[∫ T

t
h
(

s, Xt,xi
i (s), E[Xt,xi

i (s)], X̄(s), ui (s)
)
ds

+ g
(

Xt,xi
i (T ), E[Xt,xi

i (T )], X̄(T )
) ]

(5.6)

which is intended as an approximation of J i,N . Note that once X̄ is assumed fixed, J̄ i is
affected only by ui . The introduction of X̄ as a fixed function of time is based on the freezing
idea in mean-field games. The reason is that X (−i) = 1

N−1

∑N
k �=i Xk is generated by many

negligibly small players, and therefore, a given player has little influence on it.
The strategy selection of the i th player is based on finding a sub-game perfect equilibrium

for J̄ i to which the method based on the Stochastic Maximum Principle [cf. (3.8)] of Sect. 3
can be applied under the following conditions:

Assumption 2 (i) The functions b(s, y, z, u), σ (s, y, z), h(s, y, z, w, u), g(y, z, w) are
bounded.

(ii) The functions b, σ are differentiable with respect to (y, z). The derivatives are Lipschitz
continuous in (y, z, ) and bounded.

(iii) The functions h, g are differentiable with respect to (y, z, w), and their derivatives are
continuous in (y, z, w, u) and (y, z, w), respectively, and bounded.

Let ûi ∈ U[0, T ] be a sub-game perfect equilibrium point for (5.4) and (5.6) and denote
the associated backward SDE

{
dpt,xi (s) = −

{
Ht,xi

y (s) + E[Ht,xi
z (s)]

}
ds + qt,xi (s)dWi (s),

pt,xi (T ) = −gt,xi
y (T ) − E[gt,xi

z (T )],
(5.7)

where for ζ = y, z,

Ht,xi
ζ (s) = bζ (s, X̂ t,xi

i (s), E[X̂ t,xi
i (s)], ûi )pt,xi (s) + σζ (s, X̂ t,xi

i (s), E[X̂ t,xi
i (s)])qt,xi (s)

− hζ (s, X̂ t,xi
i , E[X̂ t,xi

i ], X̄(s), ûi ),

for which

H(t, xi , v, pt,xi (t), qt,xi (t)) − H(t, xi , ûi (t), pt,xi (t), qt,xi (t)) ≤ 0,

∀v ∈ U, xi ∈ R, a.e. t ∈ [0, T ], P − a.s. (5.8)

The closed-loop equilibrium state associated to ûi of the i th player is given by

d X̂i (s) = b(s, X̂i (s), E[X̂i (s)], ûi (s))ds + σ(s, X̂i (s), E[X̂i (s)])dWi (s). (5.9)

We call ûi a decentralized strategy in that it has sample path dependence only on its local
Bronian motion Wi . The processes {ûk, 1 ≤ k ≤ N } are independent. Further, we impose

Assumption 3 All the processes {ûk, 1 ≤ k ≤ N } have the same law.



Dyn Games Appl (2016) 6:55–81 73

This restriction ensures that {X̂i , 1 ≤ i ≤ N } are i.i.d. random processes. Since each ûi

is obtained as a process adapted to the filtration generated by Wi , it can be represented as
a non-anticipative functional F̂({Wi (s)}s≤t ) of Wi . For a given X̄ , if non-uniqueness of ûi

arises, we stipulate that the same functional F̂ is used by all players applying their respective
Brownian motions so that all the individual control processes have the same law. This means
some coordination is necessary for the strategy selection under non-uniqueness. By the law
of large numbers, the consistency condition on X̄ reads

X̄(s) = E[X̂1(s)], ∀s ∈ [0, T ]. (5.10)

A question of central interest is how to characterize the performance of the set of strategies
û = (û1, . . . , ûN ) when they are implemented and assessed according to the original cost
functionals {J i,N , 1 ≤ i ≤ N }. An answer is provided in the following theorem for which
the proof is displayed in the next section. This is the second main result of the paper.

Theorem 2 Under Assumptions 2 and 3, suppose there exists a solution to (5.7), (5.9) and
(5.10). Then we have

J i,N (t, xi ; û)−J i,N (t, xi ; û−i , uε
i ) = J̄ i (t, xi ; ûi )− J̄ i (t, xi ; uε

i )+O

(
ε√

N − 1

)

. (5.11)

Moreover, û = (û1, . . . , ûN ) ∈ ∏N
i=1 U[0, T ] is a δN -sub-game perfect equilibrium for the

system (5.2)–(5.3) where δN ≤ C/
√

N and C depends only on (b, σ, h, g, T ). ��
If there exists a unique solution (X̄ , ûi ) to (5.7), (5.9) and (5.10), each player can locally

construct its strategy. When there are multiple solutions, the players need to coordinate to
choose the same X̄ and further ensure that {ûi , 1 ≤ i ≤ N } have the same law.

6 Proof of Theorem 2

This section is devoted to the proof of Theorem 2. We first establish some performance
estimates which will be used to conclude the proof of the theorem.

6.1 The Performance Estimate

We have

J i,N (t, xi ; û) = Et,xi

[∫ T

t
h(s, X̂ t,xi

i (s), E[X̂ t,xi
i (s)], X̂ (−i)(s), ûi (s))ds

+ g(X̂ t,xi
i (T ), E[X̂ t,xi

i (T )], X̂ (−i)(T ))

]

.

Now we fix i ∈ {1, . . . , N } and change ûi to uε
i when all other players apply û−i , where

uε
i (s):=

{
ui (s), s ∈ [t, t + ε],
ûi (s), s ∈ [t, T ]\[t, t + ε],

and ui ∈ U[0, T ]. We have

J i,N (t, xi ; û−i , uε
i ) = E

[∫ T

t
h
(

s, Xt,xi
i (s), E[Xt,xi

i (s)], X̂ (−i)(s), uε
i (s)

)
ds

+g
(

Xt,xi
i (T ), E[Xt,xi

i (T )], X̂ (−i)(T )
) ]

, (6.1)
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where Xt,xi
i is the solution of (5.4) with admissible strategy uε

i . The following estimates will
be frequently used in the sequel.

Lemma 1 For the i th player, let Xi and X̂i be the state processes corresponding to uε
i and

ûi , respectively. Then

E
[

sup
t≤s≤T

|Xt,xi
i (s) − X̂ t,xi

i (s)|2
]

≤ Cε2,

where C does not depend on (t, xi ).

Proof Using the SDEs (5.4) for the two state processes, we have

Xt,xi
i (τ ) − X̂ t,xi

i (τ )

=
∫ τ

t

{
b
(

s, Xt,xi
i (s), E[Xt,xi

i (s)], uε
i (s)

)
− b

(
s, X̂ t,xi

i (s), E[X̂ t,xi
i (s)], ûi (s)

)}
ds

+
∫ τ

t

{
σ
(

s, Xt,xi
i (s), E[Xt,xi

i (s)]
)

− σ
(

s, X̂ t,xi
i (s), E[X̂ t,xi

i (s)]
)}

dWi (s).

By Burkholder-Davis-Gundy’s inequality, we have

E
[
supt≤τ≤T |Xt,xi

i (τ ) − X̂ t,xi
i (τ )|2

]

≤ C E

[(∫ T

t

∣
∣
∣b
(

s, Xt,xi
i (s), E[Xt,xi

i (s)], uε
i (s)

)

− b
(

s, X̂ t,xi
i (s), E[X̂ t,xi

i (s)], ûi (s)
)∣
∣
∣ ds

)2
]

+ C E

[∫ T

t

∣
∣
∣σ
(

s, Xt,xi
i (s), E[Xt,xi

i (s)]
)

− σ
(

s, X̂ t,xi
i (s), E[X̂ t,xi

i (s)]
)∣
∣
∣
2
ds

]

=: C(Ib + Iσ ),

where C is a positive constant.
Noting that, in view of Assumption 2-(i), if the positive constant C denotes the bound of

b, we have
∣
∣
∣b
(

s, X̂ t,xi
i (s), E[X̂ t,xi

i (s)], uε
i (s)

)
− b

(
s, X̂ t,xi

i (s), E[X̂ t,xi
i (s)], ûi (s)

)∣
∣
∣

=
∣
∣
∣b
(

s, X̂ t,xi
i (s), E[X̂ t,xi

i (s)], ui (s)
)

− b
(

s, X̂ t,xi
i (s), E[X̂ t,xi

i (s)], ûi (s)
)∣
∣
∣1[t,t+ε](s)

≤ C1[t,t+ε](s),

Thus, since b is Lipschitz in (y, z), by Assumption 2-(ii), we have
∣
∣
∣b
(

s, Xt,xi
i (s), E[Xt,xi

i (s)], uε
i (s)

)
− b

(
s, X̂ t,xi

i (s), E[X̂ t,xi
i (s)], ûi (s)

)∣
∣
∣

≤
∣
∣
∣b
(

s, Xt,xi
i (s), E[Xt,xi

i (s)], uε
i (s)

)
− b

(
s, X̂ t,xi

i (s), E[X̂ t,xi
i (s)], uε

i (s)
)∣
∣
∣

+
∣
∣
∣b
(

s, X̂ t,xi
i (s), E[X̂ t,xi

i (s)], uε
i (s)

)
− b

(
s, X̂ t,xi

i (s), E[X̂ t,xi
i (s)], ûi (s)

)∣
∣
∣

≤ C
(
|Xt,xi

i (s) − X̂ t,xi
i (s)| + E[|Xt,xi

i (s) − X̂ t,xi
i (s)|] + 1[t,t+ε](s)

)
. (6.2)
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The Cauchy–Schwarz inequality yields

Ib ≤ C(T − t)
∫ T

t
E[|Xt,xi

i (s) − X̂ t,xi
i (s)|2]ds + C E

[(∫ T

t
1[t,t+ε](s)ds

)2]

≤ C
∫ T

t
E

[

sup
t≤η≤s

|Xt,xi
i (η) − X̂ t,xi

i (η)|2
]

ds + Cε2. (6.3)

In a similar fashion, since σ is Lipschitz in (y, z), by Assumption 2-(ii), we obtain

Iσ ≤ C
∫ T

t
E
[

sup
t≤η≤s

|Xt,xi
i (η) − X̂ t,xi

i (η)|2
]
ds. (6.4)

Therefore,

E
[
supt≤τ≤T |Xt,xi

i (τ )− X̂ t,xi
i (τ )|2] ≤ C

∫ T

t

[
E[supt≤η≤s |Xt,xi

i (η)− X̂ t,xi
i (η)|2]ds +Cε2.

The lemma follows from Gronwall’s lemma. ��
Lemma 2 We have

E

[

sup
0≤s≤T

|X̂i (s)|2
]

≤ C E
[
|X̂i (0)|2 + 1

]
.

Proof We write

X̂i (s) = X̂i (0) +
∫ s

0
b(τ, X̂i (τ ), E[X̂i (τ )], ûi (τ ))dτ

+
∫ s

0
σ(τ, X̂i (τ ), E[X̂i (τ )])dWi (τ ). (6.5)

Then, by Burkholder-Davis-Gundy’s inequality, we have

E

[

sup
0≤s≤T

|X̂i (s)|2
]

≤ C

(

E |X̂i (0)|2 + E

[∫ T

0
|b(s, X̂i (s), E[X̂i (s)], ûi (s))|ds

]2)

+ C E
∫ T

0
|σ(s, X̂i (s), E[X̂i (s)])|2ds.

By the Lipschitz condition on b and σ (their derivatives w.r.t (y, z) being bounded), we
further obtain

E
[
sup0≤s≤T |X̂i (s)|2

]
≤ C

(

E |X̂i (0)|2 + 1 +
∫ T

0
E[sup0≤η≤s |X̂i (η)|2

)

which combined with Gronwall’s lemma yields the desired estimate. ��
Corollary 1 We have, for N ≥ 2,

sup
0≤s≤T

E[|X̂ (−i)(s) − X̄(s)|2] ≤ C

N − 1
,

where C does not depend on N.

Proof Thanks to Assumption 3, X̂1, . . . X̂ N are i.i.d. processes. The estimate follows from
Lemma 2. ��
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6.2 Proof of Theorem 2

In order to estimate J i,N (t, xi ; û) − J i,N (t, xi ; û−i , uε
i ), we introduce some notation. Let

Δh(s) = h
(

s, X̂ t,x
i (s), E[X̂ t,xi

i (s)], X̂ (−i)(s), ûi (s)
)

−h
(

s, Xt,xi
i (s), E[Xt,xi

i (s)], X̂ (−i)(s), uε
i (s)

)
,

Δg = g
(

X̂ t,xi
i (T ), E[X̂ t,xi

i (T )], X̂ (−i)(T )
)

− g
(

Xt,xi
i (T ), E[Xt,xi

i (T )], X̂ (−i)(T )
)

.

We have

Δh(s) =
[
h
(

s, X̂ t,xi
i (s), E[X̂ t,xi

i (s)], X̄(s), ûi (s)
)

− h
(

s, Xt,xi
i (s), E[Xt,xi

i (s)], X̄(s), uε
i (s)

)]

+
{ [

h
(

s, X̂ t,xi
i (s), E[X̂ t,xi

i (s)], X̂ (−i)(s), ûi (s)
)

− h
(

s, Xt,xi
i (s), E[Xt,xi

i (s)], X̂ (−i)(s), uε
i (s)

)]

−
[
h
(

s, X̂ t,xi
i (s), E[X̂ t,xi

i (s)], X̄(s), ûi (s)
)

− h
(

s, Xt,xi
i (s), E[Xt,xi

i (s)], X̄(s), uε
i (s)

)] }

=: Δh1 + Δh2.

Similarly,

Δg =
[
g
(

X̂ t,xi
i (T ), E[X̂ t,xi

i (T )], X̄(T )
)

− g
(

Xt,xi
i (T ), E[Xt,xi

i (T )], X̄(T )
)]

+
{ [

g
(

X̂ t,xi
i (T ), E[X̂ t,xi

i (T )], X̂ (−i)(T )
)

− g
(

Xt,xi
i (T ), E[Xt,xi

i (T )], X̂ (−i)(T )
)]

−
[
g
(

X̂ t,xi
i (T ), E[X̂ t,xi

i (T )], X̄(T )
)

− g
(

Xt,xi
i (T ), E[Xt,xi

i (T )], X̄(T )
)] }

=: Δg1 + Δg2.

Now, noting that

E

[∫ T

t
Δh1(s)ds + Δg1

]

= J̄ i (t, xi ; ûi ) − J̄ i (t, xi ; uε
i ), (6.6)

the cost difference satisfies

J i,N (t, xi ; û) − J i,N (t, xi ; û−i , uε
i ) = J̄ i (t, xi ; ûi ) − J̄ i (t, xi ; uε

i )

+ E

[∫ T

t
Δh2(s)ds + Δg2

]

. (6.7)

We proceed to estimate

E

[∫ T

t
Δh2(s)ds + Δg2

]

.

Lemma 3 We have ∣
∣
∣
∣E

[∫ T

t
Δh2(s)ds + Δg2

]∣
∣
∣
∣ ≤

Cε√
N − 1

. (6.8)
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Proof Wewill only estimate E
[∫ T

t Δh2(s)ds
]
. The second termmay be handled in a similar

fashion. Let

α(w):=h(s, X̂ t,xi
i (s), E[X̂ t,xi

i (s)], w, ûi (s)) − h(s, Xt,xi
i (s), E[Xt,xi

i (s)], w, uε
i (s))

and

λ(s):=X̂ (−i)(s) − X̄(s).

Then we have

Δh2(s) = α(X̂ (−i)(s))−α(X̄(s)) = λ(s)
∫ 1

0
αw

(
X̄(s) + θ

[
X̂ (−i)(s) − X̄(s)

])
dθ. (6.9)

Noting that by Assumption 2-(iii) on h, we may perform similar calculations leading to (6.2)
to obtain

|αw(w)| ≤ C
[∣
∣
∣Xt,xi

i (s) − X̂ t,xi
i (s)

∣
∣
∣+ E

[∣
∣
∣Xt,xi

i (s) − X̂ t,xi
i (s)

∣
∣
∣
]

+ 1[t,t+ε](s)
]
.

Therefore,

|Δh2(s)| ≤ C |λ(s)|
[∣
∣
∣Xt,xi

i (s) − X̂ t,xi
i (s)

∣
∣
∣+ E

[∣
∣
∣Xt,xi

i (s) − X̂ t,xi
i (s)

∣
∣
∣
]

+ 1[t,t+ε](s)
]
.

Therefore, by the Cauchy–Schwarz inequality, we get

E
∫ T

t
|Δh2(s)|ds ≤ C

∫ T

t
(E[|λ(s)|2])1/2

(
(E[|Xt,xi

i (s) − X̂ t,xi
i (s)|2])1/2 + 1[t,t+ε](s)

)
ds

≤ C

(

sup
0≤s≤T

E |λ(s)|2
)1/2

⎛

⎝

(

E

[

sup
t≤s≤T

|Xt,xi
i (s) − X̂ t,xi

i (s)|2
])1/2

+ ε

⎞

⎠.

Subsequently by Lemma 1 and Corollary 1,
∣
∣
∣
∣E

[∫ T

t
Δh2(s)ds

]∣
∣
∣
∣ ≤

Cε√
N − 1

.

��

Finally, we combine Lemma 3 and the relation (6.7) to conclude

J i,N (t, xi ; û) − J i,N (t, xi ; û−i , uε
i ) = J̄ i (t, xi ; ûi ) − J̄ i (t, xi ; uε

i ) + O

(
ε√

N − 1

)

.

Furthermore, since û is determined by (5.7)–(5.10),

lim
ε↓0

J̄ i (t, xi ; ûi ) − J̄ i (t, xi ; uε
i )

ε
≤ 0,

we finally get

lim
ε↓0

J i,N (t, xi ; û) − J i,N (t, xi ; û−i , uε
i )

ε
≤ C√

N − 1
.

This completes the proof of Theorem 2. ��
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7 A Mean-Field LQG Game

Consider a system of N players. The dynamics of the i th player is given by

dXi (t) = (aXi (s) + bui (s))ds + σdWi (s), 1 ≤ i ≤ N . (7.1)

Denote x = (x1, . . . , xN ) and u = (u1, . . . , uN ). Its cost functional at time t is

J i,N (t, xi ; u) = 1

2
E

[∫ T

t
u2

i (s)ds

]

+ γ

2
E
[

Xt,xi
i (T ) − Γ1xi − Γ2X (−i)(T )

]2
,

where X (−i)(t) = 1
N−1

∑N
k �=i Xk(t). We take Γ1 �= 0 and Γ2 �= 0. A simple interpretation

of the terminal cost is that each agent wants to adjust its terminal state based on its current
state and also the mean-field term X (−i) at time T . The cost functional is time inconsistent.
Below, we will apply a consistent mean-field approximation to construct a limiting control
problem.

Following the scheme in Sect. 5, we introduce X̄T as an approximation of X (−i)(T ). The
new cost functional is

J̄ i (t, xi ; ui ) = 1

2
E

[∫ T

t
u2

i (s)ds

]

+ γ

2
E
[

Xt,xi
i (T ) − Γ1xi − Γ2 X̄T

]2
.

This is a time-inconsistent control problem. The same approach as in Sect. 4.3 can be applied.
The adjoint equation now reads

{
dpt,xi (s) = −apt,xi (s)ds + qt,xi (s)dWi (s),
pt,xi (T ) = γ (Γ1xi + Γ2 X̄T − Xt,xi

i (T )).

We look for a solution of the form

pt,xi (s) = βs(Γ1xi + Γ2 X̄T ) − αs X t,xi
i (s).

The same set of ODEs is obtained as in Sect. 4.3. The equilibrium strategy is given in the
feedback form

ûi (t) = bpt,xi (t) = −b(αt − βtΓ1)xi + bβtΓ2 X̄T (7.2)

when the current state is xi . The closed-loop equilibrium dynamics of the i th player is

dX̂i (s) = [a − b2(αs − βsΓ1)
]

X̂i (s)ds + bβsΓ2 X̄T ds + σdWi (s). (7.3)

Finally, we impose the consistency requirement. Assume all players have the same initial
condition y0, and so X̄T can be obtained as E X̂i (T ). Now we take expectation in (7.3) to
construct the ODE

ṁ(s) = [a − b2(αs − βsΓ1)]m(s) + bβsΓ2 X̄T , m(0) = y0.

By obvious notation for the transition function Φ, we write the solution of the ODE as

m(t) = Φ(t, 0)y0 +
∫ t

0
Φ(t, s)bβsΓ2 X̄T ds.

Now the consistency condition for X̄ becomes

X̄T = Φ(T, 0)y0 +
∫ T

0
Φ(T, s)bβsΓ2 X̄T ds.
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For this approach to have a solution for any given y0, we need

bΓ2

∫ T

0
Φ(T, s)βsds �= 1. (7.4)

If (7.4) holds, we can solve X̄T first and next determine the strategy (7.2).

7.1 The Performance Difference

Suppose (7.4) holds. For the performance estimate, we consider the following set of admis-
sible strategies

U0[0, T ]:=
{

u : [0, T ] × Ω −→ R; u is F-adapted, E[ess sup0≤s≤T |u(s)|2] < ∞
}
,

which is smaller than U[0, T ]. The costs associated with û and (ui , û−i ) are, respectively,
given by

J i,N (t, xi ; û) = 1

2
E

[∫ T

t
û2

i (s)ds

]

+ γ

2
E
[

X̂ t,xi
i (T ) − Γ1xi − Γ2 X̂ (−i)(T )

]2
,

J i,N (t, xi ; ui , û−i ) = 1

2
E

[∫ T

t
u2

i (s)ds

]

+ γ

2
E
[

Xt,xi
i (T ) − Γ1xi − Γ2 X̂ (−i)(T )

]2
.

The difference can be written as

J i,N (t, xi ; ui , û−i ) − J i,N (t, xi ; û)

= 1

2
E

[∫ T

t
u2

i (s)ds

]

+ γ

2
E
[

Xt,xi
i (T ) − Γ1xi − Γ2 X̄T

]2

−1

2
E

[∫ T

t
û2

i (s)ds

]

− γ

2
E
[

X̂ t,xi
i (T ) − Γ1xi − Γ2 X̄T

]2 + dN ,

where
dN = γΓ2E

[
(X̂ t,xi

i (T ) − Xt,xi
i (T ))(X̂ (−i)(T ) − X̄T )

]
.

For any fixed ui ∈ U0[0, T ], we can still prove Lemma 1. Corollary 1 also holds for
û j , 1 ≤ j ≤ N . We have

|dN | ≤ γΓ2(E |X̂ t,xi
i (T ) − Xt,xi

i (T )|2)1/2(E |X̂ (−i)(T ) − X̄T |2)1/2

≤ Cε√
N − 1

,

where C may depend on ui . If ui ∈ U[0, T ] were considered, we would be unable to obtain
the second inequality above. Finally,

lim
ε↓0

J i,N (t, xi ; û) − J i,N (t, xi ; ui , û−i )

ε
≤ C√

N − 1
.

Thus, û is a δN -sub-game perfect Nash equilibrium for N players where δN ≤ C/
√

N − 1.
��
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