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Abstract This note contains a detailed derivation of the equations of the recent mean field
games theory (abbr. MFG), developed by M. Huang, P.E. Caines, and R.P. Malhamé on one
hand and by J.-M. Lasry and P.-L. Lions on the other, associated with a class of stochastic
differential games, where the players belong to several populations, each of which consist-
ing of a large number of similar and indistinguishable individuals, in the context of peri-
odic diffusions and long-time-average (or ergodic) costs. After introducing a system of N

Hamilton–Jacobi–Bellman (abbr. HJB) and N Kolmogorov–Fokker–Planck (abbr. KFP)
equations for an N -player game belonging to such a class of games, the system of MFG
equations (consisting of as many HJB equations, and of as many KFP equations as is the
number of populations) is derived by letting the number of the members of each population
go to infinity. For the sake of clarity and for reader’s convenience, the case of a single pop-
ulation of players, as formulated in the work of J.-M. Lasry and P.-L. Lions, is presented
first. The note slightly improves the results in this case too, by dealing with more general
dynamics and costs.

Keywords Mean field games · Ergodic costs · Several population of players · Nash
equilibria · Systems of elliptic PDEs

1 Introduction

The objective of this note is to provide a detailed explanation of the derivation of the station-
ary equations of the mean field games theory—which is due to M. Huang, P.E. Caines, and
R.P. Malhamé on one hand and to J.-M. Lasry and P.-L. Lions on the other—associated with
certain ergodic problems for single and several populations of similar and indistinguishable
players.

Let us recall briefly that mean field game models were introduced by M. Huang, P.E.
Caines, and R.P. Malhamé [5–7] and J.-M. Lasry and P.-L. Lions [8–10] in order to describe
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games with a large number of small, similar, and indistinguishable players and have appli-
cations in economics, finance, and possibly, in sociology, urban planning, engineering, etc.
(see [3] for a broad panorama of the possible applications). Roughly speaking, these models
are obtained as a limit of games with a finite number of players, letting the number of the
players go to infinity, a procedure that reminds somewhat the mean field approaches in par-
ticle physics (e.g., the derivation of Boltzmann or Vlasov equations in the kinetic theory of
gasses) and thus also serves as a justification for the denomination of these models.

The focus of this note is on a class of stochastic differential games with a large number
of players N , with periodic dynamics and long-time-average (or ergodic) costs, in which
the dynamics of the players evolve independently of each other and players influence each
other only through the costs. Following [10], we introduce a system of N Hamilton–Jacobi–
Bellman (abbr. HJB) equations and N Kolmogorov–Fokker–Planck (abbr. KFP) equations
in order to build certain Nash equilibria in feedback form for these games. We are interested
in a class of games with large N that are symmetrical as far as the players are concerned.
Carrying out an appropriate limit procedure as N → ∞, whose detailed description is the
aim of this note, we arrive at a system of only just one HJB equation and one KFP equa-
tion (if players belong all to a single homogeneous group of similar and indistinguishable
individuals), which, however, captures the main features of this class of N -player games;
the larger is N , the “better” this limit system of mean field game equations describes the N -
player games. For example, the limit system may be used in order to calculate approximate
Nash equilibria for the N -player games, see [6].

More precisely, in this note we show that limit points of sequences of solutions to the
systems of N HJB and N KPP partial differential equations associated with the N -player
games are solutions for the limit mean field game equations. In addition, we show that
all Nash equilibria of these N -player games, obtained in feedback form, by solving the
relative systems of N HJB and N KFP equations, become asymptotically symmetric as
N → ∞. Only in some situations it has been possible to give a rigorous proof of these
facts, one of them being the aforesaid case of a class of ergodic stochastic differential games
coupled only through the costs. Thus, in Sect. 2 of this note we provide a detailed proof
of the derivation of the ergodic mean field game equations as stated by J.-M. Lasry and
P.-L. Lions. More explicitly, we prove [8, Theorem 3.1] or [10], but J.-M. Lasry and P.-L.
Lions do not give a detailed proof of their results; only some hints are given in [8]. Moreover,
we are generalizing somewhat here by dealing with more general cost criteria and dynamics.
Another reason for presenting this proof here is to make the sequel of this note (Sect. 3) more
easily readable and understandable. In Sect. 2 we also fix some notation and assumptions
that are going to be valid throughout the rest of this note.

The second goal of this note, and probably its main novelty, is to explain how to derive
the mean field game equations for ergodic games with players belonging to several (say
two, for simplicity) large homogeneous groups or populations of players. Each population
consists of a large number of similar players, and each player cannot distinguish the other
members of its own population or the members of the other populations from each other.
Moreover, the information each player has in order to optimize its strategy is of statistical
nature. (Of course, players belonging to different populations are different and hence dis-
tinguishable from each other in general.) Any player can collect population based statistics:
e.g., any player knows the average of any numerical characteristic, which is a function of the
members states, for any population of players. All of this is made mathematically precise in
Sect. 3. Formally, in deriving the said equations, we have to let the number of the players
constituting each population go to infinity. The resulting limit system of partial differential
equations consists of as many HJB equations and as many KFP equations as is the number
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of the populations of players. More precisely, we prove the asymptotic symmetrization ef-
fect for Nash strategies corresponding to players belonging to any of the populations as the
cardinality of the population itself tends to infinity. Moreover, we show that limit points of
sequences whose elements are parts of solutions to the system of HJB and KFP equations
for the games with a finite number of players, corresponding to each of the population of
players, solve the limit mean field game equations

Although the results and techniques of this note may be used in order to build approx-
imate Nash equilibria for the above-mentioned “prelimit” games with a finite number of
players, we do not pursue this topic here, and, instead, for that purpose, we refer the reader
to the paper of M. Huang, P.E. Caines, and R.P. Malhamé [6], of which the present note may
be seen, in some sense, as a complement. However, we would like to inform the reader that
the assumptions of this note are somewhat different from those of [6], the main difference
being that here we allow the control set of each player to be noncompact and that Hamiltoni-
ans may grow arbitrarily, provided that they satisfy some technical condition, which means,
at least formally, that Hamiltonians are not allowed to oscillate too much in the space vari-
able.

2 The Case of a Single Homogeneous Population of Players

Now we describe in detail the “mean-field” approach following J.-M. Lasry and P.-L. Li-
ons [8, 10]. Consider a control system driven by the stochastic differential equations

dXi
t = f i

(
Xi

t , α
i
t

)
dt + σ i

(
Xi

t

)
dWi

t , Xi
0 = xi ∈ R

d , i = 1, . . . ,N, (1)

where: {Wi
t } are N independent Brownian motions in R

d , d ≥ 1; Ai , the control set of the
ith player, is a metric space;

f i : R
d × Ai → R

d and σ i : R
d → R

d×d

are Z
d -periodic in x and locally Lipschitz continuous in x and in α, the matrix σ i(x) is

nonsingular for any value of x; αi
t is an admissible control of the ith player, that is, a locally

bounded stochastic process taking values in Ai and adapted to Wi
t .

In view of the assumed periodicity in xi of all data, we will often consider functions as
defined on Q = T

d(= R
d/Z

d), instead of R
d . The ith player seeks to minimize the long-

time-average or ergodic cost

J i
(
X0, α

1, . . . , αN
) = lim inf

T →+∞
1

T
E

[∫ T

0
Li

(
Xi

t , α
i
t

) + F i
(
X1

t , . . . ,X
N
t

)
dt

]
. (2)

On the cost of the ith player (2), we assume that

Li : Q × Ai → R (3)

are measurable and locally bounded, whereas

F i
(
x1, . . . , xN

) : QN → R is Lipschitz continuous. (4)

For all x ∈ Q and p ∈ R
d , define

Hi(x,p) = sup
α∈Ai

(−p · f i(x,α) − Li
(
xi, α

))
. (5)
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Of course, we assume that the supremum on the right-hand side is finite for any choice of
x ∈ Q and p ∈ R

d (this is certainly so if Ai is compact, but beware that we do not make any
compactness assumption on Ai here; on the contrary, we are primarily interested in the case
Ai = R

mi for some mi ∈ N).
Actually, in order to be able to build a Nash equilibrium in feedback form for the N -

player stochastic differential game described above, we assume that there exist functions
αi : R

d × R
d → Ai such that

αi is Z
d -periodic in x, locally Lipschitz in both variables, and (6)

αi(x,p) is a maximum point for α → −f i(x,α) · p − Li(x,α) ∀x,p. (7)

This is the case, e.g., for a class of games where each drift f i depends affinely on the control
α ∈ Ai = R

mi , the Lagrangian Li is of class C2, coercive in α ∈ R
mi , and DαL

i(x, ·) is a C1-
diffeomorphism for all x ∈ Q (the latter two conditions may be replaced by requiring that
Li satisfy some kind of strict convexity in α ∈ R

mi ); see [1, Example 3.1] for the details.
Finally, define also

gi(x,p) = −f i
(
x,αi(x,p)

)
, i = 1, . . .N, (8)

ai = σ i
(
σ i

)t
/2, Li = −ai · D2, (9)

and

V i,N [m](x) =
∫

QN−1
F i

(
x1, . . . , xi−1, x, xi+1, . . . , xN

)∏

j �=i

mN
j

(
xj

)
dxj (10)

for all N -tuples of Borel probability measures mN = (mN
1 , . . . ,mN

N) in Q. Here and through-
out the paper, the Li = −ai ·D2, i = 1, . . . ,N , are second-order uniformly elliptic operators
with Lipschitz coefficients in Q. (We use the notation trb for the trace of a square matrix
b and a · b = trabt and |b| := (b · b)1/2 for the Frobenius scalar product and norm, respec-
tively, in a space of matrices.) We denote by Li∗v = −∑

h,k D2
hk(a

i
hkv) the formal adjoint

of Li , which is to be interpreted in the sense of distributions:

〈
Li∗v,φ

〉 =
∫

Q

vLφ dx ∀φ ∈ C∞(Q).

In order to build Nash equilibria for this N -player game, we need to solve the following
system of equations:

LivN
i + Hi

(
x,DvN

i

) + λN
i = V i,N

[
mN

]
in R

d , (11)

Li∗mN
i − div

(
gi

(
x,DvN

i

)
mN

i

) = 0, (12)
∫

Q

vN
i dx = 0,

∫

Q

mN
i dx = 1, mN

i > 0, i = 1, . . . ,N. (13)

In order to assert the existence of Nash equilibria, we need some further assumptions on
the Hamiltonians Hi(x,p). (We observe that, in any case, Hi(x,p) are convex in p, but
this is not necessary for the following existence result.) We assume that the Hamiltonians
Hi = Hi(x,p) (x ∈ Q, p ∈ R

d ) satisfy one of the following conditions:
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1. Either they are locally Lipschitz in both variables, superlinear in p uniformly in x, i.e.,

inf
x∈Q

∣∣Hi(x,p)
∣∣/|p| → +∞ as |p| → ∞, (14)

and ∃θ i ∈ (0,1), C > 0:

tr
(
ai

)
DxH

i · p + θ i
(
Hi

)2 ≥ −C|p|2 for |p| large and for a.e. x ∈ Q. (15)

2. Or they are locally α-Hölder continuous (0 < α < 1) and grow at most quadratically:

∣
∣Hi(x,p)

∣
∣ ≤ C1|p|2 + C2 ∀x ∈ Q,p ∈ R

d , i = 1, . . . ,N, (16)

for some C1, C2 > 0, the so-called natural growth condition.

In [1], under these assumptions on f i , σ i , Li , F i , Hi , we have shown the existence of
Nash equilibria for the games above, precisely, the following:

Theorem 1 (i) There exist λN
1 , . . . , λN

N ∈ R, vN
1 , . . . , vN

N ∈ C2(Q), mN
1 , . . . , mN

N ∈ W 1,p(Q),
1 ≤ p < ∞, that solve (11), (12), (13).

(ii) For any solution λN
1 , . . . , λN

N ∈ R, vN
1 , . . . , vN

N ∈ C2(Q), mN
1 , . . . ,mN

N of the preceding
system (11), (12), (13),

αi(x) = αi
(
x,DvN

i (x)
)
, i = 1, . . . ,N, (17)

define a feedback that is a Nash equilibrium for all initial positions X ∈ QN of the control
system (1). In addition, for each X ∈ QN ,

λN
i = J i

(
X,α1, . . . , αN

) = lim inf
T →+∞

1

T
E

[∫ T

0
Li

(
X

i

t , α
i
(
X

i

t

)) + F i
(
X

1
t , . . . ,X

N

t

)
dt

]
, (18)

where X
i

t is the optimal diffusion corresponding to the feedback αi , that is, obtained by
solving

dXi
t = f i

(
Xi

t , α
i
(
Xi

t ,Dxi vi(Xt )
))

dt + σ i
(
Xi

t

)
dWi

t , Xi
0 = Xi ∈ R

d , i = 1, . . . ,N.

(19)

We now let the number of the players N → ∞, assuming that all the players are sim-
ilar and indistinguishable. We assume that f i = f , σ i = σ , Li = L, and αi = α for all
1 ≤ i ≤ N ; as a consequence, Hi = H and gi = g for all 1 ≤ i ≤ N . In addition, we as-
sume that the criterion F i only depends on xi and the empirical density of the other players,
namely 1

N−1

∑
j �=i δxj (we might as well use 1

N

∑
j δxj ). The latter dependence is expressed

through an operator defined on the set of Borel probability measures P (Q) with values in a
bounded set of C0,1(Q) (the Banach space of Lipschitz functions on Q), i.e.,

F i
(
xi, . . . , xN

) = V

[
1

N − 1

∑

j �=i

δxj

](
xi

)
, (20)

where V : P (Q) → C0,1(Q). Recall that P (Q) ⊂ C(Q)∗ becomes a topological space when
endowed with the topology of weak∗-convergence, actually a compact topological space by
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Prokhorov’s theorem. Furthermore, this topology is metrizable, e.g., by the Rubinstein–
Kantorovich distance

d
(
m,m′) = sup

{∫

Q

f (x)d
(
m − m′)(x) : f ∈ C0,1(Q),Lip(f ) ≤ 1

}
, (21)

where Lip(f ) denotes the minimal Lipschitz constant for f . Just as a little example and for
later reference, the reader is invited to verify that

d

(
1

N − 1

∑

j �=i

δxj ,
1

N

N∑

j=1

δxj

)

≤ diam(Q)

N − 1
. (22)

In addition, we assume that

V : P (Q) → C0,1(Q) ⊂ C(Q) is continuous, (23)

i.e., V [mN ] converges uniformly to V [m] in Q as mN converges weakly∗ to m (or, equiva-
lently, as d(mN,m) → 0).

Theorem 2 Under these assumptions, any Nash equilibrium λN
1 , . . . , λN

N ∈ R, vN
1 , . . . , vN

N ∈
C2(Q), mN

1 , . . . ,mN
N ∈ W 1,p(Q) satisfies the following properties:

(i) {(λN
i , vN

i ,mN
i )}i,N is relatively compact in R×C2(Q)×W 1,p(Q) (for any 1 ≤ p < ∞);

(ii) supi,j (|λN
i − λN

j | + ‖vN
i − vN

j ‖C2(Q) + ‖mN
i − mN

j ‖∞) → 0 as N → ∞;
(iii) any limit point (λ, v,m) of {(λN

i , vN
i ,mN

i )}i,N in R × C2(Q) × W 1,p(Q) solves the
equations

Lv + λ + H(x,Dv) = V [m], (24)

L∗m − div
(
g(x,Dv)m

) = 0, (25)
∫

Q

v dx = 0,

∫

Q

mdx = 1, m > 0. (26)

Proof (i) This point is a consequence of the a priori estimates obtained during the proof of
the existence theorem for solutions to the system of equations (11), (12), (13): under the
assumptions of the theorem, we may prove that there exists C > 0 independent of N such
that |λN

i |, ‖vN
i ‖C2,α(Q), ‖mN

i ‖W1,p(Q) ≤ C; see [1] for the details.
(ii) For all N = 1,2, . . . , let us introduce an auxiliary system of two equations for the

unknowns λN ∈ R, wN ∈ C2(Q), μN ∈ W 1,p(Q),

LwN + λN + H
(
x,DwN

) =
∫

QN

V

[
1

N

N∑

j=1

δxj

]
N∏

j=1

mN
j

(
xj

)
dxj , (27)

L∗μN − div
(
g
(
x,DwN

)
μN

) = 0, (28)
∫

Q

wN dx = 0,

∫

Q

μN dx = 1, μN > 0. (29)

If we show that the difference of the right-hand sides of the ith equation in (11), abbr.
RHSN

i , and of (27), abbr. RHSN , converges to zero uniformly with respect to x ∈ Q and
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also with respect to 1 ≤ i ≤ N as N → ∞, taking into account the continuous dependence
of the solutions of the Hamilton–Jacobi–Bellman equation on the right-hand side and of
the solutions of the Kolmogorov–Fokker–Planck equations on the vector fields gi and the
continuous dependence of gi on DvN

i , we may conclude that

lim
N→∞

sup
i

(∣∣λN
i − λN

∣
∣ + ∥

∥vN
i − wN

∥
∥

C2(Q)
+ ∥

∥mN
i − μN

∥
∥∞

) → 0,

which, in turn, by the triangle inequality, implies assertion (ii). But this follows easily since

RHSN
i − RHSN =

∫

QN

(

V

[
1

N − 1

∑

j �=i

δxj

]
− V

[
1

N

N∑

j=1

δxj

])
N∏

j=1

mN
j

(
xj

)
dxj

and, by (22),

∥∥RHSN
i − RHSN

∥∥
∞ ≤ ω

(
d

(
1

N − 1

∑

j �=i

δxj ,
1

N

∑

j

δxj

))
≤ ω

(
diam(Q)

N − 1

)
,

where ω is the modulus of continuity of V , i.e.,

ω(h) = sup
d(m,m′)≤h

∥
∥V [m] − V

[
m′]∥∥∞, h > 0.

Since P (Q) is compact, the continuous operator V is actually uniformly continuous, that is,
ω(h) → 0 as h → 0+. Therefore, supi ‖RHSN

i − RHSN‖∞ → 0 as N → ∞.
(iii) The proof of this assertion requires a law of large numbers and precisely the follow-

ing theorem of Hewitt and Savage [4].

Theorem 3

lim
N→∞

∫

QN

V

[
1

N

N∑

j=1

δxj

]
N∏

j=1

dm
(
xj

) = V [m] (30)

for all V ∈ C(P (Q)) and m ∈ P (Q).

The proof of this fact can also be found in [2], or, even better, the reader can reconstruct
the relatively easy proof himself: just noting that by linearity and density (appeal to the
Stone–Weierstrass theorem here) one reduces to the case of continuous functions V on P (Q)

of the form

V [m] =
∫

Qk

ϕ
(
y1, . . . , yk

) k∏

l=1

dm
(
yl

)
for m ∈ P (Q),

where k ∈ N, ϕ ∈ C(Qk), and this case can be dealt with by direct calculations.
In order to conclude the proof of Theorem 2 (iii), let (λ, v,m) be a limit point of

{(λN
i , vN

i ,mN
i )}i,N in R×C2(Q)×W 1,p(Q). The goal is to show that (λ, v,m) satisfy (24),

(25), (26). Since (λN
iN

, vN
iN

,mN
iN

) → (λ, v,m) (up to a subsequence and where 1 ≤ iN ≤ N ),

it is sufficient to show that ‖RHSN
iN

− V [m]‖∞ → 0 as N → ∞. Since we already saw
that ‖RHSN

iN
− RHSN‖∞ → 0 as N → ∞ during the proof of (ii), it suffices to show that
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‖RHSN − V [m]‖∞ → 0 as N → ∞. On one hand, we have

∥
∥∥∥
∥

∫

QN

V

[
1

N

N∑

j=1

δxj

]
N∏

j=1

dm
(
xj

) − V [m]
∥
∥∥∥
∥∞

→ 0 as N → ∞; (31)

the pointwise convergence is a consequence of the Hewitt and Savage theorem, Theorem 3,
and the convergence is actually uniform for the sequence of functions that are equicontinu-
ous since V [P (Q)] is compact in C(Q).

On the other hand, we have1

RHSN(x) −
∫

QN

V

[
1

N

N∑

j=1

δxj

]

(x)

N∏

j=1

dm
(
xj

)

=
∫

QN

V

[
1

N

N∑

j=1

δxj

]

(x)

N∏

j=1

dmN
j

(
xj

) −
∫

QN

V

[
1

N

N∑

j=1

δxj

]

(x)

N∏

j=1

dm
(
xj

)

=
∫

QN

V

[
1

N

N∑

j=1

δxj

]

(x)

(
N∏

j=1

dmN
j

(
xj

) −
N∏

j=1

dm
(
xj

)
)

=
∫

QN

V

[
1

N

N∑

j=1

δxj

]

(x)

N∑

l=1

(
l∏

j=1

dmN
j

(
xj

) N∏

j=l+1

dm
(
xj

) −
l−1∏

j=1

dmN
j

(
xj

) N∏

j=1

dm
(
xj

)
)

=
N∑

l=1

∫

QN

V

[
1

N

N∑

j=1

δxj

]

(x)

l−1∏

j=1

dmN
j

(
xj

)(
dmN

l

(
xl

) − dm
(
xl

)) N∏

j=l+1

dm
(
xj

)

=
N∑

l=1

∫

QN

(

V

[
1

N

N∑

j=1

δxj

]

(x) − V

[
1

N − 1

∑

j �=l

δxj

]
(x)

)
l−1∏

j=1

dmN
j

(
xj

)

× (
dmN

l

(
xl

) − dm
(
xl

)) N∏

j=l+1

dm
(
xj

)
.

So, if the operator V is Lipschitz continuous with Lipschitz constant L, we deduce

∥
∥∥
∥∥

RHSN −
∫

QN

V

[
1

N

N∑

j=1

δxj

]
N∏

j=1

dm
(
xj

)
∥
∥∥
∥∥

∞
≤ L · diam(Q)

N − 1

∑

1≤l≤N

∥
∥mN

l − m
∥
∥∞

≤ LN · diam(Q)

N − 1
sup

1≤l≤N

∥
∥mN

l − m
∥
∥∞,

and therefore, taking also into account (ii) and the triangle inequality, we conclude that

∥∥
∥∥
∥

RHSN −
∫

QN

V

[
1

N

N∑

j=1

δxj

]
N∏

j=1

dm
(
xj

)
∥∥
∥∥
∥∞

→ 0 as N → ∞. (32)

1We make the standard convention that
∏N

j=l+1 dm(xj ) = 1 for l = N and
∏l−1

j=1 dmN
j

(xj ) = 1 for l = 1.
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Actually, the convergence above holds for any continuous V : P (Q) → C(Q); one first
proves the pointwise convergence by a density argument and then deduces that the conver-
gence is in fact uniform by taking into account the fact that the sequence of functions at
hand is equicontinuous (in the compact set Q). By (31), (32), and the triangle inequality we
deduce that ‖RHSN − V [m]‖∞ → 0 as N → ∞. This concludes the proof as we already
pointed out. �

3 Several Homogeneous Populations of Players

Now we derive the mean field games equations corresponding to a situation with several
groups or populations of players. Each population consists of a large number of identical
players, but the characteristics of the players vary from one population to the other. Let
us formalize this for the case of only two populations. (Of course, we limit ourselves to
this case in order to keep the notation short, but everything extends immediately to the
case of an arbitrary number of populations.) We consider again the class of N -player games
introduced in the previous section and continue to keep the same notation. We make the same
assumptions on f i , σ i , Li , F i , αi , and Hi , i = 1, . . . ,N , as detailed before Theorem 1, so
that this theorem holds. Now we assume in addition that the totality of the N players consists
of two groups of players, each of them having N1 and N2 individuals, respectively, and thus
N1 + N2 = N . We assume that both populations of players are homogeneous, that is, the
individuals composing each of them are identical and indistinguishable. Mathematically, this
means that we are assuming that f i = f 1, σ i = σ 1, Li = L1, αi = α1 for all 1 ≤ i ≤ N1 and
f i = f N1+1, σ i = σN1+1, Li = LN1+1, αi = αN1+1 for all N1 +1 ≤ i ≤ N . As a consequence,
Li = L1, Hi = H 1, gi = g1 for all 1 ≤ i ≤ N1, and Li = LN1+1, Hi = HN1+1, gi = gN1+1

for all N1 + 1 ≤ i ≤ N . It is convenient for us to make the following change of notation: we
denote by f 1, σ 1, L1, L1, H 1, g1, α1 the expressions f i , σ i , Li , Li , Hi , gi , αi , respectively,
for 1 ≤ i ≤ N1, and we denote by f 2, σ 2, L2, L2, H 2, g2, α2 the expressions f i , σ i , Li , Li ,
Hi , gi , αi , respectively, for N1 + 1 ≤ i ≤ N . For the cost criteria, we assume

F i
(
xi, . . . , xN

) = V 1

[
1

N1 − 1

∑

1≤j≤N1
j �=i

δxj ,
1

N2

N∑

j=N1+1

δxj

]

for 1 ≤ i ≤ N1, (33)

F i
(
xi, . . . , xN

) = V 2

[
1

N1

N1∑

j=1

δxj ,
1

N2 − 1

∑

N1+1≤j≤N
j �=i

δxj

]

for N1 + 1 ≤ i ≤ N, (34)

where

V i : P (Q) × P (Q) → C0(Q), i = 1,2, are continuous operators. (35)

We also assume the even more technical hypothesis that the images of the operators V i , i =
1,2, are contained in a bounded subset of the Banach space C0,1(Q). This last assumption
serves the purpose of obtaining a priori estimates for the solutions of the corresponding
systems of Hamilton–Jacobi–Bellman and Fokker–Planck equations and thus proving the
existence of Nash equilibria. Furthermore, by this assumption, the estimates are independent
of the number of the players of each population N1, N2.

Under these assumptions, the analogue of Theorem 2 reads as follows.
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Theorem 4 All Nash equilibria λN
1 , . . . , λN

N ∈ R, vN
1 , . . . , vN

N ∈ C2(Q), mN
1 , . . . ,mN

N ∈
W 1,p(Q) satisfy the following properties:

(i) {(λN
i , vN

i ,mN
i )}i,N is relatively compact in R×C2(Q)×W 1,p(Q) (for any 1 ≤ p < ∞);

(ii)

sup
1≤i,j≤N1

(∣∣λN
i − λN

j

∣∣ + ∥∥vN
i − vN

j

∥∥
C2(Q)

+ ∥∥mN
i − mN

j

∥∥
∞

) → 0 as N1 → ∞,

sup
N1+1≤i,j≤N

(∣∣λN
i − λN

j

∣∣ + ∥∥vN
i − vN

j

∥∥
C2(Q)

+ ∥∥mN
i − mN

j

∥∥
∞

) → 0 as N2 → ∞;

(iii) Let (λ1, v1,m1) be a limit point of {(λN
i , vN

i ,mN
i )}1≤i≤N1,N in R × C2(Q) × W 1,p(Q),

and (λ2, v2,m2) be a limit point of {(λN
i , vN

i ,mN
i )}N1+1≤i≤N,N in R × C2(Q) ×

W 1,p(Q). Then (λi, vi,mi), i = 1,2, solve the equations

Livi + λi + Hi(x,Dvi) = V i[m1,m2], (36)

Li∗mi − div
(
gi(x,Dvi)mi

) = 0, (37)
∫

Q

vi dx = 0,

∫

Q

mi dx = 1, mi > 0, i = 1,2. (38)

Proof It is very similar to the proof of Theorem 2. In any case, we provide the details for
the sake of completeness. We need to introduce, for all N = 1,2, . . . , an auxiliary system of
four equations for the unknowns λ̄N

i ∈ R, wN
i ∈ C2(Q), μN

i ∈ W 1,p(Q), i = 1,2,

LiwN
i + λ̄N

i + Hi
(
x,DwN

i

) =
∫

QN

V i

[
1

N1

N1∑

j=1

δxj ,
1

N2

N∑

j=N1+1

δxj

]
N∏

j=1

mN
j

(
xj

)
dxj , (39)

Li∗μN
i − div

(
gi(x,Dvi)μ

N
i

) = 0, (40)
∫

Q

wN
i dx = 0,

∫

Q

μN
i dx = 1, μN

i > 0, i = 1,2. (41)

We need also the following version of the Hewitt and Savage theorem.

Theorem 5 For all V ∈ C(P (Q) × P (Q)) and m1, m2 ∈ P (Q),

lim
N1,N2→∞

∫

QN1+N2

V

[
1

N1

N1∑

j=1

δxj ,
1

N2

N∑

j=N1+1

δxj

]
N1∏

j=1

dm1

(
xj

) N1+N2∏

j=N1+1

dm2

(
xj

)

= V [m1,m2]. (42)

The proof of this result is immediate since by density and linearity it reduces to showing
the result for continuous maps of the form V [m1,m2] = V1[m1]V2[m2] for all m1, m2 ∈
P (Q), where Vi ∈ C(P (Q)), i = 1,2. But this is a direct consequence of Theorem 3 and
Fubini’s theorem.

Assertion (i) holds precisely for the same reasons why assertion (i) of Theorem 2 holds.
Assertion (ii) is proved similarly to assertion (ii) of Theorem 2: note that P (Q) × P (Q)

is a compact metric space with a distance, e.g.,

d1
(
(m1,m2),

(
m′

1,m
′
2

)) = d
(
m1,m

′
1

) + d
(
m2,m

′
2

)
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for all (m1,m2), (m2,m
′
2) ∈ P (Q) × P (Q), and the continuous operators V 1, V 2 are in

fact uniformly continuous, and therefore have infinitesimal moduli of continuity at zero. For
example, the modulus of continuity of V 1 is

ω1(h) = sup
d1((m1,m2),(m′

1,m′
2))≤h

∥
∥V 1[m1,m2] − V 1

[
m′

1,m
′
2

]∥∥∞

for all h > 0, and ω1(h) → 0 as h → 0. If we denote by RHSN
i the right-hand side of the

ith equation in (36) and by RHSN,1 the right-hand side of the first auxiliary equation (i = 1)
in (39), for any 1 ≤ i ≤ N1, we have

∥∥RHSN
i − RHSN,1

∥∥
∞ ≤ ω1

(
diam(Q)

N1 − 1

)
(43)

because

d1

((
1

N1

N1∑

j=1

δxj ,
1

N2

N∑

j=N1+1

δxj

)

,

(
1

N1 − 1

∑

1≤j≤N1
j �=i

δxj ,
1

N2

N∑

j=N1+1

δxj

))

≤ diam(Q)

N1 − 1
.

(44)
The continuity of the solutions of the Hamilton–Jacobi equations with respect to the right-
hand side implies that

sup
1≤i≤N1

(∣∣λN
i − λ̄N

1

∣
∣ + ∥

∥vN
i − wN

1

∥
∥

C2(Q)

) → 0 as N1 → ∞. (45)

The continuous dependence of the solutions of the Kolmogorov–Fokker–Planck equa-
tions (37) with respect to the vector field gi and the continuity of the vector field gi with
respect to DvN

i imply

sup
1≤i≤N1

∥
∥mN

i − μN
1

∥
∥∞ → 0 as N1 → ∞. (46)

By (45), (46), and the triangle inequality, the first part of (ii) follows. Of course, the second
part of (ii) has an analogous proof.

Let (λ1, v1,m1) and (λ2, v2,m2) be as prescribed in iii), that is, let (λN
i , vN

i ,mN
i ) →

(λ1, v1,m1), 1 ≤ i ≤ N1, in R × C2(Q) × W 1,p(Q) as N1 → ∞ (up to a subsequence, i

itself depends on N1, but we do not write this in order to keep the notation short); let also
(λN

i , vN
i ,mN

i ) → (λ2, v2,m2), N1 + 1 ≤ i ≤ N , in R × C2(Q) × W 1,p(Q) as N2 → ∞ (up
to a subsequence). In order to show that, e.g., (λ1, v1,m1) solves system (36), (37), (38) for
i = 1, we need to prove that ‖RHSN

i − V 1[m1,m2]‖∞ → 0 as N1, N2 → ∞, and by (43) it
suffices to show that ‖RHSN,1 − V 1[m1,m2]‖∞ → 0 as N1, N2 → ∞, But, by Theorem 5
and with a similar reasoning as in the proof of Theorem 2(iii), we have

∥
∥∥∥
∥

∫

QN1+N2

V 1

[
1

N1

N1∑

j=1

δxj ,
1

N2

N∑

j=N1+1

δxj

]
N1∏

j=1

dm1

(
xj

) N1+N2∏

j=N1+1

dm2

(
xj

)

− V 1[m1,m2]
∥∥
∥∥
∥∞

→ 0
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as N1, N2 → ∞, so definitely we need to show that

∥∥
∥∥
∥

RHSN,1 −
∫

QN

V 1

[
1

N1

N1∑

j=1

δxj ,
1

N2

N∑

j=N1+1

δxj

]
N1∏

j=1

dm1

(
xj

) N1+N2∏

j=N1+1

dm2

(
xj

)
∥∥
∥∥
∥∞

→ 0

as N1, N2 → ∞. Let us write simply V 1 for V 1[ 1
N1

∑N1
j=1 δxj , 1

N2

∑N

j=N1+1 δxj ] in order to
keep the notation short. Let us write

RHSN,1 −
∫

QN

V 1
N1∏

j=1

dm1

(
xj

) N1+N2∏

j=N1+1

dm2

(
xj

)

=
(∫

QN

V 1
N∏

j=1

dmN
j

(
xj

) −
∫

QN

V 1
N1∏

j=1

dmN
j

(
xj

) N∏

j=N1+1

dmN
2

(
xj

)
)

+
(∫

QN

V 1
N1∏

j=1

dmN
j

(
xj

) N∏

j=N1+1

dmN
2

(
xj

) −
∫

QN

V 1
N1∏

j=1

dm1
(
xj

) N1+N2∏

j=N1+1

dm2
(
xj

)
)

.

(47)

The term in the first parenthesis in the right-hand side of the equality above can be written
as follows:

∫

QN

V 1
N∏

j=1

dmN
j

(
xj

) −
∫

QN

V 1
N1∏

j=1

dmN
j

(
xj

) N∏

j=N1+1

dmN
2

(
xj

)

=
∫

QN

V 1
N1∏

j=1

dmN
j

(
xj

)
(

N∏

j=N1+1

dmN
j

(
xj

) −
N∏

j=N1+1

dmN
2

(
xj

)
)

=
∫

QN

V 1
N1∏

j=1

dmN
j

(
xj

)

×
N∑

l=N1+1

( ∏

N1≤j≤l

dmN
j

(
xj

) ∏

l<j≤N

dmN
2

(
xj

) −
∏

N1≤j<l

dmN
j

(
xj

) ∏

l≤j≤N

dmN
2

(
xj

)
)

=
N∑

l=N1+1

∫

QN

V 1
N1∏

j=1

dmN
j

(
xj

) ∏

N1≤j<l

dmN
j

(
xj

)(
dmN

l

(
xl

) − dm2

(
xl

)) ∏

l<j≤N

dmN
2

(
xj

)

=
N∑

l=N1+1

∫

QN

(

V 1

[
1

N1

N1∑

j=1

δxj ,
1

N2

N∑

j=N1+1

δxj

]

− V 1

[
1

N1

N1∑

j=1

δxj ,
1

N2 − 1

∑

N1+1≤j≤N
j �=l

δxj

])

×
N1∏

j=1

dmN
j

(
xj

) ∏

N1≤j<l

dmN
j

(
xj

)(
dmN

l

(
xl

) − dm2
(
xl

)) ∏

l<j≤N

dmN
2

(
xj

)
.
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In the same fashion, we have

∫

QN

V 1
N1∏

j=1

dmN
j

(
xj

) N∏

j=N1+1

dmN
2

(
xj

) −
∫

QN

V 1
N1∏

j=1

dm1

(
xj

) N∏

j=N1+1

dm2

(
xj

)

=
N∑

l=N1+1

∫

QN

(

V 1

[
1

N1

N1∑

j=1

δxj ,
1

N2

N1∑

j=1

δxj

]

− V 1

[
1

N1 − 1

∑

1≤j≤N1
j �=l

δxj ,
1

N2

N∑

j=N1+1

δxj

])

×
∏

1≤j<l

dmN
j

(
xj

)(
dmN

l

(
xl

) − dm1

(
xl

)) ∏

l<j≤N1

dm2

(
xj

) N∏

j=N1+1

dm2

(
xj

)
.

Let us first assume that the operator V 1 is Lipschitz continuous with Lipschitz constant L.
The last two identities, together with (47), the triangle inequality, and (44), yield

∥
∥∥
∥∥

RHSN,1 −
∫

QN

V 1

[
1

N1

N1∑

j=1

δxj ,
1

N2

N∑

j=N1+1

δxj

]
N1∏

j=1

dm1

(
xj

) N1+N2∏

j=N1+1

dm2

(
xj

)
∥
∥∥
∥∥

∞

≤ L · diam(Q)

N2 − 1

N∑

l=N1+1

∥∥mN
l − m2

∥∥
∞ + L · diam(Q)

N1 − 1

N1∑

l=1

∥∥mN
l − m1

∥∥
∞

≤ L · diam(Q)

(
N1

N1 − 1
sup

1≤l≤N1

∥∥mN
i − m1

∥∥
∞ + N2

N2 − 1
sup

N1<l≤N

∥∥mN
i − m2

∥∥
∞

)
,

which, in by of assertion (ii) and triangle inequality, goes to zero as N1, N2 → ∞. Ac-
tually, the said convergence holds for any continuous V 1 : P (Q) × P (Q) → C(Q); the
Lipschitzianity assumption is dropped by arguing in the manner as at the end of the proof of
Theorem 2. Thus, by our preceding considerations, (λ1, v1,m1) solves Eqs. (36), (37), (38)
for i = 1; by an identical reasoning (the role of V 1 being played by V 2), one shows that
(λ2, v2,m2) solves (36), (37), (38) for i = 2. �
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