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Abstract We analyze effects of rarity value on the sustainability of a natural resource. Rarity
valuemeans that under extreme scarcity of the resource unit profits increase ‘explosively.’We
focus on equilibrium behavior of very patient agents in a Small Fish War. Agents interacting
on a body of water have two options: they can fish with restraint or without. Fishing with
restraint allows the fish stock to recover; fishing without yields higher immediate but lower
future catches. We distinguish weak and strong rarity value; for the strong (weak) variant,
total symmetric Pareto-efficient rewards are higher (lower) than those obtained by keeping
the price fixed at highest-resource-stock level. Only for strong rarity value, the price effect
more than compensates for smaller sustainable catches. Pareto-efficient equilibrium behavior
dictates that lowest sustainable stocks are targeted.

Keywords Stochastic games · Limiting average rewards · Common pool resource games ·
Jointly-convergent strategies · Rarity value

1 Introduction

We analyze strategic interaction in a fishery subject to rarity value, a price-scarcity relation-
ship in which unit prices of a commodity increase sharply as it becomes less and less available
(cf., [12]). So in terms of traditional industrial organization, the demand curves shift upwards
as scarcity increases; hence, for every quantity offered, a higher market-clearing price is
found. In the case of a natural resource, this may induce the following scenario. Once a
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species becomes rare, its value increases, inducing greater efforts to exploit it, leading to
greater rarity, a higher value etc. An Allee effect may then occur, i.e., the population size
or density is pushed below a threshold beyond which only negative growth rates exist. [12]
list many real-world cases showing that rarity value inducing an anthropogenic Allee effect
(AAE) is not an armchair-scientist’s oddity.

In bringing rarity value to the fore, [12] disregarded several subtleties. Their analysis relies
on considering unit profits and on agents discounting the future so heavily that the stream
of future profits is always sufficiently similar to the prevailing one-shot profits. Also, the
influence of one agent on the resource and on the other agents is negligible, but collectively,
they can really harm the resource. Finally, to reach the scarcity where price/search costs ratios
explode, extended periods of time with negative profits to the agents have to be dealt with.
There seems hardly a consistent explanation how this is to be accomplished.

To deal with these subtleties, it is our goal to analyze total profits, i.e., unit profits times
quantities, averaged over an infinite period by very patient agents with (possibly) bounded
catching capacities in an interactive decision making framework with both short- and long-
term strategic externalities in a newly designed Small Fish War.

For this exploratory investigation, we engineered a stochastic game1 by adding a mecha-
nism inducing rarity value, as well as an Allee threshold to the Small Fish War2 of [30]. In
the original Small Fish War, two agents possess the fishing rights to a body of water, and they
have essentially two options, to fish with or without restraint. Restraint in practice may take
various forms, e.g., on catching seasons, on quantities caught, on technologies, e.g., boats,
nets. Essential is that unrestrained fishing yields a higher immediate catch, but continued
unrestrained fishing may lead to decreasing future catches; restrained fishing by both agents
is sustainable.

In a Small Fish War, agents wish to maximize their average catches over an infinite time-
horizon. There, a ’tragedy of the commons’ ([24]) is curbed, as Pareto-efficient outcomes
can be sustained by subgame-perfect equilibria inducing rather high fish stocks. For wide
ranges of the model’s parameters, ’perfect restraint’ is never Pareto-efficient.

While examining our new model, we found that it is crucial to make a distinction between
strong and weak rarity value, and developed an operational criterion to separate one from the
other.We show that a Small FishWar under strong rarity valuemay exhibit the environmental
and economic effects sketched by [12], i.e., Pareto-efficiency either implies ‘no restraint’ or
it induces stocks just above the Allee threshold level. It is also without contradiction that our
very patient agents (are willing and able to) achieve the necessary scarcity levels to exploit
strong rarity value.

Contrasting, very patient agents in a setting with weak rarity value induce ‘almost perfect
restraint’ Pareto-efficient equilibria, high sustainable stocks and rewards slightly higher than
‘perfect restraint’ rewards. Errors in assessment of the nature of rarity value may lead to a
‘tragedy of the commons’, i.e., deterioration of the economic and the resource systems, or to
a ‘tragedy of the herdsmen’, i.e., missed economic opportunities.

Rarity value leaves room to serve economic and ecological goals simultaneously as many
equilibria yield sustainable rewards above ‘perfect restraint.’ This suggests a basis for effec-
tive policies for management and conservation of natural resources as [28] attributes ineffec-
tiveness of, for instance, the common fishery policies of the European community, to their
biological focus instead of an economic one (see also e.g., [4,10,43]). Dangers of strong

1 ‘Engineered’ as in [2]. Stochastic games were introduced by [44], see also [1] for links to difference and
differential games to which much work on fisheries belongs, cf., e.g., [26,38] for overviews.
2 A word play on the Great Fish War of [37].
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rarity value, i.e., Pareto-efficient equilibrium behavior targeting the limits of sustainable fish
stocks, can be curbed if the resource is managed diligently and strictly, for instance according
to The Precautionary Approach of the International Council for the Exploration of the Sea
(cf., e.g., [29]).

Next, we review the Small Fish War and then add an Allee effect under the assumption
that unit profits are fixed. In Section 3, we examine the combined effects of rarity value and
the AAE. Section 4 concludes with a discussion.

2 Small Fish Wars and Impacts of Allee Effects

A Small Fish War is played by players A and B at discrete moments in time called stages.
Each player has two actions and each stage players choose an action independently and
simultaneously. We denote the action set of player A (B) by J A = {0, 1}(= J B) and
J ≡ J A × J B . Action 1 for either player denotes the action without restraint, e.g., catching
with fine-mazed net or catching a high quantity; the other one is the action with a restriction.
The payoffs at stage t ′ ∈ N of the play depend on the choices of the players at that stage, and
on the relative frequencies with which all actions were actually chosen until then.

Crucial is the current rate of overfishing, i.e., how often the agents have caught without
restraint until then. Let j At

(
j Bt

)
be the action chosen by player A(B) at stage t ≥ 2, and let

q ≥ 0. Define the current rate of overfishing ρt recursively by

ρ1 = ρ ∈ [0, 1] , and ρt = q + t − 1

q + t
ρt−1 + 1

q + t

(
j At−1 + j Bt−1

2

)

.

So, ρ is the rate of overfishing taken at the start of the period analyzed. A completely
untouched system has ρ = 0; a system where overfishing has gone on ‘forever’ has ρ ≈ 1.
Parameter q moderates effects of early decisions on the rate. As we focus on long-term
horizons, ρ and q become irrelevant.

The current fish stock depends on the current rate of overfishing ρt . Let

μt ≡ 1 + (
1 − m

) [
n2

n1 − n2
ρ
n1
t − n1

n1 − n2
ρ
n2
t

]
. (1)

Here, μt is the fish stock (normalized to the unit interval), where μt = 0 (μt = 1) indicates
that the fish stock is depleted (at full capacity). The parameter m ∈ [0, 1] represents the
minimal stock due to overexploitation, i.e., if ρt → 1, then μt → m. So, (1) determines
how the fish stock deteriorates from its maximum due to fishing without restraint. Parame-
ters n1 > n2 > 1 shape the function connecting the normalized fish stocks to the rate of
overfishing and are determined by biological and ecological features. Minimal fish stock m
depends on technology and the size of the agents.

At each stage, a bi-matrix game is played, and the choices of the players at that stage
determine their stage payoffs. Let the stage payoffs at stage t ∈ N be represented by

[
aμt , aμt bμt , cμt

cμt , bμt dμt , dμt

]
= μt

[
a, a b, c
c, b d, d

]
. (2)

If player A chooses action 0 and B chooses action 1, A’s stage payoff is bμt and B’s is cμt .

For m = 1, we have a standard repeated game.
If both agents never show restraint, then the associated long-run stage payoffs are dm;

if they show perfect restraint, these payoffs are a. Next, we make a series of assumptions
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which guarantees that the problem is a social dilemma (see e.g., [34]). Moreover, the effects
of overfishing are not too immediate, yet cannot be postponed indefinitely.

Assumption Fishing without restraint yields a higher catch in any stage than fishing with
restraint, hence a < c, b < d. Two-sided catching without restraint yields higher immediate
payoffs than catching with restraint, i.e., a < d. Never restraint gives at most half the long-
run stage payoffs associated with ’perfect restraint,’ i.e., dm ≤ a

2 ; the sharpest decline of
the stock occurs for rates of overfishing between 0.25 and 0.75.

2.1 Strategies and Rewards

The sets of all strategies for A(B) is denoted by X A(X B). The payoff to player k, k = A, B,

at stage t, is stochastic and depends on the strategy pair (π, σ ) ∈ X A × X B ; the expected
stage payoff is denoted by Rk

t (π, σ ) .

The players receive an infinite stream of stage payoffs during the play, and they wish
to maximize their average rewards. For a given pair of strategies (π, σ ) , player k’s aver-
age reward, k = A, B, is given by γ k (π, σ ) = lim infT→∞ 1

T

∑T
t=1 R

k
t (π, σ ) ; γ (π, σ )

≡ (
γ A (π, σ ) , γ B (π, σ )

)
. First, we focus on rewards from strategies which are pure and

jointly-convergent. Then, we extend our analysis to obtain larger sets of feasible rewards.
A strategy is pure, if at each stage a pure action is chosen, i.e., an action is chosen with

probability 1. The set of pure strategies for player k is Pk , and P ≡ P A × PB . The strategy
pair (π, σ ) ∈ X A × X B is jointly- convergent if and only if z ∈ Δm×n exists such that for
all ε > 0, (i, j) ∈ J :

lim sup
t→∞

Pr
π,σ

[∣∣∣∣
#{ j Au = i and j Bu = j | 1 ≤ u ≤ t}

t
− zi+1, j+1

∣∣∣∣ ≥ ε

]
= 0,

where Δm×n denotes the set of all nonnegative m × n -matrices such that the entries add up
to 1;Prπ,σ denotes the probability under strategy pair (π, σ ). JC denotes the set of jointly-
convergent strategy pairs. The set of jointly-convergent pure-strategy rewards PJC is then
the set of pairs of rewards each of which can be obtained by using a pair of jointly-convergent
strategies. Under such a pair of strategies, the relative frequency of action pair (i, j) ∈ J
converges (with probability 1 in the terminology of Billingsley [6], p. 274) to the number
zi+1, j+1.

For jointly-convergent strategies, Eq. (1) and the arguments presented imply that

lim
t→∞ μt = 1 + (

1 − m
) (

n2
n1 − n2

ρn1 − n1
n1 − n2

ρn2

)
,

where ρ ≡ z22 + 1
2 (z12 + z21) . So, the expected long-term fish stock converges to a fixed

number as well; hence, the bi-matrices representing the stage payoffs in (2) ‘converge’ in the
long run, too.

To compute the rewards connected to a pair of jointly-convergent strategies is then amatter
of simple ‘book keeping.’ Let

ϕ(z) ≡ lim
t→∞ μt

∑

(i, j)∈J

zi+1, j+1
(
ai+1, j+1, bi+1, j+1

)
.

Here,
(
ai+1, j+1, bi+1, j+1

)
is the entry in (2) corresponding to action pair (i, j) ∈ J. The

interpretation of ϕ(z) is that under jointly-convergent strategy pair (π, σ ), the relative fre-
quency of action pair (i, j) ∈ J being chosen is zi+1, j+1 and each time this occurs the players
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Fig. 1 Here, m = 0.1, n1 = 3, n2 = 2, a = 4, b = 3.5, c = 6, d = 5.5. PE denotes Pareto- efficient
rewards.Left: PJC denotes the set of jointly-convergent pure-strategy rewards;CPJC is its convex hull.Right:
E ′ represents subgame-perfect equilibrium rewards; v ≈ (1.925, 1.925)

receive limt→∞ μt times the associated entry in (2) in the long run. Hence, the players receive
an average amount of ϕ(z). So, γ (π, σ ) = ϕ(z).

2.2 Threats and Equilibria

The strategy pair (π∗, σ ∗) is an equilibrium, if no player can improve by unilateral deviation.
An equilibrium is called subgame-perfect if for each possible state and possible history (even
unreached states and histories) the subsequent play corresponds to an equilibrium, i.e., no
player can improve by deviating unilaterally from then on. In the construction of equilibria
for repeated games, ‘threats’ play an important role. A threat specifies the conditions under
which one player will punish the other, as well as the subsequent measures. More details are
given in e.g., [31].

We call v = (
vA, vB

)
the threat-point, where vA = minσ∈X B maxπ∈X A γ A(π, σ ), and

vB = minπ∈X A maxσ∈X B γ B(π, σ ). So, vA is the highest amount A can get if B tries to
minimize his average payoffs. Under a pair of individually rational (feasible) rewards, each
player receives at least the threat-point reward. We can now present the major result of [30].

Theorem 1 Each pair of rewards in the convex hull of all jointly-convergent pure-strategy
rewards giving each player strictly more than the threat-point reward, can be supported by
a subgame-perfect equilibrium.

The following consequence of Theorem 1 is illustrated in Fig. 1.

Corollary 2 Let E ′ = {(x, y) ∈ PJC | (x, y) > v}, then all rewards in the convex hull of
cl E ′ (respectively E ′) can be supported by an equilibrium (respectively a subgame-perfect
equilibrium).

This Folk Theorem-type result hinges on the possibility of punishing unilateral deviations,
as in e.g., [22]. So,weneedhistory-dependent strategies. Topreventmisconception, there is no
contradiction between strategy pairs being both jointly-convergent and history-dependent,
or for that matter cooperative, e.g., [35,46,47], or incentive strategies, or combinations,
e.g., [16–19]. Neither is there one between an equilibrium being jointly-convergent and
subgame-perfect: If the equilibrium path in the terminology of [25] induces convergence with
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Fig. 2 The same sets PJC ,CPJC\PJC , PE, E ′ for m = 0.01,Th = 0.1 and all other parameters as in
Fig. 1. Collapse rewards are (0, 0), equilibrium rewards are to the northeast of v ≈ (1.7675, 1.7675)

probability 1, the off-equilibrium part may be of arbitrary sophistication. Finally, equilibrium
rewards in the convex hull of E ′ that do not belong to E ′ can only be obtained by history-
dependent strategies with threats, that are not jointly-convergent.3

2.3 A Small Fish War with an Allee Effect

We now introduce an Allee effect into the model. [12] explain: ‘Populations suffering from
Allee effects may exhibit negative growth rates at low densities, which drives them to even
lower densities and ultimately to extinction.’ [5] define an Allee threshold as the ‘critical
population size or density below which the per capita population growth rate becomes neg-
ative.’

Let therefore Th denote an Allee threshold measured in the same dimension as the fish
stock. We formalize the explanations above by

μt = 1 + (
1 − m

) [
n2

n1−n2
ρ
n1
t − n1

n1−n2
ρ
n2
t

]
if μs ≥ Th for all s ≤ t,

μt ≤ (1 − θ)γ (t−s′) for all t ≥ s′ if μs′ < Th where γ ≥ 1, θ ∈ (0, 1) .

The second part above captures the Allee effect in a rather general manner implying that
the population decreases (at least) exponentially. Hence, if under strategy pair (π, σ ) the
fish stock at any point in time drops below the Allee threshold, then limt→∞ μt = 0; we
normalize the associated rewards to γ (π, σ ) = (0, 0) and call them Collapse Rewards, since
the resource system as well as the economic system depending on it breaks down.

Figure 2 visualizes sets of rewards under the Allee effect; without this effect, PJC would
have been ’pointed’ in the southwest as in Fig. 1, it is now ’blunt.’ Equilibrium rewards are
quite far removed from the collapse rewards. This means that self-interested rational agents
will behave in the interest of the environmental system in order to guarantee high fish stocks
staying far above the Allee threshold. The Allee threshold influences the set of equilibrium
rewards only if it is rather high, the set of equilibrium strategies is obviously reduced for any
level of the threshold.

We introduce the following notion captured by a single number.

3 We are grateful to the editor, an associate editor and a referee for pointing out that the matters raised in this
paragraph need clarification.
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Fig. 3 The unit costs (solid), unit prices (top dashed) and unit profits (bottom dashed) as functions of the
level of the fish stock

Definition 3 The total relative improvement over perfect restraint Δ is the total sym-
metric Pareto-efficient rewards minus the total ‘perfect restraint’ rewards relative to the total
‘perfect restraint’ rewards.

For Fig. 1, Δ ≈ 8.11−8
8 = 0.01375, for Fig. 2, Δ ≈ 8.09−8

8 = 0.01125. The numbers
indicate how much the gain of cooperation can be over perfect restraint. So, in both cases
these gains are quite limited to just over 1%.

3 Rarity Value and the Anthropogenic Allee Effect

The Small Fish War and its extension presented implicitly model a situation in which agents
sell their catches at a competitive market while incurring fixed-unit search costs, at least
fixed with respect to the scarcity of the resource in their fishing environment. Alternatively,
if neither prices on the market nor search costs are fixed, then one can regard the model as
pertaining to a situation in which unit prices go up approximately in the fashion as the unit
search costs do for increasing scarcity.

In some cases, fishermen extract less and less in quantities, but obtain higher and higher
revenues. An ongoing real-world example of such an anomalymight be themarket for bluefin
tuna. Stocks seem to have decreased by 80% in the 5years prior to 2007, and prices have sky-
rocketed since 2007 especially in the Far East (e.g., [48]). In economics, similar anomalies
are known as Veblen and status goods (cf., e.g., [36]), but these are hardly ever linked to
animal species facing extinction. [12] model and analyze the latter aspect.

Figure 3 is inspired by a poignant figure from [12]. The unit costs of catching depend on
availability, to be captured by the fish stock μ in our model (on the horizontal axis). Unit
costs increase as the species becomes rarer, i.e.,μ becomes smaller. Unit prices remain nearly
constant between μ = 1 and μ = 0.6, but for lower availability of the fish stock, they go up
sharply. The formula for the unit profit curve is

π (μ) = p(μ) − c(μ) = 4
3.75

((
4 + 0.75 1

μ2

)
−

(
12 − 12μ + 1

μ1.5

))
. (3)
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Fig. 4 PJC for the parameters as before, but with ThAAE = m = 0.1 and π . The 250,000 rewards are
unevenly distributed, the true set is dense.The systemdisplays strong rarity value asΔ/ΔBase ≈ 0.34/0.01375.
Rewards to the ‘North-East’ of (v, v) correspond to equilibria

where p (μ) is the unit price on the market and c(μ) is the unit costs given fish stock μ. Note
that limμ↓0 π (μ) does not exist and π (1) = 4 (by scaling).

So, unit profits decrease as fish stocks decrease from maximal level as the unit price
remains almost constant, but unit search costs increase steadily. If the fish stock continues
to fall below approximately 0.675, unit profits become negative, i.e., the agents would incur
losses by catching fish. However, if the fish stock would fall below approximately 0.228,
then the unit price driven by scarcity exceeds unit costs again. Moreover, increasing scarcity
causes the unit price to increase more than the unit costs from then on.

Figure 4 illustrates the effects of adding Eq. (3) to themodel used so far. Since a range with
negative unit profits exists, we find negative average rewards. For fish stocks withμ < 0.228
unit, profits increase steadily as fish stocks decline. The Pareto-dominant rewards are the ‘no
restraint’ rewards. Note that the latter rewards are located in the southwest in Fig. 1, but in the
northeast in Fig. 4. ‘Perfect restraint’ provides relatively high rewards of (4, 4), but belongs
to the Pareto-efficient set of jointly-convergent pure-strategy rewards in neither figure.

Both resource stocks and unit profits change due to overexploitation. To cope with this
double effect, we need an additional point of reference.

Definition 4 ΔBase is the relative improvement over perfect restraint if unit profits were fixed
at ‘base’ level, i.e., for maximal resource stock (μ = 1).

Definition 5 The system is said to displayweak rarity value if Δ
ΔBase

≤ 1, and strong rarity
value otherwise.

So, the system displays strong rarity value if and only if the symmetric Pareto-efficient
rewards in the model with rarity value exceed those in the model with prices kept fixed at the
level of maximal resource availability.

We have the following result pertaining to the threat-point v = (
vA, vB

)
, the proof is

straightforward, therefore omitted.
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Fig. 5 PJC for ThAAE = 0.1,m = 0.12. Here, Δ
ΔBase

< 1, so this system displays weak rarity value.
Again, all rewards to the North-East of (v, v) can be obtained by an equilibrium

Lemma 6 For the model introduced, we have vA, vB ≤ v = min
{ a
4 , b

4

} · [ 1
2

(
1 + m

)] ·
πt

( 1
2

(
1 + m

))
.

Given v ≤ (v, v), the following is clearly valid in view of Theorem 1.

Corollary 7 Let E ′ = {(x, y) ∈ PJC | (x, y) > (v, v)}, then each pair of rewards in the
convex hull of clE ′ can be supported by an equilibrium. Moreover, all rewards in E ′ can be
supported by a subgame-perfect equilibrium.

In Fig. 4, the Pareto-optimal equilibrium (‘no restraint’) yields approximately (5.36, 5.36)
inducing minimal fish stock. Note that Δ

ΔBase
≈ 0.34

0.01375 .

3.1 Rewards, Rarity Value and Parameter Choices

Here, we identify two factors decisive for the sustainability of the resource system. The first
one is related to the ‘actual harm’ caused by persistent unrestricted catching. The second is
that under the evaluation criterion chosen unit profits are not the real issue, but long-term
average total profits.

3.1.1 The Influence of Minimal Fish Stock

In Fig. 5, Pareto-optimal equilibria give rewards quite close to and slightly above 4 and a large
proportion of the catches must be restrained. Some equilibrium rewards may be obtained in
two different ways by either catching with restraint quite frequently, or by catching without
restraint quite frequently. This can be seen in Fig. 5, as the rewards situated in the beak in
Fig. 4 have withdrawn into the ‘body of the fish shape,’ visible as the heavy lines in the
‘body’s’ interior. Here, Δ

ΔBase
≈ 0.007

0.0121 = 0.578 51 so this system displays weak rarity value.
For smaller m, rarity value effects occur as in the case related to Fig. 4 with the ‘beak’

becoming larger. Hence, if the catching capacity increases (lowering m), the induced unique
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Pareto-efficient equilibrium yields increasing rewards. So, the agents may bring about the
lowest sustainable fish stock deliberately. For m = 0.06,ThAAE = 0, and all other parame-
ters as before, we found that the Pareto-efficient equilibrium yields (11.705, 11.705), and

Δ
ΔBase

≈ 1.926/0.0116 which implies strong rarity value.

3.1.2 The Influence of the Unit Profit Function

Unit profits going to infinity is not a necessary condition to induce strong rarity value.
This stems from the insight that it is quite irrelevant how the profit function behaves below
the technically feasible minimal fish stock level, or the Allee threshold for that matter. The
system will either not get there anyway, or the system collapses inducing lower rewards. This
strengthens the result mentioned, as infinite unit profits seem quite artificial.

Unit profits going to infinity is not sufficient to obtain strong rarity value, either. Let the
unit profits be given by

π ′ (μ) = p(μ) − c(μ) = 4

3.75

[(
4 + 0.75

1

μ

)
−

(
12 − 12μ + 1

μ0.5

)]
.

Qualitatively, π and π ′ are similar. The significant difference is that even if the catching
capacities of the fishermen were unlimited, the price effects do not dominate the quantity
effects sufficiently to obtain high rewards. For m = ThAAE = 0 and π ′ we generated a
figure qualitatively equivalent to Fig. 5 with Δ ≈ 0.00067 whereas ΔBase ≈ 0.0107. As,

Δ
ΔBase

≈ 0.00067
0.0107 = 0.062617, this system displays weak rarity value, even highest scarcity is

insufficient to obtain rewards inducing effects leading to the scenario of [12].

3.2 The Anthropogenic Allee Effect

In the Small Fish War with constant prices to which an Allee effect was added, a subset of the
jointly-convergent pure-strategy rewards is cut off. Since Allee effects only occur if the fish
stock drops below a certain threshold, only lower left-hand-side rewards in PJC are affected
there. To visualize this effect, please compare Figs. 1 and 2. However, under ‘rarity value’
an Allee effect may be expected to cut off rewards in the upper right-hand corner as the ‘no
restraint’ rewards move to the North-East.

Indeed, an analysis of the set of jointly-convergent pure-strategy rewards confirms this
intuition. Comparing Figs. 4 and 6 reveals that part of the ‘beak’ in Fig. 4 has disappeared as
anticipated, i.e., theAAE eliminates a set of rewards being considerable Pareto improvements
over ‘perfect restraint’.

We found Δ
ΔBase

≈ 0.125
0.01375 = 9.0909. So, despite the AAE removing a set of high-reward

equilibria, the Allee threshold is not high enough to turn strong rarity value into the weak
variant. As to the sensitivity of strong and weak rarity value to changes in the AAE, for
ThAAE > 0.1163, the system displays weak rarity value, i.e., the remainder of the ‘beak’
disappears completely. So, an increase of the Allee threshold of just under 6% (0.00630.11 ) turns
strong into weak rarity value.

4 Conclusion and Discussion

The main purpose of this paper was to model rarity value in a Small Fish War ([30]) and
examine its consequences. A second goal was to include an Allee effect, i.e., once a popu-
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Fig. 6 Here, m = 0.1 and ThAAE = 0.11, other parameters were taken as before. PJC is cut off in the
‘beak’. Equilibrium rewards are to the North-East of (v, v)

lation falls below an Allee threshold, only negative growth rates occur. For this purpose, we
engineered a stochastic game possessing these features.

Our exploratory investigations reveal that rarity value brings about a very diverse picture.
For instance, even if unit profits go to infinity under maximum scarcity, it is by no means
guaranteed that the associated rewards constitute even a Pareto improvement over the ‘perfect
restraint’ equilibrium. We found it useful to distinguish strong and weak rarity value and
developed an operational criterion to separate one from the other. Under weak rarity value,
we have a similar result as in the fixed-unit-profits variant: self-interest and sustainability
provide no tensions provided agents are sufficiently patient. However, if rewards associated
with maximum scarcity are sufficiently high, the economic system and the resource system
have ‘conflicting interests’ even for very patient agents. Highest sustainable equilibrium
rewards under strong rarity value can only be accomplished by reaching the lowest possible
sustainable fish stock.

However, equilibrium behavior need not necessarily imply ruthlessness . Many equilibria
induce rewards above the ‘perfect restraint’ rewards for both instances of rarity value with
stocks well above the Allee threshold. So, there is room for compromise between ecological
and economic maximalistic goals, overcoming the one-sidedness of management policies
for natural resources as noted by e.g., [10,28], thus improving chances of success cf., e.g.,
[4,43].

The following matrix gives an overview of the consequences of the complex interplay of
factors from economics, biology and technology:

m < ThAAE m ≥ ThAAE
Δ

ΔBase
> 1

Δ
ΔBase

≤ 1
μPE∞ ↓ ThAAE μPE∞ = m

μPE∞ ≈ 1 μPE∞ ≈ 1
.

Here, m is the (technologically feasible) minimal fish stock from prolonged overfishing;
ThAAE is the threshold of the AAE; Δ is the relative improvement over perfect restraint, i.e.,
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total symmetric Pareto improvements over total ‘perfect restraint’ rewards relative to the total
‘perfect restraint’ rewards, ΔBase is the same notion but with profits, prices and costs fixed

at the levels associated with maximum availability of the resource. Δ
ΔBase

> 1
(

Δ
ΔBase

≤ 1
)

implies strong (weak) rarity value and μPE∞ is the long-term fish stock under the interplay of
the parameters if sufficiently patient agents strive for Pareto-efficient equilibria.

In the strong rarity value case, Pareto-efficient behavior may imply flirting with disaster,
as the slightest mistake in actions or estimations of the parameters involved, or any change
in environmental, ecological or climatic conditions might bring about the AAE. [5] claim
that Allee effects may work in combinations. Hence, externalities from other fisheries may
push the fish stock targeted over the threshold irrespective of the behavior of the agents.
For instance [15], give an overview of negative externalities on own and other fisheries by
different types of gear used in the Baltic Sea. Also [33], build a framework to assess damages
by marine sand mining on fisheries in Korea, demonstrating that phenomena quite unrelated
to any fishery may affect the fish stock targeted.

This indicates that there may be some wisdom in the Precautionary Approach of the
International Council for the Exploration of the Sea (ICES) establishing limits on stock
levels in order to manage fisheries in a ‘safe’ way (see [29]). Two limits are relevant to our
concerns: the biomass limit and the precautionary biomass limit.4 The former is the stock
level below which the probability of total breakdown is very high and reproductive capacity
is reduced. Two variants seem to be possible, one is similar to the scenario pictured with
respect to the Allee effect and the second one is similar to the poaching pit (cf., e.g., [11]),
in which a ban on fishing may not even be sufficient to guarantee recovery and the species
may remain vulnerable to extinction (see also [21]). The latter limit is a level such that if the
stocks should fall below it, short-term measures to reduce fishing should suffice for recovery.

If the agents manage the resource according to the precautionary approach (see e.g., [29]),
the following overview is appropriate:

m < ThAAE m ≥ ThAAE
Δ

ΔBase
> 1

Δ
ΔBase

≤ 1
μPE∞ = bpl μPE∞ = max{m, bpl}
μPE∞ ≈ 1 μPE∞ ≈ 1

.

Here, we assumed that bpl , the precautionary biomass limit, is rather low, so, ThAAE < bl <

bpl << 1.
We stacked the cards in favor of sustainability according to common wisdom. Two very

patient agents, perfect information, perfect monitoring, absence of stochasticity are factors
known to contribute to solving social dilemmas (cf., [34] for an overview) and inducing
Pareto-efficient equilibria in repeated and stochastic games. For weak rarity value this can be
confirmed indeed, but for the strong variant sustainability of Pareto-optimal behavior may
depend crucially on the abstractions made, and in that case must be regarded as unfeasible
in practice.

Rarity value is unrelated to increasing marginal returns as studied by [40]. These authors
show in a standardmodel using net present value optimization that increasingmarginal returns
and weak dependence of marginal costs on stock, induce collapse of schooling fisheries of
species with high reproduction rates even if managed by a very patient single agent (‘owner’).
Their arguments work in two steps. First, they bring to the fore empirical work showing that
for several schooling species limited dependence of marginal costs on stock levels holds, cf.,
e.g., [13,39]. Hence, in the case of schooling fisheries marginal returns independent from fish

4 See e.g., [14] and [40] for studies using the same limits guiding management strategies in fisheries.
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Fig. 7 Rewards obtained by jointly-convergent pure strategies for an extension of the model underlying Fig. 4
to three players

stocks as in e.g., [7], might be more justified than boundlessly increasing marginal harvesting
costs for decreasing stock levels as analyzed by [20]. Then, they cite several papers giving
a rationale for increasing marginal returns on catching efforts due to positive externalities
and technological advances, e.g., [8,9,23]. [40] proceed however, with constant unit prices
of harvest and constant variable cost independent from stock levels. We suspect that rarity
value increases the effects pictured by [40]. The ongoing tragedy of the bluefin tuna brings,
in all likelihood, together strong rarity value, increasing marginal returns (tuna is a schooling
species), low reproduction rates, and amultitude ofmyopic agents (instead of few very patient
owners).

The quality of information matters, as weak rarity value mistaken for a strong version
induces a ‘tragedy of the commons,’ i.e., resource and exploiters suffer both; a strong version
mistaken for a weak one induces a ‘tragedy of the herdsmen,’ i.e., the exploiters forfeit
considerable income. Classifying rarity value correctly induces ‘no tragedy’ for the weak
variant, i.e., resource and exploiters flourish, and a ‘tragedy of the herd’ for the strong
one, i.e., the resource suffers. Related, but logically independent, is the issue of imperfect
information. For instance, if in a system at the cutting edge of weak and strong rarity value
agents wish to achieve a symmetric Pareto-efficient equilibrium, they must have the right
information about the system, and perfect information regarding the behavior of the other
agent(s).

Our agents are countries, regions, villages or cooperatives of fishermen. It is debatable
whether even the latter care sufficiently for the future to induce sustainability (see e.g.,
[41,42] for optimistic views), but individual fishermen’s preferences seem too myopic (cf.,
e.g., [27]). Two agents suffice to model strategic interaction. We did not take more agents
because complexities in notation and representation arise, hardly justified by an added value.
Figure 7 provides a glimpse of an example of a three-agent Small Fish War.

We used rather simple (yet quite adaptable) functions to model the effects of overfishing
on the resource in deriving our results. We found a three player differential game cohort
model5 aiming for a cooperative feedback solution with respect to the discounted reward

5 See, e.g., [45]. [3] mention the management of blue fin tuna as a recommended field for game theory.
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criterion by [35] for blue fin tuna. The level of sophistication of that contribution may serve
as our beacon for future research, yet lacking from it are rarity value and the AAE.

Another self-imposed limitation was the number of stage-game actions. For applied work,
more levels or dimensions of restraining measures may require a large number of actions. In
case mixing between certain actions is not possible for practical reasons, e.g., it is not easy
to switch boats easily, a tree structure in the decisions may be required, yet its subtrees are
subject to the present analysis. Adding actions changes nothing to our approach conceptually.
We refrained from doing so to economize on notations.

[32] add endogenous stochastic transitions to stochastic games such as Small Fish Wars.
That paper’s main purpose is to model hysteresis related to the poaching pit (e.g., [11]), but
it may prove useful for modeling the AAE, as well.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which
permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source
are credited.
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