
Dyn Games Appl (2013) 3:446–472
DOI 10.1007/s13235-013-0092-9

A Mean Field Capital Accumulation Game with HARA
Utility

Minyi Huang

Published online: 21 August 2013
© Springer Science+Business Media New York 2013

Abstract This paper introduces a mean field modeling framework for consumption-
accumulation optimization. The production dynamics are generalized from stochastic
growth theory by addressing the collective impact of a large population of similar agents
on efficiency. This gives rise to a stochastic dynamic game with mean field coupling in the
dynamics, where we adopt a hyperbolic absolute risk aversion (HARA) utility functional for
the agents. A set of decentralized strategies is obtained by using the Nash certainty equiva-
lence approach. To examine the long-term behavior we introduce a notion called the relaxed
stationary mean field solution. The simple strategy computed from this solution is used to
investigate the out-of-equilibrium behavior of the mean field system. Interesting nonlinear
phenomena can emerge, including stable equilibria, limit cycles and chaos, which are related
to the agent’s sensitivity to the mean field.

Keywords Stochastic growth · Investment · Consumption · Externality · Mean field
approximation · Nash equilibrium · Out-of-equilibrium behavior

1 Introduction

The recent years have experienced a rapid growth of research on large-population stochastic
dynamic games with mean field coupling, where the players are individually insignificant
but collectively generate a significant impact on each player. To tackle the dimensionality
difficulty in designing strategies, consistent mean field approximations provide a powerful
approach. The fundamental idea is that in the infinite population limit each agent optimally
responds to a certain mean field which in turn is replicated by the closed-loop behaviors of
the agents. Based on this procedure, the mean field is determined by a fixed point analysis.
Subsequently one may construct a set of decentralized strategies for the large but finite pop-
ulation initially considered, where each agent only needs to know its own state information
and the mass effect computed off-line. One may further establish an ε-Nash equilibrium
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property for the set of strategies, where the individual optimality loss level ε depends on the
population size. This fundamental methodology has been developed in our past work con-
sidering linear-quadratic-Gaussian (LQG) games [28, 29], and McKean–Vlasov dynamics
[31], and called the Nash certainty equivalence (NCE) method. A closely related approach
is independently developed in [36]. For mean field models in industry dynamics, the notion
of oblivious equilibrium is proposed in [56], and further generalization is presented in [2].
The survey [14] on differential games reports recent progress on mean field game theory.
The mean field approximation approach also appeared in anonymous sequential games [32]
with a continuum of players. However, the heuristic application of the law of large numbers
to a continuum of independent processes leads to measurability difficulties, and the resulting
mathematical rigor problem has long been recognized (see related references in [44]).

The further study of this methodology in LQG models can be found in [8, 12, 28, 38].
A risk-sensitive linear-quadratic model is studied in [54]. The investigation of adaptation
with unknown model information in the LQG setting is developed in [33, 46]. The mean
field game analysis with nonlinear diffusions can be found in [16, 31, 36]. This approach
depends on tools of Hamilton–Jacobi–Bellman (HJB) equations, Fokker–Planck equations,
and McKean–Vlasov equations. The reader is also referred to [15] for a systematic ac-
count of the basic theory. A very general conceptual framework is developed in [34] by
using the notion of nonlinear Markov processes. Numerical solutions for coupled HJB and
Fokker–Planck equations have been developed in [1]. The analysis dealing with discrete
states/actions is developed in [22, 53]. By using the machinery of HJB–Fokker–Planck equa-
tions, synchronization and phase transition of oscillator games are studied in [57]. An inter-
esting application to power systems is presented in [41] for decentralized recharging control
of large populations of plug-in electric vehicles. Economic applications of mean field games
to exhaustible resource production and human capital optimization are described in [24].

To address mean field interactions with the presence of one or a few agents with strong
influences, mixed player models with a major player are studied in [27, 44, 55]. The eco-
nomic background can be found in [25], which considered static cooperative games. The
nonlinear extension of the major player model is developed in [11, 45]. In a different setting,
mean field optimal control has been studied in [4, 58], which involves a single optimizer.
A mean field limit is studied for Markov decision processes in [23]. For mean field social
optimization with decentralized information, see [30].

In this paper, we present an application of the NCE methodology to a consumption-
accumulation optimization problem involving many competing agents. We adopt an affine
production function to model the input (investment)-output relation of each individual agent,
and HARA utility [21] is used for the performance measure. This combination of dynamics
and costs will enable explicit computation of the control and is able to address complex
behavior which has been observed in economic systems [10]. For the reader’s convenience,
some basic economic background on stochastic growth theory will be presented before the
mean field extension of the production model is described. Based on the related game theo-
retic literature on production optimization [3, 7, 20], the problem studied in this paper will
be called mean field capital accumulation games.

After the formulation of the mean field game for consumption-accumulation, we apply
the NCE methodology to design decentralized strategies and present the performance anal-
ysis. Next, we turn to the so-called out-of-equilibrium analysis [5], and for this purpose we
introduce a notion called the relaxed stationary mean field solution. The simple strategy de-
termined by this solution notion will be used to reveal interesting nonlinear phenomena of
the mean field system: stable equilibria, limit cycles, and chaos. The success in mean field
stochastic control achieved so far has crucially depended on the rational anticipation of the
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mean field behavior by individual agents. The emergence of the chaotic behavior and the as-
sociated unpredictability suggest new perspectives and challenges for future studies of such
optimization problems.

The organization of the paper is as follows. The mean field capital accumulation game is
formulated in Sect. 2. Section 3 studies an auxiliary optimal control problem. The NCE fixed
point equation is constructed and analyzed in Sect. 4. Section 5 presents the error analysis of
the mean field approximation. Section 6 introduces the relaxed stationary mean field solution
and Sect. 7 examines the out-of-equilibrium property of the mean field dynamics. Finally,
Sect. 8 presents concluding remarks.

To end this introduction, we give a convention about notation. The integer subscripts
i, k, j,1, etc. appearing in a random variable (state Xi

t , control u1
t , noise W

j
t , etc.) always

denote an agent index, not an exponent, unless otherwise indicated. For two numbers a and
b, a ∨ b = max(a, b) and a ∧ b = min(a, b). For two random variables X and Y , EXY =
E(XY). If a sequence of random variables {Yn,n ≥ 1} converges to Y in probability, we

denote Yn

P→ Y .

2 The Mean Field Model

The mean field capital accumulation game to be formulated in this section is closely related
to the economic literature on optimal stochastic growth.

2.1 The Classical Modeling of Optimal Stochastic Growth

In stochastic optimal growth theory, a hypothetical central planner undertakes the inter-
temporal allocation of capital and consumption in an economy where the production pro-
cess is subject to random disturbances (or called random shocks). This area has its roots in
deterministic optimal growth [17, 49, 51] and has led to the development of a substantial
literature. A comprehensive survey is available in [47].

Within the classical stochastic one-sector growth modeling, the economy at stage t in-
volves two basic quantities: the capital stock κt (used for investment) and consumption ct .
The output yt+1 at the next stage is characterized by the relation

yt+1 = f (κt , rt ), t = 0,1, . . . ,

where f (·, ·) is called the production function; rt is the random disturbance; and y0 is the
initial output (see e.g. [13, 47]). If the output remaining after investment is all consumed,
one has the constraint κt + ct = yt . The early research usually assumed the so called In-
ada condition for the production function f (·, r) when r is fixed, which means f (·, r) is
a smooth, strictly increasing and strictly concave function of the capital stock κ , satisfying
f (0, r) = 0, f ′(0, r) = ∞ and f ′(∞, r) = 0 [13]. The shape of the function captures dimin-
ishing return when capital stock increases, and in particular f ′(∞, r) = 0 implies the output
is only a negligible fraction of the capital stock when the latter is very abundant. The con-
dition f ′(0, r) = ∞ indicates extremely high efficiency when the capital stock is very low.
Later on considerable attention of economists has been devoted to general production func-
tions without strict concavity [6, 42, 48], and a practical background is production involving
renewal resources.

The utility from consumption is denoted by ν(ct ), where ν is usually taken as an in-
creasing concave function defined on [0,∞). The objective of the planning problem is to
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maximize the expected discounted sum utility

E

∞∑

t=0

ρtν(ct ),

where y0 is given. Under quite standard conditions on the sequence of disturbances, this
problem may be solved by dynamic programming. Although the model is relatively simple,
it allows the examination of important issues such as asymptotic behavior of the economy
[13]. There are also extensive works on multi-sectoral extensions (see references in [47]).

An obvious limitation of the one-agent-based optimization is that it does not directly
consider the fact that in reality the same sector of the economy may involve many agents
which optimize for their own utility and interact with each other. Hence, it is well motivated
to adopt a game theoretic framework. For such related work on capital accumulation, see [3,
7, 20]. These works assume a joint ownership of the productive asset by different agents,
which are associated with a common production function. Such an assumption is appropriate
when all the agents have strategic consumption of a shared resource.

2.2 Mean Field Production Modeling

The model consists of N agents involved in a certain type of production activity of the
economy. At time t ∈ Z+ := {0,1,2, . . .}, the output or wealth of agent i is denoted by Xi

t .
It invests the amount ui

t for production. Borrowing is not allowed, and so the investment
satisfies the constraint ui

t ∈ [0,Xi
t ]. The amount used for consumption is

ci
t = Xi

t − ui
t .

Denote u
(N)
t = (1/N)

∑N

j=1 u
j
t , which is the aggregate (or average) investment level. After

a period of investment the output of agent i, measured by the unit of capital, is modeled by
the stochastic dynamics

Xi
t+1 = G

(
u

(N)
t ,W i

t

)
ui

t , t ≥ 0, (1)

where u
(N)
t indicates the influences of the mean field investment behavior and Wi

t is a ran-
dom variable to model uncertainty. To obtain a meaningful large population analysis, it is
necessary to include the scaling factor 1/N within u

(N)
t . This kind of scaling by the popu-

lation size is typical for the analysis of large systems (see e.g. [35]). We may think of u
(N)
t

as a quantity measured according to a macroscopic unit. For simplicity we consider a pop-
ulation of uniform agents which share the same form of growth dynamics. The following
assumptions are assumed throughout the paper:

(A1) (i) Each sequence {Wi
t , t ∈ Z+} consists of i.i.d. random variables with support DW

and distribution function FW . The N noise sequences {Wi
t , t ∈ Z+}, i = 1, . . . ,N , are

i.i.d. (ii) The initial states {Xi
0,1 ≤ i ≤ N} are i.i.d. positive random variables with

distribution FX0 and mean m0, which are also independent of the N noise sequences.
The distribution functions FW and FX0 do not depend on N . For convenience of

notation, we introduce an auxiliary random variable W with distribution FW .
(A2) (i) The function G: [0,∞)×DW → [0,∞) is continuous; (ii) for each fixed w ∈ DW ,

G(z,w) is a decreasing function of z on [0,∞).
(A3) (iii) EG(0,W) < ∞ and EG(p,W) > 0 for each p ∈ [0,∞).
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It is implied by (A2) that when the aggregate investment level increases, the produc-
tion becomes less efficient. We give some motivation for using the multiplicative factor G.
For illustration, consider the production of the same type of commodity in an agricultural
economy. Suppose the model consists of many relatively small wheat farms. When a farm
increases its investment, its product quantity increases. However, this alone is not enough
to determine its profit. The aggregate investment level of all the farms affects the product
price via the aggregate supply. It may also possibly affect labor wages. Therefore, the ac-
cumulated wealth of a farm is directly related to both its own investment and the aggregate
investment. The simple model (1) explicitly reflects the mean field impact.

The affine production function Gui in (1) is closely related to [42, 52]. If u
(N)
t is replaced

by a fixed value u, G(u,Wi
t )ui becomes a particular form of the production functions in

[42, 52]. A production function with multiplicative noise is also adopted in [26] to solve
a resource allocation problem as a Markov decision process. Our production function may
be viewed as a mean field variant of the models in [26, 42, 52] by using the linear term ui

t

and incorporating the mean field effect u
(N)
t . Apart from the justification from the point of

view of price, our model can address negative production externalities as well, which can be
used to model a congestion effect when agents have competitive usage of public resources
[9, 40]. Our model shares similarity to the deterministic affine production function in [9,
p. 650] which includes negative production externalities.

For model (1), there is no notable diminishing return effect resulting from the investment
of agent i for large N . It is intended as a simple approximation to certain more general
systems and will ensure tractability. Our main interest is to address the negative mean field
impact which is captured by the production efficiency loss due to increasing aggregate in-
vestment.

The agent’s objective is the optimization of its utility of consumption. We adopt a hyper-
bolic absolute risk aversion (HARA) utility function of the form

v
(
ci
t

) = v
(
Xi

t − ui
t

) := 1

γ

(
Xi

t − ui
t

)γ
,

where we take γ ∈ (0,1). This is a concave function of the consumption. Denote X =
(X1, . . . ,XN) and u = (u1, . . . , uN). Let u−i denote the control of all other N − 1 agents
excluding agent i. The expected discounted sum utility (also to be called utility functional)
is

Ji

(
ui, u−i

) = E

T∑

t=0

ρtv
(
Xi

t − ui
t

)
,

where ρ ∈ (0,1] is the discount factor.
For t ≥ 0, let Ft = σ(Xs,us−1, s ≤ t) be the σ -algebra generated by the random variables

{Xs,us−1, s ≤ t}. Similarly, define the σ -algebra F j
t = σ(X

j
s , u

j

s−1, s ≤ t).

Definition 1 We call {ut = (u1
t , . . . , u

N
t ),0 ≤ t ≤ T } a set of centralized strategies if (i) for

each j , uj
t is adapted to Ft , and (ii) for each pair (j, t), uj

t ∈ [0,X
j
t ], where X

j
t is recursively

generated. We call it a set of decentralized strategies if for each j , u
j
t is adapted to F j

t and
(ii) still holds.

If a rule is given to determine the dependence of (u
j
t , j = 1, . . . ,N) on {Xs,us−1, s ≤ t},

Ft and (F1
t , . . . ,FN

t ) can be recursively determined. Letting {ut ,0 ≤ t ≤ T } be a set of
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decentralized strategies, we call it a set of decentralized state feedback strategies, if each u
j
t

depends only on (t,X
j
t ).

To end this section, we introduce an example for the function G.

Example 2 Suppose G(z,w) = αw
1+δzη , where α > 0, δ > 0, η > 0 are parameters. Let

{Wi
t , t ≥ 0}, 1 ≤ i ≤ N , be positive i.i.d. noise processes with mean EWi

0 = 1. Then
DW ⊂ [0,∞) and (A2)–(A3) hold.

3 The Mean Field Limit of the Decision Problem

3.1 The Mean Field Approximation

Our starting point is to approximate u
(N)
t , 0 ≤ t ≤ T − 1, by a deterministic sequence

(pt )
T −1
0 . There is no need to approximate u

(N)
T since it is not used by the agent’s optimal

strategy at time T which will always consume all the wealth. Now agent i considers the
optimal control problem with dynamics

Xi
t+1 = G

(
pt ,W

i
t

)
ui

t , t ≥ 0, (2)

where ui
t ∈ [0,Xi

t ] and is adapted to F i
t , and the utility functional is now written as

J̄i

(
ui, (pt )

T −1
0 ,0

) = E

T∑

t=0

ρtv
(
Xi

t − ui
t

)
, (3)

where the argument 0 indicates the initial time 0. Once (pt )
T −1
0 is fixed, the decision problem

of agent i is decoupled from that of the other N − 1 agents, and for this reason, J̄i depends
only on ui and (pt )

T −1
0 . Further, denote the utility functional with initial time t by

J̄i

(
ui, (pl)

T −1
t , t

) = E

T∑

s=t

ρs−t v
(
Xi

s − ui
s

)
,

which is affected only by (pl)
T −1
t . The value function is defined as

Vi(x, t) = sup
{ui

s }Ts=t

E
[
J̄i

(
ui, (pl)

T −1
t , t

)|Xi
t = x

]
.

3.2 The Dynamic Programming Equation

We have the dynamic programming equation

Vi(x, t) = max
0≤ui≤x

[
v(x − ui) + ρEVi

(
G

(
pt ,W

i
t

)
ui, t + 1

)]
,

where t = 0,1, . . . , T − 1. The terminal condition is

Vi(x,T ) = 1

γ
xγ .
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We look for a solution of the value function in the form

Vi(x, t) = 1

γ
D

γ−1
t xγ , (4)

where DT = 1. Now the main task is to determine Dt . This will be accomplished by finding
its recursion.

Denote the functions

Φ(z) = ρEGγ (z,W), φ(z) = Φ
1

γ−1 (z).

By (A3), Φ(z) ∈ (0,∞) for each z. The main result for the dynamic programming equation
is the following.

Theorem 3

(i) The value function Vi(x, t) takes the form (4), where

Dt = φ(pt )Dt+1

1 + φ(pt )Dt+1
, t ≤ T − 1, DT = 1. (5)

(ii) The optimal control has the feedback form

ui
t = Xi

t

1 + φ(pt )Dt+1
, t ≤ T − 1, ui

T = 0. (6)

Proof (i) First we have DT = 1, and ui
T = 0. Next suppose Vi(x, t + 1) = 1

γ
D

γ−1
t+1 xγ for

t + 1 ≤ T . Let us continue to determine Dt , t ≤ T − 1. The dynamic programming equation
gives

Vi(x, t) = max
0≤ui

t ≤x

{
1

γ

(
x − ui

t

)γ + ρE
[
Vi

(
Xi

t+1, t + 1
)∣∣Xi

t = x
]}

= 1

γ
max

0≤ui
t ≤x

{(
x − ui

t

)γ + ρD
γ−1
t+1 E

[
G

(
pt ,W

i
t

)
ui

t

]γ }

= 1

γ
max

0≤ui
t ≤x

{(
x − ui

t

)γ + Φ(pt)D
γ−1
t+1

(
ui

t

)γ }
.

The maximum in the last equality is attained at a unique point

ui
t = x

1 + φ(pt )Dt+1
, 0 ≤ t ≤ T − 1, (7)

and the maximum is given as Vi(x, t) = 1
γ
D

γ−1
t xγ , where Dt is given by (5).

(i) By the expression of the maximizer ui
t , it is clear that (6) is the optimal control law. �

Lemma 4 Denote φt = φ(pt ). We have the relation

Dt = φT −1φT −2 · · ·φt

1 + φT −1 + φT −1φT −2 + · · · + φT −1φT −2 · · ·φt

, 0 ≤ t ≤ T − 1.
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Proof Dt may be calculated by using (5). �

Let φi · · ·φj , i ≥ j , denote the successive product
∏i

k=j φk .

Theorem 5

(i) The closed-loop state of agent i satisfies

Xi
t =

{
1+φT −1+···+φT −1···φt

1+φT −1+···+φT −1···φ0
G(pt−1,W

i
t−1) · · ·G(p0,W

i
0)X

i
0, 1 ≤ t ≤ T − 1,

1
1+φT −1+···+φT −1···φ0

G(pT −1,W
i
T −1) · · ·G(p0,W

i
0)X

i
0, t = T .

(ii) The optimal control has the representation

ui
t =

⎧
⎪⎨

⎪⎩

1+φT −1+···+φT −1···φt+1
1+φT −1+···+φT −1···φ0

G(pt−1,W
i
t−1) · · ·G(p0,W

i
0)X

i
0, t ≤ T − 2,

1
1+φT −1+···+φT −1···φ0

G(pT −2,W
i
T −2) · · ·G(p0,W

i
0)X

i
0 t = T − 1,

0 t = T ,

(8)

where G(pt−1,W
i
t−1) · · ·G(p0,W

i
0) := 1 if t = 0.

Proof For 0 < t ≤ T , by using the optimal control law,

Xi
t = G

(
pt−1,W

i
t−1

)
ui

t−1

= G(pt−1,W
i
t−1)

1 + φt−1Dt

Xi
t−1

= G(pt−1,W
i
t−1)

1 + φt−1Dt

· · · G(p0,W
i
0)

1 + φ0D1
Xi

0.

If 0 < t ≤ T − 1, Lemma 4 gives

1

(1 + φt−1Dt) · · · (1 + φ0D1)
= 1 + φT −1 + · · · + φT −1 · · ·φt

1 + φT −1 + · · · + φT −1 · · ·φ0
.

For the case t = T , we use DT = 1 and Lemma 4 to obtain

1

(1 + φT −1DT ) · · · (1 + φ0D1)
= 1

1 + φT −1 + · · · + φT −1 · · ·φ0
.

Then part (i) follows readily. Part (ii) follows from part (i) and (6). �

3.3 An Example

We consider a simple model with T = 2. Let (p0,p1) be given. Then we have

D0 = φ1φ0

1 + φ1 + φ1φ0
, D1 = φ1

1 + φ1
, D2 = 1. (9)

The controls are given by

ui
0 = (1 + φ1)X

i
0

1 + φ1 + φ1φ0
, ui

1 = G(p0,W
i
0)X

i
0

1 + φ1 + φ1φ0
, ui

2 = 0.
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4 The Fixed Point Condition for Consistency

Recall that in Sect. 3, the strategy of agent i is obtained by assuming a known sequence
(pt )

T −1
0 which is intended to approximate the mean field investment process (u

(N)
t )0≤t≤T −1.

Now we apply the NCE methodology to specify (pt )
T −1
0 by imposing a consistency con-

dition. Let ui be given in Theorem 5 and implemented by N agents described by (2). It is
desired to replicate the mean field pt by limN→∞ u

(N)
t . Also, note that the first two terms on

the right-hand side of (8) depend only on (p0, . . . , pT −1). Denote

Ψ (z) = EG(z,W).

The idea of construction here is to take expectation of ui
t in (8) for t = 0, . . . , T − 1 to

obtain T functions of (p0, . . . , pT −1). Note that limN→∞ u
(N)
t is equal to this expectation

with probability one.
For 0 ≤ k ≤ T − 2, define

Λk(p0, . . . , pT −1) = 1 + φ(pT −1) + · · · + φ(pT −1) · · ·φ(pk+1)

1 + φ(pT −1) + · · · + φ(pT −1) · · ·φ(p0)
Ψ (pk−1) · · ·Ψ (p0)m0,

where Ψ (pk−1) · · ·Ψ (p0) := 1 if k = 0.
For T − 1, define

ΛT −1(p0, . . . , pT −1) = 1

1 + φ(pT −1) + · · · + φ(pT −1) · · ·φ(p0)
Ψ (pT −2) · · ·Ψ (p0)m0.

Now we define the vector function

Λ(p0, . . . , pT −1) = (Λ0, . . . ,ΛT −1)(p0, . . . , pT −1)

from R
T+ to R

T+, and we further introduce the fixed point equation

Λ(p0, . . . , pT −1) = (p0, . . . , pT −1), (10)

where (p0, . . . , pT −1) ∈ R
T+. This equation specifies the consistency requirement for the

NCE-based solution procedure in that the infinite population limit should replicate the mean
field which had been initially assumed.

Theorem 6 Denote κ0 = Ψ (0) and

M = [0,m0] × [0, κ0m0] × · · · × [
0, κT −1

0 m0
]
.

Then Λ has the following properties:

(i) Λ is a continuous mapping from M to M .
(ii) Λ has a fixed point.

Proof We first check continuity. Consider Φ(z) = ρEGγ (z,W), where z ∈ [0,∞). Note
that Φ(z) > 0. Fix z. By the monotonicity of G, we have 0 ≤ Gγ (z′,W) ≤ Gγ (0,W). By
dominated convergence theorem,

lim
0≤z′→z

EGγ
(
z′,W

) = EGγ (z,W). (11)



Dyn Games Appl (2013) 3:446–472 455

So Φ and subsequently φ are continuous in p ∈ [0,∞). Therefore, Λ is continuous.
For t = 0, . . . , T − 1, observe that ui

t satisfies

Eui
t ≤ [

EG(0,W)
]t

EXi
0 = κt

0m0.

This implies that Λk(p0, . . . , pT −1) ∈ [0, κk
0 m0], and consequently, Λ is a mapping from M

to M .
(ii) Brouwer’s fixed point theorem implies that Λ has a fixed point in M . �

5 Error Estimate of the Mean Field Approximation

Let (pt )
T −1
0 ∈ M be a fixed point of Λ. We call

ui
t = Xi

t

1 + φ(pt )Dt+1
, 0 ≤ t ≤ T − 1, ui

T = 0, (12)

the NCE-based control law. We follow the procedure in [31, Sect. 8] to develop the error
estimate. This is done by first defining two reference systems of N agents. Denote Kt =

1
1+φ(pt )Dt+1

for 0 ≤ t ≤ T − 1. Define X
(N)
t = (1/N)

∑N

i=1 Xi
t , and X̂

(N)
t , X̌

(N)
t , X̊

(N)
t , etc. are

defined similarly. The first system is based on (2) and the control law (12) for N agents

X̂i
t+1 = G

(
pt ,W

i
t

)
KtX̂

i
t , t ≤ T − 1, 1 ≤ i ≤ N, (13)

where X̂i
0 = Xi

0. The second system is based on (1) and the control law (12):

X̌i
t+1 = G

(
KtX̌

(N)
t ,W i

t

)
KtX̌

i
t , t ≤ T − 1, 1 ≤ i ≤ N, (14)

where we have used u
(N)
t = KtX̌

(N)
t . Finally, for each i we construct the envelope process

on [0, T − 1] by the recursion

X̊i
t+1 = G

(
0,W i

t

)
X̊i

t , t ≤ T − 1, X̊i
0 = Xi

0.

By Kt < 1 and monotonicity of G, X̊i
t is an upper bound for both X̂i

t and X̌i
t , 0 ≤ t ≤ T .

Lemma 7 We have

lim
N→∞

sup
0≤t≤T −1

E
∣∣KtX̂

(N)
t − pt

∣∣ = 0.

Proof For each fixed t ≤ T − 1, since the sequence {X̂(N)
t ,N ≥ 1} is generated by

i.i.d. L1 random variables, it is uniformly integrable (see [18, Sect. 4.2]). In addition,
limN→∞ KtX̂

(N)
t = pt with probability one. So limN→∞ E|KtX̂

(N)
t − pt | = 0. �

Lemma 8 We have

lim
N→∞

sup
t≤T

sup
1≤i≤N

E
∣∣X̌i

t − X̂i
t

∣∣ = 0. (15)
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Proof Denote εt,N = sup1≤i≤N E|X̌i
t − X̂i

t |, 0 ≤ t ≤ T . We recursively estimate εt,N for
t = 0,1, . . . , T . Obviously ε0,N = 0. If t = 1, we consider agent 1 and

∣∣X̌1
1 − X̂1

1

∣∣ = ∣∣G
(
K0X

(N)

0 ,W 1
0

) − G
(
p0,W

1
0

)∣∣K0X
1
0. (16)

By continuity of G and K0X
(N)

0
P→ p0, the right-hand side converges to zero in probability

when N → ∞, and is bounded by X̊1
1 . By dominated convergence, limN→∞ E|X̌1

1 − X̂1
1| =

0. Hence by symmetric dynamics of the N agents,

lim
N→∞

ε1,N = lim
N→∞

sup
1≤i≤N

E
∣∣X̌i

1 − X̂i
1

∣∣ = lim
N→∞

E
∣∣X̌i

1 − X̂i
1

∣∣ = 0.

We continue to check t = 2. Note that
∣∣X̌1

2 − X̂1
2

∣∣ = ∣∣G
(
K1X̌

(N)

1 ,W 1
1

)
K1X̌

1
1 − G

(
p1,W

1
1

)
K1X̂

1
1

∣∣

= ∣∣G
(
K1X̌

(N)

1 ,W 1
1

)
K1X̌

1
1 − G

(
p1,W

1
1

)
K1X̌

1
1

+ G
(
p1,W

1
1

)
K1

(
X̌1

1 − X̂1
1

)∣∣

≤ ∣∣G
(
K1X̌

(N)

1 ,W 1
1

) − G
(
p1,W

1
1

)∣∣X̌1
1 + G

(
0,W 1

1

)∣∣X̌1
1 − X̂1

1

∣∣

=: ξ1 + ξ2. (17)

It is clear that Eξ2 ≤ ε1,NEG(0,W). By the result with t = 1 and Lemma 7,

E
∣∣K1X̌

(N)

1 − p1

∣∣ ≤ E
∣∣K1X̌

(N)

1 − K1X̂
(N)

1

∣∣ + E
∣∣K1X̂

(N)

1 − p1

∣∣

≤ ε1,N + E
∣∣K1X̂

(N)

1 − p1

∣∣ → 0, (18)

as N → 0. So by (18), ξ1 converges to zero in probability as N → ∞ and is upper bounded
by X̊1

2 , which implies limN→∞ Eξ1 = 0. Hence

lim
N→∞

E
∣∣X̌1

2 − X̂1
2

∣∣ = 0.

So limN→∞ ε2,N = 0. Repeating the above argument, the lemma is proved. �

Corollary 9 We have limN→∞ supt≤T −1 E|u(N)
t − pt | = 0.

Proof We have E|KtX̌
(N)
t − pt | ≤ KtE|X̌(N)

t − X̂
(N)
t | + E|KtX̂

(N)
t − pt |. The corollary fol-

lows from Lemmas 7 and 8. �

Now in a system N agents, suppose all agents except agent 1 apply the NCE-based
strategies. Let u1 = (u1

t )
T
0 (adapted to Ft ) be the control of agent 1. Denote X

(−i)
t =

(1/N)
∑

k �=i X
k
t . We introduce the system

X1
t+1 = G

(
KtX

(−1)
t + (

u1
t /N

)
,W 1

t

)
u1

t , 0 ≤ t ≤ T − 1, (19)

Xi
t+1 = G

(
KtX

(−1)
t + (

u1
t /N

)
,W i

t

)
KtX

i
t , 2 ≤ i ≤ N. (20)

The initial conditions are X
j

0 for j = 1, . . . ,N , and ui
T = 0 for 2 ≤ i ≤ N . It should be

pointed out that the N − 1 random variables Xi
t , 2 ≤ i ≤ N , may have different marginal
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distributions creating a form of asymmetry since u1 is allowed to use information asymmet-
rically with respect to these N − 1 agents. For the analysis below, we need to carefully carry
out the estimates uniformly with respect to u1 and k ∈ {2, . . . ,N}. The lemma below uses a
notion of convergence in probability uniformly.

Lemma 10 Let T be fixed and s ≤ T − 1, and the two positive random variables ξ1,N

and ξ2,N depend on u1. Suppose (i) (ξ1,N + u1
s /N) ∨ ξ2,N ≤ X̊(N)

s , (ii) For any δ > 0,
limN→∞ supu1 P (|ξ1,N + u1

s /N − ξ2,N | > δ) = 0. Then for any δ > 0,

lim
N→∞

sup
u1,2≤k≤N

P
(∣∣G

(
ξ1,N + u1

s /N,Wk
s

) − G
(
ξ2,N ,Wk

s

)∣∣ > δ
) = 0. (21)

Proof For an arbitrary ε > 0, we select a sufficiently large Cε > 0 such that

P
(∣∣Wk

s

∣∣ > Cε

) ≤ ε/3,

P
((

ξ1,N + u1
s /N

) ∨ ξ2,N > Cε

) ≤ 2EX̊(N)
s /Cε = 2EX̊1

s /Cε ≤ ε/3, ∀N,

where Cε does not depend on k, s due to the i.i.d. assumption on the noises and the ini-
tial states. Now let Cε be fixed. Note that G is uniformly continuous on BCε = [0,Cε] ×
[−Cε,Cε]. For the given δ in (21), there exists τδ,ε > 0 such that |G(y1,w1)−G(y2,w2)| ≤ δ

whenever |y1 − y2| + |w1 − w2| ≤ τδ,ε and (yl,wl) ∈ BCε , l = 1,2.
We select Nδ,ε such that for all N ≥ Nδ,ε ,

sup
u1

P
(∣∣ξ1,N + u1

s /N − ξ2,N

∣∣ > τδ,ε

) ≤ ε/3. (22)

Denote Δ = |G(ξ1,N +u1
s /N,Wk

s )−G(ξ2,N ,Wk
s )|. The following estimate holds: for all

N ≥ Nδ,ε ,

P (Δ > δ) = P
(
Δ > δ,

∣∣Wk
s

∣∣ > Cε

) + P
(
Δ > δ,

∣∣Wk
s

∣∣ ≤ Cε

)

≤ ε/3 + P
(
Δ > δ,

∣∣Wk
s

∣∣ ≤ Cε

)

= ε/3 + P
(
Δ > δ,

∣∣Wk
s

∣∣ ≤ Cε,
∣∣ξ1,N + u1

s /N − ξ2,N

∣∣ > τδ,ε

)

+ P
(
Δ > δ,

∣∣Wk
s

∣∣ ≤ Cε,
∣∣ξ1,N + u1

s /N − ξ2,N

∣∣ ≤ τδ,ε

)

≤ 2ε/3 + P
(
Δ > δ,

∣∣Wk
s

∣∣ ≤ Cε,
∣∣ξ1,N + u1

s /N − ξ2,N

∣∣ ≤ τδ,ε

)
, (23)

where the last inequality follows from (22). Denote the event A = {Δ > δ, |Wk
s | ≤

Cε, |ξ1,N + u1
s /N − ξ2,N | ≤ τδ,ε}. Then

P (A) = P
(
A ∩ {

ξ1,N + u1
s /N ≤ Cε

} ∩ {ξ2,N ≤ Cε}
)

+ P
(
A ∩ {(

ξ1,N + u1
s /N

) ∨ ξ2,N > Cε

})

= P
(
A ∩ {(

ξ1,N + u1
s /N

) ∨ ξ2,N > Cε

})

≤ P
((

ξ1,N + u1
s /N

) ∨ ξ2,N > Cε

)

≤ ε/3,

which implies P (Δ > δ) ≤ ε for all N ≥ Nδ,ε . Since Nδ,ε does not depend on u1, k, the
lemma follows. �
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Lemma 11 Let X
j
t be defined by (19)–(20). Then we have

lim
N→∞

sup
t≤T

sup
u1

sup
2≤k≤N

E
∣∣Xk

t − X̌k
t

∣∣ = 0.

Proof It is clear that u1
t ≤ X̊1

t where the superscript indicates agent 1. For t ≤ T , denote
ε1
t,N = supu1 sup2≤k≤N E|Xk

t − X̌k
t |. In fact, Xk

t depends on u1 up to (u1
s )s≤t−1. Consider

k ≥ 2 for the estimate below. Take any ε > 0. For t = 1,

E
∣∣Xk

1 − X̌k
1

∣∣ = E
∣∣G

(
K0X

(−1)

0 + u1
0/N,Wk

0

) − G
(
K0X

(N)

0 ,Wk
0

)∣∣K0X
k
0

≤ E
∣∣G

(
K0X

(−1)

0 + u1
0/N,Wk

0

) − G
(
K0X

(N)

0 ,Wk
0

)∣∣Xk
0 .

Denote ζ k
0 = G(K0X

(−1)

0 + u1
0/N,Wk

0 ) − G(K0X
(N)

0 ,Wk
0 ). We see that for any δ > 0,

sup
u1

P
(∣∣K0X

(−1)

0 + u1
0/N − K0X

(N)

0

∣∣ > δ
) N→∞−→ 0.

For any δ > 0, by Lemma 10,

lim
N→∞

sup
u1,k

P
(∣∣ζ k

0

∣∣ > δ
) = 0. (24)

Denote L̊ = 1 + 2 sup0≤t≤T EX̊1
t . We have

E
∣∣ζ k

0

∣∣Xk
0 = E

∣∣ζ k
0

∣∣1|ζ k
0 |≤ε/L̊Xk

0 + E
∣∣ζ k

0

∣∣1|ζ k
0 |>ε/L̊Xk

0

≤ ε/2 + E1|ζ k
0 |>ε/L̊G

(
0,Wk

0

)
Xk

0

= ε/2 + E1|ζ k
0 |>ε/L̊X̊k

1 .

The collection of random variables {X̊i
s ,0 ≤ s ≤ T , i = 1,2, . . .} is uniformly integrable.

There exists δε > 0 such that EX̊i
s1A ≤ ε/2 whenever P (A) ≤ δε . We have

sup
u1,k

E
∣∣ζ k

0

∣∣Xk
0 ≤ ε/2 + sup

u1,k

E1|ζ k
0 |>ε/L̊X̊k

1 ≤ ε (25)

provided that N ≥ Nε for a sufficiently large Nε to ensure supu1,k P (|ζ k
0 | > ε/L̊) ≤ δε by

(24). Therefore, ε1
t,N ≤ ε for all N ≥ Nε . Hence the lemma follows for t = 1.

Suppose the lemma is true for t ≤ s. We check t = s + 1. We have

E
∣∣Xk

s+1 − X̌k
s+1

∣∣ = E
∣∣G

(
KsX

(−1)
s + u1

s /N,Wk
s

)
KsX

k
s − G

(
KsX̌

(N)
s ,Wk

s

)
KsX̌

k
s

∣∣

≤ E
∣∣G

(
KsX

(−1)
s + u1

s /N,Wk
s

) − G
(
KsX̌

(N)
s ,Wk

s

)∣∣KsX
k
s

+ E
∣∣G

(
KsX̌

(N)
s ,Wk

s

)
KsX

k
s − G

(
KsX̌

(N)
s ,Wk

s

)
KsX̌

k
s

∣∣

≤ E
∣∣G

(
KsX

(−1)
s + u1

s /N,Wk
s

) − G
(
KsX̌

(N)
s ,Wk

s

)∣∣X̊k
s

+ EG
(
0,Wk

s

)∣∣Xk
s − X̌k

s

∣∣
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≤ E
∣∣G

(
KsX

(−1)
s + u1

s /N,Wk
s

) − G
(
KsX̌

(N)
s ,Wk

s

)∣∣X̊k
s + ε1

s,NEG(0,W)

=: ξ1 + ξ2.

For any ε > 0, we may select N2,ε such that for all N ≥ N2,ε , ε1
s,NEG(0,W) ≤ ε/2 by the

induction assumption for s.
We continue to estimate ξ1. Take any δ > 0. In order to apply Lemma 10, we estimate

sup
u1

P
(∣∣KsX

(−1)
s + u1

s /N − KsX̌
(N)
s

∣∣ > δ
) ≤ (Ks/N)E

∑N

k=2

∣∣Xk
s − X̌k

s

∣∣ + (2/N)EX̊1
s

δ
,

which tends to 0 as N → ∞. We then use Lemma 10 and the argument in (25) to show that
there exists Nε such that for all N > Nε , supu1,k E|Xk

s+1 − X̌k
s+1| ≤ ε. So the lemma holds

for s + 1. Finally the lemma follows by induction. �

Let {X1
0, (X

1
t+1, u

1
t ),0 ≤ t ≤ T − 1} be given in (19)–(20). Now we introduce the new

recursion,

X̂1
t+1 = G

(
pt ,W

1
t

)
û1

t , 1 ≤ t ≤ T − 1, (26)

where X̂1
0 = X1

0 . Our plan is to set û1
t as close to u1

t as possible. However, it is necessary
to introduce a modification when necessary so that the admissibility condition û1

t ≤ X̂1
t is

satisfied. We take û1
0 = u1

0. Given û1
s generating X̂1

s+1, we determine

û1
s+1 = u1

s+1 ∧ X̂1
s+1. (27)

Therefore, we have the well-defined collection {X̂1
0, (X̂

1
t+1, û

1
t ),0 ≤ t ≤ T − 1}.

Lemma 12 We have

lim
N→∞

sup
0≤t≤T

sup
u1

E
∣∣X̂1

t − X1
t

∣∣ = 0, lim
N→∞

sup
0≤t≤T −1

sup
u1

E
∣∣̂u1

t − u1
t

∣∣ = 0.

Proof The case of t = 0 is trivial. Note the fact that
∣∣̂u1

t − u1
t

∣∣ ≤ ∣∣X̂1
t − X1

t

∣∣, t ≤ T − 1. (28)

We begin by checking t = 1. We have

X̂1
1 = G

(
p0,W

1
0

)
u1

0 ≤ X̊1
1, X1

1 = G
(
K0X

(−1)

0 + u1
0/N,W 1

0

)
u1

0 ≤ X̊1
1.

Notice that for any δ > 0, limN→∞ supu1 P (|K0X
(−1)

0 + u1
0/N − p0| > δ) = 0. By using

Lemma 10 and following the argument in (25) we obtain limN→∞ supu1 E|X̂1
1 − X1

1| = 0,
which further gives limN→∞ supu1 E |̂u1

1 − u1
1| = 0.

For t = 2, we have

X̂1
2 = G

(
p1,W

1
1

)
û1

1, X1
2 = G

(
K1X

(−1)

1 + u1
1/N,W 1

1

)
u1

1.

It follows that

E
∣∣X̂1

2 − X1
2

∣∣ = E
∣∣G

(
p1,W

1
1

)
û1

1 − G
(
K1X

(−1)

1 + u1
1/N,W 1

1

)
u1

1

∣∣

≤ EG
(
p1,W

1
1

)∣∣̂u1
1 − u1

1

∣∣ + E
∣∣G

(
p1,W

1
1

) − G
(
K1X

(−1)

1 + u1
1/N,W 1

1

)∣∣u1
1

≤ E
∣∣̂u1

1 − u1
1

∣∣EG(0,W) + E
∣∣G

(
p1,W

1
1

) − G
(
K1X

(−1)

1 + u1
1/N,W 1

1

)∣∣X̊1
1.
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We have the estimate

E
∣∣K1X

(−1)

1 + u1
1/N − p1

∣∣ = E
∣∣K1X

(−1)

1 + u1
1/N − K1X̌

(N)

1 + K1X̌
(N)

1 − p1

∣∣

≤ E
∣∣K1X

(−1)

1 + u1
1/N − K1X̌

(N)

1

∣∣ + E
∣∣K1X̌

(N)

1 − p1

∣∣

=: Eξ1 + Eξ2.

By Corollary 9, limN→∞ Eξ2 = 0. By Lemma 11, as N → ∞,

sup
u1

Eξ1 ≤ (K1/N)

N∑

k=2

sup
u1

E
∣∣Xk

1 − X̌k
1

∣∣ + 2EX̊1
1/N → 0.

Hence for any δ > 0, supu1 P (|K1X
(−1)

1 + u1
1/N − p1| > δ) ≤ sup

u1 Eξ1+Eξ2

δ
→ 0. Again, by

using Lemma 10 and the argument in (25) we obtain limN→∞ supu1 E|X̂1
2 − X1

2| = 0, which
implies limN→∞ supu1 E |̂u1

2 −u1
2| = 0. Repeating the above argument, the lemma follows. �

The following theorem presents the fundamental fact in mean field decision problems:
centralized information has diminishing value for the decision making of individual agents.
This property has been established in a significant range of different models (see e.g. [27,
29, 31]). For a population of N agents, let the NCE-based strategies determined by (12)
be denoted as {ǔi

t ,0 ≤ t ≤ T ,1 ≤ i ≤ N}, which is a set of decentralized state feedback
strategies.

Theorem 13 The set of NCE-based strategies {ǔi
t ,0 ≤ t ≤ T ,1 ≤ i ≤ N} is an εN -Nash

equilibrium, i.e., for any i ∈ {1, . . . ,N},
sup
ui

Ji

(
ui, ǔ−i

) − εN ≤ Ji

(
ǔi , ǔ−i

) ≤ sup
ui

Ji

(
ui, ǔ−i

)
, (29)

where ui is a centralized strategy (so it is adapted to Ft ) and 0 ≤ εN → 0 as N → ∞.

Proof For γ ∈ (0,1), the elementary inequality holds:

(α1 + β1)
γ ≤ α

γ

1 + β
γ

1 , α1 ≥ 0, β1 ≥ 0. (30)

It further implies that

(α2 + β2)
γ ≥ α

γ

2 − |β2|γ , α2 ≥ 0, α2 + β2 ≥ 0. (31)

Step 1. If agent i also applies the NCE-based control law, its utility functional is

Ji = E

T∑

t=0

ρtv
(
X̌i

t − ǔi
t

) = 1

γ
E

T∑

t=0

ρt
∣∣X̌i

t − ǔi
t

∣∣γ ,

where ǔi
t = KtX̌

i
t for t ≤ T − 1 and ǔi

T = 0. For t ≤ T − 1, (30) implies

∣∣X̌i
t − KtX̌

i
t

∣∣γ = ∣∣(1 − Kt)X̂
i
t + (1 − Kt)

(
X̌i

t − X̂i
t

)∣∣γ

≤ ∣∣(1 − Kt)X̂
i
t

∣∣γ + ∣∣(1 − Kt)
(
X̌i

t − X̂i
t

)∣∣γ .
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By (31), |X̌i
t −KtX̌

i
t |γ ≥ |(1−Kt)X̂

i
t |γ −|(1−Kt)(X̌

i
t −X̂i

t )|γ . For time T , we have ǔi
T = 0,

and |X̌i
T |γ = |X̂i

T + (X̌i
T − X̂i

T )|γ which leads to

∣∣E
∣∣X̌i

T

∣∣γ − E
∣∣X̂i

T

∣∣γ ∣∣ ≤ E
∣∣X̌i

T − X̂i
T

∣∣γ .

Moreover, E|X̌i
t − X̂i

t |γ ≤ (E|X̌i
t − X̂i

t |)γ for γ ∈ (0,1), 0 ≤ t ≤ T . Denote τN = (E|X̌i
T −

X̂i
T |) ∨ sup0≤t≤T −1(1 − Kt)E|X̌i

t − X̂i
t |. By Lemma 8, limN→∞ τN = 0. It is easy to show

that

sup
1≤i≤N

∣∣Ji − sup
ui

J̄i

(
ui, (pt )

T −1
0 ,0

)∣∣ = sup
1≤i≤N

∣∣∣∣∣Ji − E

T∑

t=0

ρtv
(
X̂i

t − ûi
t

)
∣∣∣∣∣ ≤ (T + 1)τ

γ

N/γ.

Here ûi denotes the control process generated by the NCE-based feedback applied to (2).
With reuse of notation, the generic control ui appears in both J̄i and Ji by being associated
with different dynamics.

Step 2. We consider agent 1 and check the deviation from the NCE strategy ǔ1. Suppose
now a general admissible control u1 satisfying u1

t ≤ X1
t is used. Let (X̂1

t , û
1
t ) be defined by

(26)–(27). By (30),

∣∣X1
t − u1

t

∣∣γ = ∣∣X̂1
t − û1

t + (
X1

t − X̂1
t

) − (
u1

t − û1
t

)∣∣γ

≤ ∣∣X̂1
t − û1

t

∣∣γ + ∣∣(X1
t − X̂1

t

) − (
u1

t − û1
t

)∣∣γ ,

where t ≤ T − 1. Note that

E
∣∣(X1

t − X̂1
t

) − (
u1

t − û1
t

)∣∣γ ≤ E
(∣∣X1

t − X̂1
t

∣∣ + ∣∣u1
t − û1

t

∣∣)γ

≤ E
∣∣X1

t − X̂1
t

∣∣γ + E
∣∣u1

t − û1
t

∣∣γ

≤ (
E

∣∣X1
t − X̂1

t

∣∣)γ + (
E

∣∣u1
t − û1

t

∣∣)γ

≤ 2
(
E

∣∣X1
t − X̂1

t

∣∣)γ
,

where the last inequality is due to (28). We further have |E|X1
T |γ − E|X̂1

T |γ | ≤ E|X1
T −

X̂1
T |γ .

Denote δN = sup0≤t≤T supu1 E|X̂1
t − X1

t |. By taking û1
T = 0, we have

E

T∑

t=0

ρtv
(
X1

t − u1
t

) ≤ E

T∑

t=0

ρtv
(
X̂1

t − û1
t

) + 2(T + 1)δ
γ

N/γ

≤ sup
u1

J̄1

(
u1, (pt )

T −1
0 ,0

) + 2(T + 1)δ
γ

N/γ,

where limN→∞ δN = 0 by Lemma 12. Hence

sup
u1

E

T∑

t=0

ρtv
(
X1

t − u1
t

) ≤ sup
u1

J̄1

(
u1, (pt )

T −1
0 ,0

) + 2(T + 1)δ
γ

N/γ.

By Steps 1 and 2, the εN -Nash equilibrium property follows by taking εN = (T +1)(τ
γ

N +
2δ

γ

N)/γ . �
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6 Stationary Solution Analysis

An interesting problem is to investigate the NCE-based solution when the time horizon T

tends to infinity or an infinite horizon is used in the first place, and one might expect a certain
steady state behavior will appear as what occurs in standard Markov decision processes [26].
To carry out this program, it will be necessary to use a time-varying sequence (pt )

∞
0 in place

of p (see (32) below) to capture the transient phase in the mean field approximation. With
the nonlinearity of G, the analysis and computation of the decentralized control are expected
to be more challenging than in linear models [29].

As a means of reducing the computational complexity, we turn to a type of stationary
solutions without considering the transient behavior. Before analyzing the infinite horizon
game problem, we start with an optimal control problem.

6.1 The Optimal Control Problem with Infinite Horizon

Let p ∈ [0,∞) be a constant. Consider the model

Xi
t+1 = G

(
p,Wi

t

)
ui

t , t ≥ 0. (32)

Let the utility functional be

J[0,∞) = 1

γ
E

∞∑

i=0

ρt
(
Xi

t − ui
t

)γ
. (33)

Although the transient phase is neglected, the use of the auxiliary model (32) will provide
interesting insights into understanding the mean field behavior.

We construct the iteration

Zt+1 = G
(
p,Wi

t

)
Zt, t ≥ 0,

where Z0 = Xi
0. This process will serve as an upper bound for Xi

t regardless of the choice
of the control.

We need to take some caution with the infinite horizon control problem with HARA
utility. Notably, when 0 < ρ < 1, it is still possible that the value function equals infinity.
This feature has been well noticed in optimal control with unbounded utility [21, 37, 43].
We give the following sufficient and necessary condition for the utility functional to have a
finite upper bound. The sufficiency part has been proved in an optimal savings model [37].

Proposition 14 Assume Xi
0 > 0. Then supJ[0,∞) < ∞ if and only if ρEGγ (p,W) < 1.

Proof (i) Assume ρEGγ (p,W) < 1. Denote the consumption ct = Xi
t − ui

t . Then for some
fixed constant C, in [37] it was shown that

∞∑

t=0

ρtEc
γ
t ≤

∞∑

t=0

ρtEZ
γ
t ≤ C.

(ii) Consider the case ρEGγ (p,W) ≥ 1. Take θ > 1, c0 = c1 = 0 and ct = Xi
t /tθ for

t ≥ 2. Set

ui
t =

(
1 − 1

t θ

)
Xi

t , t ≥ 2.
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Since θ > 1, there exists a fixed constant C0 such that

inf
t≥3

(
1 − 1

(t − 1)θ

)
· · ·

(
1 − 1

2θ

)
≥ C0.

Therefore

Ec
γ
t = 1

t θγ

(
EGγ (p,W)

)t
E

(
Xi

0

)γ

(
1 − 1

(t − 1)θ

)γ

· · ·
(

1 − 1

2θ

)γ

≥ C
γ

0

1

t θγ

(
EGγ (p,W)

)t
E

(
Xi

0

)γ
, t ≥ 3.

Hence

ρtEc
γ
t ≥ C

γ

0

E(Xi
0)

γ

tθγ
, t ≥ 3.

We take any θ ∈ (1, 1
γ
]. Then

∞∑

t=0

ρtEc
γ
t = ∞,

which implies supJ[0,∞) = ∞. Hence ρEGγ (p,W) < 1 is a necessary condition for
supJ[0,∞) < ∞. �

The necessity proof of the proposition is based on the following intuition. If ρEGγ (p,W)

≥ 1, it will be beneficial to take a policy of “high accumulation for a better future”, which
will eventually end up with an infinite utility functional.

For the analysis below, let p ≥ 0 be fixed first and assume ρEGγ (p,W) < 1. Let Vi(x),
x ∈ (0,∞), be the value function of the optimal control problem (32)–(33). We introduce
the stationary version of the dynamic programming equation

Vi(x) = max
0≤ui≤x

[
v
(
x − ui

) + ρEVi

(
G(p,W)ui

)]
.

We look for a solution of the form

Vi(x) = 1

γ
Dγ−1xγ , D > 0.

The optimal control is

ui
t = Xi

t

1 + φ(p)D
, (34)

where D > 0 satisfies

D = φ(p)D

1 + φ(p)D
, (35)

which is a stationary version of (6). We recall that φ(p) = [ρEGγ (p,W)] 1
γ−1 > 1.
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6.2 Applying the Consistency Requirement

Below we reexamine (32)–(33) in a game setting. We continue to determine p so that it is re-
generated in the large population limit when each individual applies the stationary feedback
(34). The consistency requirement says that at each t , the i.i.d. sequence {uj

t ,1 ≤ j ≤ N} has
its empirical mean u

(N)
t converging to p with probability one, which imposes the condition

Eui
t = p for each t . Consequently, EXi

t also remains a constant when t increases.
By the feedback control (34) and the closed-loop state equation

Xi
t+1 = G(p,Wi

t )X
i
t

1 + φ(p)D
,

now the consistency requirement is equivalent to

EG(p,W) = 1 + φ(p)D, (36)

and the constraint on the initial mean

EXi
0 = p

(
1 + φ(p)D

)
(37)

by Eui
0 = p. Note that (37) is decoupled from (35)–(36) in that one can solve the latter and

next identify the right initial condition in order to fulfill the consistency requirement. For
this reason, we may study (35)–(36) separately without enacting the constraint (37) on Xi

0.
By (35)–(36) and the requirement D > 0, we introduce the equivalent system of equations

{
1 + φ(p)D = φ(p),

EG(p,W) = φ(p),
(38)

where φ(p) = [ρEGγ (p,W)] 1
γ−1 . If (38) holds and the control is given by (34), then EXi

t

remains a constant by (36).

Definition 15 The pair (p,D) is called a relaxed stationary mean field (RSMF) solution of
(32)–(33) if (38) holds and satisfies D > 0, p ≥ 0 and

ρEGγ (p,W) < 1. (39)

Here the pair (p,D) is so called for two reasons: (i) the first equation in (38) is based on
the stationary policy (34) for an associated infinite horizon optimal control problem; (ii) the
restriction (37) on the initial mean is not imposed.

6.3 Multiplicative Noise

We give an existence result for a class of models with multiplicative noise, i.e.,

G(p,W) = g(p)W (40)

for some function g > 0 on [0,∞), W ≥ 0 and EW = 1.

Theorem 16 Assume (i) 0 < ρ < 1, (ii) g is continuous and strictly decreases on [0,∞),
(iii) ρE(Wγ )g(0) ≥ 1, and ρE(Wγ )g(∞) < 1 where g(∞) = limp→∞ g(p). Then there
exists a unique RSMF solution.
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Proof The second equation in (38) reduces to

ρE
(
Wγ

)
g(p) = 1. (41)

So there exists a unique p̂ ∈ [0,∞) to solve (41). Since γ ∈ (0,1), EWγ ≤ (EW)γ = 1. It
is clear that g(p̂) > 1. In this case,

ρEGγ (p̂,W) = ρE
(
Wγ

)
gγ (p̂) < ρE

(
Wγ

)
g(p̂) = 1,

which implies φ(p̂) > 1. Hence

D̂ = φ(p̂) − 1

φ(p̂)
> 0.

Therefore, (p̂, D̂) is a RSMF solution, which is unique since p̂ is unique. �

Condition (iii) in the theorem has interesting implications. Suppose E(Wγ )g(0) > 1. The
parameter ρ indicates time preference in maximizing the utility functional. If ρ is too small
so that ρE(Wγ )g(0) < 1, then there is no RSMF solution. The intuitive interpretation of
the nonexistence is that when ρ is too small, the optimizer emphasizes too much on short
term utility and this can cause the output process to decline. On the other hand, the RSMF
solution demands constant mean output EXi

t by (36) (which is weaker than regenerating the
constant mean field p initially assumed) which should not decline.

7 The Out-of-Equilibrium Mean Field Dynamics

Suppose a unique RSMF solution (p̂, D̂) exists for (38). We consider the game with a large
population but the initial condition does not satisfy the requirement (37). A natural exper-
iment is to let each individual apply the feedback control (34). This might be particularly
plausible if the initial mean only sightly differs from the one prescribed by (37). One might
further ask whether or not the population behavior will asymptotically settle down in some
sense to a steady state when time tends to infinity. However, as shown by the analysis below,
some interesting nonlinear phenomena can arise under quite reasonable conditions for the
dynamics of the agents.

We start with a population of N agents with state equation

Xi
t+1 = G

(
u

(N)
t ,W i

t

)
ui

t , 1 ≤ i ≤ N, t ≥ 0,

which uses the actual mean field u
(N)
t and differs from (32). Based on (34), let each agent

apply the RSMF-solution-based control

ui
t = Xi

t

1 + φ(p̂)D̂
= Xi

t

φ(p̂)
, 1 ≤ i ≤ N, t ≥ 0.

The closed-loop state equation is given by

Xi
t+1 = G(u

(N)
t ,W i

t )X
i
t

φ(p̂)
, 1 ≤ i ≤ N.
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We obtain the relation

ui
t+1 = G(u

(N)
t ,W i

t )

φ(p̂)
ui

t , t ≥ 0. (42)

We proceed to consider the large population limit (i.e., the number of agents tends to
infinity) so that u

(N)
t is replaced by a deterministic function pt , which is to be recursively

generated. For a generic agent (still labeled by the superscript i), its control iteration (42) is
then approximated by

ûi
t+1 = G(pt ,W

i
t )

φ(p̂)
ûi

t , (43)

where ûi
0 = ui

0 and we set p0 = Eui
0. It is clear that p0 �= p̂ if (37) does not hold with p = p̂.

Here we use ûi
t to distinguish from the original control ui

t . We take expectation on both sides
of (43) to obtain

Eûi
t+1 = EG(pt ,W)

φ(p̂)
Eûi

t .

The mean of ûi
t should coincide with pt , and hence we derive the mean field dynamics

pt+1 = ptEG(pt ,W)

φ(p̂)
, t ≥ 0, (44)

where p0 = Eui
0. In analogy to the error estimates in Sect. 5, it is possible to apply similar

ideas to show vanishing error E|ui
t − ûi

t | and E|u(N)
t − pt | when N → ∞, on any fixed

interval [0, T ]. Here we will not provide the details, and instead will directly analyze the
properties of (44), which are interesting in their own right.

Equation (44) indicates that in the infinite population limit, the aggregate investment
level is updated from pt to pt+1 if all agents apply the RSMF-solution-based investment
strategies. The following proposition is immediately clear.

Proposition 17 If (p̂, D̂) is an RSMF and p̂ > 0, p̂ is a fixed point of (44).

Denote

Q(p) = pEG(p,W)

φ(p̂)
.

To check whether p̂ is an attracting fixed point of (44), we may examine the ratio of the
perturbation |Q(p) − Q(p̂)| to p − p̂. Below, we will reveal some interesting nonlinear
phenomena associated with (44) characterizing the evolution of the mean field.

Example 18 For (40), we take

g(p) = 1

ρE(Wγ )
· C

1 + (C − 1)p3
,

where C > 1 is a parameter. The factor 1
ρEWγ is chosen so that Q(p) will take a simple

form. By Theorem 16, (38) has a unique solution (p̂, D̂). In fact, p̂ = 1 by (41).
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Let g be given by Example 18. Recalling EW = 1 in (40), (44) reduces to

pt+1 = Cpt

1 + (C − 1)p3
t

=: QC(pt ), t ≥ 0. (45)

7.1 Numerical Examples

To facilitate the computation, we will examine some concrete models. The point p = 0 will
appear as an unstable equilibrium in different examples. It is less interesting and we will
only focus on p̂ > 0 within the RSMF solution (p̂, D̂).

7.1.1 Stable Equilibrium and Limit Cycle

Note that p̂ = 1 is a fixed point of (45), If it is iterated and the state can stay in a small
neighborhood of p̂, the slope of QC(p) at p̂ is crucial to determine the asymptotic property
of the iteration. We have

Q′
C(p) = C − 2C(C − 1)p3

[1 + (C − 1)p3]2
.

So, at p̂ = 1,

Q′
C(p̂) = 3 − 2C

C
.

If 1 < C < 3 (resp., C > 3), there exists a neighborhood B1(p̂) (resp., B2(p̂)) centering
p̂ = 1 such that −1 < Q′

C(p) < 1 (resp., Q′
C(p) < −1) for all p ∈ B1(p̂) (resp., p ∈ B2(p̂)).

We will select different values of C in (45) for numerical illustration.

Case 1 C = 1.2 is used to obtain

pt+1 = 1.2pt

1 + 0.2p3
t

, Q′
C(p̂) = 0.5.

Case 2 If C = 2,

pt+1 = 2pt

1 + p3
t

, Q′
C(p̂) = −0.5.

For Cases 1 and 2, p̂ = 1 is a stable equilibrium of the iteration; see Fig. 1. If we interpret

pt as Eui
t = EXi

t

φ(p̂)
for agent i in an infinite population, then

lim
t→∞EXi

t = p̂φ(p̂) = p̂
(
1 + φ(p̂)D

)
.

This means EXi
t starting with any initial value will asymptotically restore the mean deter-

mined in (37).

Case 3 We take C = 4 to obtain

pt+1 = 4pt

1 + 3p3
t

, Q′
C(p̂) = −1.25,

which has a limit cycle determined by the two points on the graph of QC : (0.560360,
1.467041), (1.467041, 0.560360); see Fig. 2. The function QC(p) attains its maximum
0.733762 at p = 0.550321.
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Fig. 1 The iteration of QC(p) (plotted by the solid green curve) and stable equilibria. Left: C = 1.2; if
0 < p0 < 1, the iteration converges to 1 monotonically. Right: C = 2 (Color figure online)

Fig. 2 The iteration of QC(p) (solid green curve), C = 4. Left: the limit cycle. Right: the convergence to
the limit cycle with an initial value p0 = 0.3 (Color figure online)

7.1.2 Chaotic Dynamics

We describe another example.

Example 19 Define h0(p) = 2.5(1−p)0.2

1+0.4p
, and

h(p) =
{

h0(p) 0 ≤ p ≤ 0.99,

h0(0.99)e− p−0.99
ε p ≥ 0.99,

where h0(0.99) = 0.712943. Select ε such that h(1.05) = 0.35. Define g(p) = h(p)

ρEWγ

for (40), where EW = 1. By Theorem 16, (38) has a unique solution (p̂, D̂), where
ρEWγ g(p̂) = 1 by (41) and p̂ = 0.948836.

The graph of h is shown in Fig. 3. Accordingly, g monotonically decreases on [0,∞).
The sharp decrease of g when p approaches 1 is used to model a “pollution effect” [19].
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Fig. 3 The function h(p)

This means when the aggregate investment level approaches a certain reference level (here
equal to 1), the production becomes very inefficient. The interested reader is referred to [19]
for quick efficiency loss of production functions due to increasing concentration of capital.

By EW = 1,

Q(p) = pg(p)

φ(p̂)
= pg(p)

g(p̂)
= ph(p)

h(p̂)
= ph(p),

which yields the mean field dynamics

pt+1 = pth(pt ), t ≥ 0. (46)

The function Q(p) = ph(p) attains its maximum 1.0984 at p = 0.7950 on the interval
[0,1.12]. Take p0 = 0.4. Then p0 < p1 < p2 and p3 < p0, and the period 3 condition holds
which implies the difference equation has chaotic properties (see [39] for definition). The
chaotic behavior of (46) is illustrated in Fig. 4.

7.2 The Role of the Initial Condition

For Examples 18 (C = 1.2, C = 4) and 19, there exists a unique initial mean m̂0 determined
by (37). There is a consistent mean field approximation interpretation of (m̂0, p̂, D̂): each
agent implements an optimal response to the mean field p̂, and all agents in the large popu-
lation limit replicate the same p̂. For Example 18 (C = 4) and Example 19, after a deviation
of the true initial mean from m̂0, no matter how small it is, the actual mean field with con-
trol based on (p̂, D̂) will follow an entirely different course. Such a high sensitivity of the
population behavior to the initial condition is truly remarkable.

8 Concluding Remarks

This paper has developed a mean field game framework for consumption-accumulation op-
timization with a large number of agents. Our model has a key feature of modeling the
negative mean field effect, and adopts HARA utility as the individual optimization objec-
tives.

We use the consistent mean field approximation scheme to obtain decentralized strategies
and show an ε-Nash equilibrium property. To address the long time optimizing behavior, we
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Fig. 4 The iteration of Q(p) = ph(p) (solid green curve) with initial condition p0 = 0.4. Left: 8 iterates;
right: 100 iterates (Color figure online)

introduce the notion of a relaxed stationary mean field solution. When the simple strategy
is implemented by a representative agent in an infinite population, we study the mean field
dynamics in the setup of out-of-equilibrium behavior. Some interesting nonlinear phenom-
ena are observed resulting from the population behavior: stable equilibria, limit cycles, and
chaos. These dramatically different behaviors may be roughly attributed to different levels
of sensitivity of the individual production function to the mean field.

Although erratic oscillatory or chaotic phenomena are well known in macroeconomics
and social science [5, 10, 19, 50], our work uncovers such phenomena from the microscopic
level of a game involving self-optimizing agents and will potentially shed light on related
economic systems.

The general framework developed in this paper can be further extended. For example,
the mean field effect which an agent receives can rely on specific distributional information
of other agents’ investment rather than just the empirical mean u

(N)
t . This can be mod-

eled by introducing pairwise nonlinearity and taking average across the population. For the
long-term optimization situation, the transient behavior can be included in the mean field
approximation.
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