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Abstract This paper deals with deterministic dynamic pricing and advertising differential
games which are stylized models of special durable-good oligopoly markets. We analyze
infinite horizon models with constant price and advertising elasticities of demand in the cases
of symmetric and asymmetric firms. In particular, we consider general saturation/adoption
effects. These effects are modeled as transformations of the sum of the cumulative sales
of all competing firms. We specify a necessary and sufficient condition such that a unique
Markovian Nash equilibrium for such games exist. For two classes of models we derive
solution formulas of the optimal policies and of the value functions, and we show how to
compute the evolution of the cumulative sales of each firm. The analysis of these games
reveals that the existence of the Nash equilibrium relies on the possibility to separate a
component, which is specific for each firm, from a [market] component, which is the same
for all firms. The common factor is a function of the decreasing untapped market size. The
individual factor of each firm reflects its individual market power and has an impact on
equilibrium prices; each such coefficient depends on the price elasticities, unit costs, arrival
rates, and discount factors of all competing companies. Formulas for these coefficients reveal
how equilibrium prices depend on the number of competing firms, and how the entry or exit
of a firm affects the price structure of the oligopoly.

Keywords Dynamic pricing and advertising · Infinite horizon · Oligopoly competition ·
Constant demand elasticities · Deterministic differential games

1 Introduction

In survey articles, Mahajan et al. [15], [16], [17], and Peres et al. [20] have emphasized the
importance of normative results for product growth models of durable-goods and nondurable
ones in oligopolistic markets. Since the ’70s a number of models of advertising competition
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have been proposed, and optimal advertising policies have been derived, see, for example,
the series of papers by G. Erickson spanning almost thirty years, e. g. [4], [5] and references
therein, the many papers by G. Fruchter, see [6] and [7] to cite but a few, and the various
contributions by S. Sethi and co-authors, e. g. [21], [23] and [13]. The recent review article
by Huang et al. [11], and the books by Dockner et al. [2] and by Jørgensen and Zaccour [12]
provide rich bibliographies and excellent accounts of many of the accomplishments in this
research area. The papers by Teng and Thompson [24] and by Dockner and Feichtinger [1]
are classical papers which analyze models of dynamic advertising combined with dynamic
pricing in a competitive environment. The papers [13], [23] and [4] are recent articles where
optimal marketing-mix strategies in dynamic competitive markets are analyzed; for further
references see the bibliographies of the articles and books referred to above. The article [13]
by Krishnamoorthy et al. is most important for the present manuscript.

In [13], the authors analyze a deterministic dynamic duopoly game. They study a cumula-
tive sales model with particular dynamics and objective function. The authors show how the
competing firms should dynamically adjust their advertising spending and how they should
[dynamically] set their prices. The specific model is an extension of the monopoly prob-
lem analyzed in [23]. The infinite horizon duopoly game takes into account the evolution of
cumulative sales of two brands/firms of a product category. As far as the demand function
is concerned, they analyze the case, when the demand depends linearly on p, and the case
with constant price elasticity. In the case with constant price elasticity, the dynamics of each
brand of their model is specified by, i = 1, 2,

ẋi (t) = uiwi (t)pi (t)
−εi

√
N − x1(t) − x2(t),

where xi (t) denotes the cumulative sales of firm/brand i , N is the category potential, wi (t)
denotes the advertising effort of firm i , ui the effectiveness of its advertising activity, and pi (t)
the price it sets for one unit of its product. The parameter εi , i = 1, 2, is the price elasticity of
demand of product i . The factor

√
N − x1(t) − x2(t) describes a particular friction (inertia)

of the market.
Each firm chooses its advertising and price to maximize its discounted infinite horizon

profit, where the profit rate is e−ri t ((pi (t) − ci )ẋi (t) − kiwi (t)2), and ri is the discount
rate of firm i, ci is the marginal cost of production of firm i , kiwi (t)2 is the cost of firm’s i
advertising, and ki is a (positive) factor of proportionality.

If marginal costs are positive, Krishnamoorthy et al. determine the feedback Nash equi-
librium strategies of both players and they derive analytical expressions of their optimal
advertising and pricing policies. This particular duopoly game suggests several interesting
research questions. For example, even in the case of a duopoly it is not clear whether or not a
Nash equilibrium exists if the marginal cost of one of the players is zero. Thus, the question
of existence and uniqueness of an equilibrium in the case of many firms, where some firms
have marginal cost zero, is a natural one. Furthermore, for asymmetric market situations it is
not at all clear how the entry or exit of a firm to the market will affect the price equilibrium.
Specifically, the impact of the number of competing firms on equilibrium prices, should such
prices exist, is most important for practical applications. Moreover, even for the duopoly
problem considered by Krishnamoorthy et al. it is not obvious how the optimal market share
of each firmdevelops over time. These questions and related ones havemotivated our research
and will be answered in Sects. 3 and 4.

In this paper, we extend the model for the particular duopoly game to two [more general]
classes of differential games with (i) any finite number of heterogeneous firms and (ii) more
general dynamics; further details will be given below. The basic setting of both classes of
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extended dynamic games is closely related to the monopoly model proposed in [23], which
was generalized in [10]. In the case of an oligopoly, it is assumed that each firm is selling
its brand of a [category] durable-good and is facing a [constant] brand-specific elasticity
of demand. The rate of sales of each firm is postulated to be multiplicative in its price, in
[its] advertising effort—a power expression—and involves two additional terms: a [constant]
firm-specific arrival intensity factor and a factor which depends on the total sales of all brands.
The latter, which is the same for all firms, reflects the way the companies compete in the
market. A general system functionmakes it possible to capture varied adoption and saturation
effects and allows the modeling of different [direct] network externalities.

The models of both classes are primarily motivated by marketing applications, for exam-
ple, the evolution of the market share of the premium car segment of each of the three main
competitors in Germany. However, the models are also related to dynamic oligopoly games
studied in the context of extracting and pricing natural resources, e. g. petroleum, copper,
etc., see [8], [14] and references therein. The brands/firms within a product category should
be equated with different crude-oil producing countries/regions, or types of petroleum char-
acterized by their specifications, e. g. West Texas Intermediate and Brent Blend (low sulfur
crudes), or Oman Crude (high sulfur content); the size of the untapped market of a category
of a specific good corresponds to the known reserves of the commodity.

Both classes of oligopoly models to be analyzed in this paper are closely related to the
monopoly model analyzed in Helmes et al. [10], see also [9]. The oligopoly models differ
from the monopoly model as far as the following aspects are concerned. In the competitive
case, we only consider infinite horizon problems. Moreover, we have to restrict ourselves
to time-independent arrival intensities in order to be able to prove the existence of a unique
Nash equilibrium. On the other hand and in contrast to [10], each firm is assigned a [constant]
nonnegative unit cost.

It turns out that the number of firms with zero unit costs and the characteristics of these
firms determine whether or not aMarkovian Nash equilibrium of the differential game exists.
The equilibrium result is a corollary to a tailor-made existence theorem of solutions (in the
positive orthant of Rn) of a special nonlinear system of n equations. We prove the existence
and uniqueness of a solution of a particular system of equations determined by the differential
gameassuming that a fundamental condition holds true. Inspired by the expression “tragedyof
the commons,”we call this necessary and sufficient condition “the condition of the commons.”
The term refers to the fact that not “toomany” firms should have access to a free nonrenewable
resource. The condition is satisfied in any monopoly market; in an oligopoly market the
condition is satisfied should all companies have positive marginal costs, or if a fair number
of price insensitive customers are attracted by the products of firms with zero unit costs. In
the special case of homogeneous firms with zero marginal costs the condition is equivalent to
a bound on the number of competing companies. This bound depends on the price elasticity
of demand, and on a ratio associated with advertising costs and advertising effectiveness, see
Sect. 2.2 for details.

We shall derive explicit solutions for both classes of differential games referred to above.
Models of Class I (zero unit-cost models) are characterized by general adoption/friction
functions—cf. [10] for the case of a monopolist—but a special market structure. The market
environment is supposed to be such that all firms face an identical price elasticity of demand
and have zero variable unit costs. Typical applications of such situations include, for example,
selling digital goods, end-of-year sales of retail fashion goods, or the situation of car-dealers
at the end of a model year. More generally, situations when n competing firms are selling a
fixed number of similar assets, and costs are sunk, can be cast as a Class I model. The sales of
digital goods nicely fit the model assumptions, since a typical customer does not need more
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than one copy of a movie, of a song or a piece of software. Thus, like with durable-goods,
there is typically no repurchasing and the market potential depletes over time.

The second class of models (Class II) extends the particular problem analyzed by Krish-
namoorthy et al. and includes their problem as a special case. We consider the situation
of any finite number of competing firms. We allow for (fixed) unit costs and allow that all
other firm-specific characteristics, e.g., price elasticities, financing rates, arrival rates, etc.,
differ as well. In contrast to Case I models friction/system functions are restricted to special
saturation functions of power type. This class of system functions includes the square root
function which is traditionally considered in the literature, cf. [4], [5] and [13]. An important
special case which we can also handle is a linear system function. It characterizes a pure
pricing model with a linear friction term. A pure pricing model assumes customers to arrive
due to intrinsic motives. The general advertising-and-pricing model postulates the neces-
sity of an extrinsic stimulus which might be costly. Paying for commercials to inform and
attract customers, and to boost arrival rates this way, is the prototypical example of (explicit)
advertising expenses. Paying higher rent to set up shop at a prime location is an example of
(implicit) advertising costs.

In addition to the analytical results to be derived, the dependence of profits, of prices,
etc., on arrival rates, price elasticities, marginal costs, and the number of competing firms
will also be illustrated by looking at numerical examples. These (simple) numerical studies
complement the general theorems which comprise explicit formulas of value functions and
of optimal marketing-mix policies, as well as sensitivity results.

Besides the marketing application, e.g., in the car industry mentioned above, there are
numerous other [similar] applications which arise in different industries, and for which the
models of either Class I or Class II are applicable. For example, selling life insurance,
homeowners insurance or work-disability insurance to specific cohorts of customers is just
another such application. The evolution of sales of cigarette brands is a classical example
of an oligopoly market where the sales dynamics are well described by models of Class II,
and for which the results of our analysis, see Sect. 4, nicely fit observations: prices [without
taxes] are fairly stable over the years, but advertising is dynamic. The [light] beer market is
a more recent example of that kind.

A collection of formulas and abbreviations to which we shall regularly refer to is given in
anAppendix. Technical proofs, especially the lengthy proof of Lemma 1, and some additional
tables related to the numerical study described in Sect. 3 are all relegated to the Appendix. A
Table of variables and parameters which are pertinent to the model description, see Sect. 2,
can be found at the beginning of the Appendix.

2 The Deterministic Oligopoly Model

In this section, we precisely describe the adoption models with (constant) isoelastic demand
functions which will be analyzed in the sequel. Let pi > 0 denote a price to be set by firm
i , i = 1, 2, . . . , n, and wi � 0 the advertising effort (per unit of time) by a firm. Let xi (t)
be the (accumulated) sales of company i by time t , and let x(t) := ∑n

j=1 x j (t). Thus, x(t)
represents the number of all customerwho have adopted a brand of a product category by time
t . Let N ∈ R

+ be the number of potential customers in the market, and let y(t) = N − x(t);
y(t) is the number1 of all customers who have not yet adopted the product at time t . The

1 We assume the number of customers is large enough so that it is a valid approximation to treat N , x and y
as continuous variables.
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value y = N indicates that no unit of any brand has yet been sold; if y(0) = N , then
x(0) = 0. Throughout, we assume the rate of sales λi of each firm i is of the form, 0 < y,
ψ : (0, N ) → R

+,

λi (pi , wi , y) := uiw
δ
i p

−εi
i ψ(y), δ � 0, εi > 1, ui > 0, (1)

and λi equals zero if y = 0. The arrival intensity vector u = (u1, u2, . . . , un) has positive
components, while the vector ε of price elasticities of the different firms has components
εi which are bigger than 1. The nonnegative advertising elasticity δ � 0 is assumed to be
the same for all firms. The property that all arrival rates ui are positive is a fundamental
assumption of the market models to be considered. The assumption implies that each firm
has a loyal group of customers, and no matter how large a company’s product price will be,
there will always be some buyers. Moreover, each firm has its individual discount parameter
ri > 0 and unit cost ci � 0.

The nonnegative real-valued function ψ captures adoption and saturation effects. Typical
examples of ψ are power functions yb, b positive or negative, the Bass function ψ(y) =
�y + �y(1 − y), �,� � 0, and variants thereof. For Class I models, we allow for general
functions ψ ; they only have to satisfy a minor technical condition, s. Lemma 2. Advertising
cost functions are assumed to be of the form kiwa

i , where ki > 0, and a is a fixed (common)
parameter larger than δ.Weprefer the parametrization (δ, a), 0 � δ < a, over a 1-dimensional
parametrization given by δ/a. This way, the different interpretations of the control value w,
i.e.,w represents the control effort like in [13], orw represents the amount spent on advertising
(per unit of time) as in [19], can be dealt with in a unified way. The special case δ = 1 and
a = 2 is treated in [13]. As far as the mathematical formulas are concerned, s. below, only
the ratio δ/a matters. Observe, should a be less than or equal to δ, then the cost of advertising
spending wa

i would grow at the same rate or more slowly (in wi ) than the factor wδ
i of λi ,

the i-th rate of sale, and revenue would tend to infinity. The firm-specific proportionality
parameters ki can be interpreted as effectiveness factors of individual advertising campaigns,
or as tax multipliers (surcharges or discounts).

We postulate that each firm decides on its price and advertising rate by exploiting the
common knowledge x(t) := (x1(t), . . . , xn(t)) and the values of all parameters of the model.
At each time point t , 0 � t < ∞, each firm i , i = 1, 2, . . . , n, chooses a positive price pi (t)
and a non-negative advertising rate wi (t). The choice of control values is further restricted
as described below. For each pair

(
pi (t), wi (t)

)
, the state of the game x(t) evolves according

to a system of differential equations of the form,

ẋi (t) = λi
(
pi (t), wi (t), y(t)

)
, xi (0) given; (2)

for abbreviation, we will sometimes denote the right hand side of (2) by λi (t).
The objective of each firm is to maximize its discounted profit Ji which depends on its

choice of
(
pi (t), wi (t)

)
and on the evolution of the whole market (which depends on the

activities of all players):

Ji :=
∫ ∞

0
e−ri t

((
pi (t) − ci

)
λi (t) − kiwi (t)

a
)
dt. (3)

To be able to identify optimal policies of each firm, we shall restrict the maximization
of (3) to the class of admissible policies. From now on, control policies

(
pi (t), wi (t)

)
,

0 � t < ∞, i = 1, 2, . . . , n, will be called admissible iff there exists vector-valued functions
�i = R

n × [0,∞) → R
2, which are a Markovian Nash equilibrium for the dynamic game

(2) and (3); see [2], p. 86, for all details and specificities of the definition. Furthermore, we
assume that all integrals which involve the feedback policies are well defined and finite. To
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simplify notation, we shall write pi (t, x) and wi (t, x) for the coordinate functions of any
Markovian Nash equilibrium (�1, . . . , �n). In [2], Section 4.2, a set of sufficient conditions
for an equilibrium to exist is described. These conditions, see [2], Theorem 4.1, will be
verified for the problems under consideration.

For any possible state x ∈ R
n , 0 � x j and x := ∑n

j=1 x j � N , let Wi (x) denote the
largest discounted profit of player i when the infinite horizon game starts at x. To identify
a solution of the differential game, see [2] pp. 92, we are looking for equilibrium strate-

gies
(
p∗
j (x), w

∗
j (x)

)

1� j�n
, and bounded functions Wi (x) such that the system of partial

differential equations, x < N , i = 1, 2, . . . , n,

riWi (x) = sup
pi>0,wi�0

⎧
⎨

⎩
λi

(
pi , wi , N −

n∑

j=1

x j

) (
pi − ci + ∂Wi

∂xi
(x)

)
− kiw

a
i

+
∑

j �=i

λ j

(
p∗
j (x), w

∗
j (x), N −

n∑


=1

x


)
∂Wi

∂x j
(x)

⎫
⎬

⎭
, (4)

together with the boundary conditions Wi (x) = 0, if x = N , has a solution. The structure
of the rates λi , and the identity y = N − ∑n

j=1 x j , 0 � y � N , suggests that solutions
Wi (x) are of a special form: subject to given functions (p∗

j (y), w
∗
j (y)), j = 1, 2, . . . , n,

V ′
i (y) := dVi

dy (y),
Wi (x) = Vi (y), (5)

where the functions Vi (y) satisfy the system of ordinary differential equations, y > 0,

ri Vi (y) = sup
pi>0,wi�0

⎧
⎨

⎩
λi (pi , wi , y)

(
pi − ci − V ′

i (y)
) − kiw

a
i

−
∑

j �=i

λ j
(
p∗
j (y), w

∗
j (y), y

)
V ′
i (y)

⎫
⎬

⎭
, (6)

together with the boundary conditions Vi (0) = 0. Note, if (5) holds, then ∂Wi
∂x j

(x) = −V ′
i (y)

for all i and j . In the sequel, we shall verify that under appropriate conditions, the system
(6) has a unique solution (Vi (y))1�i�n , and so does (4).

2.1 Optimality Conditions

The Bellman equations (4) yield optimality conditions which the equilibrium (feedback)
pricing and advertising decisions p∗

i (y) and w∗
i (y) of each firm i have to satisfy. Taking

partial derivatives with respect to pi and wi of the function showing up on the i-th right hand
side of (6), simple algebra yields a formula of p∗

i (y) in terms of εi , ci , and V ′
i (y), see (23);

the formula of w∗
i in feedback form is given by (24). The formula of w∗

i involves ψ , p∗
i and

the parameters εi , a, δ, ki , and ui . We shall see in Subsection 2.2, cf. formulas (9), (10) and
(14), that V ′

i is positive for all i = 1, . . . , n. From now on, we use the abbreviating notation
λ∗
i (y) := λi

(
p∗
i (y), w

∗
i (y), y

)
, 0 < y � N , where p∗

i (y) and w∗
i (y) are the equilibrium

pricing and advertising policies. The optimality conditions imply that a dynamic Dorfman-
Steiner identity holds for each firm. The classical Dorfman-Steiner theorem provides the
theoretical underpinning of the empirical fact (see Schmalensee [22]) that in differentmarkets
(monopoly, oligopoly) advertising strategies of firms are very often based on a constant
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percent of sales rule; for more details and additional references see Dockner and Feichtinger
[1].

Proposition 1 For the oligopoly problem described in Sect. 2.1, a Dorfman-Steiner identity
holds for each firm, i = 1, 2, . . . , n:

w∗
i (y)

a

p∗
i (y)λ

∗
i (y)

≡ δ

ki aεi
, y ∈ (0, N ], (7)

i. e. optimal advertising expenditure and revenue are pointwise proportional.

Proof The identities (7) are an immediate implication of (23) and (24). 
�

Since the Dorfman-Steiner identity holds for every y ∈ (0, N ), we can evaluate (7) along
the optimal trajectory y(s), 0 � s < ∞. This way, for any t � 0, we easily prove identities
which connect the accumulated revenue (from t onwards) Ūi (t),

Ūi (t) :=
∫ ∞

t
e−ri (s−t) p∗

i (y(s))λ
∗
i (y(s))ds,

with the production/purchasing cost C̄i (t) and the accumulated advertising expenditure
W̄i (t), see Proposition 2; the last two quantities are defined by

W̄i (t) := ki

∫ ∞

t
e−ri (s−t)w∗

i (y(s))
ads, C̄i (t) := ci

∫ ∞

t
e−ri (s−t)λ∗

i (y(s))ds,

and V̄i (t) = Ūi (t) − W̄i (t) − C̄i (t) holds true. For the two classes of models described in
the Introduction, we shall derive explicit expressions for V̄i (t) and C̄i (t), see Sects. 3 and
4. Employing the following proposition, we shall then obtain explicit expressions for the
important characteristics Ūi (t) and W̄i (t).

Proposition 2 Let y(s) denote the optimal path of (category wide) unsold items, 0 � s < ∞.
For any i , i = 1, 2, . . . , n, and t � 0,

(i) W̄i (t)/Ūi (t) = δ/(a · εi ),

(ii) W̄i (t) = δ
aεi−δ

(
V̄i (t) + C̄i (t)

)
, and Ūi (t) = aεi

aεi−δ

(
V̄i (t) + C̄i (t)

)
.

In the sequel, in order to shorten some expressionswe shall use the following abbreviations
throughout the paper. For each firm i , i = 1, 2, . . . , n, let

γi := aεi − δ

a − δ
= εi − δ/a

1 − δ/a
,

see also (26), and let ηi = ηi (ki , a, δ, εi , ui ) be the constants defined by (27). Except for
sensitivity studies, the explicit formula of ηi will not be important. However, it is useful to
remember that ηi is increasing in the intensity parameter ui and is decreasing in ki .

We shall call the parameter γi the leveraged (due to advertising) price elasticity of demand
of firm i . If the price is decreased by 1%, then the demand will increase by ∼ γi%. Note, γi
is larger than εi ! Thus, for each firm i , the parameter γi quantifies the benefit of [informative]
advertising.
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2.2 Fundamental Results

Using the expressions for the equilibrium strategies w∗
i (y) and p∗

i (y) in terms of derivatives
of the value functions Vi (y), see (23) and (24), the Bellman equations (4) turn into a system of
1st order nonlinear differential equations. This system, together with the [natural] boundary
conditions Vi (0) = 0 for each i , determines the value functions Vi . The system can be written
as, 0 < y � N , i = 1, 2, . . . , n, V ′

i = V ′
i (y), ψ = ψ(y), etc.,

ri Vi =
⎛

⎝ηi
(
ci + V ′

i

)1−γi −
∑

j �=i

(γ j − 1)η j
(
c j + V ′

j

)−γ j · V ′
i

⎞

⎠ ψ
a

a−δ . (8)

To solve (8), we look for solutions Vi which are given as the product of a firm specific factor
αi and a function β(y) which is common to all firms:

Vi (y) := αiβ(y). (9)

The constants αi are assumed to be positive numbers, and β is a positive increasing differen-
tiable function of the variable y, the untapped market size. The common factor β(y) reflects
the value of a market of size y. The number αi quantifies the market power of each firm i .

The separable “Ansatz” implies that the constants αi and the function β have to satisfy
the system of equations (28). To identify both factors, we will first prove two lemmas. The
first one, Lemma 1, characterizes the solution of a special nonlinear system of algebraic
equations, see (10) below. The solution values are the numbers αi . Lemma 2 characterizes
the function β(y). The proofs of both results will be given in the Appendix.

Lemma 1 (i) For positive variables αi , let zi := (γi − 1)ηi (ci + αi )
−γi , i = 1, 2, . . . , n,

and Z := ∑n
i=1 zi . The system of equations in the unknowns αi , i = 1, 2, . . . , n,

ri = ηi (ci + αi )
−γi

ci + αi

αi
−

∑

j �=i

z j , (10)

which is equivalent to
(

1
γi−1 · ci+αi

αi
+ 1

)
zi − ri = Z, has a unique positive solution vector

α∗ = (α∗
i )1�i�n if and only if the “condition of the commons”,

1 >

n∑

i=1:ci=0

γi − 1

γi
, (11)

holds true.
(ii) Let (n + 1) companies compete against each other, cf. the model description at the

beginning of this section. Let the condition of the commons be satisfied for the enlarged
system of Eq. (10), i.e., we consider a system like (10) with n+1 equations and an additional
variable. Let α∗(n), α∗(n+ 1) resp., denote the unique positive solution vector of the system
with n equations, n + 1 equations resp. Then, for i = 1, ..., n,

α∗
i (n) � α∗

i (n + 1). (12)

If the condition of the commons is violated for the oligopoly market with n firms, then no
equilibrium exists for the market with (n+1) firms, no matter what the characteristics of the
entering firm might be.

(iii) Let ci = 0, i = 1, 2, . . . , n, and assume n − 1 <
∑n

j=1 γ −1
j . Then, there are explicit

expressions of the unique solution values α∗
i of (10), see (41).
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In the general case, ci � 0, i = 1, 2, . . . , n, the unique positive solution vector α of
(10) can be computed as described in Steps 1–3, see (13). To this end, define n real-valued

functions fi on the positive line, i = 1, 2, . . . , n, fi (ξ) :=
(

ci
ξ+γi

)
ηi (ci + ξ)−γi − ri , ξ > 0.

Moreover, without loss of generality, we select the function f1 for our analysis, and use α1

as the pivoting variable. For any positive number ξ and j = 1, 2, . . . , n, let α j > 0 denote
the unique positive solution value of the equation f j (α j ) = f1(ξ), see Appendix; we call
the function α̂ j (ξ) := α j the j-th reaction function. Then,

Step 1 Determine the reaction functions α̂ j (ξ) for j = 1, . . . , n, ξ > 0.

Step 2 Solve the 1-dimensional equation (in the positive unknown α1):

f1(α1) =
n∑

j=1

(γ j − 1)η j (c j + α̂ j (α1))
−γ j . (13)

Let α∗
1 > 0 denote the unique solution of (13).

Step 3 For j = 2, . . . , n, compute α∗
j := α̂ j (α

∗
1). The vector α∗ := (α∗

1 , α
∗
2 , . . . , α

∗
n)

is the unique positive solution of (10).

An explanation of the construction and the details of the proof are given in the Appendix.
To get a first understanding of the importance of Lemma 1, and to have an economic

interpretation of the quantities zi , choose δ = 0, a = 1, and let all ci be positive. Jumping
ahead, cf. Theorem 4 in Sect. 4, we define pi := εi

εi−1 (ci + αi ). Then, see formulas (23) and

(24), zi = ui p
−εi
i , and zi is the demand/output rate of firm i should it set its price as defined

above. Later on, see Sect. 4, we shall elaborate on this observation.
The next lemma is about the market size value β, cf. (9). The lemma characterizes β as the

solution of a particular Bernoulli differential equation. It is a slight extension of Lemma 3.1
in [10].

Lemma 2 Let ψ(y)1/(ε−1) be a nonnegative integrable function on [0, N ]. The solution of
the Bernoulli differential equation, 0 < y < N,

β ′(y) = β(y)
1

γ−1 ψ(y)
1

ε−1 (14)

and β(0) = 0, is given by β(y) = B(y)(γ−1)/γ , where

B(y) := γ

γ − 1

∫ y

0
ψ(s)

1
ε−1 ds. (15)

If ψ(y) is positive on (0, N ) then β(y) and B(y) are strictly increasing functions of y.
Furthermore, if ψ ′(y)ψ(y)−

ε
ε−1 B(y) � 1 − δ/a, then β(y) is concave. If ψ(y) = 1, i. e. in

the case of no demand learning effects/externalities, this condition is always satisfied and
β(y) = y(γ−1)/γ .

Proof See Appendix; expressions (29) are equivalent formulations of (14). 
�
In Sects. 3 and 4, we will be using Lemma 1 and Lemma 2 to solve special cases of

the oligopoly problem described in this section. In contrast to dynamic advertising games
analyzed by Prasad and Sethi [21] and Erickson [4,5], where value functions of all players
are linear in the state variable(s), the classes of dynamic games under consideration lead to
nonlinear value functions, see formula (9).
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3 A Special Market Structure but a General Adoption Function

In this section, we shall consider models with general adoption functions ψ , where ψ1/(ε−1)

is positive and integrable on (0, N ), but we assume that (i) all unit costs are zero, (ii) the
price elasticities of all firms are identical, i. e. εi ≡ ε > 1, and (iii) condition (11) is satisfied.
Dynamic games with evolution Eq. (2), which satisfy these properties, will be called Case I
models.

For Case I models, the system (28) separates into an algebraic system of equations and
a differential equation; exploit (41), (30) and the Bernoulli differential Equation (29). If all
unit costs are zero and εi ≡ ε, the solution of the algebraic system (10) is given by

α∗
i =

(
1

ηiγ

(

ri +
∑n

j=1 r j

γ /(γ − 1) − n

))−1
γ

. (16)

Obviously, the values α∗
i are independent of ψ . In the symmetric case, i. e. all firms have the

same characteristics, ui ≡ u, ki ≡ k, and ri ≡ r , i = 1, 2, . . . , n, all α∗
i are equal to the

value α
sym
n , where

α
sym
n :=

(η

r

(
γ − n(γ − 1)

)) 1
γ

.

The value α
sym
n is positive iff n < 1+ 1/(γ − 1), cf. (11). This inequality imposes an upper

bound on the number of firms such that an equilibrium point exists. Expressed differently, if
n is given, then the inequality γ < n/(n − 1) imposes an upper bound on the elasticity ε in
order that an equilibrium exists, viz. ε < 1 + (1 − δ/a)/(n − 1). Hence, if the unit cost of
(homogeneous) firms is zero, a Markovian Nash equilibrium of the game with n firms exists
if and only if consumers are not “too” price sensitive. In the case of a monopoly, i. e. n = 1,
the condition n < 1 + 1/(γ − 1) is always satisfied.

Furthermore, for Case I models there is an explicit expression of each value function Vi (y)
as a product of the solution β(y) of the differential Eq. (29), and α∗

i . The two factors are
defined by (14) and (16). Using the optimality conditions (23) and (24), one obtains a formula
of the optimal category rate of sales λ∗(y). Thus, we are able to compute and characterize the
evolution of the untapped market y(t). Expressions of the individual rates and accumulated
sales of each firm are implied by these formulas. The proof of the next result is given in the
Appendix, see also Lemma 2.

Theorem 1 For Case I models, the equilibrium rate of sales λ∗(y) in feedback form is

λ∗(y) = B(y)ψ(y)
−1
ε−1 Z .

The equilibrium y-trajectory satisfies the equation

B(y(t)) = B(N )e
−γ
γ−1 Zt ⇐⇒ y(t) = B−1

(
B(N )e

−γ
γ−1 Zt

)
, (17)

where B−1 denotes the inverse function of B. For each firm i, i = 1, 2, . . . , n, its equilibrium
rate of sales equals

λ∗
i (y(t)) = zi

β(y(t))

β ′(y(t))
. (18)

The accumulated sales (up to time t) of each firm are given by, xi (0) = 0,

xi (t) = zi
Z

(N − y(t)).
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Expressions (15) and (16) together with Theorem 1, yield solution formulas of the value
functions and the equilibrium strategies in feedback form, as well as in open-loop form, i. e.
as functions of time, for each firm. The next theorem is a collection of such formulas. The
straightforward proofs of the various formulas are based on the optimality conditions (23)
and (24), and the characterization of each value function Vi as the product of the number α∗

i
and the function β.

Theorem 2 For Case I models, let y(t) denote the optimal y-path given by (17). The value
function (in feedback form) of each firm i, i = 1, 2, . . . , n, is given by

Vi (y) = a∗
i β(y), y ∈ [0, N ];

in the time-domain, it is described by

V̄i (t) := Vi (y(t)) = α∗
i β(N )e−Zt .

The optimal prices are

p∗
i (y) = ε

ε − 1
α∗
i β(y)

−1
γ−1 ψ(y)

1
ε−1 , y ∈ (0, N ];

p̄i (t) := p∗
i (y(t)) = ε

ε − 1
α∗
i β(N )

−1
γ−1 e

1
γ−1 Ztψ(y(t))

1
ε−1 .

The optimal advertising rates are (see (25) for the definition of θi )

w∗
i (y)

a = θai α∗
i
1−γ

β(y), y ∈ (0, N );
w̄i (t)

a := w∗
i (y(t))

a = θai α∗
i
1−γ

β(N )e−Zt .

The optimal rates of sales are

λ̄i (t) := λ∗
i (y(t)) = ziβ(N )

γ
γ−1 e− γ

γ−1 Ztψ(y(t))
−1
ε−1 .

For Case I models, see Theorem 2, a firm’s value function V̄i (t) and its optimal advertising
rates w̄i (t) are exponentially decreasing functions of t . The evolution of the optimal price
paths p̄i (t) is determined by a product of three terms: the first factor is a company’s market
power α∗

i ; the second factor is an exponentially increasing function of time, and the third
factor is a power expression of the adoption function evaluated along the optimal path y(t).
Optimal advertising paths only depend on ψ via the potential B and the initial value y(0).
Optimal price paths explicitly depend on ψ and the optimal path y(t). Thus, for Case I
models dynamic prices are the major driving forces of the oligopolistic market. For such
models, since C̄i (t) = 0, Proposition 2, when combined with the explicit formulas of the
value functions V̄i (t), yields explicit formulas of the evolution of each firm’s specific revenue
trajectory Ūi (t) and expenditure function W̄i (t). Like in a monopoly market, in an oligopoly
market, depending on the structure of ψ , optimal pricing strategies of the companies can
be skimming policies, market penetration policies, or a combination of both principles, i.e.,
penetration pricing followed by a long period of declining prices. Like in Helmes et al.,
detailed [numerical] analyses are possible for different system functions ψ . In particular,
studies of the classes of power functions, Bass-functionals, von Bertalanffy dynamics, and
NUI-models, cf. [3], provide insight into the many different ways that sales of firms can
evolve in an oligopoly, and these studies show the interplay of firms’ pricing and advertising
policies.

Next, we shall study how the market power and other important characteristics of firms
depend on changes in a firm’s parameter values ri (its discount value, which reflects its
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Table 1 Case I models: sensitivity of market power α∗
i and other system components as functions of model

parameters

Z ηi zi /Z α∗
i w∗

i λ∗, λ∗
i

y

zi θi p∗
i xi

ri + 0 + − + + −
ui 0 + 0 + ? 0 0

ki 0 − 0 − ? 0 0

r j , j �= i + 0 − − + + −

financing cost), ui (the arrival rate), and ki (the proportionality factor of advertising expenses).
Moreover, we analyze how changes in a competitor’s parameter values influence the output
characteristics of a rival firm. The general results, see Table 1, follow from sensitivity results
for zi and Z to changes in the parameter values. For Case I models, the values zi and Z are
independent of ηi , see (27), (37) and formula (16). Hence, for Case I models, zi and Z do
not depend on ui and ki but only depend on ri . However, the market power values αi , and
thus the value functions Vi depend on ui .

The starting point of sensitivity studies is Theorem 2. Table 1, s. below, is a summary of
our calculations. In Table 1, entries “+”, “−” and “0” indicate that the quantity of a column
is monotone increasing (+), is monotone decreasing (−) or is independent of the parameter
of a particular row; a question mark “?” indicates that no general statement is possible. For
example, if the rate ri increases (all else equal), i. e., the financing cost of company i goes
up, then its market power α∗

i will decrease. In such a situation, the firm’s optimal marketing
strategy is to lower prices p∗

i (y) but to increase advertising spending w∗
i (y). This way, the

company accelerates the growth of its market share.
Higher arrival rates ui guarantee larger market power α∗

i ; higher arrival rates also suggest
higher prices and increased advertising spending. Since the values zi are independent of ηi ,
optimal (feedback) rates of sales λ∗ and λ∗

i are not affected by changes of ui or ki .
The ambiguous results (s. both questions marks in thew∗

i - column) are due to the fact that
the first two factors of the formula of w∗

i , cf. Theorem 2, are reacting in opposite directions
to changes of ui , and ki , respectively. For instance, if ui is increasing, then the first factor θai

is increasing, while the second factor α
∗1−γi
i , since γi > 1, will be decreasing. Hence, there

is no definite result for all parameter constellations.
The following example illustrates Theorem 1 and Theorem 2. We choose the Mansfield

functional ψ(y) = y/N (1 − y/N ), N = 100, as a particular adoption model, cf. [18]. This
ψ function captures situations when consumers are either not very well informed about a
new product or are somewhat reluctant to buy the product right from the start. This adoption
function is a special Bass model with innovation coefficient 0 and imitation coefficient 1.
Sales increase due to word-of-mouth. In the example, we assume that firms only differ by
their arrival rates, u1 = 20, u2 = 30, and u3 = 40. Note, condition (11) is satisfied and,
recall (16), α∗

i is not affected by ψ .

Example 3.1 Let ψ(y) = y/N (1 − y/N ), N = 100, n = 3, ε = 1.2, δ = 1, a = 2, c = 0,
k = 1, r = 0.1 and u = (20, 30, 40).
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(a) (b)

Fig. 1 Sales, market fractions (left window (a)) and accumulated profits (right window (b))

Fig. 2 Optimal price paths (left window) and advertising rates (right window)

Figures 1 and 2 show the evolution of various characteristics of the dynamic game of
a Case I model, namely the evolution of sales, of market shares and accumulated profits;
Fig. 1 also shows optimal price paths. If the financing costs of all firms are identical, i.e.,
ri = r , Fig. 1a illustrates the remarkable fact that the optimal rates of sales of all companies
are the same, cf. formula (39); observe, the number of yet uncommitted customers decreases
exponentially at rate Z . The individual gains Ḡi (t) := V̄i (0) − e−r t V̄i (t), together with
V̄i (t), are shown in Fig. 1b. The optimal price paths and optimal advertising rates are shown
in Fig. 2.

All graphs of Figs. 1 and 2 clearly show the impact the arrival rate ui has on profit and
the pricing options of a firm. Since in many applications the arrival rate is related to the
location of a business, the graphs illustrate the mantra in marketing: location, location, and
location! A higher arrival rate of a firm implies higher prices, higher revenues, and increased
market power, but also intensified advertising compared to the advertising levels of other rival
firms.

Example 3.1 also illustrates the influence of the adoption function ψ . The optimal price
paths of all firms are closely related to the properties of ψ , see Fig. 2a. In case of the spe-
cial function ψ(y) = y/N (1 − y/N ) a market penetration pricing strategy is advised to be
used. Such a strategy jump-starts sales and boosts the “word-of-mouth” momentum. Further-
more, if the market is saturated and the adoption effect is small, then optimal prices should
go down. In the case of monopoly markets, additional examples and further management
recommendations are discussed in [10].
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4 Heterogeneous Unit Costs and Price Elasticities, but a Special Class of Adoption
Functions

In this section, we consider a second class of n-player differential games. This class is
characterized by the property that theψ-function belongs to a special class of power functions,
ψ(y) = y(a−δ)/a , 0 � δ < a; it captures a (new) product adoption with a special saturation
effect. The intensity functions λi are again given by (1), and each firm i , i = 1, 2, . . . , n, is
characterized by individual parameters ci � 0, εi > 1 and positive values ri , ui , and ki . If
condition (11) holds, we call this class of differential games Case II models. Recall, if all ci ,
i = 1, 2, . . . , n, are positive, then the condition of the commons (11) is always satisfied no
matter how many companies are competing for customers.

The special parameter choice n = 2, a = 2 and δ = 1 specifies the duopoly model
analyzed in [13]. Case II models also include the pure pricing model with a linear adoption
function ψ(y) = y as a very special case. The pure pricing model can be parameterized
choosing δ = 0 and any positive value a. This choice of parameter values implies w∗ = 0
for all firms i , i = 1, 2, . . . , n.

For Case II models, to find solutions for (8) we try, see [13] and also [10], the linear
“Ansatz”, i = 1, 2, . . . , n,

Vi (y) = αi y. (19)

Since ψ is a very special power function, the coupled system of ODEs (8) simplifies and
reduces to the identities

riαi y = ηi (ci + αi )
−(γi−1)y −

∑

j �=i

(γ j − 1)η j (c j + α j )
−γ j

︸ ︷︷ ︸
z j

αi y. (20)

Since y is a common factor of all three terms of (20), Lemma 1 can be applied. It guarantees
a unique positive solution of (20). In the special case of n symmetric firms, the algebraic
system (20) collapses to one equation in one unknown,

c + α
sym
n

α
sym
n

− r

η
(c + α

sym
n )γ = (n − 1)(γ − 1). (21)

In the case of a monopoly, i. e. n = 1, equation (21) becomes

αmonr/η = (c + αmon)−(γ−1).

If c = 0, we obtain the formula αmon = (η/r)1/γ , and we have an explicit expression of the
value function

Vmon(y) = (η/r)1/γ y,

see [23] and [10]. In the general case with heterogeneous firms, we are able to numerically
compute the solution values αi of (20), cf. Steps 1–3 in Section 2.2. Moreover, the very
special dependence of the value functions Vi (y) on y, see (19), when combined with the
formulas of the optimal feedback controls p∗

i and w∗
i , see (23) and (24), makes it possible to

compute the optimal rates of sales λ∗
i (y) and the accumulated rate λ∗(y). Hence, the evolution

of the category sales can be easily computed, see the following theorem and its proof in the
Appendix.

Theorem 3 For Case II models, we have, i = 1, 2, . . . , n, 0 � t < ∞,

λ∗(y) = Zy and y(t) = Ne−Zt ;
moreover, λ∗

i (y) = zi y and xi (t) = Nzi/Z(1 − e−Zt ).
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For Case II models, the rates of sales λ∗
i (y) and λ∗(y) are linear functions of the untapped

market share y. Using the feedback formulas of the optimal controls and Proposition 2, we
obtain the evolution of all other quantities of interest of such models.

Theorem 4 For Case II models, we have, i = 1, 2, . . . , n, 0 � t < ∞,

value f unctions : Vi (y) = α∗
i y, and V̄i (t) = α∗

i Ne−Zt ;
optimalprices : p∗

i (y) ≡ p̄i (t) ≡ εi
εi−1 (ci + α∗

i );
opt. advertising rates : w∗

i (y)
a = θai (ci + α∗

i )
1−γ y, and

w̄a
i (t) = θai (ci + α∗

i )
1−γi Ne−Zt ;

opt. production costs : C̄i (t) = ci
Nzi
Z+ri

e−Zt ;
opt. revenue : Ūi (t) = aεi

aεi−δ
Ne−Zt

(
α∗
i + ci zi

Z+ri

)
;

opt. expenditures : W̄i (t) = δ
aεi

Ūi (t).

Proof All formulas follow from Theorem 1 and Proposition 2 once the necessary optimality
conditions (23) and (24) are combined with (19). 
�

When combined with Lemma 1, the previous two theorems show that in an asymmetric
oligopoly market with (special) externalities the structure of optimal prices and the value
function of each agent are the same as in the case of a duopoly, cf. [13]. If the condition of
the commons hold, then optimal prices are constants and the value functions are linear in
the cumulated sales of all firms. A crucial difference between the two market environments
- the case of a duopoly and a general oligopoly - is the surcharge that the competing firms
can impose on top of the basic mark-up ciε1/(εi − 1). More firms imply lower surcharges,
i.e., lower equilibrium prices. On the other hand, should companies exit the market, then an
existing equilibrium will prevail, but prices will go up! These most relevant facts all follow
from Lemma 1 (ii). Furthermore, taking the quotient of cumulative sales of two rivals i and
j shows that in equilibrium this ratio is independent of time, and equals the ratio of the
corresponding growth coefficients zi/z j .

For a market of homogeneous firms, there are simplifications and refinements of all the
results; in particular, there are refined results for the problems of entering firms and exiting
firms.

Proposition 3 For symmetric Case II models, the following properties hold:

(i) If ui (n) = u(n) = u, i = 1, . . . , n (more firms attract more customers), then η(n) = η,
α
sym
n is decreasing and zsymn is increasing in n. Moreover, Z(n) = nzsymn increases

super-linearly in the number of competing firms.
(ii) If u(n) = u/n, u > 0 fixed (the customer base is equally shared by all firms), then the

product η(n)na/(a−δ) is independent of n, and α
sym
n is decreasing in n.

(iii) If u(n) = u/n, then the quantity Z(n) is given by the formula,

Z(n) = n(γ − 1)η(n)
(
c + α

sym
n

)−γ
. (22)

If δ = 0, then Z(n) is increasing in n. If δ > 0, then Z(n) will be decreasing for large
values of n.

Proof (i) Note, the left hand side of (21) is a decreasing function in the variable α
sym
n . Hence,

if the right hand side increases, i.e., more firms are competing against each other, then the
solution of Eq. (21) moves to the left, and the first claim follows. If α

sym
n is decreasing in n,

it follows by definition, see (20), that zsymn is increasing.
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(ii) This time, η depends on n and, by definition, see (27),decreases in n. Taking this
property into account, we can repeat the arguments of the proof of (i). Since zsymn := (γ −
1)η(n)(c + α

sym
n )−γ , formula (22) immediately follows.

(iii) Using (22) and the relationship that η(n)na/(a−δ) is constant, we deduce the properties
of Z(n). 
�

For the case of symmetric firms, the results (ii) and (iii) of Proposition 3 aremost important.
They show, for instance, that the optimal equilibrium price and the value of each firm decrease
with the number of competing firms should increased competition erodes the customer base
of each firm, i.e., u(n) = u/n.

The following two examples illustrate these theoretical results and properties which are
typical for Case II models. Example 4.1 highlights how the number of competing firms n
affects optimal prices, profits, etc., in such a case, see, in particular, the second coloumn and
the last one of Table 2. Table 3 illustrates part (iii) of Proposition 3, in particular, the non
trivial impact advertising has on market share if the number of competitors is increasing.
The saturation function used in both examples has been considered by Sethi et al. [23] in the
case of a monopoly, but only for the special case that the unit cost c is zero, see also Helmes
et al. [10]. As nicely explained by Sethi et al. [23], this special ψ function is a reasonable
approximation of a Bass functional. The second example, cf. Example 4.2, illustrates the
case of asymmetric oligopolies.

Example 4.1 Let ψ(y) = √
y and δ = 1, a = 2. We study how several companies rival for

N = 100 “batches” of customers. Tables 2 and 3, see below, illustrate—for Case II models—
how variations of the parameters affect optimal prices, profits, etc., of each firm. We choose
the following symmetric situation as a benchmark for our analysis: ε = 1.8, c = 10, k = 1,
r = 0.1 and u(n) = 30/n, n the number of competing firms. Note, since the customer base is
fixed the arrival rate of customers of each firm decreases with the number of firms competing
in the market.

The values of a, δ, and ε imply the leveraged price elasticity of demand γ to be 2.6. The
choice u(n) = 30/n assumes the fixed arrival intensity of shoppers, 30, to be equally split
among all firms. Hence, if a price p and an advertising rate w are chosen, then the initial rate
of sales facing a monopolist equals 30p−2.5w

√
100. Should, instead, 10 brands compete in

the market, then this rate drops to a meagre 3p−2.5w
√
100 for each brand. Example 4.1 is

representative of market situations where an increasing number of competing firms does not
stimulate the shopping behavior of customers; gas stations are a well-known example.

Before analyzing how the equilibrium varies with the number of brands, it is instructive
to exploit Theorem 4 and formula (21) in the case of a monopoly. If n = 1 and ψ(y) = √

y,
the monopoly price will be ε

ε−1c plus the additional mark-up ε
ε−1α

mon , where αmon satisfies
the equation αmon = 10η(10 + αmon)−1.6, and η := (25/3)2 · 2.25−1.6 = 18.97, cf. (27).
Thus, αmon = 3.0956, εc/(ε − 1) = 22.5 and the monopoly price pmon equals 29.47. If
the number of firms n is increasing, then the solution value α

sym
n – as a function of n – will

converge to 0, cf. Proposition 3, and the optimal price approaches εc/(ε − 1) = 22.5.
Table 2 illustrates the dependence of profits V sym

n = α
sym
n N , revenues Ū sym

n , production
costs C̄sym

n , advertising spending W̄ sym
n , and market prices p̄symn (last column of Table 2) on

n. The numbers show that these quantities might drop substantially if more firms enter the
market and the (fixed) number of consumers is spread equally among all firms.

Table 3 illustrates how the speed of sales, determined by Z(n), see Theorem 3, depends
on the number of competing firms and on the parameter δ, δ ∈ {0, 0.2, 1}. The case δ = 0
corresponds to the pure pricing model. It follows from Proposition 3 (iii) that in the case of
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Table 2 Dependence of various characteristics of homogeneous firms on the number of competing firms n
(symmetric case, u(n) = 30/n, Example 4.1)

n V sym
n n · V sym

n % Sales Ū sym
n C̄sym

n W̄ sym
n p̄symn

1 309.56 309.56 100.00 808.59 274.42 224.61 29.47

2 90.07 180.14 50.00 286.39 116.77 79.55 24.53

3 42.98 128.94 33.30 145.15 61.85 40.32 23.47

4 25.24 100.96 25.00 87.42 37.90 24.28 23.07

5 16.62 83.12 20.00 58.32 25.50 16.20 22.87

10 4.43 44.32 10.00 15.84 7.01 4.40 22.60

20 1.15 22.96 5.00 4.12 1.83 1.15 22.53

100 0.05 4.73 1.00 0.17 0.08 0.05 22.50

Table 3 Symmetric Case II model, u(n) = 30/n: speed of sales Z(n) and total profits as functions of n;
Example 4.1

n δ = 0 δ = 0.2 δ = 1

nV sym
n Z(n) nV sym

n Z(n) nV sym
n Z(n)

1 845.64 0.03665 641.81 0.03475 309.56 0.03782

2 809.52 0.05991 586.55 0.05049 180.14 0.03047

3 772.73 0.07312 550.45 0.05707 128.94 0.02278

4 748.38 0.08112 527.72 0.06013 100.96 0.01787

5 731.96 0.08638 512.10 0.06166 83.12 0.01461

6 720.34 0.09007 500.58 0.06244 70.69 0.01233

7 711.73 0.09279 491.61 0.06282 61.52 0.01065

8 705.12 0.09488 484.37 0.06296 54.47 0.00937

9 699.90 0.09653 478.33 0.06297 48.87 0.00835

10 695.67 0.09786 473.19 0.06289 44.32 0.00754

20 676.16 0.10404 443.96 0.06096 22.96 0.00380

100 660.11 0.10916 391.37 0.05275 4.73 0.00076

a pure pricing model, Z(n) is monotone increasing in the number of competing (symmetric)
firms. If δ > 0, Z(n) is either a unimodal function (increasing, then decreasing) or amonotone
decreasing function. Formula (22) reveals that, if δ > 0, the postulated asymptotic behavior
of Z(n) follows from the fact that αsym

n decreases to zero, should n converge to infinity.
The total producers surplus nV sym

n decreases in n, and the rate of decrease is significantly
larger, if δ is big. Thus, if advertising is possible, then competition is more intense compared
to situations without advertising.

Next, we will study the case of heterogeneous firms.

Example 4.2 Let ψ(y) = √
y, δ = 1, a = 2, N = 100, and n = 3. If not chosen otherwise,

the parameters ε = 1.8, c = 10, k = 1, r = 0.1, and u = 10 are the ones of the reference
model, see. below.
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Table 4 The impact of the brand image: different price elasticities εi ; Example 4.2

i εi Vi % Sales Ūi C̄i W̄i p̄i

1 1.7 79.46 48.24 244.93 93.43 72.04 26.22

2 1.8 42.55 31.65 143.80 61.30 39.94 23.46

3 1.9 23.03 20.11 84.10 38.94 22.13 21.60

Fig. 3 Evolution of untapped market size y and individual market shares xi (left window); the right window
shows the evolution of profits V̄i (t) und Ḡi (t) = V̄i (0)− e−r t V̄i (t); Example 4.2 (different price elasticities)

Tables 4, see. below, and Tables 6, 7, 8 and 9, see Appendix, illustrate different scenarios
of a 3-firm competition characterized by the saturation effect

√
y. Each table illustrates the

dependence of quantities like profit Vi , revenue Ui , etc., on variations of just one of the five
characteristics ui , εi , ci , ri , and ki . In all scenarios, Firm 2 represents the reference model,
while Firm 1 always enjoys a competitive advantage over the other two firms. Firm 3 is
always the one with a handicap.

For example, see Table 4, the price elasticity of Firm 1, ε1 = 1.7, is smaller than ε2 = 1.8
and ε3 = 1.9. The smaller elasticity value 1.7, compared to 1.8 and 1.9, could be due to
many reasons, e. g. a stellar image of the brand, good quality reputation, a product with
special and attractive features, etc. The arrival intensities at all three locations are the same,
u1 = u2 = u3 = 10. If not chosen differently, we use the parameters specified above, see
Example 4.2; n = 3 will be norm.

In the case of Example 4.2 with different elasticities, the firm with the smallest elasticity
value will experience the highest profit, see Fig. 3, and will charge the highest price, cf.
Fig. 4a. However, Firm 1 will spend more on advertising than its competitors do; it is trying
to attract many shoppers to be turned into profitable buyers. Firm 3, at the other end of the
spectrum, will set a low price, and its profit, 23.03, is less than a third of the profit of the top
brand.

The study of different elasticities describes a typical oligopoly market consisting of a high
quality firm, an average quality firm and a discounter. We observe three different (optimal)
price levels and matching decreasing advertising expenditures. As expected, the high quality
(or very reputable) firm experiences the largest profit as a result of the lowest price elasticity.
However, other numerical examples show that the market shares of firms also critically
depend on the (relative) magnitude of the production costs. For small values of c, the firm
facing the smallest price elasticity will still set the highest price, but Firm 3, the one with the
“handicap”, might be gaining the biggest share of the market. Such parameter settings and
solutions correspond to oligopoly markets where the top brand only sells a small number of



352 Dyn Games Appl (2015) 5:334–360

Fig. 4 Optimal prices (left) und advertising rates (right) over time; Example 4.2 (different elasticities)

high quality products, whereas a “discounter,” following a low price strategy, captures most
of the market. The business results of the “in between” firm, Firm 2, are usually—as to be
expected—somewhere in between the two extremes.

The impact of variations of arrival rates ui , of unit costs ci , of discount rates ri , and
variations of advertising efficiency coefficients ki are summarized in the Appendix, see
Tables 6–9.

Remark 1 Case II models arise in many different applied contexts. Due to the non trivial
relationship between market power values αi and market shares zi/Z , different phenomena
can be observed, see. above. Many such phenomena, for instance, long terms market shares
of duopolies/triopolies, can be explained by properly chosen parameter settings. Numerical
studies reveal the nontrivial interplay of such (parameter) asymmetries. Such studies can be
used to calibrate model parameters when analyzing specific market situations.

5 Conclusions

In this paper, we have developed and analyzed dynamic pricing and advertising oligopoly
models for two specific market situations. These models allow us to study the competition
for sales of (category) brands by any finite number of firms. The two classes of models gen-
eralize and complement the duopoly game analyzed by Krishnamoorthy et al. The formulas
of the equilibrium (feedback) pricing and advertising strategies which we have derived offer
quantitative insights into the dynamic of the competition for sales in particular oligopoly
markets. Specifically, these insights comprise a full understanding of the impact on equilib-
rium prices of firms entering (the market) or leaving the market. From the point of view of an
entering firm, this understanding puts it in the position to evaluate its chances in noncollusive
competitive environments. From the point of view of a monopolist or a collusive oligopoly,
the firm(s) can calculate and set a model-based limit price to prevent a firm from entering the
market. The open-loop versions of our solution formulas make it possible to simply evaluate
different scenarios, and predict the evolution of market share, revenue, cost, etc., over time
of each company.

The main theoretical result of the paper is the existence of a unique feedback Nash equi-
librium of oligopolies with special structure. The existence of such an equilibrium primarily
depends on the number of firms, the price elasticity of demand andwhether or not the individ-
ual marginal costs of competing firms are zero. We give a necessary and sufficient condition,
the ’condition of the commons’, for the existence of a unique equilibrium.
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Furthermore, we have shown that the value function of each firm depends on a com-
mon market factor and a firm-specific coefficient. The market power coefficient reflects the
(nontrivial) interplay of the various characteristic parameters of all firms, i.e., brand image,
financing, and production costs, as well as technology and location factors. These coefficients
can be used to identify and to evaluate competitive strengths and weaknesses of firms for
specific applications.

Moreover, sensitivity results were derived. In particular, we have shown how the mar-
ket power equilibrium is affected by the exit of firms and the entry of new firms. The
results explain that the entry of a competitor—in symmetric, as well as asymmetric mar-
ket situations—leads to lower equilibrium prices and a loss of market power of each firm.

Our analysis also highlights the interplay of dynamic pricing and advertising. Like in
the case of a monopoly, in Case I and Case II oligopoly markets price adjustments are
synchronized with advertising adjustments, and the benefit of advertisement is quantified by
the leveraged price elasticity.

Appendix

see Appendix Tables 5, 6, 7, 8 and 9

Table 5 List of variables and parameters

T Time horizon λi Rate of sales

N Amount to sell/total market size ui Arrival intensity/effectiveness

n Number of firms (i = 1, . . . , n) ψ(y) System function; adoption effect

Vi ,Wi Value functions εi Price elasticity

xi Amount sold by firm i a Advertising cost exponent

y Items left to sell (y = N − ∑
xi ) δ Advertising elasticity

ri Discount rate ki Advertising cost parameter

pi Price asked γi Leveraged price elasticity

wi Advertising rate αi Market power coefficient

ci Unit cost β(y) Inventory/market effect

Table 6 The importance of location: different arrival rates ui ; Example 4.2

i ui Vi % Sales Ūi C̄i W̄i p̄i

1 12 61.52 45.23 202.69 84.86 56.30 23.88
2 10 42.87 32.89 144.81 61.71 40.22 23.46
3 8 27.49 21.88 94.91 41.05 26.36 23.12

Table 7 Technology: different production costs ci ; Example 4.2

i ci Vi % Sales Ūi C̄i W̄i p̄i

1 8 59.91 50.01 194.04 80.23 53.90 19.35
2 10 42.19 30.34 142.66 60.84 39.63 23.45
3 12 31.58 19.65 109.21 47.29 30.34 27.71
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Table 8 Financing costs: different discount rates ri ; Example 4.2

i ri Vi % Sales Ūi C̄i W̄i p̄i

1 0.08 51.29 32.71 171.28 72.41 47.58 23.65
2 0.10 42.99 33.39 145.20 61.87 40.33 23.47
3 0.12 37.00 33.90 126.01 54.01 35.00 23.33

Table 9 Advertising costs: different parameters ki ; Example 4.2

i ki Vi % Sales Ūi C̄i W̄i p̄i

1 0.8 53.41 39.71 177.84 75.03 49.40 23.70
2 1.0 42.80 32.62 144.59 61.62 40.16 23.46
3 1.2 35.70 27.67 121.82 52.27 33.84 23.30

Collection of Formulas

Optimality conditions:

p∗
i (y) = εi

εi − 1
(ci + V ′

i (y)) ⇐⇒ p∗
i (y) − ci − V ′

i (y) = 1

εi
p∗
i (y), (23)

w∗
i (y) =

(
δ

εi

ui
ki a

ψ(y)p−εi+1
i

) 1
a−δ = θiψ(y)

1
a−δ (ci + V ′

i (y))
1−εi
a−δ , (24)

where

θi :=
(
δui/(kiεi a) · (

εi/(εi − 1)
)−εi+1

)1/(a−δ)

. (25)

Auxilliary parameters:

γi := aεi − δ

a − δ
⇐⇒ 1 − γi = −aεi + a

a − δ
⇐⇒ 1 − γi

γi
= −aεi + a

aεi − δ
, (26)

ηi := ki
a − δ

δ

(
δ

εi

ui
ki a

) a
a−δ

(
εi

εi − 1

)1−γi

. (27)

Characterization of value functions by ODEs: β = β(y), ψ = ψ(y), etc.

riαiβ =
⎛

⎝ηi
(
ci + αiβ

′)−γi+1 −
∑

j �=i

(γ j − 1)η j
(
c j + α jβ

′)−γ j · αiβ
′
⎞

⎠ ψ
a

a−δ . (28)

Bernoulli differential equation for β(y) (market effect):

β(y)β ′(y)γ−1 = ψ(y)
a

a−δ ⇐⇒ β(y)−1β ′(y)1−γ ψ(y)
a

a−δ (29)

⇐⇒ β(y)

β ′(y)
= β(y)

aε−δ
aε−a ψ

−1
ε−1 = ψ

a
a−δ β ′(y)−γ .

Case I. (Special form of (28)): z j = (γ − 1)η jα
−γ

j ,

riαi =
⎛

⎝ηiα
1−γ

i − αi

∑

j �=i

z j

⎞

⎠ β ′1−γ /βψa/(a−δ)

︸ ︷︷ ︸
1

. (30)
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Proofs
Proof of Lemma 1 We shall subdivide the proof into four main parts, (i) reducing the system
of equations to the analysis of a particular nonlinear equation, (ii) existence of a solution
of this particular equation, (iii) uniqueness, and (iv) dependence on n. Each part will be
subdivided into several steps. In Part 1, we show how the analysis of the system of equations
can be reduced to the analysis of a particular nonlinear equation in one unknown. The final
part, Part 5, exhibits explicit solution formulas of the components αi , if all cost parameters
are zero. 
�

Part 1: Reducing the system to one equation

If there is a positive vector α = (αi )1�i�n such that

ri = ηi (ci + αi )
−γi (ci/αi + 1) −

∑

j �=i

(γ j − 1)η j (c j + α j )
−γ j

︸ ︷︷ ︸
z j

, (31)

then simple algebra shows that α satisfies the system of equations,

ri =
(
ci
αi

+ γi

)
ηi (ci + αi )

−γi − Z , i = 1, 2, . . . , n, (32)

where Z := ∑
j z j , and zi is defined in Lemma 1, see also (31). We define n real-valued

functions fi on the positive real line, ξ > 0, i = 1, 2, . . . , n,

fi (ξ) :=
(
ci
ξ

+ γi

)
ηi (ci + ξ)−γi − ri . (33)

If α satisfies (32), then f1(α1) = f2(α2) = . . . = fn(αn) = Z . Observe, each function fi
is strictly monotone decreasing, fi (0+) = +∞, and limξ→∞ fi (ξ) = −ri . We denote the

unique root of each fi by α
(0)
i and we consider the intervals (0, α(0)

i ], i = 1, 2, . . . , n; when
fi is restricted to this interval, the range of fi equals [0,∞). From now on - without loss of
generality - we choose the function f1 to work with. By definition, for any κ � 0, there is
a unique ξ in (0, α(0)

1 ] such that κ = f1(ξ), and, for i = 2, ..., n, there are unique positive

numbers f −1
i ( f1(ξ)) =: χi (ξ) in (0, α(0)

i ] such that
κ = f1(ξ) = fi (χi (ξ)).

By construction, χi (ξ) are monotone increasing functions on (0, α(0)
i ]. We are looking for

positive vectors α = (αi )1�i�n which solve system (32). If α is positive, then z = (z j )1� j�n

is a positive vector and Z = ∑
j (γ j − 1)η j (c j + α j )

−γ j is a positive number; moreover,

the values fi (αi ) are positive as well. Since fi (ξ) is nonpositive whenever ξ � α
(0)
i , any

component αi of a positive solution vector α needs to be less than α
(0)
i Table 5.

To find the first componentα1 of a solutionα, we define a particular nonnegativemonotone
decreasing function G on (0, α(0)

1 ], namely

G(ξ) :=
∑

j

(γ j − 1)η j (c j + χ j (ξ))−γ j . (34)

If α1 is the first component of a solution of (32), then the equation G(α1) = f1(α1) has to be
satisfied. We shall verify that the equation G(ξ) = f1(ξ) has at least one solution ξ > 0. In
Part 3, see below, wewill show that the equation has exactly one solution. If α1 is known, then
all other components of a positive solution vector α are given by α j = χ j (α1), 2 � j � n.
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Part 2: Existence (a necessary and sufficient condition)

To prove existence of a positive value α1, we shall employ the Intermediate Value Theorem.
To be specific, we verify that (a),

lim
ξ→0

f1(ξ) > lim
ξ→0

G(ξ),

i. e. the graph of f1 lies above the graph ofG in a neighbourhood of zero, and (b),G dominates
f1 for large values ξ . The last statement is obvious, since

f1(α
(0)
1 ) = 0 < G(α

(0)
1 ). (35)

To see that f1 dominates G in a neighbourhood of zero we observe that limξ→0 χ j (ξ) = 0,
j = 1, 2, . . . , n. This last property follows from the fact that limξ→0 f −1

j ( f1(ξ)) = 0. The
behavior of G in a neighborhood of zero depends on how many cost coefficients c j are
positive. If all c j are positive, then G(0+) is finite, while f1(0+) = ∞. If there is at least
one parameter c j which is equal to zero, then G(0+) = ∞. To see that G stays below f1,
we analyze the quotient of both functions G and f1. Applying l’Hopital’s rule, we obtain

G ′(ξ)

f ′
1(ξ)

=
∑

j (γ j − 1)η j (−γ j )
(
c j + f −1

j ( f1(ξ))
)−γ j−1 f ′

1(ξ)

f ′
j

(
f −1
j ( f1(ξ))

)

f ′
1(ξ)

.

To streamline the expression on the right hand side of the last equation, we introduce the
abbreviation ξ j := χ j (ξ) = f −1

j ( f1(ξ)). Taking the derivatives of all functions f j , simple
algebra yields

G ′(ξ)

f ′
1(ξ)

=
∑

j

(γ j − 1)η jγ j
(
c j + ξ j )

)−γ j−1

− f ′
j (ξ j )

=
∑

j

(γ j − 1)η jγ j
(
c j + ξ j )

)−γ j−1

c j
ξ2j

η j (c j + ξ j )
−γ j +

(
c j
ξ j

+ γ j

)
η jγ j (c j + ξ j )

−γ j−1

=
∑

j

(γ j − 1)γ j

(c j/ξ j )2 + (c j/ξ j )(γ j + 1) + γ 2
j

. (36)

If ξ converges to zero, we obtain

G(0+)

f1(0+)
= lim

ξ→0

G ′(ξ)

f ′
1(ξ)

=
n∑

j=1:
c j=0

γ j − 1

γ j
=

{∑
j (1 − 1/γ j )) , all c j = 0

0 , all c j > 0
. (37)

Let J0 := { j |c j = 0, j = 1, ..., n} and H := ∑
j∈J0(1 − 1/γ j ). Next, we consider the

following two cases: H � 1 and H < 1. In the first case, the fact that the sum is greater or
equal to one, together with (37), implies, ξ > 0,

G ′(ξ)

f ′
1(ξ)

=
n∑

j=1

γ j − 1

γ j
�

∑

j∈J0

γ j − 1

γ j
= H � 1.

Thus, the (negative) slope of G is steeper than the (negative) slope of f1. Since G dominates
f1 in a neighborhood of α

(0)
1 , and G ′(ξ) � f ′

1(ξ) < 0, the difference between G and f1
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will always be positive on (0, α(0)
1 ]. Hence, if H � 1, there will never be a solution of (31).

On the other hand, (37) implies that the condition of the commons, H < 1, is necessary
and sufficient for a solution of G(ξ) = f1(ξ) to exist. Observe that the strict inequality and
(37) imply G to be dominated by f1 in a neighborhood of zero. Together with (35), at least
one positive solution α1 exists. Recall, if all unit cost coefficients c j are positive, then the
condition of the commons is always satisfied.

Part 3: Uniqueness

Assume the condition of the commons holds true. Part 2 implies that there is at least one
solution of the equation

G(α1) = f1(α1). (38)

Since the graph of f1 starts above the graph ofG and ends below it, the number of intersections
of the two functions is odd. Should there be more than one solution of (38), then the functions
G and f1 intersect at least 3 times and, by the Mean Value Theorem, the functions have to
have the same slope at two different locations. To see that this last statement contradicts (36),
we distinguish between the following two possibilities, (i) all c j are zero, and (ii) there is at
least one positive c j . If all c j are zero, then G ′(ξ)/ f ′

1(ξ) = ∑n
j=1(1− 1/γ j ), and the slopes

of f and G, at any ξ , are never the same if a solution of (38) exists.
Should there be at least one positive cost coefficient, say cl , then G ′(ξ)/ f ′

1(ξ) is strictly
monotone increasing, and there can be only one locationwhere the slopes are the same. To see
that the ratioG ′/ f ′

1 is a strictly monotone increasing function, observe that each denominator
of the terms of the right hand side of (36) is decreasing in the variable ξ j = χ j (ξ1), and
the term involving the variable ξl is strictly decreasing in ξl . Moreover, χ j (ξ1) is monotone
increasing in ξ1. Hence, the ratioG ′(ξ1)/ f ′

1(ξ1) is a strictly increasing function too. Thus, the
uniqueness of a positive solution α1 of (38), as well as the uniqueness of a positive solution
vector α of (31) follows.

Part 4: Dependence on the number of firms

If there are n + 1 equations of the form (10), we shall add one additional function fn+1 to
the family of functions f1, ..., fn , cf. (33). Notice that in Part I of the existence proof, we
are free to choose any element of f1, ..., fn+1 to be used for the construction of the solution
α∗(n + 1); w.l.o.g. we will choose f1 for both systems of equations. Observe, the function
G, see (34), is isotone in the number of equations, i.e., G based on n + 1 terms dominates
the sum with only n terms. Thus, α1(n + 1) < α1(n). Since the functions χ j , j = 2, ..., n,
are strictly monotone increasing, the claim follows.

Part 5: Explicit Solution Formulas (all unit costs c j are zero)

To conclude, we display the explicit solution of equation (32) if all c j = 0. If all cost
coefficients are zero, (32) simplifies, and we get Z = fi (αi ) = γiηiα

−γi
i − ri = γi

γi−1 zi − ri .
This system of equations is equivalent to the system

zi = γi − 1

γi
(Z + ri ), i = 1, 2, . . . , n. (39)
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Taking the sum of all zi , we obtain

Z =
∑

i

γi − 1

γi
ri

/(

1 −
∑

i

γi − 1

γi

)

> 0. (40)

Since all ci = 0, using the definition of αi in terms of zi , see above, and using (39) and (40),
we can express the unique solution value αi in terms of the parameter ui , ki , and all r j , γ j ,
j = 1, 2, . . . , n:

αi =
(

zi
ηi (γi − 1)

)−1/γi
=

(
Z + ri
ηiγi

)−1/γi
. (41)


�
Proof of Lemma 2 Elementary calculations show that β(y) = B(y)1−1/γ is a solu-
tion of the Bernoulli Eq. (14), see Lemma 2. The facts that β and B are increas-
ing functions are an immediate consequence of formula (13). It remains to show that

β(y) is concave on [0, N ], if the condition ψ ′(y)ψ(y)
−ε
ε−1 B(y) < 1−δ

a holds true.

Since β ′(y) = B(y)−
1
γ ψ(y)

1
ε−1 ψ ′(y), the second derivative of β is given by β ′′(y) =

−1
γ−1 B(y)

−1−γ
γ ψ(y)

2
ε−1 + B(y)

−1
γ 1

ε−1 ψ(y)
2−ε
ε−1 ψ ′(y), and the assertion follows. 
�

Proof of Theorem 1 By definition, see Sect. 2.1, ẏ = −λ, where λ = ∑n
i=1 λi . Using the

optimality conditions (23) and (24), we obtain

λ∗
i (y) = uiw

∗δ
i (y)p∗−ε

i (y)ψ(y)

= ui

(
ε

ε − 1

)−εa+δ
a−δ

(
δ

ε

ui
a

) δ
a−δ

ψ(y)
a

a−δ (ci + ∂yVi (y))
−εi a+δ

a−δ

= aεi − a

a − δ
ηiψ(y)

a
a−δ (ci + αiβ

′(y))−γ

Case I= (γ − 1)ηiψ(y)
a

a−δ α
−γ

i β ′(y)−γ

= zi
β(y)

β ′(y)
= zi B(y)ψ(y)

−1
ε−1 .

Taking the sum of all λ∗
i (y), we obtain

λ(y) = Z
β(y)

β ′(y)
. (42)

Since the Bernoulli differential equation (14) can be equivalently written as

β(y)

β ′(y)
= B(y)ψ(y)

−1
ε−1 ,

elementary transformations yield the formula of λ. To see (17), evaluate (42) along an optimal
trajectory y(t). Multiplying (42) by β ′(y(t)) yields the differential equation

Since y(0) = N , we obtain the formula β(y(t)) = β(N )e−Zt . Since B is strictly increasing,
(17) follows. Since − ẏ

Z = β(y)
β ′(y) , cf. (42), integrating the individual rates λ∗

i (y(t)) yields the
accumulated sales of each company
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xi (t) =
∫ t

0
λ∗
i (y(s))ds = zi

∫ t

0

β(y(s))

β ′(y(s))
ds = − zi

Z

∫ t

0
ẏ(s)ds = zi

Z
(N − y(t)).


�
Proof of Theorem 3 It follows from the proof of Theorem 1 that, 1 � i � n,

λ∗
i (y) = aεi − a

a − δ
ηiψ(y)

a
a−δ (ci + αiβ

′(y))
−εi a+δ

a−δ
Case II= zi y.

Taking the sum of the individual rates of sales implies

λ∗(y(t)) = y(t)Z = −ẏ(t), where y(0) = N .

The solution of this elementary differential equation is y(t) = e−Zt N .
When integrating the individual rates λ∗

i (y) we get

xi (t) =
∫ t

0
λ∗
i (y(s))ds = zi

∫ t

0
y(s) ds = zi

∫ t

0
e−Zs N ds = Nzi/Z(1 − e−Zt ).


�
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