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Abstract Recursive game theory provides theoretic procedures for computing the equi-
librium payoff or value sets of repeated games and the equilibrium payoff or value corre-
spondences of dynamic games. In this paper, we propose and implement outer and inner
approximation methods for equilibrium value correspondences that naturally occur in the
analysis of dynamic games. The procedure utilizes set-valued step functions. We provide an
application to a bilateral insurance game with storage.
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1 Introduction

Abreu et al. [1,2] (henceforth, APS) provide set-valued dynamic programming techniques
for solving repeated games. They give conditions such that the set of sequential equilibrium
payoffs in a repeated game is a fixed point of an operator analogous to the Bellman operator
in dynamic programming. This operator is monotone on a space of compact sets and is the
basis of an iterative procedure for calculating the equilibrium payoff set. The approach of
APS can be extended to cover a large class of dynamic games that arise naturally in industrial
organization,macroeconomics, and public finance.1 In the dynamic case, the object of interest
is a value correspondence that maps physical state variables to sets of equilibrium payoffs.
In this setting, numerical implementation of the APS approach requires approximation of
(candidate value) correspondences. Our paper provides such a scheme that is applicable to

1 See Atkeson [3], Phelan and Stacchetti [14], Sleet [15], and Fernandez-Villaverde and Tsyvinski [10] for
applications to international lending and macroeconomic policy.
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games with uncountable endogenous states and integrates it into an APS-type algorithm for
computing equilibrium value correspondences.

As a first step, following Cronshaw and Luenberger [8] and Judd et al. [12]’s analyses
of repeated games, we convexify a dynamic game by introducing a public randomization
device. We approximate candidate value correspondences with simple (convex valued) step
correspondences. We describe how to construct sequences of such correspondences that con-
tain or are contained by the approximated candidate value correspondence. Integration of
these approximation procedures into an APS-type algorithm permits computation of bound-
ing inner and outer approximations to the equilibrium payoff correspondence. Since the
latter lies between these approximations, the difference between them provides us with an
error bound for gauging the accuracy of the procedure.2 This approach improves on both
discretization and linear interpolation methods that have been used elsewhere.3 The former
is non-parsimonious and is vulnerable to the curse of dimensionality, the latter delivers nei-
ther an inner nor an outer approximation and lacks error bounds. To illustrate the value of
our methods, we briefly describe an application of them to a bilateral insurance game with
storage.

1.1 Literature

Cronshaw and Luenberger [8] provide an algorithm for calculating the payoffs of strongly
symmetric equilibria in convexified repeated games. Judd et al. [12] give a numerical imple-
mentation of the APS iterative procedure for such games. Their procedure permits compu-
tation of all sub-game perfect equilibrium payoffs. Baldauf et al. [5] extend the approach of
Judd, Yeltekin, and Conklin to dynamic games with a finite number of (endogenous) states.
Our procedure can accommodate an uncountable number of endogenous states. Many alter-
native numerical methods exist for characterizing the equilibria of dynamic games. These
alternatives provide direct characterization of specific sub-game perfect equilibria in certain
settings. Examples include Herings and Peeters [11] who provide a homotopy method for
computing stationary equilibria in dynamic games and Balbus et al. [4] who show how to cal-
culate extremal Markov equilibria in stochastic games with complementarities. We mention
also Feng et al. [9] who use a similar approach to us to characterize equilibria in economies
with distortions and taxes.

2 Recursive Dynamic Games and the APS Algorithm

In this section, we lay out a class of recursive dynamic games and describe the theoretic
application of the APS algorithm to this class.

2.1 The Game

A group of infinitely lived agents i = 1, . . . , I play a dynamic game. Agents enter successive
periods t = 0, 1, 2, . . . with an inherited pair of state variables (st , kt ) ∈ S × K , where S is

2 The usefulness of inner and outer approximations in providing error bounds was first emphasized by Judd
et al. [12] in the context of repeated games.
3 See Chang [7] for an application of discrete methods to a repeated policy game. See Phelan and Stacchetti
[14] for an application of linear interpolation methods to a dynamic policy game.



176 Dyn Games Appl (2016) 6:174–186

finite and K ⊂ R
N is compact.4 The former is a shock and evolves according to a Markov

chainwith transition�; the latter is an endogenous statewhose evolution is defined below.On
entering period t , the agents simultaneously select a profile of actions at = {ait }Ii=1, with each
agent i choosing his or her action ait from a compact set Ai (st , kt ) ⊂ R

D . Let A = ×I
i=1A

i

denote the feasibility correspondence for actions. The inherited state kt and the action profile
at induce a successor state kt+1 = f (st , kt , at ), with each f (s, ·, ·) : Graph A(s) → K a
continuous function.5

Each agent has a per-period utility function ui : Graph A → R, with each ui (s, ·, ·) :
Graph A(s) → R a continuous function. Let V : S × K ⇒ R

I denote the feasible payoff
correspondence:

V (s, k) = {w ∈ R
I : wi = ui (s, k, a), a ∈ A(s, k), i = 1, · · · I }.

The graph of V is clearly compact.
At t = 0, the history of the game h0 is just the initial aggregate state: (s0, k0). For t > 0,

a history, ht , is a sequence {s0, k0, {aτ , sτ+1, kτ+1}t−1
τ=0}, with each kτ+1 = f (sτ , kτ , aτ ) and

aτ ∈ A(sτ , kτ ). Let Ht denote the set of feasible t period histories from a given (s0, k0). The
i th player values processes for states and actions according to:

(1 − β)

∞∑

τ=0

βτ E[ui (sτ , kτ , aτ )], (1)

where β ∈ (0, 1) is the common discount factor among agents. A pure strategy for agent i is
a sequence of functions {σ i

t }∞t=0 with σ i
t : Ht → R

D and σ i
t (ht−1, at−1, st , kt ) ∈ Ai (st , kt ).

Let V ∗ : S × K ⇒ R
I denote the sub-game perfect equilibrium payoff or value corre-

spondence for this game.We assume that V ∗ is non-empty-valued. Let V denote the set of all
non-empty-valued correspondences V : S × K ⇒ R

I such that i) Graph V is compact and
ii) it is contained within Graph V . By an elaboration of arguments in APS, V ∗ is an element
of V . Since each element V ∈ V can be identified with its graph, V can be identified with
the collection of non-empty, compact subsets of Graph V ⊂ S × K × R

I . We furnish V
with the set inclusion order (V1 ≥ (resp. ≤)V2 if Graph V1 ⊆ (resp. ⊇) Graph V2) and the
metric:

dV (Graph V1,Graph V2) = max
S

dH (Graph V1(s),Graph V2(s))

where dH is the Hausdorff metric

dH (Graph V1(s),Graph V2(s)) =
max

{
max

x∈Graph V1(s)
min

y∈Graph V2(s)
d(x, y), max

y∈Graph V2(s)
min

x∈GraphV1(s)
d(x, y)

}
,

and d((k, v), (k′, v′)) is the Euclidean metric on R
N+I . (V , ≥, dV ) is a complete, partially

ordered metric space.

2.2 Correspondence-valued Dynamic Programming

The recursive approach of APS utilizes a multi-player version of the principle of optimality:
each sub-gameperfect equilibriumpayoff vector is supported by a profile of actions consistent

4 Thus, we allow for an uncountable number of endogenous states. The restriction to a finite set S avoids
measure-theoretic complications.
5 For a correspondence C : S × K ⇒ X , Graph C(s) = {(k, x) : x ∈ C(s, k)} and Graph C = {(s, k, x) :
x ∈ C(s, k)}.
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with Nash play in the current period and a vector of continuation payoffs that are themselves
sub-game perfect. In analogy with the Bellman operator of dynamic programming, this
observation motivates the introduction of the operator B : V → V :

B(V )(s, k)

=

⎧
⎪⎨

⎪⎩
v

∣∣∣∣∣∣∣

v′(s′) ∈ V (s′, f (s, k, a)), a ∈ A(s, k), and for each i ∈ 1, · · · , I,
vi = (1 − β)ui (s, k, a) + β

∑
S vi ′(s′)�(s′|s)

vi ≥ max
Ai (s,k)

min
{V (s′, f (s,k,a−i ,a′))}

(1 − β)ui (s, k, a−i , a′) + β
∑

S ṽi (s′)�(s′|s)

⎫
⎪⎬

⎪⎭
.

A value v = {vi }Ii=1 is in B(V )(s, k) if two conditions are satisfied. First, there is an action
profile a ∈ A(s, k) and continuation payoffs v′(s′) = {vi ′}(s′) ∈ V (s′, f (s, k, a)) such that
each player i receives vi when the current period action is a and the player’s continuation
payoff is vi ′:

vi = (1 − β)ui (s, k, a) + β
∑

S

vi ′(s′)�(s′|s). (2)

Second, each player is better off adhering to ai in the current period and receiving the
continuation payoff vi ′ than deviating and receiving the worst feasible continuation payoff
consistent with V :

vi ≥ max
Ai (s,k)

min
{V (s′, f (s,k,a−i ,a′))}

(1 − β)ui (s, k, a
−i , a′) + β

∑

S

ṽi (s′)�(s′|s). (3)

Inequality (3) will be referred to as the incentive compatibility constraint.

Remark 1 In some problems, it may be possible to find:

vi (s, k) := max
Ai (s,k)

min
{V (s′, f (s,k,a−i ,a′))}

(1 − β)ui (s, k, a
−i , a′) + β

∑

S

ṽi (s′)�(s′|s). (4)

directly. In these cases, this fact may be exploited by substituting vi (s, k) directly into the
incentive compatibility constraint:

vi ≥ vi (s, k). (5)

The modified incentive constraint (5) may then be incorporated into a (modified) B-operator.
We do so in Sect. 4.

For a game with a finite number of states (and compact action sets), Baldauf et al. [5]
extend arguments in APS to show that the equilibrium payoff correspondence V ∗ is a fixed
point of B. In addition, they show that B is monotone (in the set inclusion order), i.e.,
V1 ≥ V2 implies B(V1) ≥ B(V2) and a self-map on V , i.e., B(V ) ⊂ V . It follows that for
j = 1, 2, . . ., V ≥ B(V ) ≥ B j (V ) ≥ B j+1(V ) ↓ ∩∞

j=1B
j (V ) := B∞(V ). Arguments in

Baldauf et al. [5] also show that B∞(V ) = V ∗, thus repeated application of B to V (and, by
similar arguments, any set V in the interval V ∗ ≤ V ≤ V ) generates a sequence of sets that
contain V ∗ and converge monotonically to it in the Hausdorff metric. Although, Baldauf et
al. [5] prove these results for games with a finite number of states, they are readily extended
to those with a finite number of exogenous shocks and a compact endogenous state space
(in R

N ), the case considered in this paper. In addition, the monotonicity of B and the fact
that V ∗ is a fixed point of B can also be exploited to show that if V ≤ B(V ) ≤ V ∗, then
V ≤ B(V ) ≤ B j (V ) ≤ B j+1(V ) ↑ ∪∞

j=1B
j (V ) := B∞(V ) ≤ V ∗.
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2.3 A Recursive Game with Lotteries

To facilitate computation,we “convexify” the preceding gamevia the introduction of lotteries.
Specifically, at the beginning of each period, a lottery is held over a set�. Strategies condition
player choices on histories of lottery outcomes as well as histories of states and actions. The
lottery probabilities are determined by a profile of functions thatmap histories into probability
distributions on�. These and the lottery outcomes are commonknowledge. It is readily shown
that this formulation’s equilibrium payoff or value correspondence V L∗ is convex valued.6

Let V L denote the set of all correspondences V : S × K ⇒ R
I such that (1) Graph V is

compact, (2) Graph V is convex valued, and (3) Graph V is contained within Graph V
L
,

where for each (s, k) ∈ S× K , V
L
(s, k) := co V

L
(s, k) and co X denotes the convex hull of

a set X . Define the operator BL : V L → V L according to: BL(V )(s, k) = co B(V )(s, k). It
is not hard to show that analogs of the results in the previous subsection go through with BL

replacing B and V L replacing V . Specifically, (1) V L∗ is a fixed point of BL , (2) repeatedly

applying BL to V
L
induces a sequence of convex-valued correspondences that converge

monotonically from above to V L∗, and (3) repeatedly applying BL to V ≤ BL(V ) ≤ V L∗
induces a sequence of convex-valued correspondences that converge monotonically from
below to BL∞(V ) ≤ V L∗.

3 Approximating Value Correspondences

For a repeated game without state variables, the introduction of lotteries implies that the
equilibriumpayoff set is convex. Furthermore, (the analog of) BL can be restricted to a domain
of compact and convex sets.Well-known “outer” and “inner” approximation procedures exist
for such sets. Specifically, an outer approximation can be formed from the intersection of a
finite number of closed half-spaces that contain the convex set; an inner approximation from
the convex hull of a finite number of points contained by the set. The outer approximation
provides an upper bound for the set; the inner approximation a lower bound. Together they
provide an error bound. Judd et al. [12] integrate such approximations into the monotone
iterative scheme described in the previous section and, hence, create practical algorithms for
calculating the equilibrium payoff sets of repeated games.

In the setting of dynamic games with state variables, the situation is more complicated.
Lotteries ensure that the equilibrium value correspondence V L∗ is convex valued (which is
useful), but not that the sets Graph V L∗(s) are convex. Consequently, implementation of the
theoretic algorithms described in the previous section typically requires the approximation
of a sequence of non-convex sets (i.e., the graphs of value correspondences).

To fix language and notation, we introduce some general classes of approximation proce-
dure. We then turn to the specific procedures that we use to represent correspondences.

3.1 Approximation Schemes

We introduce the following general definition of an approximation scheme.

Definition 1 (Approximation scheme). Let (W ,≥) be a collection of non-empty, compact,
convex-valued correspondences W : S × K ⇒ R

I with common domain S × K , K ⊂ R
N

compact, and partially ordered by set inclusion. An approximation rule is a pair (F, Ŵ ) with

6 However, each Graph V L∗(s) is not generally convex.
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Ŵ ⊂ W and F : W → Ŵ . An approximation scheme is a sequence of approximation rules
{Fj , Ŵ j }∞j=0.

1. An approximation rule (F, Ŵ ) is finitely parameterized if Ŵ = g(T ), for a set of
parameters T ⊂ R

P and a one-to-one mapping g : T → Ŵ that associates each
parameter value with a unique correspondence. An approximation scheme {Fj , Ŵ j }∞j=0

is finitely parameterized if each approximation rule (Fj , Ŵ j ) is finitely parameterized.
2. An approximation rule (F, Ŵ ) is monotone if forW1,W2 ∈ W ,W1 ≥ W2 implies F(W1)

≥ F(W2). A monotone approximation scheme is an approximation scheme composed
of monotone approximation rules.

3. An approximation rule (F, Ŵ ) is outer (resp. inner) if for all W ∈ W , F(W ) ≥ W (
resp. W ≥ F(W )). An outer (inner) approximation scheme is an approximation scheme
composed of outer (inner) approximation rules.

4. An approximation scheme {Fn, Ŵ j }∞j=0 is pointwise (resp. uniformly) convergent if,
∀W ∈ W , the sequence Fj (W ) converges toW pointwise (resp. uniformly) in the metric
dV .

Computation of the convexified equilibrium value correspondence V L∗ requires the inte-
gration of a monotone iterative scheme with a practical finitely parameterized approximation
procedure. Outer and inner approximations that respect the monotonicity of the iterative

scheme are especially useful. Identifying W with V L , let F : V L → ˆV L be an approxi-

mation rule (with range ˆV L ). Then B̂ = F ◦ BL maps ˆV L into itself. If F is monotone,

then B̂ is also monotone and if V̂ ≥ B̂(V̂ ), V̂ ∈ ˆV L , then {B̂ j (V̂ )}∞j=1 is a decreasing and

pointwise convergent sequence of correspondences in ˆV L . If, in addition, F is a monotone
outer approximation rule and V̂ ≥ V L∗, then for all j , V L∗ ≤ F(V L∗) = B̂(V L∗) ≤ B̂ j (V̂ )

≤ . . . ≤ B̂(V̂ ) ≤ V̂ . Hence, the limit of an iteration of B̂ from V̂ is an outer approximation of

V L∗. Similarly, if V̂ ∈ ˆV L , V̂ ≤ V L∗, V̂ ≤ B̂(V̂ ) and F is a monotone inner approximation,
the limit of {B̂ j (V̂ )} is an inner approximation to V L∗.

3.2 Block-Specific and Step Correspondences

As a precursor to developing approximation schemes for value correspondences,we introduce
certain simple correspondences which we will use to construct approximations. Assume that
K = ×N

n=1[kn, kn] ⊆ R
N and that each interval [kn, kn] is subdivided into Mn subintervals

{[kn,m, kn,m+1]}Mn
m=0, kn = kn,0 < kn,1 < · · · < kn,Mn = kn . The Cartesian product of

these subintervals defines a partition K of K , with K = {Kq}Qq=1, Q = ∏N
n=1 Mn and

Kq = ∏N
n=1[kn,mq , kn,mq+1 ]. Kq ∈ K is called a block.

Definition 2 (Block-specific and step correspondences). Let K be a partition of K =
×N

n=1[kn, kn]. A correspondence W : K ⇒ R
I is block specific if it vanishes (is empty-

valued) or is equal to all of RI outside of a specific block in K. W is a step correspondence
if it is constant on the interior of each block in K.

The following approximation methods rely on correspondences constructed from finite
numbers of block-specific or step correspondences.



180 Dyn Games Appl (2016) 6:174–186

3.3 An Outer Approximation Method

Thismethod approximates the underlying correspondencewith a collection of convex-valued
step correspondences. The procedure is as follows. Let V : S × K ⇒ R

N be the underlying
correspondence. Assume that each V (s, ·) is upper hemi-continuous and non-empty, compact
and convex valued. Fix a partition K = {Kq} of K and define the family of convex-valued
step correspondences ωs,q according to:

ωs,q(k) =
{
co ∪k′∈Kq V (s, k′) if k ∈ Kq ,

∅ otherwise.

Each ωs,q is completely described by the convex set co ∪k′∈Kq V (s, k′) (and the partition
element Kq ). Consequently, it can be approximated by the outer approximation procedure
of Judd et al. [12]. More precisely, let {v�(s, q)|� = 1, . . . , �} be a set of � points on the
boundary of co ∪k′∈Kq V (s, k′); let {z1, . . . , z�} ⊂ R

I� be a corresponding set of normals
oriented so that (v�(s, q)−v) · z� ≥ 0 for all v ∈ co∪k′∈Kq V (s, k′). The outer approximation

ω
O
s,q(k) is given by:

ωO

s,q(k) =
{

∩�
�=1{v | z� · v � c�(s, q)}, if k ∈ Kq ,

∅ otherwise.

where for each �, c�(s, q) = z� · v�(s, q).7

The outer approximation to V is then defined according to VO(s, k) = ∪qω
O
s,q(k). Using

this scheme, an approximating correspondence VO is described by a collection {c�(s, q)} in
R
SQI�, with each c�(s, q) determining the position of the �-th bounding hyperplane on the

(s, q)-th block.
Let {VO

j }∞j=0 be a sequence of such outer approximations to V . LetK j denote the partition

associated with the j-th approximation and let ω
O

s,q, j denote the (s, q)-th block-specific

correspondence of the j-th approximation. Assume thatK j is constructed from 2 j uniformly
distributed blocks and that for a fixed decreasing sequence {ε j } with lim j→∞ ε j = 0, the

approximations ω
O

s,q, j are constructed such that dH (ω
O

s,q, j , ωs,q, j ) < ε j for q = 1, · · · , 2 j

(see Appendix 5 for details).

Theorem 1 The sequence {VO

j }∞j=0 is a pointwise convergent, monotone outer approxima-

tion scheme. Each VO

j (s, ·) is upper hemi-continuous and non-empty and compact valued.

Proof Upper hemi-continuity of each ω
O

s,q, j is immediate. The upper hemi-continuity of

VO

j (s, ·) then follows since VO

j (s, ·) is equal to the union of a finite number of upper

hemi-continuity correspondences. Each VO

j (s, k) is bounded by construction. For the closed

valuedness, see Beer [6]. Non-emptiness follows from ∅ �= V (s, k) ⊂ VO

j (s, k). Fix

ε > 0 and a value v ∈ R
I . Let Oε(X) denote the union of all ε balls around points

in X ⊂ R
I . By the upper hemi-continuity of V (s, ·), there is a λ > 0 such that:

∪{V (s, k′) : ‖k − k′‖ < λ} ⊂ Oε(V (s, k)). Now, there is a j1 such that for all j > j1,
the diameter of each block in the j-th partition is less than λ. Additionally, by construc-
tion, there is a j2 such that for all j > j2, dH (ω

O

s,q, j , ωs,q, j ) < ε, ∀q = 1, · · · , 2 j . Fix

7 Geometrically, for k ∈ Kq , ω
O
s,q (k) equals the intersection of a finite number of half-spaces containing and

with hyperplanes tangent to co ∪k′∈Kq V (s, k′).
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j > max( j1, j2) and let Q(k) denote the set of block indices q such that k ∈ Kq ∈ K j .
It follows that∪{V (s, k′) : k′ ∈ ∪q∈Q(k)Kq} ⊂ Oε(V (s, k)). Since V is convex valued, it
follows that Oε(V (s, k)) is convex. Hence,

V (s, k) ⊂ ωs,q(k), j (k) := co ∪ {V (s, k′) : k′ ∈ ∪q∈Q(k)Kq} ⊂ Oε(V (s, k))

But since j > j2, for all q ∈ Q(k), dH (ω
O

s,q, j , ωs,q, j ) < ε. Hence, V (s, k) ⊂ VO

j (s, k) =
∪q∈Q(k)ω

O

s,q, j (k) ⊂ O2ε(V (s, k)), and the approximation is convergent in dV . Monotonicity
of the approximation scheme is immediate from the definition. ��

In conjunction with the previous result, the following result of Beer [6] shows that a
uniformly convergent approximation scheme can be obtained if the correspondence to be
approximated is lower hemi-continuous and non-empty and compact valued.

Theorem 2 (Beer [6]). Suppose that each V (s, ·) : K ⇒ R
I is a lower hemi-continuous,

compact and non-empty-valued correspondence. Let {Vj (s, ·)}∞j=1 be a sequence of upper
hemi-continuous, compact-valued correspondences such that for each k ∈ K and j ,
V (s, k) ⊆ Vj+1(s, k) ⊆ Vj (s, k). If ∩∞

j=1Vj (s, k) = V (s, k) for each k, then Vj (s, ·)
converges to V (s, ·) uniformly in the Hausdorff metric, dH .

Under the assumptions made in Sect. 2, the BL -operator preserves continuity. Thus, the
equilibrium value correspondences V L∗(s, ·) can be obtained as the limit of a sequence of
continuous correspondences. It is the elements of this sequence that must be approximated.
Theorem 2 ensures that there are uniformly convergent approximation schemes available for
this purpose.

3.4 The Inner Approximation Step Correspondence Method

This section describes a method for approximating a lower hemi-continuous correspondence
with collections of step correspondences whose graphs are contained by the graph of the
approximant. Let V : S × K ⇒ R

I be the underlying correspondence with each V (s, ·)
lower hemi-continuous and with each V (s, k) convex body, i.e., a compact and convex set
with a non-empty interior.8 Fix s ∈ S and a partition K of K and define the correspondence
ωs,q according to:

ωs,q(k) =
{

∩k′∈Kq V (s, k′) if k ∈ Kq ,

R
I otherwise.

Thus, each ωs,q is completely described by the convex set ∩k′∈Kq V (s, k′) (and the parti-
tion element Kq ). Consequently, it can be approximated by the inner approximation proce-
dure of Judd et al. [12]. More precisely, let {v�(s, q)|� = 1, . . . , �} be a set of � points in
∩k′∈Kq V (s, k′). The inner approximation ωI

s,q(k) is given by:

ωI

s,q(k) =
{
co {v�(s, q)|� = 1, . . . , �} if k ∈ Kq ,

R
I otherwise.

The inner approximation to V is then defined according to: V I(s, k) = ∩qω
I
s,q(k). Using

this scheme, an approximating correspondence V I is described by a collection of points
{v�(s, q)} in R

SQI �̄ from which the convex hulls are constructed.

8 The stronger assumption of a non-empty interior is needed in this case.
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Let {V I

j }∞j=0 denote a sequence of inner approximations to V . Let K j denote the partition

associated with the j-th approximation and define ωI

s,q, j and ωs,q, j analogously to ωI
s,q and

ωs,q above (e.g., ωI

q, j is the q-th step correspondence of the j-th approximation). Assume

that K j is constructed from 2 j uniformly distributed blocks. Additionally, let � j denote the
number of points used in the construction of the inner approximations {ωI

s,q, j }. Assume that

� j+1 > � j and that for a fixed decreasing sequence {ε j } with lim j→∞ ε j = 0, each � j is
chosen sufficiently large that dH (ωI

s,q, j , ωs,q, j ) < ε j for q = 1, . . . , 2 j .

Theorem 3 The sequence {V I

j }∞j=0 is a pointwise convergent, monotone inner approximation

scheme. Each V I

j (s, ·) is lower hemi-continuous and compact and convex valued.

The proof is a small adaptation of arguments on p. 15 of Beer [6].

4 Application: A Bilateral Insurance Game

This section considers a problem in which two risk averse agents accumulate a joint fund
to hedge endowment risk and neither can commit not to steal from the fund. The problem
extends the physical environment of Kocherlakota [13] by permitting the agents to store. The
details of the model follow.

An environment is inhabited by two infinitely lived agents with identical preferences. Each
period a shock st ∈ S is drawn from a finite set S according to a distribution�. For simplicity,
shock draws are i.i.d. A function γ : S → R

2+, γ (s) = {γ i (s)}, gives the endowment of each
agent in each shock state. The history of endowments received by each agent is common
knowledge. Agents begin the game in a mutual risk-sharing arrangement with k0 ≥ 0 in a
joint fund. If the arrangement is still active at t , they enter period t with an amount kt ≥ 0
in the fund. On observing the current endowment realization γ (st ), each agent transfers
τ it ∈ �i (kt ) = [−δkt , γ i (st )], δ ∈ [0, 1/2], to the fund. The agents then choose to remain
in the risk-sharing arrangement or walk away from it. If they walk away, any resources left
in the fund are destroyed and the agents live in autarky thereafter (though with the ability to
accumulate their own fund). While the relationship is active, the fund evolves according to
kt+1 = f (kt + τ 1t + τ 2t ), with f bounded above (and below by zero). If it is dissolved, each
agent separately uses the same storage technology f to accumulate their own fund. The i-th,
i = 1, 2, agent’s preferences over current consumption are described by utility functions
ui , where each ui is a continuous, strictly concave, strictly increasing function. Each agent
discounts the future with discount factor β.

At any date t , the agent is free to keep her endowment γ i (st ), withdraw the maximal
amount δkt from the joint fund and live in autarky thereafter. Denote the associated payoff:

vi (st , kt ) := max
b∈[0,γ i (st )+δkt ]

(1 − β)ui (γ i (st ) + δkt − b) + βviaut ( f (b)),

where vaut gives the expected payoff to an agent in autarky as a function of her savings. It
is not hard to see that vi (st , kt ) gives the worst possible sub-game perfect payoff to agent
i if the relationship is active and in state (st , kt ). The payoffs vi may be calculated directly
and substituted into the B-operator as discussed in Remark 1. The B-operator so obtained
calculates equilibrium payoffs to the agents while the risk-sharing arrangement is active (and
uses states sufficient for that purpose). Specifically, it is given by:
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(a) (b)

Fig. 1 Value correspondence from the insurance game. a Value correspondence graph b cross section

B(V )(s, k)=

⎧
⎪⎪⎨

⎪⎪⎩
(v1, v2)

∣∣∣∣∣∣∣∣

for i = 1, 2,
vi = {(1 − β)ui (γ i (s) − τ i (s)) + β

∑
s′∈S vi

′
(s′)�(s′),

v′ ∈ V ( f (k + ∑
i {si − τ i (s)}), s)

(1 − β)ui (γ i (s) − τ i (s)) + β
∑

s′∈S vi
′
(s′)�(s′) ≥ vi (s, k).

⎫
⎪⎪⎬

⎪⎪⎭

Lotteries may be introduced and the corresponding BL operator obtained for the convexified
game.

4.1 Calculations

The following parametric forms are assumed for our numerical example: ui (c) = c
1−σ

1−σ

and f (k) = min(k, k). The preference and technology parameters are set to: β = 0.8, σ = 1,
k = 4, γ i (S) = {0.1, 0.5}, � = {0.5, 0.5}, δ = 0.5. Calculation using either the outer or
inner approximationmethods yields very similar results. Figure 1a below illustrates the outer-
approximated value correspondence for the case of high endowment shocks for both agents.
Figure 1b displays the cross section of the correspondence in Fig. 1a for a sample of k levels.

The worst equilibrium payoff function for each agent is concave in capital and is indepen-
dent of the payoff received by the other agent. This functional form is, of course, inherited
from the autarkic value function. As the capital level increases, autarky becomes more attrac-
tive and the set of equilibrium values decrease, but (symmetric) payoffs on the Pareto frontier
increase. These changes can be clearly seen in Fig. 1b. Although incentives for leaving the
insurance relationships are higher with high autarky values, high capital levels provide better
insurance against aggregate shocks and higher consumption. However, in this example, for
capital levels above 3.2, no risk-sharing is feasible. For k ∈ (3.2, 4], the autarky values are
too high, and thus the incentives to deviate are too strong to enable risk-sharing. There is,
consequently, a limit to the amount of capital that can be accumulated in this risk-sharing
arrangement. That limit depends on the parameters of the model, in particular on the amount
of capital that can be grabbed by one agent.

5 Appendix

The following algorithms provide the details of the computational procedure for the outer
and inner monotone approximations of B(V )(s, k) using hyperplanes. The correspondence
V (s, k) is a candidate for the equilibrium value correspondence.
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______________________________________

Outer Approximation Algorithm

1. Fixed Inputs:

(a) Exogenous parameters.
(b) Partition K = {Kq}.
(c) Search directions: R = {r1, . . . , r�r }, with each {r� ∈ R

I : ||r�|| = 1}.
(d) Convergence criterion ε > 0.

2. First Iteration Inputs:

(a) Set of boundary points {v�(s, q)|� = 1, . . . , �} for each (s, q).
(b) Set of corresponding normals: Z = {z1, . . . , z�}.

Together (a) and (b) define the initial outer approximation VO(s, k) = ∪qω
O
s,q(k)

where

ωO

s,q(k) =
{

∩�
�=1{v | z� · v ≤ z� · v�(s, q) = c�(s, q)}, if k ∈ Kq ,

∅ otherwise.

for all v ∈ co ∪k′∈Kq V (s, k′).

3. Optimization: Compute the new subgradient and boundary point sets that together rep-

resent an outer approximation to BL(V ). For each s ∈ S, each partition element Kq and
each r� ∈ R

c+
�

(s, q) = max
a,v′,k∈Kq

r� · [(1 − β)u(s, k, a) + β
∑

S

v′(s′)�(s′|s)] s.t. (6)

(i) v′(s′) ∈ VO(s′, f (s, k, a)), a ∈ A(s, k),

(i i) for each i ∈ {1, . . . , I },
(1 − β)ui (s, k, a) + β

∑

S

vi ′(s′)�(s′|s) ≥

max
a−i∈Ai (s,k)

min
ṽi (s′)∈VO(s′, f (s,k,a−i ,a′))

(1 − β)ui (s, k, a−i , a
′)

+ β
∑

S

ṽi (s′)�(s′|s).

4. Output: V+(k, s) = B̂(V )(s, k) = ∪qω
O

+
s,q (k), where

ωO
+

s,q (k) =
{

∩�r
�=1{v | r� · v ≤ c+

� (s, q)} if k ∈ Kq ,

∅ otherwise.

5. Check for convergence: Stop if dV (V+, V ) < ε. Else set VO = V+,Z = R, and � = �r
and return to Step 3.

______________________________________

Themain computational work is done in the optimization step. In this step, for each search
direction r� and element of the partition K, we find an action profile a, continuation values
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v′(s′) ∈ V (s′, f (s, k, a)), and current state k in Kq which makes a incentive compatible and
maximizes a weighted sum of player payoffs where the weights are given by r�.9

In the outer approximation case, the set of search directions,R, and the set of hyperplane
normals for the approximation of V (s, k), Z, coincide after the initial iteration. Correspon-
dences are represented by sets of bounding hyperplanes, one set for each block in the partition
and each state s. In this way, an approximated correspondence can be reduced to a collection
{c�(s, q)} in R

SQI�, with each c�(s, q) determining the position of the �-th hyperplane on
the q-th block in state s.

For inner approximations, the set of hyperplane normals vary from iteration to iteration,
depending on the number and position of the points on the convex hull of V (s, k). The
bounding hyperplanes are constructed from the line segments that connect the extreme points
belonging to the convex hull of V (s, k). In this case, an approximated correspondence cannot
be reduced to a collection of {c�(s, q)} in R

SQI� but can be reduced to a collection of
{v�(s, q)} in ∩k′∈Kq V (s, k′) for each (s, q). This requires a slight modification to the output
and updating used in the outer approximation algorithm. Below is the step by step description
of the algorithm for computing an inner approximation to B(V ).

______________________________________

Inner Approximation Algorithm

1. Fixed Inputs:

(a) Exogenous parameters
(b) Partition K = {Kq}.
(c) Search directions: R = {r1, . . . , r�r }, with each {r� ∈ R

I : ||r�|| = 1}.
(d) Convergence criterion: ε > 0.

2. First Iteration Inputs:

(a) Set of points {v�(s, q)|� = 1, . . . , �} in ∩k′∈Kq V (s, k′), for each (s, q).
These points define the initial inner approximation V I(s, k) = ∩qω

I
s,q(k) where

ωI

s,q(k) =
{
co {v�(s, q)|� = 1, . . . , �} if k ∈ Kq ,

R
I otherwise.

3. Optimization: Compute the new sets of point from which the convex hulls that together

represent an inner approximation to BL(V ) are constructed. For each s ∈ S, each partition
element Kq and each r� ∈ R

{a, v′, k}+� (s, q) = argmax
a,v′,k∈Kq

r� · [(1 − β)u(s, k, a) + β
∑

S

v′(s′)�(s′|s)] s.t (7)

(i) v′(s′) ∈ V I(s′, f (s, k, a)), a ∈ A(s, k),

(i i) for each i ∈ {1, . . . , I },
(1 − β)ui (s, k, a) + β

∑

S

vi ′(s′)�(s′|s) ≥

9 The surface of the step correspondence contains discontinuities at the joins of the partition elements.
Application of a nonlinear optimizer requires either that the correspondence is smoothed across these joins, or
that the optimizations are split into a collection of sub-optimizations in each of which the continuation state
variable is restricted to an element of the partition.
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max
a−i∈Ai (s,k)

min
ṽi (s′)∈V I(s′, f (s,k,a−i ,a′))

(1 − β)ui (s, k, a−i , a
′)

+β
∑

S

ṽi (s′)�(s′|s).

4. Output: V+(k, s) = B̂(V )(s, k) = ∩qω
I
+
s,q(k), with

ωI
+
s,q(k) =

{
co {v+

� (s, q)|� = 1, . . . , �} if k ∈ Kq ,

R
I otherwise.

where v+
� (s, q) is equal to [(1 − β)u(s, k, a) + β

∑
S v′(s′)�(s′|s)] evaluated at

{a, v′, k}+� (s, q).
5. Check for convergence: Stop if dV (V+, V ) < ε. Else set V I(s, k) = V+(s, k) and go

back to Step 3.

See Judd et al. [12] and Yeltekin et al. [16] for the details of constructing convex hulls
similar to those required in Step 4.
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