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Abstract In this paper we carry out a comprehensive analysis of the model of oligopoly
with sticky prices with full analysis of prices’ behaviour outside their steady-state level in
the infinite horizon case. An exhaustive proof of optimality is presented in both open loop
and closed loop cases.
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1 Introduction

Dynamic oligopolymodels have a long history, starting fromClemhout et al. [12] and encom-
passing many issues, including, among other things, advertisement (e.g. Cellini and Lamber-
tini [8]), adjustment costs (e.g. Kamp and Perloff [24], Jun and Viwes [23]), goodwill (e.g.
Benchekroun [7]), pricing (see e.g. Jørgensen [22]), hierarchical structures (e.g. Chutani and
Sethi [11]), nonstandard demand structure (e.g. Wiszniewska-Matyszkiel [29] with demand
derived from dynamic optimization of consumers at a specific market) or a combination of
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several of these aspects (e.g. De Cesare and Di Liddo [15], Dockner and Feichtinger [16] and
some papers cited previously). One of important issues considered in such models is price
stickiness.

In this paper we do a comprehensive analysis of the model of oligopoly with sticky prices,
first proposed by Simaan and Takayama [27]. The analysis of themodel, using game theoretic
tools, was afterwards continued by Fershtman and Kamien [19,20], Cellini and Lambertini
[9] and further generalised in many directions by, among others, Benchekroun [6], Cellini
and Lambertini [10], Dockner and Gaunersdorfer [17] and Tsutsui and Mino [28].

Comprehensive reviews of differential games modelling oligopolies including models
with sticky prices can be found in, among others, Dockner et al. [13] and Esfahani [18].

Both open loop and feedback information structures in the infinite horizon case were
considered in [19] and [9]. In both papers, the analysis of the open-loop problemwas restricted
to the calculation of steady states only. When the feedback case is considered, off-steady-
state behaviour was considered only in [19] and only for 2 players, but even in this case the
focus was on the steady state. Consequently, the only results that could be compared in the N
players model with infinite horizon were steady states for the open loop and feedback cases.
This seems very partial solution of the problem.

First, the optimal stationary pair (costate variable, price) and, consequently, optimal sta-
tionary pair (production, price) for the open-loop case in all the previous papers was proved
to be a saddle point, so unstable in the sense of Lapunov.

In such a case, an obvious expectation for almost all initial conditions is that solutions
would not converge to this steady state. However, we shall prove that this is not going to hap-
pen and that the lack of stability is only apparent.Moreover, previous calculations are correct.
These statements may seem a contradiction and, therefore, we shall return to this issue and
givemore emphasis on it inRemark1 inSect. 3.1.Hereweonly emphasise that stability results
could not be proved without precise off-steady-state analysis, which we do in this paper.

Our calculations allow us to compare solutions of both types for the same initial price.
Note that comparing trajectories of the open loop and feedback case solutions originating
from the same initial price is impossible if we have only information about their steady
states, which differ, since at least one trajectory in such a case is not stationary. Therefore,
an analysis of the off-steady-state behaviour is really needed.

Another issue, important to obtain completeness of reasoning, is an appropriate infinite
horizon terminal condition. As we can see from this paper, in order to have the standard
terminal condition for the Bellman equation fulfilled in the feedback case, we have to impose
additional constraints on the initial problem. Also in the open-loop case, applying an appro-
priate form of Pontryagin maximum principle (as it is well known, the standard maximum
principle does not have to be fulfilled in the infinite horizon case), is nontrivial, even using
the latest findings in infinite horizon optimal control theory.

To address these two issues, in this paper we concentrate on the off-steady-state analysis
of the model, both in the open loop and the feedback information structure cases, and we
give a rigorous proof, including applicability of a generalisation of a Pontryagin maximum
principle and checking terminal conditions in both.

When the feedback case is considered, we use the standard Bellman equation stated in
e.g. Zabczyk [30], since the value function is proved to be smooth.1

1 Generally, value functions obtained in similar dynamic game theoretic problems may have a point at which
they are not differentiable. To solve such problems, there are generalisations of the standard Bellman equation
for continuous but nonsmooth value function, using viscosity solution approach. This approach was already
used in dynamic games with applications in dynamic economic problems, e.g. by Dockner at al. [13], Dockner
and Wagener [14] or Rowat [26].
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2 The Model

We consider a model of an oligopoly consisting of N ≥ 2 identical firms, each of them

with a cost function Ci (q) = cq + q2

2 . At this stage we only assume that amounts, q , are
nonnegative.

We assume that the inverse demand function is P(q1, . . . , qN ) = A −∑N
i=1 qi , with qi

being the amount of production of i-th firm and A a positive constant substantially greater
than c. This defines how the price would react to firms’ production levels if the adjustment
was immediate.

However, since prices are sticky, they adjust according to an equation of the form ṗ =
s(P − p), where s > 0 denotes the speed of adjustment. This equation will be fully specified
in Sect. 2.2.

2.1 The Static Case

If we consider the static case, with prices adjusting immediately, then each firm maximises
over its own strategy qi the instantaneous payoff pqi − C(qi ), where the price p can be
treated in two ways.

First, we can look for a standard Nash equilibrium solution. Generally, a profile of
players’ strategies is a Nash equilibrium if no player can increase his payoff by chang-
ing strategy unless the remaining players change their strategies. By applying the concept
of Nash equilibrium to the static oligopoly model with strategies being production levels,
we obtain the standard Cournot equilibrium, which is often referred to as the Cournot-Nash
equilibrium.

At the Cournot-Nash equilibrium, each of the firms knows its influence on the price,
therefore, it maximises P(q1, . . . , qN )qi − C(qi ). The resulting simultaneous optimization
of each firm, as it can be easily calculated, results in the equilibrium production of each firm
qCNi = A−c

N+2 and the price level pCN = 2A+Nc
N+2 .

For comparison, at the competitive equilibrium, in which firms are price takers, and max-
imise with p treated as a constant, production of each firm qComp

i = A−c
N+1 and the price level

pComp = A+Nc
N+1 .

2.2 Dynamics Resulting from Sticky Prices

Now, we introduce dynamics reflecting price stickiness.
Using open-loop strategies, i.e. measurable functions qi : R+ → R+, we can formulate

the equation which determines the price as

ṗ(t) = s(P(q1(t), . . . , qN (t)) − p(t)) = s

(

A −
N∑

i=1

qi (t) − p(t)

)

(1)

which is assumed to hold almost everywhere, as we do not assume a priori continuity of qi .
Given a measurable qi , the corresponding trajectory of price is absolutely continuous. At

this stage we do not have to assume that prices are nonnegative. Obviously, we shall prove
in Proposition 1 that at every equilibrium they are positive.

We denote the set of open-loop strategies byS OL. Players maximise discounted accumu-
lated payoff defined as follows. For open-loop strategies q1, q2, . . . , qN ∈ S OL, the payoff
function of player i is described by
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J i0,x0(q1, . . . , qN ) =
∫ ∞

0
e−ρt

(

p(t)qi (t) − cqi (t) − qi (t)2

2

)

dt, (2)

where p is a solution to Eq. (1).

3 Open-Loop Nash Equilibria

It iswell known that generally in the infinite time horizon the standard transversality condition
λ(t) e−ρt → 0 (where λ is a costate variable) is not necessary. There are many papers with
counterexamples to this transversality condition, see e.g. Halkin [21] and Michel [25].

For the specific case considered in this paper, we can prove that the standard transver-
sality condition is necessary. As our problem is nonautonomous, the well known Aseev and
Kryazhimskiy [1,2] results cannot be directly applied. However, we use a very general result
of Aseev and Veliov [3,4], which extends the Pontryagin maximum principle and can be
applied to nonautonomous infinite horizon optimal control problems.

As we prove, applying these necessary conditions to the optimal control arising from
calculation of the open-loop Nash equilibrium, and given the initial price, restricts the set
of possible solutions to a singleton, so it is enough to check that the optimal solution exists
to prove sufficiency of the condition. To this end, we use existence of an optimal solution
proven by Balder [5].

This issue is tackled in Appendix. Necessary conditions generalising standard Pontryagin
maximum principle from Aseev and Veliov [3,4] and Balder’s [5] existence theorem are
stated in sections “Aseev and Veliov Extension of the Pontryagin Maximum Principle” and
“Existence of Optimal Solution”, while we prove our model fulfils the assumptions of those
theorems in sections “Checking Assumptions for Theorem 5 for the Model Described in
Sect. 2” and “Checking Assumptions for Theorem 6 for the Model Described in Sect. 2”,
respectively.

This also allows us to determine, what is not so obvious in infinite horizon optimal control
problems and differential games, not only the terminal condition for the costate variable at
infinity, but also the initial condition for it, which, in turn, determines uniquely what is the
trajectory of the state variable and the optimal control for every initial value of the state
variable—the initial price.

In the open-loop Nash equilibrium, each player i faces the optimization problem, given
strategies of the remaining players:

qi ∈ Argmaxqi∈S OL J i0,x0(q1, . . . , qN ), (3)

for J i described by Eq. (2).

3.1 Application of the Necessary Conditions

In this section we are going to use the necessary condition given by Theorem 5 to derive the
optimal production and price at Nash equilibria for the open-loop case.

However, to simplify further calculations, instead of the usual hamiltonian we use present
value hamiltonian HPV(t, x, u, λ) = g(t, x, u)+ < f (t, x, u), λ > (using notation of sec-
tion “Aseev and Veliov Extension of the Pontryagin Maximum Principle”), where the new
costate variable λ(t) = eρt�(t). We rewrite the maximum principle formulated in Theo-
rem 5 for optimization of payoff by player i with fixed strategies of the remaining players
q j ∈ S OL.
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The present value hamiltonian is of the form

HPV
i (t, p, qi , λi ) = pqi − cqi − q2i

2
+ λi s

⎛

⎝A −
∑

j �=i

q j (t) − qi − p

⎞

⎠ . (4)

First, we prove two technical lemmata, being immediate result of application of the necessary
conditions given by Theorem 5.

Lemma 1 Let i ∈ {1, 2, . . . , N } be an arbitrary number and let q j ∈ S OL for j �= i be any
strategies such that the trajectory corresponding to the strategy profile (q1, . . . , 0, . . . , qN ),
where 0 is on the i-th coordinate, is nonnegative.

If q∗
i ∈ Argmaxqi∈S OL J i0,x0(q1, . . . , qN ), then there exists an absolutely continuous

λi : R+ → R such that for a.e. t

λ̇i (t) = λs − ∂HPV
i (p(t), t, qi (t), λi (t))

∂p
, (5)

qi (t) ∈ Argmaxqi∈R+ HPV
i (p(t), t, qi , λi (t)), (6)

lim
t→∞ λi (t)e

−ρt = 0 (7)

and

for every t ≥ 0, λi (t) ≥ 0.

Proof As it is proved in section “Checking Assumptions for Theorem 5 for the Model
Described in Sect. 2” the assumptions of the Aseev-Veliov maximum principle—Theorem 5
are fulfilled.

Formulae (5) and (6) are immediate application of relations of Theorem 5 with ψ∗(t) =
λ(t)e−ρt . To prove nonnegativity ofλ and terminal condition (7)we use the terminal condition
given in Theorem 5. We obtain that I (t) = ∫∞

t e−ρwe−swq∗
i (w)dw converges absolutely

and that λ fulfils

λi (t) e
−ρt = ψ∗(t) = I (t)Z(t) = est

∫ ∞

t
e−(ρ+s)wqi (t)dt. (8)

Given the constraints on the control parameters which we can impose by Proposition 1 from
section “Checking Assumptions for Theorem 5 for the Model Described in Sect. 2” we have

λ(t) e−ρt ≤ est
∫ ∞

t
e−(ρ+s)wqmaxdt,

and

λ(t) e−ρt =
∫ ∞

t
e−(ρ+s)w qi (w)dw ≥ 0.

Therefore, λ(t)e−ρt → 0 for all t and it is nonnegative. 	

Lemma 2 Under the assumptions of Lemma 1, the necessary condition for qi to be an
optimal control for optimization problem given by Eq. (2) with dynamics of p given by
Eq. (1) is as follows.
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There exists an absolutely continuous λi such that

λ̇i (t) = (ρ + s)λi (t) − qi (t) (9)

and

qi (t) =
{
p(t) − c − λi (t)s p(t) − c − λi (t)s > 0,

0 otherwise.
(10)

Proof It is immediate as a result of application of maximum principle to our problem, given
by Lemma 1. 	

Lemma 3 At every open-loop Nash equilibrium there exist costate variables λi such that
for every t ≥ 0, λi (t) > 0.

Proof By Lemma 1 the adjoint variable λi (t) is nonnegative.
Assume that λi (t̄) = 0 for some t̄ > 0. It implies ∀w ≥ t̄ , qi (w) = 0. Suppose p(w) > c

for some w ≥ t̄ . In this case we can increase payoff by increasing qi to ε on some small
interval [w,w + δ]. This contradicts the assumption that we are at the Nash equilibrium.

Now we shall concentrate on symmetric Nash equilibria. Note that if p0 ≥ c, then at
equilibrium it is impossible to have p(w) < c for any w, since in such a case instantaneous
profit at some interval is negative for positiveqi for p(w) ≤ c, which implies that optimization
of profit results in qi (w) = 0 for p(w) ≤ c. Since the same analysis holds for all players,
p(w) = c implies ṗ(w) > 0.

So the only case left is p(w) = c for all w ≥ t̄ , which we have just excluded. 	

Note, that in the symmetric case, if all costate variables are identical, the formula (10)

from Lemma 2 naturally divides the first quadrant of the plane (λ, p) into two sets

	1 = {(λ, p) : λ > 0, p > 0, p ≤ λs + c} (11)

and

	2 = {(λ, p) : λ > 0, p > 0, p > λs + c}. (12)

In fact, we have q(t) = 0 if (λ(t), p(t)) ∈ 	1 and q(t) > 0 if (λ(t), p(t)) ∈ 	2. Later, we
will show that in the case of a symmetric open-loop Nash equilibrium, the costate variable
and the strategy fulfil the following system of ODEs

λ̇ =
{

(ρ + 2s)λ − p + c, (λ, p) ∈ 	2,

(ρ + s)λ, (λ, p) ∈ 	1,
(13)

ṗ =
{
Ns2λ − (N + 1)sp + As + Ncs, (λ, p) ∈ 	2,

−sp + As, (λ, p) ∈ 	1.

Before stating and proving the theorem considering the case of a symmetric open-loop Nash
equilibrium, we prove the following result.

Theorem 1 Let (λ(t), p(t)) be a solution to Eq. (13) with initial value (λ0, p0). Then
λ(t) e−ρt > 0 and converges to 0 as t → ∞ if and only if (λ0, p0) ∈ 
, where 
 is
a stable manifold of the steady-state (pOL,∗, λ∗) of Eq. (13).

The point (pOL,∗, λ∗) ∈ 	2 (for 	1,	2 defined in (11) and (12)) and

λ∗ = A − c

ρ(N + 1) + s(N + 2)
, pOL,∗ = Nc(ρ + s) + A(ρ + 2s)

ρ(N + 1) + s(N + 2)
. (14)
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Moreover, the curve 
 intersects with the line p = sλ + c at point (λ̄, p̄) with

p̄ = p̄1 + (A s + c(N + 1)(s + ρ)
)√

�
(
N (ρ + s) + ρ + 2s

)(
ρ + (N + 1)s + √

�
) ,

p̄1 = A s((N − 1)s − ρ) + c(s + ρ)((N (N + 2) + 3)s + (N + 1)ρ), (15)

λ̄ = A − c

N (ρ + s) + ρ + 2s
· (N − 1)s − ρ + √

�

ρ + (N + 1)s + √
�

(16)

for � defined by

� = ρ2 + 2(n + 3)ρs + (n(n + 2) + 9)s2. (17)

The stable manifold 
 is given by the following formulae 
 = 
1 ∪ {(λ∗, pOL,∗)} ∪ 
2

with

	2 ⊃ 
2 =
{
(λ, p) =

(
λ∗ + 2ζ, pOL,∗ + ζ

(
ρ + (N + 3)s + √

�
))

: ζ ∈ (0,+∞)
}

,

while


1 ∩ 	2 =
{
(λ, p) =

(
λ∗ − 2ζ, pOL,∗ − ζ

(
ρ + (N + 3)s + √

�
))

: ζ ∈ (0, ζ̄ )
}

and


1 ∩ 	1 =
{

(λ, p) =
(
λ̄ e(ρ+s)ζ , A + ( p̄ − A) e−sζ

)
: ζ ∈

(
1

s
ln

(

1 − p̄

A

)

, 0

]}

with

ζ̄ = (ρ + s)(A − c)

N (ρ + s) + ρ + 2s
· 1

ρ + (N + 1)s + √
�

. (18)

Proof First note, null-clines for Eq. (13) are the following. For the first variable (i.e. p) the
null-cline reads

p = A for λ ≥ A − c

s
, p = Ns

N + 1
λ + A + Nc

N + 1
for λ <

A − c

s

(see green thick line in Fig. 1). The null-cline for the second variable reads

λ = 0 for λ ≤ c p = (ρ + 2s)λ + c for λ > c

(see red thick line in Fig. 1). It is easy to see that the slope of the p-null-cline is smaller
than the slope of the line p = λs + c. Thus, the system (13) has exactly one steady state in
the positive quadrant (to which our solution belongs). Moreover, the steady state lies in 	2.
A simple calculation gives (14).

The phase diagram of Eq. (13) is presented in Fig. 1.
In the region 	2, Eq. (13) reads

d

dt

[
λ

p

]

= B2

[
λ

p

]

+ b2, with B2 =
[
(ρ + 2s) −1
Ns2 −(N + 1)s

]

.

Since det B2 < 0, the matrix B2 has two real eigenvalues of opposite signs, so the steady
state is a saddle point.

Let 
1 be a part of the stable manifold of the steady state for p < pOL,∗ and 
2 be a part
of the stable manifold of the steady state for p > pOL,∗. Looking at the phase portrait we
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λ

p

c

sλ + c(ρ + 2s)λ + c

A+Nc
N+1

A

A−c
s

Γ1

Γ2

Ω1

Ω2

Fig. 1 The phase portrait of Eq. (13). Solid red line with vertical bars denotes λ-null-cline. Solid green line
with horizontal bars denotes p-null-cline. Dashed blue line is p = sλ + c that divides the first quarter into
region 	1 (below this line) and 	2 (above it). Dark brown thick lines with arrows denote a stable manifold of
the steady state, while lighter brown thick lines with arrows denote an unstable manifold (Color figure online)

can deduce the following behaviour of the solution to Eq. (13). If the initial point (λ0, p0)
lies left to the stable manifold of the steady state (a thick dark brown line in Fig. 1), then
there exists t̄ > 0 such that λ(t̄) ≤ 0.

On the other hand, if the initial point (λ0, p0) lies right to the stable manifold of the
steady state, then the solution enters eventually the region 	1 with λ > (A− c)/s. Thus, the
asymptotic of the solution as t → +∞ is

λ(t) ∼ c1 e
(ρ+s)t , p(t) ∼ c2 e

−st .

Therefore, λ(t) e−ρt does not converge to 0.
It remains to calculate the stable manifold of the steady state. The stable manifold is

connected with negative eigenvalues of B2, which reads

η = ρ − (N − 1)s − √
�

2
, (19)

for � defined by (17). The eigenvector reads
[

2
ρ + (N + 3)s + √

�.

]

.

Thus, the upper part 
2 of the stable manifold is given by

(λ∗ + 2ζ, pOL,∗ + ζ
(
ρ + (N + 3)s + √

�
)
, ζ ∈ (0,+∞).

In order to find the bottom part of 
1 of the stable manifold we find an intersection of the
curve

(λ∗ − 2ζ, pOL,∗ − ζ
(
ρ + (N + 3)s + √

�
)
, ζ ∈ (0,+∞) (20)
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with the line ρ = sλ + c. This curves intersect at ζ = ζ̄ such that pOL,∗ − sλ∗ − c =
ζ̄
(
ρ + (N + 1)s + √

�
)
. A straightforward calculation leads to (18).

Plugging ζ̄ given by (18) into (20) we obtain

λ̄ = λ∗ − 2ζ̄ = A − c

N (ρ + s) + ρ + 2s
· (N − 1)s − ρ + √

�

ρ + (N + 1)s + √
�

that is Eq. (16), and p̄ = pOL,∗ + ζ̄
(
ρ + (N + 3)s + √

�
)
. A tedious calculation leads

to (15).
Now we calculate the part of stable manifold of the steady state that lies in 	1. In 	1 the

solution to (13) reads

λ(t) = λ0 e
(ρ+s)t , p(t) = A + (p0 − A) e−st .

Taking (λ0, p0) = (λ̄, p̄) and t < 0 we have the part of 
1 ∩ 	1 reads
(
λ̄ e(ρ+s)t , A + ( p̄ − A) e−st

)
, t ∈

(
1

s
ln

(

1 − p̄

A

)

, 0

]

,

which completes the proof. 	

Corollary 1 If (λ0, p0) ∈ 
 then solution p(t) of Eq. (13) is given by the following formulae.
If p0 < p̄ for p̄ given by Eq. (15), then

p(t) =
{
A + ( p̄ − A) e−s(t−t̄) 0 ≤ t < t̄

pOL,∗ + ( p̄ − pOL,∗) eη(t−t̄) t ≥ t̄,
(21)

where

t̄ = 1

s
ln

(
A − p0
A − p̄

)

(22)

and η is given by (19).
If p0 ≥ p̄ then

p(t) = pOL,∗ + (p0 − pOL,∗) eηt . (23)

Now we are ready to formulate theorem considering the symmetric open loop Nash equi-
librium.

Theorem 2 The symmetric open-loop Nash equilibrium strategies qOLi fulfil for a.e. t

qOLi (t) =
{
0 p(t) ≤ p̄

p(t) − c − sλ(t) otherwise
(24)

where p̄ is given by (15).

Proof At a Nash equilibrium every player maximises his payoff treating strategies of the
other players as given. Let us consider a player i . The formula for his optimal strategy qi and
costate variable λi is derived in Lemma 2.

If we consider a symmetric open-loop Nash equilibrium, then all qi are identical, and,
therefore, all the costate variables of players are identical, so at this stage we can skip the
subscript i in λi and substitute q j (t) = qi (t), which implies the state equation becomes
ṗ(t) = s(A − Nqi (t) − p(t)).
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The condition appearing in Eq. (10) splits the first quadrant of (λ, p) plane into two sets:
	1 defined by Eq. (11), and 	2 defined by Eq. (12). Using them, and Theorem 1 we can
deduce that p and q fulfil Eq. (13). 	

Remark 1 We have proved that the steady-state (λ∗, pOL,∗) from the necessary conditions
of each player’s optimization problem is globally asymptotically stable on the set of possible
initial conditions (fulfilling these necessary conditions).

We emphasise this fact, since the previous papers on dynamic oligopolies with infinite
horizon and sticky prices, which considered only steady-state analysis in the open-loop case,
ended the analysis by conclusion that the steady state is a saddle point, which means lack
of stability in the sense of Lapunov. This lack of Lapunov stability was on the whole space
(λ, p) or (q, p). Our calculations, mainly Theorem 1, prove that there is a unique costate
variable λ0 for given p0 for which the necessary conditions are fulfilled and this λ0 places
the pair (λ0, p0) on the stable saddle path, which implies that whatever the initial p0 is, λ, p,
and consequently, q converges to their steady states.

Now, we prove the following Lemma that we will use instead of checking sufficiency
condition for the candidate for optimal control.

Lemma 4 Let us consider any player i and fixed strategies of the remaining players
q j ∈ S OL for j �= i such that the trajectory corresponding to the strategy profile
(q1, . . . , 0, . . . , qN ) (with 0 in the i-th coordinate) is nonnegative. Then the set of optimal
solutions of the optimization problem of player i is a singleton.

Proof The optimal control exists by Balder’s existence Theorem 6 (see section “Existence
of Optimal Solution”).

The necessary condition for qi to be an optimal control is, by (6)

qi (t) ∈ Argmaxqi∈R+

⎡

⎣qi
(
p − c − qi

2

)
+ λi (t)s

⎛

⎝A −
∑

i �= j

q j (t) − qi − p

⎞

⎠

⎤

⎦ ,

therefore, analogously to Theorem 1, we prove that there is a unique path fulfilling the
necessary conditions.

Indeed, thematrix Bwhich appears in the costate-state linear differential equation resulting
from the necessary conditions given by Lemma 1, which has the form

[
λ̇

ṗ

]

= B ·
[
λ

p

]

+ b(t), (25)

where b(t) is a measurable function and

B =
[
ρ + 2s −1
s2 −2

]

has two real eigenvalues η̃1 and η̃2 of opposite signs and the positive one, η̃1, is greater than ρ.
Thus, each solution to (25) is of the form

[
λ̃

p̃

]

+
[
λ̃u
p̃u

]

,

where

[
λ̃

p̃

]

is a solution to a homogenous version of Eq. (25). Because we need to have

λ(t) e−ρt to be bounded and nonnegative (in order the terminal condition to be fulfilled), the
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solution

[
λ̃

p̃

]

has to belong to the subspace of solutions connectedwith negative eigenvalue η̃2.

As this subspace is one dimensional, this solution is chosen uniquely for any given p0. This
yields qi is unique. 	

Theorem 3 There is a unique open-loop Nash equilibrium and it is symmetric.

If p0 < p̄ for p̄ given by (15), then the equilibrium production is given by

qOL(t) =
{
0 t ≤ t̄,
(ρ+s)(A+Nc)+sc
N (ρ+s)+ρ+2s − c +

(
p̄ − sλ̄ − (ρ+s)(A+Nc)+sc

N (ρ+s)+ρ+2s

)
eη(t−t̄) t > t̄,

(26)

where t̄ is given by (22), η is given by (19), p̄ and λ̄ are given by (15) and (16), respectively.
Otherwise,

qOL(t) = (ρ + s)(A + Nc) + sc

N (ρ + s) + ρ + 2s
− c (27)

+
(

p0 − sλ∗ + 2s
pOL,∗ − p0

ρ + (N + 3)s + √
�

− (ρ + s)(A + Nc) + sc

N (ρ + s) + ρ + 2s

)

eηt .

The equilibrium price level is given by Eq. (21) for p0 < p̄ and by Eq. (23) otherwise.

Proof First, we prove uniqueness. By Proposition 1, p(t) is bounded and positive. Besides,
p is a continuous function. Note that the equation for λi is identical for each i :

λ̇i =
{

(ρ + 2s)λi − p(t) + c, p(t) > sλi + c,

(ρ + s)λi , p(t) ≤ sλi + c,
. (28)

Therefore, by Lemma 8, Eq. (28) has at most one solution which is bounded for t ≥ 0,
while all unbounded solutions are either negative or they do not fulfil the terminal condition
λi e−ρt → 0. This implies that every open-loop Nash equilibrium, if it exists, is symmetric.

Further, we calculate the equilibrium. By Corollary 1, for p0 < p̄, p is given by Eq. (21),
while in the opposite case by Eq. (23). Thus, to derive formula for qOL we consider two
cases.

Consider the case p0 < p̄, where p̄ is defined by (15). By Theorem 1, (λ, p) ∈ 
1. Using
this relation, Eq. (21) and equation for qOL, Eq. (24), we deduce that qOL is given by Eq. (26).
On the other hand, if p0 ≥ p̄ then using the same arguments as above and formula Eq. (23)
instead of Eq. (21) we obtain

qOL(t) = pOL,∗ − c − sλ∗ + (p0 − sλ0 − pOL,∗ + sλ∗) eηt

= (ρ + s)(A + Nc) + sc

N (ρ + s) + ρ + 2s
− c +

(

p0 − sλ0 − (ρ + s)(A + Nc) + sc

N (ρ + s) + ρ + 2s

)

eηt

where pOL,∗ and λ∗ are given by Eq. (14). We have (λ0, p0) ∈ 
1 ∩ 	2 and therefore,

λ0 = λ∗ − 2
pOL,∗ − p0

ρ + (N + 3)s + √
�

with � defined in Eq. (19). Therefore, if p0 ≥ p̄, we arrive at Eq. (27).
So we have obtained a candidate for optimal control with the corresponding state and

costate variables trajectories fulfilling the necessary condition. In Lemma 4, we have proved
that there exists a unique optimal control for any strategies of the remaining players such
that the trajectory corresponding to the strategy profile (q1, . . . , 0, . . . , qN ) is nonnegative.
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Therefore, a strategy which fulfils the necessary condition is the only optimal control. Apply-
ing this to all players, together with the fact that there is only one symmetric profile fulfilling
the necessary condition, implies that there is exactly one symmetric Nash equilibrium. 	


4 Feedback Nash Equilibria

We consider the same problem, but with feedback information structure, i.e. players’ strate-
gies dependent on the state variable, price, only. This is a situation in which each firm chooses
the level of production based on a decision rule that depends on the market price. Conse-
quently, the equation determining the price becomes

ṗ(t) = s(P(q1(p(t)), . . . , qN (p(t))) − p(t)) = s

(

A −
N∑

i=1

qi (p(t)) − p(t)

)

, (29)

while the objective function of player i is

J i0,x0(q1, . . . , qN ) =
∫ ∞

0
e−ρt

(

p(t)qi (p(t)) − cqi (p(t)) − qi (p(t))2

2

)

dt. (30)

Generally, to guarantee the existence and uniqueness of the solution to Eq. (29), regularity
assumptions on qi stronger than in the open-loop case are required. Usually, at least continuity
of qi is assumed a priori as a part of definition of a feedback strategy. In Fershtman and
Kamien [19] as well as Cellini and Lambertini [8], even differentiability of qi was assumed
a priori. We shall prove that this assumption is not fulfilled in the case when the initial price
is below a certain level.

It is worth emphasising that assuming even only continuity is in many cases too restrictive,
since it excludes, among others, so called bang-bang solutions, which are often optimal.
Therefore, the only thing we assume a priori besides measurability is that a solution to
Eq. (29) exists for initial conditions in [c,+∞) and it is unique (if a solution is not continuous
at certain point we assume Eq. (29) holds almost everywhere). As the symbol of all feedback
strategies we use S F.

Here, we want to mention that in some works this form of information structure and,
consequently, strategies is called closed loop. In this paper, as in most papers, we shall
understand by closed-loop information structure as consisting of both time and state variable,
so using the notation of closed-loop strategy qi (t, p)we can encompass, as trivial cases, both
open loop and feedback strategies.

We can formulate the following result.

Theorem 4 Let

p̃ = c + sh

1 − sk
(31)

and

t̃ = ln(A − p0) − ln(A − p̃)

s
(32)

with

k = ρ + 2s(N + 1) −√ρ2 + 4s(ρ + Nρ + N 2s + 2s)

2s2(2N − 1)
, (33)
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h = sk(A + Nc) − c

ρ + s(1 + N − sk(2N − 1))
. (34)

The feedback equilibrium is defined by

qF(p) =
{
p(1 − sk) − c − sh if p > p̃ = c+sh

1−sk

0 otherwise,
(35)

while the corresponding price trajectory is defined by

pF(t) =

⎧
⎪⎪⎨

⎪⎪⎩

[
p0 − A+N (c+sh)

N (1−sk)+1

]
es(Nsk−N−1)t + A+N (c+sh)

N (1−sk)+1 if p0 ≥ p̃

A + (p0 − A)e−st if p0 < p̃ and t ≤ t̃[
p̃ − A+N (c+sh)

N (1−sk)+1

]
es(Nsk−N−1)(t−t̃) + A+N (c+sh)

N (1−sk)+1 if p0 < p̃ and t > t̃ .

(36)

To prove Theorem 4, we need the following sequence of lemmata.

Lemma 5 (a) Consider a dynamic optimization problem of a player i with the feedback
information structure, with dynamics of prices described by (29) and the objective func-
tion (30), but with the set of possible control parameters available at a price p extended
to some interval [−B|p| − b, B|p| + b], with some constants B, b > 0.
Assume that the strategies of the remaining players are described by q̂(p) = p(1−sk)−
c − sh for constants k, h given by (33) and (34), respectively, and g given by

g = c2 − sh(sh − 2A − 2N (c + sh))

2ρ
. (37)

Then, there exists B, b > 0 such that the quadratic function

Vi (p) = kp2

2
+ hp + g

is the value function of this optimization problem, while q̂ is the optimal control.
(b) For these B, b, qi ≡ q̂ for ki = k, hi = h defines a symmetric feedback Nash equilibrium.

Moreover, equality q̂( p̃) = 0 holds.
The corresponding price level fulfils

pF(t) =
[

p0 − A + N (c + sh)

N (1 − sk) + 1

]

es(Nsk−N−1)t + A + N (c + sh)

N (1 − sk) + 1
. (38)

Proof Assume that some quadratic function (with unknown constants)

Vi (p) = ki p2

2
+ hi p + gi ,

is the value function of optimization problem of a player i .
To prove this, we use a standard textbook sufficient condition stating that if a C1 func-

tion Vi fulfils the infinite horizon Bellman equation for problems with discounting (see e.g.
Zabczyk [30])

ρVi (p) = max
qi

⎧
⎨

⎩
qi ·
[

p − c − 1

2
qi

]

+ dVi (p)

dp
· s ·

⎡

⎣A −
N∑

j=1

q j − p

⎤

⎦

⎫
⎬

⎭
(39)

with a terminal condition saying that for every admissible trajectory p

lim sup
t→+∞

e−ρt Vi (p(t)) = 0, (40)
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then it is the value function of the optimization problem of a player i at a feedback Nash
equilibrium and the qi (p) at which the maxima attained define the optimal control.

The maximum of the right-hand side of the Bellman Eq. (39) is attained at

qcandi (p) = p − c − s
dVi (p)

dp
= p − c − s(ki p + hi ). (41)

Because we only look at symmetric equilibria, let us assume that gi ≡ g, ki ≡ k, hi ≡ h and
qi ≡ qcand. We can rewrite (39) as

ρV (p) = max
qi

{

qi ·
(

p − c − 1

2
qi

)

+ dV

dp
· s ·

(

A −
N∑

i=1

qi − p

)}

= 0. (42)

Now let us substitute qcandi calculated in (41) into (42). After ordering we get

k[ρ + s(2 + sk + 2N (1 − sk))] − 1

2
p2

+ [c + h(ρ + s + sN ) − sk(A − sh + N (c + 2sh))] p +
+2ρg − c2 + sh(sh − 2A − 2N (c + sh))

2
= 0.

The above equation is satisfied for all values of p if and only if all coefficients are equal to
zero. Therefore, we get the following system of three equations with three variables (g, k
and h):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

k[ρ + s(2 + sk + 2N (1 − sk))] − 1

2
= 0,

c + h(ρ + s + sN ) − sk(A − sh + N (c + 2sh)) = 0,

2ρg − c2 + sh(sh − 2A − 2N (c + sh))

2
= 0.

Solving this system, we obtain
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

g = c2 − sh(sh − 2A − 2N (c + sh))

2ρ
,

k = ρ + 2s(N + 1) ±√ρ2 + 4s(ρ + Nρ + N 2s + 2s)

2s2(2N − 1)
,

h = sk(A + Nc) − c

ρ + s(1 + N − sk(2N − 1))
.

We consider the case with minus before square root in the expression for k (since, unlike the
other one, it can imply fulfilment of the terminal condition (40)), andwe obtain formulae (37),
(34) and (33).

The price corresponding to qcand calculated in (41) is

pcand(t) =
[

p0 − A + N (c + sh)

N (1 − sk) + 1

]

es(Nsk−N−1)t + A + N (c + sh)

N (1 − sk) + 1

for k and h defined by (33) and (34), respectively.
Note that 2s(Nsk−N −1)t ≤ ρ, which implies that eρt V (pcand(t)) → 0. Therefore, we

can take B = 1− sk + ε for a small ε (we can easily check that 1− sk > 0) and an arbitrary
b > |c + sh|, then we have both eρt V (p(t)) → 0 for every admissible trajectory, which
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means that the terminal condition (40) is fulfilled and qcand belongs to the set of admissible
controls |qi | ≤ B|p| + b. This ends the proof of (a).

The point (b) follows immediately. 	


Lemma 6 (a) Consider a dynamic optimization problem of a player i with feedback infor-
mation structure. Assume that the strategies of the remaining players are described by
q̂(p) = p(1 − sk) − c − sh for k, h defined by (33) and (34), respectively.
For p ≥ p̃, where p̃ is defined by (31) the value function fulfils Vi (p) = V+

i (p) for

V+
i = kp2

2 + hp + q defined in Lemma 5, while the optimal control is

qi (p) = qcand(p)

(b) The equation

qi (p) = qcand(p) for p ≥ p̃,

holds at a symmetric Nash equilibrium.

Proof (a) If the remaining players choose qcand, then qcand is the optimal control over a larger
class of controls, since [−B|p|−b, B|p|+b] contains [0, qmax] (by Proposition 1, this set
of control parameters leads to results equivalent to the initial case with the set of control
parameters R+). By (38), if p0 ≥ p̃, then for all t ≥ 0, the corresponding trajectory
fulfils p(t) ≥ p̃. The price p̃ is the threshold price such that for p ≥ p̃, qcand ≥ 0,
otherwise it is negative.
To conclude, the optimal control for analogous optimization problem with larger set of
controls is in this case contained in our set of controls, so it is optimal in our optimization
problem.
The point (b) follows immediately. 	


Lemma 7 (a) Consider a dynamic optimization problem of a player i with feedback infor-
mation structure. Assume that the strategies of the remaining players are qFi defined by
Eq. (35).
If the optimal control of a player i is also given by (35) , then the value function fulfils

Vi (p) =
⎧
⎨

⎩

kp2

2 + hp + g for p ≥ p̃,

(A − p)−
ρ
s (A − p̃)

ρ
s

(
k p̃2

2 + h p̃ + g
)

otherwise.
(43)

(b) The function Vi defined this way is continuous and continuously differentiable.

Proof (a) In this case the set of qi for which the maximum of right-hand side of the Bellman
Eq. (39) is calculated is [0, qmax].
By Lemma 6, for p ≥ p̃, the value function fulfils Vi (p) = V+

i (p) = k p̃2

2 + h p̃+ g and
the optimal control for these p coincides with qFi .
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If we take p < p̃ and we substitute qFi , we get that

Vi (p) =
∫ t̃

0
e−ρt

(

(pF(t) − c)qFi (pF(t)) − qFi (pF(t))2

2

)

dt

+
∫ ∞

t̃
e−ρt

(

(pF(t) − c)qFi (pF(t)) − qFi (pF(t))2

2

)

dt

=
∫ t̃

0
0dt +

∫ ∞

t̃
e−ρt

(

(pF(t) − c)qFi (pF(t)) − qFi (pF(t))2

2

)

dt

= e−ρ t̃ Vi ( p̃),

for t̃ defined by (32).
Let us introduce another auxiliary function V−

i defined on [c, A) by

V−
i (p) = (A − p)−

ρ
s (A − p̃)

ρ
s
(
V+
i ( p̃)

)
(44)

and consider also V+
i as a function defined on [c, A).

The fact that proposed qi is optimal, results in the value function

Vi (p) =
{
V+
i if p ≥ p̃

V−
i otherwise.

(45)

(b) Continuity is immediate, while to prove continuous differentiability we have to check
whether the function Vi defined by (43) is C1 at p̃, which is equivalent to equality of
derivatives of V+

i and V−
i at p̃:

(V+
i ( p̃))′ = (V−

i ( p̃))′ = ρ

s

V+
i ( p̃)

A − p̃
. (46)

Checking it does not require a dull substitution of predefined constants, since by the
Bellman equation derived in Lemmas 5 and 6 and the fact that the maximum in the
Bellman equation for p = p̃ is attained at 0, ρV+

i ( p̃) = (V+
i ( p̃))′s(A − p̃).

Thus, Eq. (46) is equivalent to (V+
i ( p̃))′ = 1

s
(V+

i ( p̃))′s(A− p̃)
A− p̃ , which reduces to the

required equality. 	

Proof (of Theorem 4) Fix player i and assume all the other players choose strategies qFi .
Since the candidate function Vi defined by Eq. (43) is C1, we can use the standard technique
of Bellman equation to prove that

qFi =
{
p − c − s

dV+
i (p)
dp = p − c − s(kp + h) if p ≥ p̃,

0 otherwise,
(47)

is a symmetric feedback Nash equilibrium strategy and Vi is the value function.
First, we have to prove that the Bellman equation is fulfilled and qFi (p) maximises the

right-hand side of the Bellman equation. For p ≥ p̃ it has been already proved in Lemma 6.
We have to prove it also for p < p̃. Let us define

z(p) = Argmaxqi∈R

⎛

⎝(p − c)qi − q2i
2

+ (V−
i (p))′s(A − p − qi −

∑

j �=i

q j (p))

⎞

⎠ .
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Obviously, z(p) = p−c−(V−
i (p))′s. This function is strictly concave on the interval [c, A),

negative at c and in a neighbourhood of A and 0 at p̃.
If we show that the derivative of z at p̃ is positive, it means that for p ∈ [c, p̃], z is strictly

increasing, which implies that for all p < p̃,

Argmaxqi≥0

⎛

⎝(p − c)qi − q2i
2

+ dVi (p)

dp
s(A − p − qi −

∑

j �=i

q j (p))

⎞

⎠ = 0.

Indeed, we have z′( p̃) = 1 − (V−
i ( p̃))′′s = 1 − ρ

s

(
ρ
s + 1

) V+
i ( p̃)

(A− p̃)2
s. By Bellman equation

for p̃, proven in Lemmata 5 and 6, ρV+
i ( p̃) = (V+

i ( p̃))′s(A − p̃), which reduces the above

to z′( p̃) = 1 − ( ρ
s + 1

) (V+
i ( p̃))′

(A− p̃) s.

By Lemma 6(b), we have (V+
i ( p̃))′s = p̃ − c. Therefore, the inequality z′( p̃) ≥ 0 is

equivalent to

p̃ − c

A − p̃
≤ s

ρ + s
.

Plugging the definition of p̃ into the above inequality we arrive at

0 ≤ 1

ρ + s
− h + ck

A − c − s(h + Ak)
. (48)

Using the definition of k and h, after some algebraic manipulation, we conclude that the
right-hand side of (48) is equal to

(Ns + ρ)
(
2(N − 2)s − ρ +

√
4
(
N 2 + 2

)
s2 + 4(N + 1)sρ + ρ2

)

s(s + ρ)
(
(N − 1)

√
4
(
N 2 + 2

)
s2 + 4(N + 1)sρ + ρ2 + 2((N − 1)N + 1)s + (3N − 1)ρ

) .

Clearly, ρ <

√
4
(
N 2 + 2

)
s2 + 4(N + 1)sρ + ρ2, and therefore, inequality (48) holds for

all N ≥ 2.
The terminal condition for the optimization problem is also fulfilled. First, the set of

prices is bounded from above, therefore limsupt→∞Vi (p(t)) e−ρt ≤ 0. On the other hand,
qi ∈ [0, qmax], therefore, ṗ ≥ s(A−Nqmax− p). Hence, p(t) ≥ c1+c2 e−st , which implies
that limsupt→∞Vi (p(t)) e−ρt ≥ 0.

Now, let us calculate the trajectory of the price corresponding to the symmetric Nash
equilibrium we have just determined. We start from the first case in Eq. (36): p(0) = p0 is
such that p0 ≥ p̃.

After substituting qFi calculated in (47) into (29) we obtain

ṗ = s
[
p̂ − p

] = s ·
(

A −
N∑

i=1

q∗
i − p

)

= [s(Nsk − N − 1)] p + s(A + Nc + Nsh).

Solving the above equation with the initial condition p(0) = p0 we get

pF =
[

p0 − A + N (c + sh)

N (1 − sk) + 1

]

es(Nsk−N−1)t + A + N (c + sh)

N (1 − sk) + 1
, (49)

where k and h are given by (33) and (34), respectively.
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Now, let us consider the second case in which the initial condition p(0) = p0 such that
p0 ≤ p̃ and time before reaching p = p̃. After substituting qFi (p) = 0 into (29) we obtain

ṗ = s
[
p̂ − p

] = s ·
(

A −
N∑

i=1

qFi − p

)

= s · (A − p) .

Solving the above equation with the initial condition p(0) = p0 with p0 < p̃ we get

pF(t) = A + (p0 − A)e−st . (50)

up to time t̃ in which p(t) reaches p̃. Solving A + (p0 − A)e−st̃ = p̃ we obtain Eq. (32).
Afterwards, the solution behaves according to formula (49) with p0 = p̃ and t replaced by
t − t̃ , which immediately leads to the required formula. This completes the proof. 	


5 Relations and Comparison

In this section we compare two classes of equilibria for various values of parameters.
First it is obvious that whatever the initial condition is, the open loop Nash equilibrium is

not a degenerate feedback equilibrium. We obtain it immediately by the fact that the steady
states of the state variable—price—for open loop and feedback equilibrium are different and
globally asymptotically stable.

5.1 Asymptotic Values of the Nash Equilibria with Very Slow and Very Fast Price
Adjustment

Consider the asymptotic of the Nash equilibria for s → 0 and s → +∞.
For the open-loop case, the asymptotic price level is pOL,∗ given by (14), while from (26)

we deduce that the asymptotic production level is

qOL,∗ = (ρ + s)(A + Nc) + sc

N (ρ + s) + ρ + 2s
− c.

Letting s → 0 we easily obtain

lim
s→0

pOL,∗ = lim
s→0

Nc(ρ + s) + A(ρ + 2s)

ρ(N + 1) + s(N + 2)
= Nc + A

N + 1
,

and

lim
s→0

qOL,∗ = lim
s→0

(ρ + s)(A + Nc) + sc

N (ρ + s) + ρ + 2s
− c = A + Nc

N + 1
− c = A − c

N + 1
.

Note, that it is equal to pComp and qComp, respectively. On the other hand, if we consider s
very large, we obtain

lim
s→∞ pOL,∗ = lim

s→+∞
Nc(ρ + s) + A(ρ + 2s)

ρ(N + 1) + s(N + 2)
= Nc + 2A

N + 2
= pCN,
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and

lim
s→∞ qOL,∗ = lim

s→+∞
(ρ + s)(A + Nc) + sc

N (ρ + s) + ρ + 2s
− c = A + Nc + c

N + 2
− c = A − c

N + 2
= pCN.

Now, consider the feedback case. From (36) we deduce

lim
t→+∞ pF(t) = pF,∗ = A + N (c + sh)

N (1 − sk) + 1
.

Using (35) we have

lim
t→+∞ qF(t) = qF,∗ = A + N (c + sh)

N (1 − sk) + 1
(1 − sk) − c − sh.

First, we rewrite k eliminating the minus sign before the square root. We have

k = 2

ρ + 2s(N + 1) +√ρ2 + 4s(ρ + Nρ + N 2s + 2s)
.

It is easy to see k → 1/ρ and therefore, h → −c/ρ as s → 0. Now we can deduce that

lim
s→0

pF,∗ = A + Nc

N + 1
= pComp,

while

lim
s→0

qF,∗ = A − c

N + 1
= qComp.

The case s → +∞ is more complicated. First, we calculate the asymptotic behaviour of sk
as s → +∞.

lim
s→+∞ sk = 1

N + 1 + √
N 2 + 2

.

Plugging this into the expression (34) for h we obtain

lim
s→+∞ sh = A − c

(
1 + √

N 2 + 2
)

(
N + 1 + √

N 2 + 2
)√

N 2 + 2
.

Using these two expressions we can deduce

lim
s→+∞ pF,∗ =

A + N

(

c + A −c
(
1+√

N2+2
)

(
N+1+√

N2+2

)√
N2+2

)

N
(
1 − 1

N+1+√
N2+2

)
+ 1

.

Multiplying the numerator and the denominator by (N + 1 + √
N 2 + 2)

√
N 2 + 2 and col-

lecting terms with
√
N 2 + 2 we obtain

lim
s→+∞ pF,∗ =

(N 2 + 2)(A + Nc) + N (A − c) +
(
(A + Nc)(N + 1) − Nc

)√
N 2 + 2

(N 2 + 2)(N + 1) + (N 2 + N + 1)
√
N 2 + 2

.
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Fig. 2 Open loop and feedback equilibria for the same initial price, the parameters given by (51) and s = 0.2,
N = 10. Open-loop equilibriummarked with a thick solid blue line, feedback equilibriummarked with a thick
dashed red line. Production levels of the static Cournot equilibrium and the static competitive equilibrium
marked with thin dashed lines for comparison (Color figure online)

Removing the square root from the denominator, we obtain

lim
s→+∞ pF,∗ = (N 2 + 2)(A + N (c + A)) − N (N − 1)(A − c)

√
N 2 + 2

(N 2 + 2)(2N + 1)
.

Using (36) we obtain

lim
s→+∞ qF,∗ =

(A − c)
(
N 2 + 2 + (N + 1)

√
N 2 + 2

)

(N 2 + 2)(2N + 1)
.

5.2 Graphical Illustration

In this section we present the results graphically. We compare the open loop and feed-
back solutions in various aspects of the model, taking influence of changing parameters into
account. We fix the following parameters:

A = 10, c = 1, ρ = 0.15. (51)

We check dependence of optimal solutions on parameters describing price stickiness, s, and
the number of firms, N .

5.2.1 Relations Between Open Loop and Feedback Equilibria

As we can see in Fig. 2, time at which firms start production is shorter in the feedback case,
t̃ < t̄ . After t̃ at each time, instant production at the feedback Nash equilibrium is larger than
at the open-loop Nash equilibrium, while the price is smaller (see Fig. 3).
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Fig. 3 Open loop and feedback equilibrium price levels for the same initial price, the parameters given by (51)
and s = 0.2, N = 10. Open-loop equilibriummarkedwith a thick solid blue line, feedback equilibriummarked
with a thick dashed red line. Production levels of the static Cournot equilibrium and the static competitive
equilibrium marked with thin dashed lines for comparison (Color figure online)

It implies that the feedback Nash equilibrium ensures higher utility to the consumers,
while open-loop Nash equilibrium yields higher profits to the producers. In other words, the
feedback Nash equilibrium is more competitive, which is a result consistent with the previous
literature, among others, Fershtman and Kamien [19] and Cellini and Lambertini [9].

The reason for the difference between these two types of equilibria results from the way in
which players perceive the influence of their current decisions about production level on future
trajectory of prices. In the feedback case, every player has to take into account the fact that
his/her current decision affects future trajectory of prices not only directly, but also indirectly,
since it affects future decisions of the remaining players, which in the feedback case is
dependent on the market price. Therefore, there are two contradictory effects: negative effect
that increase of his/her production has on future prices, and indirect inverse effect, resulting
from the fact that the other players’ production level is an increasing function of prices. In this
second effect an increase of player’s production, by resulting in a decrease of future price,
indirectly decreases the other players’ future production decisions. Consequently, as a sum
of two effects of opposite signs, the resulting decrease of prices is smaller. In the open-loop
case, in which only direct influence on future prices is considered in players’ optimization
problems, such an inverse effect does not take place.

5.2.2 Dependence on the Number of Firms

As we can see in Figs. 4 and 5, production starts earlier as the number of firms increases.
Production of a single firm converges to the steady state, which becomes smaller as the
number of firms increases, but the initial production growth is faster, which results in an
intersection of trajectories for these two cases. Therefore, a production for larger N is first
below the respective production for a smaller N , but later the relation changes in both open
loop and feedback cases.
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Fig. 4 Open loop and feedback equilibrium production as the number of firms increases. Open-loop equilib-
rium production for N = 2 and N = 10 marked with a solid blue line and a solid dark blue line, respectively.
Feedback equilibrium production for N = 2 and N = 10 marked with a dashed red line and a dashed dark
red line, respectively. Others parameters are given by (51), and s = 0.25 (Color figure online)
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Fig. 5 Open loop and feedback equilibrium aggregate production as the number of firms increases. Open-loop
equilibrium aggregate production for N = 2 and N = 10 marked with a solid blue line and a solid dark blue
line, respectively. Feedback equilibrium aggregate production for N = 2 and N = 10 marked with a dashed
red line and a dashed dark red line, respectively. Others parameters are given by (51), and s = 0.25 (Color
figure online)

Nevertheless, there is no such intersection for aggregate production or price, we can see
in Figs. 5 and 6: aggregate production increases with N, while price decreases. So, as the
number of firms increases, we have both decrease of individual production but increase in
aggregate production.
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Fig. 6 Open loop and feedback equilibrium price levels as the number of firms increases. Open-loop equilib-
rium price levels for N = 4 and N = 10 marked with a solid blue line and a solid dark blue line, respectively.
Feedback equilibrium price levels for N = 4 and N = 10 marked with a dashed red line and a dashed dark
red line, respectively. Others parameters are given by (51), and s = 0.25 (Color figure online)
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Fig. 7 Dependence of the asymptotic (as t → +∞) of the production level (in the left-hand side panel)
and the price level (in the right-hand side panel) in the Nash equilibrium on the number of firms N . The
open-loop case is marked with a solid blue line, while the feedback case is marked with a red dashed line.
Others parameters are given by (51), and s = 0.25 (Color figure online)

Another thing that we can illustrate graphically is the asymptotic behaviour of price and
production, presented in Fig. 7, as well as the difference between feedback and open-loop
production as a function of the number of firms, presented in Fig. 8.

5.2.3 Dependence on the Speed of Adjustment

If we consider growth of s, the steady-state production increases, while the steady-state price
decreases, aswe can see in Fig. 9 and 10. The decrease concerns thewhole trajectory of prices.
Conversely, Fig. 9 also shows that the relation between production levels changes over time.
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Fig. 9 Open loop and feedback equilibria as the speed of adjustment increases. Open-loop equilibrium for
s = 0.25 and s = 0.9 marked with a solid blue line and a solid dark blue line, respectively. Feedback
equilibrium for s = 0.25 and s = 0.9 marked with a dashed red line and a dashed dark red line, respectively.
Production levels of the static Cournot equilibrium and the static competitive equilibrium marked with thin
dashed lines for comparison. Others parameters are given by (51), and N = 4 (Color figure online)

First, the growth is faster, then there is an intersection of trajectories and convergence to
a lower steady state for larger s.

The steady-state levels converge as s → ∞: for the open-loop case to the static Cournot-
Nash equilibrium, for the feedback case to a level between the competitive and Cournot-Nash
equilibria. Fig. 11 shows how the steady-state production and price depend on price stickiness.
Dependence of the steady state on s can also be read from Fig. 8 in which joint dependence
on N and s is presented.
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Fig. 10 Open loop and feedback equilibrium price levels as the speed of adjustment increases. Open-loop
equilibrium for s = 0.25 and s = 0.9 marked with a solid blue line and a solid dark blue line, respectively.
Feedback equilibrium for s = 0.25 and s = 0.9 marked with a dashed red line and a dashed dark red
line, respectively. Prices of the static Cournot equilibrium and the static competitive equilibrium marked with
dashed lines for comparison. Others parameters are given by (51), and N = 4 (Color figure online)
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loop case is marked with a solid blue line, while the feedback case is marked with a red dashed line. Others
parameters are given by (51), and N = 4 (Color figure online)

Conclusions

In this paper we study amodel of oligopoly with sticky prices performing a complete analysis
of trajectories of production and prices at symmetric open loop and feedback Nash equilibria.
We consider not only constant trajectories, resulting from assuming that initial values are
steady states of these equilibria, respectively, but also all admissible Nash equilibrium trajec-
tories. This allows us to compare two approaches in a way similar to comparisons observed in
the real life, in which it makes sense to compare only trajectories of both kinds of equilibria
starting from the same initial value. It also allows us to find interesting properties which
cannot be observed when only the steady-state behaviour is analysed, like intersection of
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trajectories of production level for various number of firms or speed of adjustment. In both
cases for larger value of the parameter considered, there was first faster increase of production
and afterwards convergence to a lower steady state.

We also proved, by refining previous results, that the steady state in the open-loop case,
is, as in the feedback case, globally asymptotically stable.
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Appendix: Open loop—existence of optimal solution and appropriate necessary
conditions for infinite horizon optimal control problem

In this section we formulate the necessary condition, analogous to the core Pontryagin prin-
ciple for finite time horizon, in the case of infinite time horizon.

We consider an optimal control problem with the state space X ⊆ R
n , the set of control

parametersU ⊆ R
m and the open-loop information structure, i.e. the set of open-loop control

functionsU OL = {u : R+ → U measurable}. As the objective we consider maximisation of

J0,x0(u) =
∫ ∞

t=0
e−ρt g(t, x(t), u(t))dt, (52)

where the trajectory x is the trajectory corresponding to u and it is defined by
{
ẋ(t) = f (t, x(t), u(t)) for t > 0,

x(0) = x0,
(53)

the discount rate isρ > 0, and the integration denotes integrationwith respect to the Lebesgue
measure.

We assume a priori that the functions g and f are such that the objective function is finite
for every u ∈ U OL and the corresponding trajectory x .

An absolutely continuous function x : R+ → X being a solution to the system (53) with
u ∈ U OL is called admissible trajectory corresponding to u.

We denote this dynamic optimization problem by (P).
In all further results we assume that both sets U and X are nonempty, U is compact, and

the functions f : R+ × X × U → R
n , and g : R+ × X × U → R are measurable.

Any pair (u, x), where u is a control and x is an admissible trajectory corresponding to
it, is called an admissible solution.

A pair (u∗, x∗) is called an optimal solution of the problem (P) if it is an admissible solu-
tion, and the value of J0,x0(u

∗) is maximal, that is J0,x0(u) ≤ J0,x0(u
∗) for every admissible

solution (u, x).

Aseev and Veliov Extension of the Pontryagin Maximum Principle

Herewe cite themaximumPontryagin principle for the problem (P), which is infinite horizon,
nonautonomous, discounted dynamic optimization problem. As it has beenmentioned before
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(see Sect. 3), the maximum principle, especially the terminal condition limt→∞ λ(t) e−ρt =
0, is not necessary in such a problem.

Results that can be applicable in this paper were proved by Aseev and Veliov [3,4]. First,
we formulate four suitable assumptions: Consider the dynamic optimization problem (P) and
let (u∗, x∗) be an optimal solution to it.

(1) The functions f and g and their partial derivatives with respect to x are continuous in
(x, u) for every fixed t and uniformly bounded as functions of t over every bounded
set of (x, u).

(2) There exist numbers μ, r, κ, c1 ≥ 0 and β > 0 such that for every t ≥ 0

(i) ‖x∗(t)‖ ≤ c1 eμt and
(ii) for every control u for which the Lebesgue measure of {t : u(t) �= u∗(t)} ≤ β, the

corresponding trajectory exists on R+ and ‖ ∂g(t,y,u∗(y))
∂x ‖ ≤ κ(1+‖y‖r ) for every

y ∈ conv{x(t), x∗(t)}, where conv denotes the convex hull.

(3) There are numbers η ∈ R, γ > 0 and c2 ≥ 0 such that for every ζ ∈ X with
‖ζ − x0‖ < γ Eq. (53) with initial condition replaced by x(0) = ζ has a solution xζ

defined on R+, such that xζ (t) ∈ X, for all t ≥ 0, and

‖xζ (t) − x∗(t)‖ ≤ c2‖ζ − x0‖ eηt .

(4) ρ > η + r max{η,μ} for r, η, μ from (2) and (3).

The formulation of necessary conditions uses a hamiltonian function H and an adjoint
variable ψ .

Definition 1 The hamiltonian is a function H : R+ × X × U × R
n → R such that

H(t, x, u, ψ) = 〈 f (x, u), ψ〉 + e−ρt g(x, u),

where 〈·, ·〉 denotes the inner product in R
n .

Definition 2 For an admissible solution (u∗, x∗) an absolutely continuous function ψ :
R+ → R

n is called an adjoint (or costate) variable corresponding to (x∗, u∗), if it is a solution
to the following system

ψ̇(t) = −
[

∂ f (t, x∗(t), u∗(t))
∂x

]∗
ψ(t) − e−ρt ∂g(t, x

∗(t), u∗(t))
∂x

, for a.e. t ≥ 0. (54)

Definition 3 We say that an admissible pair (x∗, u∗) together with an adjoint variable ψ∗
corresponding to (x∗, u∗), satisfy the core relations of the normal-form Pontryaginmaximum
principle for the problem (P), if the following maximum condition holds on [0,+∞)

u∗(t) ∈ Argmaxu∈U H(t, x∗(t), u, ψ(t)) for a.e. t. (55)

Let us turn to the main part of this section—the definition of the Pontryagin maximum
principle for the infinite time horizon:

Theorem 5 (Aseev-Veliov maximum principle) Suppose that the conditions (1)–(4) are sat-
isfied and (x∗, u∗) is an optimal solution2 for problem (P). Then there exists an adjoint
variable ψ∗ corresponding to (x∗, u∗) such that

2 In fact Aseev and Veliov in [3,4] used the concept of locally weakly optimal solution, which is one of
possible extensions of the concept of optimality when infinite payoffs are not excluded. In the case of our
paper it is equivalent to optimality.



Dyn Games Appl (2015) 5:568–598 595

(i) (x∗, u∗), together with ψ∗ satisfy the core relations of the normal-form Pontryagin
maximum principle,

(ii) for every t ≥ 0 the integral

I ∗(t) =
∞∫

t

e−ρw
[
Z(x∗,u∗)(w)

]−1 ∂g(w, x∗(w), u∗(w))

∂x
dw,

where Z(x∗,u∗)(t) is the normalised fundamental matrix of the following linear system

ż(t) = −∂ f (t, x∗(t), u∗(t))
∂x

z(t),

converges absolutely and
(iii) ψ∗(t) = Z(x∗,u∗)(t)I ∗(t).

Existence of Optimal Solution

We use the existence theorem of Balder [5, Theorem 3.6], which we cite in a simplified form,
suiting our model in which both state and control variables sets are constant, not coupled,
and the initial condition is fixed.

(A) For all t ≥ 0 f (t, ·, ·) is continuous, g(t, ·, ·) is upper semicontinuous with respect
to (x, u) and the sets X and U are closed.

(B) For all x ∈ X, and t ∈ R
+, the set

Q(t, x) = {(z0, z) ∈ R
n+1 : z0 ≤ g(t, x, u) e−ρt , z = f (t, x, u), u ∈ U}

(a) is convex, and

(b) Q(t, x) =
⋂

δ>0

cl

( ⋃

|x−y|≤δ

Q(t, y)

)

, where cl(Q) is a closure of the set Q.

(C) There exists a constant α ∈ R such that the set of admissible pairs

	α = {(x, u)admissible pairs : J0,x0(u) ≥ α
}

is nonempty, { f (·, x(·)), u(·)|[0,T ] : (x, u) ∈ 	α} is uniformly integrable for each
T ≥ 0, and

G = {g+(·, x(·), u(·)) e−ρ· : (x, u) ∈ 	α}
(where g+ denotes max{0, g}), is strongly uniformly integrable, that is for every
ε > 0 there exists h ∈ L+

1 (R+) such that

sup
ζ∈G

∫

{t :|ζ(t)|≥h}
|ζ(t)|dt ≤ ε.

Theorem 6 (Balder) If conditions (A)–(C) are fulfilled, then there exists an optimal pair
(x∗, u∗) for the problem (P).

Checking Assumptions for Theorem 5 for the Model Described in Sect. 2

Before checking the assumptions of Theorems 5 and 6, we want to be able to restrict sets of
control and state variables.

The set of control variables is unbounded. However, it is convenient to have bounded
prices.
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Proposition 1 The set of Nash equilibria remains unchanged if we consider the model with
sets of players’ control parameters of the form [0, qmax] and set of possible prices [0, pmax],
(0, pmax) or [c, pmax] for sufficiently large qmax and pmax .

Proof If we assume that prices are nonnegative and bounded from above by some pmax,
a problem of optimization of payoff of player i has the same solutions as the problem in
which the set of controls of player i is [0, qmax] for some large qmax, since for qi → ∞ the
instantaneous payoff is negative, while for 0 it is 0, due to the form of payoff functional (2)..

The set of prices, without any prior constraints equal to R, can be obviously replaced by
(−∞, pmax] since for p0 > A every admissible trajectory is contained in (−∞, p0], due
to (1).

The next step is to restrict the set of admissible trajectories to [c, pmax], which implies
the remaining two. Although the Eq. (1) of price stickiness, written as it is, can lead even to
negative prices, prices below c can never happen at equilibrium.

Indeed, let us assume that the price at some time instant t is below c. Let us denote by t̄
a time instant before t at which price is c and such that in the time interval [t̄, t], p is not
greater than c. Then the optimal strategy of every player is 0 at a.e. point in [t̄, t], due to (2).
This implies that ṗ(t) > 0 at this interval; therefore, values below c cannot be reached. 	


Let us consider optimization problem of player i given open-loop strategies of the remain-
ing players q j with qi (t), q j (t) ∈ [0, qmax]. We check whether the conditions (1)–(3) which
are given in section “Aseev and Veliov extension of the Pontryagin Maximum Principle” are
satisfied.

(I) The function g(t, p, qi ) = (p−c)qi− q2i
2 and f (t, p, qi ) = s

(
A−p−qi−∑

j �=i
q j (t)

)
.

For all t both functions and their derivatives with respect to p are continuous in
(p, qi ). The function g is independent of time, therefore uniformly bounded, while
uniform boundedness of f is implied by the fact that q j (t) is uniformly bounded.

(II) (i) Since ‖p‖ ≤ pmax, c1 = pmax, μ = 0;
(ii) For every control qi the corresponding trajectory exists for on R+ and

‖ ∂g(t,p,qi (t))
∂p ‖=‖qi (t)‖ ≤ qmax(1+‖y‖)0 for every y, therefore,κ =qmax, r =0.

(III) It is easy to calculate

‖pζ (t) − p∗(t)‖ = ‖ζ e−st + e−st
∫ t

0
esw u∗(w)dw − (p0 e

−st

+ e−st
∫ t

0
esw u∗(w)dw)‖

= ‖ζ − p0‖ e−st ,

therefore c2 = 1, η = −s and γ is arbitrary.
(IV) The condition ρ > η + r max{η,μ} for our constants reduces to ρ > −s, which is

obviously fulfilled.

Checking Assumptions for Theorem 6 for the Model Described in Sect. 2

(a) This assumption is obviously fulfilled.

(b) The set Q(t, p) =
{
(z0, z) ∈ R

2 : z0 ≤ qi · [p − c − 1
2qi
]
, z = s · [A − p − Nqi ],

qi ∈ [0, qmax ]
}
. It is convex and Q(t, p) =⋂δ>0 cl

⋃
|p−y|≤δ Q(t, y).
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(c) We take α = 0, and 	0 =
{
(p, qi ) : qi corresponding to qi , J i0,x0(qi ) ≥ 0

}
is non-

empty since qi ≡ 0 is always available. For every admissible trajectory ṗ(t) ∈
[s(A− p−Nqmax), s(A− p)], therefore, p(t) ∈ [p0+c1 e−st , p0+c2 e−st ]. Besides
qi ∈ [0, qmax]. Both p and q are measurable. This implies that f (·, p(·), qi (·)) for
all (p, qi ) is uniformly integrable on every finite interval.
Similarly, g+(t, p(t), qi (t)) e−ρt ∈ [0, pqmax e−ρt ] together with measurability of
functions p, qi and e−ρt , implies strong uniform integrability of G.

Technical Lemma Required to Prove Uniqueness of Open Loop Nash Equilibrium

Lemma 8 Let b : R → (0,+∞) be a continuous bounded function, and σ > 0, s > 0 be
given constants. Then, equation

ẋ(t) =
{

σ x(t) for sx(t) ≥ b(t),

(σ + s)x(t) − b(t) for sx(t) < b(t)
(56)

has atmost one bounded solution for t → +∞.Moreover, if the solution to (56) is unbounded
as t → +∞, then it is either negative or x(t) ∼ C eσ t for some constant C > 0.

Proof Note first, any bounded solution xb to (56) is positive. If for some t̄ we have xb(t̄) ≤ 0,

then due to positivity of bwe have xb(t̄+ε) < 0 and xb(t) ≤ xb(t̄+ε) exp
(
(σ +s)(t− t̄−ε)

)

that converges to −∞.
Assume that xb is a solution to (56), bounded for t → +∞. Let x(t) be an arbitrary

solution to (56) different from xb(t). Due to the fact that solution to (56) for a given initial
data x(t0) = x0 is unique, we can have two possibilities. Either x(t) > xb(t) for all t ≥ 0
or x(t) < xb(t) for all t . Consider the first case and denote w(t) = x(t) − xb(t) > 0. If
sx(t) > sxb(t) ≥ b(t), then ẇ(t) = σw(t). On the other hand, if b(t) > sx(t) > sxb(t),
then ẇ(t) = (σ + s)w(t) > σw(t). The last possible case is sx(t) ≥ b(t) > sxb(t). We
have here ẇ(t) = σw(t) − sxb(t) + b(t) > σw(t). Therefore,

ẇ > σw(t) �⇒ w(t) > w(t0) e
σ(t−t0) .

This proves that x(t) is unbounded. Due to the assumption that b is bounded, this means
sx(t) > b(t) for all t > t̃ , for some t̃ and this yields the assertion on the asymptotic
behaviour of x .

The case x(t) < xb(t) is proved by analogous argument. 	
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