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Abstract This paper is concerned with decentralized tracking-type games for large popula-
tion multi-agent systems with mean-field coupling. The individual dynamics are described
by stochastic discrete-time auto-regressive models with exogenous inputs (ARX models),
and coupled by terms of the unknown population state average (PSA) with unknown cou-
pling strength. A two-level decentralized adaptive control law is designed. On the high level,
the PSA is estimated based on the Nash certainty equivalence (NCE) principle. On the low
level, the coupling strength is identified based on decentralized least squares algorithms and
the estimate of the PSA. The decentralized control law is constructed by combining the
NCE principle and Certainty equivalence (CE) principle. By probability limit theory, under
mild conditions, it is shown that: (a) the closed-loop system is stable almost surely; (b) as
the number of agents increases to infinity, the estimates of both the PSA and the coupling
strength are asymptotically strongly consistent and the decentralized control law is an almost
sure asymptotic Nash-equilibrium.

Keywords Mean field game · Decentralized game · Adaptive control · Adaptive game ·
ARX model · Nash certainty equivalence principle

1 Introduction

The research on multi-agent dynamic games has a long history in the control community.
A good survey of non-cooperative dynamic games can be found in Basar and Olsder [4]. In
recent years, the dynamic game theory gets new inspiration and renews its vitality in network
control and multi-agent systems. In the framework of dynamic games, a lot of researchers
considered flow control, routing control, and multi-agent cooperation problems [1–3, 5,
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14, 15, 17]. For distributed multi-agent systems, generally speaking, there is no centralized
control station and each agent has only limited sensing and communication ability, so control
design is always required to be decentralized. In a decentralized control framework, the
control input of each agent can only use the local state, or under certain circumstances,
include those of others in its sensing/communication neighborhood.

Recently, Huang, Caines, and Malhamé did pioneering work on decentralized stochastic
games for a kind of individual-population interacting multi-agent systems with mean-field
coupling [16, 18–22], which have wide application background in biological, engineering,
and economic systems [6, 14, 29, 34]. In these kinds of systems, the number of agents is
quite large. Each agent is driven by stochastic noises and interacts with all other agents via
the population state average (PSA). The interactions between individual states and the PSA
exist in both the dynamic equation and the cost function of every agent. For a given agent,
the impact of any other single agent is so small that can be neglected, however, that of the
overall population is significant enough for its evolution. Though the agents are coupled
with the PSA, the PSA cannot be used for the individual control design, since it is unknown
for any given agent. This is an essential difficulty of the decentralized control design for
decentralized mean field games. To overcome this difficulty, Huang, Caines, and Malhamé
proposed the methodology called the Nash Certainty Equivalence (NCE) principle. In the
NCE principle, the PSA is properly approximated by its mean field approximation, a deter-
ministic signal, which is then used for the individual control design instead of the PSA. This
principle is similar in spirit to the well-known Certainty Equivalence (CE) principle adopted
in adaptive control, where the unknown parameters are estimated, and the estimates are used
as the true parameters to construct the control laws. The LQG mean field games with scalar
agent models and deterministic discounted cost functions are studied in Huang, Malhamé,
and Caines [16, 18, 20, 22]. Li and Zhang [26, 27] introduced the concepts of asymptotic
Nash equilibria in the probability sense and extended to the cases with state space or ARX
dynamic models and stochastic ergodic cost functions. The mean field method is also de-
veloped independently in Lasry and Lions [25] and in Weintraub and Benkard [31–33] by
using the concept of oblivious equilibrium. The mean field control for Markov decision
problems is considered in Tembine et al. [30]. Now, decentralized mean field games have
been extended to non-linear dynamic models and the case with heterogeneous agents [13,
21, 23].

For decentralized mean field games, most of the relevant literature assumes precise dy-
namic models of agents. However, in real systems, there may be parametric uncertainties
or unmodelled dynamics in agents’ models due to various kinds of unknown or uncertain
factors in the environment. Generally speaking, the parametric uncertainties can be divided
into two categories: unknown local parameters, which contain the information of local en-
vironment, and unknown global parameters, which are shared by all agents. In this paper,
we assume the local dynamics of each agent is precisely known, but the common coupling
strength between the individual state and the PSA, which is a global parameter, is unknown.

To eliminate the model uncertainties, each agent can exploit its learning ability to perfect
its dynamic model by measured data step by step. By using the individual online learner
or identifier, each agent uses its estimate for the coupling strength to construct its indi-
vidual control law, which aims at optimizing its cost function. Therefore, the overall system
emerges as a large population decentralized adaptive game. In these kinds of adaptive games,
there are two estimation processes. One is the estimation for the PSA and the other is the
identification for the unknown coupling strength. A key difficulty lies in that there is a prod-
uct term of the unknown PSA and the unknown coupling strength in each agent’s dynamic
equation. So, if traditional identification algorithms were used, then the regression vector
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would contain the PSA as a component in each agent’s identification algorithm. However,
we know that the PSA is unavailable for each individual. Intuitively, the estimation signal
for the PSA can be used to construct the identification algorithms instead of the PSA. Unfor-
tunately, this may result in the coupling between the estimation process for the PSA and that
for the unknown coupling strength. Decentralized adaptive games for individual-population
interacting systems are considered firstly in Huang, Malhamé, and Caines [19] and Kizil-
kale and Caines [24]. In Kizilkale and Caines [24], the dynamic equations of agents are
uncoupled and the local dynamic parameters are unknown, while in Huang, Malhamé, and
Caines [19], the dynamics of agents are coupled, but the precise value of the PSA is used
in the identification algorithm. In brief, the coupling between the two estimation processes,
which is a key difficulty in decentralized mean field adaptive games does not exist in Huang,
Malhamé, and Caines [19] and Kizilkale and Caines [24]. To our best knowledge, up to now
there is no relevant literature, which involves the case where both the PSA and the coupling
strength are unknown.

For decentralized adaptive mean field games, there are some fundamental problems that
have to be studied.

(1) Whether the closed-loop system is stable, that is, the states of all agents are kept bounded
as time goes on. And if the answer is affirmative, whether the stability can be retained
when the number N of agents increases to infinity.

(2) Whether the estimate of the PSA is strongly consistent or whether the estimation error
for the PSA converges to zero with respect to some metric almost surely as N tends to
infinity? If the answer is affirmative, what is the convergence rate?

(3) Whether the identification algorithm for the coupling strength is strongly consistent or
the estimation errors are bounded? If the estimation errors are bounded, can we ensure
that the bound converges to zero as N tends to infinity and get the convergence rate?

(4) Whether the decentralized control law designed is asymptotically optimal almost surely,
or is an almost sure asymptotic Nash-equilibrium? If the answer is affirmative, what is
the convergence rate of the sub-optimal cost function of each agent to the optimal value,
as N tends to infinity?

From above, it can be seen that the large population decentralized adaptive mean field
game is essentially different from traditional adaptive control for single agent systems [7,
9, 11], and the solutions to the convergence problems (1)–(4) cannot be found in the ex-
isting theoretical framework. It is worth pointing out that this kind of adaptive control is
also essentially different from decentralized adaptive games for large-scale systems [28, 35,
36]. In decentralized adaptive games for large-scale systems, there is no need for the regres-
sion vector of each agent’s identification algorithm to contain any unknown states, and thus,
there is no coupling between the identification for unknown parameters and the estimation
for unknown states. This large population decentralized adaptive mean field game is closely
related to robust adaptive control. The identification algorithm for the coupling strength,
which involves the estimate for unknown states, can be viewed as the identification algo-
rithm for a dynamic system with unmodelled dynamics. However, the assumptions on the
unmodelled dynamics in robust adaptive control [8, 10] become closed-loop assumptions
and are hard to be verified in the decentralized control framework.

In this paper, we consider the decentralized adaptive mean field game for individual-
population interacting stochastic multi-agent systems. The dynamic equation of each agent
is described by a discrete-time ARX model, and coupled by terms of the PSA with unknown
coupling strength. Each agent has a group tracking type cost function, also coupled by the
PSA. Firstly, based on the NCE principle, the PSA is estimated by some deterministic signal.
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Secondly, the estimation of the PSA is used to construct the decentralized Least square (LS)
identification algorithm for the coupling strength. Finally, the estimates of the PSA and the
coupling strength are both used to construct the decentralized control law based on the NCE
and the CE principles. By the stochastic Lyapunov method, we analyze the decentralized
LS algorithm and then by the probability limit theory, under mild conditions, we get the
following convergence results of the closed-loop system:

(i) The closed-loop system is stable almost surely and the states of agents will retain
bounded as N tends to infinity.

(ii) As N tends to infinity, the estimation error for the PSA converges to zero with the rate
O(1/N) almost surely.

(iii) As N tends to infinity, the identification error for the unknown coupling strength con-
verges to zero with the rate O(1/

√
N).

(iv) The decentralized control law designed is an almost sure asymptotic Nash equilibrium,
and the cost function of each agent is almost surely asymptotically optimal with the
convergence rate O(1/N) given that all other agents also employ the strategy specified
by the asymptotic Nash equilibrium.

The remainder of this paper is organized as follows. In Sect. 2, the system model and the
decentralized game problem are formulated. In Sect. 3, a detailed design procedure of the
two-level decentralized adaptive control law is presented, which is based on the NCE and the
CE principles. In Sect. 4, the main results of this paper, regarding the stability of the closed-
loop system, the asymptotic optimality of the control law, the asymptotic consistency of the
estimations for the PSA, and the coupling strength are presented. In Sect. 5, a numerical
example is used to demonstrate our theoretic results. In Sect. 6, some concluding remarks
are given.

The following notation will be used throughout this paper. R denotes the set of all real
numbers. For a given random variable (r.v.) ξ on a probability space (Ω, F ,P ), E(ξ)

denotes the mathematical expectation of ξ . For a family {ξλ, λ ∈ Λ} of real-valued r.v.s,
σ(ξλ, λ ∈ Λ) denotes the σ -algebra σ({ξλ ∈ B},B ∈ B, λ ∈ Λ), where B denotes the one-
dimensional Borel sets. For a sequence {Ft , t ≥ 0} of non-decreasing σ -algebras and a se-
quence {ξ(t), t ≥ 0} of r.v.s, we say ξ(t) is adapted to Ft or {ξ(t), Ft } is an adapted sequence,
if for any t ≥ 0, ξ(t) is Ft measurable.

2 Problem Formulation

We consider a system of N agents denoted by SN . The dynamic equation of agent i is given
by

xN
i (t + 1) = gi

(
xN

i (t), t
) + uN

i (t) + αxN(t) + ωi(t + 1), t = 0,1, . . . , 1 ≤ i ≤ N, (1)

where xN
i ∈ R, uN

i ∈ R are the state and control input, respectively; xN(t)
�= 1

N

∑N

j=1 xN
j (t)

is the PSA; ωi(t) ∈ R is the random noise; gi(· , ·): R×R → R is a known Borel measurable
function; α ∈ R is the unknown coupling parameter satisfying |α| < 1. Note that model (1)
is just the scalar version of the dynamic model considered in [26], and what is different here
the coupling strength α is unknown.

For model (1), we have the following assumptions:
(A1) {{ωi(t), F i

t },1 ≤ i ≤ N,N ≥ 1} is a family of independent martingale difference
sequences defined on a probability space (Ω, F ,P ) with the following properties: there
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exist constants σ > 0 and β > 2, such that

sup
t≥0

E
[∣∣ωi(t)

∣∣β ∣∣F i
t−1

]
< ∞ a.s.

lim
T →∞

1

T

T∑

t=0

[
ωi(t)

]2 = σ 2 a.s.

where F i
t

�= σ(ωi(s),0 ≤ s ≤ t).
(A2) {xN

i (0),1 ≤ i ≤ N,N ≥ 1} is independent of {{ωi(t), F i
t }, i ≥ 1}, with a common

mathematical expectation x0
�= ExN

1 (0) < ∞.
The cost function of agent i is given by

JN
i

(
uN

i , uN
−i

) = lim sup
T →∞

1

T

T∑

t=0

[
xN

i (t + 1) − Φ
(
t, xN(t)

)]2
, (2)

where uN
−i = (uN

1 , . . . , uN
i−1, u

N
i+1, . . . , u

N
N), Φ(t, x) : [0,∞) × R → R is a Borel measurable

function.
With regards to the cost function, the following assumptions will be involved in the

closed-loop analysis:
(A3) The solution of the non-linear iteration x(t + 1) = Φ(t, x(t)) with x(0) = x0 satis-

fies

lim sup
T →∞

1

T

T∑

t=0

x2(t) < ∞.

(A4) The solution of the non-linear iteration x(t + 1) = Φ(t, x(t)) with x(0) = x0 satis-
fies

lim
T →∞

x2(T )

1 + ∑T −1
t=0 x2(t)

= 0.

It can be easily verified that if Φ(t, x) = x, t ∈ [0,∞), x ∈ R, then both (A3) and (A4)
hold.

For convenience of citation, for agent i, we denote the global-measurement-based admis-
sible control set by

U N
g,i

�=
{

uN
i | uN

i (t) is adapted to σ

(
N⋃

j=1

σ
(
xN

j (s),0 ≤ s ≤ t
)
)}

,

the local-measurement-based admissible control set by

U N
l,i

�= {
uN

i | uN
i (t) is adapted to σ

(
xN

i (s),0 ≤ s ≤ t
)}

,

and admissible control set by U N
i . The so-called decentralized game means that agent i

synthesizes uN
i only based on the local measurement (i.e. U N

i = U N
l,i ) to minimize its cost

function JN
i (uN

i , uN
−i ). We denote a control group of the sequence SN of systems by UN =

{uN
i ,1 ≤ i ≤ N}, and its associated cost function group by JN = {JN

i (uN
i , uN

−i ), 1 ≤ i ≤ N}.
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To characterize the asymptotic optimality of the decentralized control law with respect to
the stochastic cost functions, we introduce the concept of almost sure asymptotic Nash-
equilibrium given in Li and Zhang [26].

Definition 1 For system (1), a sequence of control groups {UN = {uN
i ,1 ≤ i ≤ N},N ≥ 1}

is called an almost sure asymptotic Nash-equilibrium with respect to the associated sequence
of cost function groups {JN = {JN

i ,1 ≤ i ≤ N},N ≥ 1}, if there exists a sequence of non-
negative r.v.s {εN(ω),N ≥ 1} on the probability space (Ω, F ,P ), such that εN → 0 a.s., as
N → ∞, and for sufficiently large N ,

JN
i

(
uN

i , uN
−i

) ≤ inf
vi∈U N

g,i

J N
i

(
vi, u

N
−i

) + εN , a.s., i = 1,2, . . . ,N. (3)

By Theorem 2.1 of [26], we know that infvi∈U N
g,i

J N
i (vi, u

N
−i ) = σ 2. In the following, we

will design decentralized control law {UN,N ≥ 1}, such that the closed-loop system satisfies

JN
i

(
uN

i , uN
−i

) ≤ σ 2 + o(1), N → ∞, a.s.,

that is, the sequence of control groups {UN,N ≥ 1} is an almost sure asymptotic Nash-
equilibrium.

3 Control Design

Firstly, we make a review of the results with known coupling strength.

3.1 The Case with Known Coupling Strength

For the centralized control law design, the control of agent i depends on the PSA xN , while
for the design of the decentralized control law, the PSA is unknown. If the coupling strength
α is known, we may use the NCE principle to design the decentralized control law. Firstly,
we construct an estimate f (t) of the PSA with the following property: if every agent takes
f (t) as the estimate of the PSA, and according to f (t), makes the optimal decision, then
the expectation of the closed-loop PSA is just f (t) or convergent to it when N increases to
infinity. Secondly, if the f (t) with the above property indeed exists, then we can construct
the decentralized control law by using f (t) instead of xN(t).

Based on the NCE principle, we now design the decentralized control law.
The auxiliary equation of agent i is given by

x̂N
i (t + 1) = gi

(
x̂N

i (t), t
) + ûN

i (t) + αf (t) + ωi(t + 1), t ≥ 0, i = 1,2, . . . ,N, (4)

with a tracking-type cost function:

JN
i

(
ûN

i

) = lim sup
T →∞

1

T

T∑

t=0

[
x̂N

i (t + 1) − Φ
(
t, f (t)

)]2
.

In this case, the optimal control is obviously

ûN
i (t) = Φ

(
t, f (t)

) − gi

(
x̂N

i (t), t
) − αf (t). (5)
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Substituting control (5) into the model (4), we have

Ex̂N
i (t + 1) = Φ

(
t, f (t)

)
, Ex̂N

i (0) = x0. (6)

As mentioned above, the mathematical expectation of the closed-loop PSA ought to be f (t),
that is,

1

N

N∑

j=1

Ex̂N
j (t) = f (t), t ≥ 0. (7)

Therefore, the unique solution of the auxiliary system (6) and (7) can be used as the estimate
of the PSA. We denote it by f ∗(t), which is iteratively given by

f ∗(t + 1) = Φ
(
t, f ∗(t)

)
, t ≥ 0, f ∗(0) = x0. (8)

By (5) and the NCE principle, the control law for agent i can be taken as

u0
i (t) = Φ

(
t, f ∗(t)

) − gi

(
xN

i (t), t
) − αf ∗(t). (9)

Here and hereafter, the superscript N of u0N

i (t) is omitted for conciseness of expression.
Comparing (9) with the centralized control law, it can be seen that xN in (9) is replaced by
f ∗ for control design.

As shown in [26], we can prove the asymptotic consistency of the estimate f ∗ for the
PSA, the stability and asymptotic optimality of the closed-loop system under the control
law (9). We have the following theorems [26]).

Proposition 1 For system (1), if Assumptions (A1)–(A2) hold, then under the control law
(9), the closed-loop system has the following properties:

lim
T →∞

1

T

T∑

t=0

[
ξN(t)

]2 = σ 2

N(1 − α2)
a.s., (10)

where

ξN(t) = xN(t) − f ∗(t) (11)

is the estimation error for the PSA.

Proposition 2 For system (1), if Assumptions (A1)–(A3) hold, then under the control law
(9), the closed-loop system satisfies

sup
N≥1

max
1≤i≤N

lim sup
T →∞

1

T

T∑

t=0

[
xN

i (t)
]2

< ∞, a.s.

Proposition 3 For system (1) with cost function (2), if Assumptions (A1)–(A2) hold and
there exists a constant γ > 0 such that |Φ(t, x) − Φ(t, y)| ≤ γ |x − y|, ∀x, y ∈ R, t ≥ 0,
then under the control law (9), the associated cost function group satisfies

JN
i

(
u0

i , u
0
−i

) ≤ σ 2 + εN a.s., i = 1,2, . . . ,N, (12)
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where

εN = 2σ 2(α2 + γ 2)

N(1 − α2)
.

3.2 The Case with Unknown Coupling Strength

If the coupling strength α is unknown, then the control law (9) is unavailable. Naturally, one
might think that based on the model (1), agent i could use the recursive LS algorithm to
estimate α:

αi(t + 1) = αi(t) + (
1 + P (t)x2

N(t)
)−1{

P (t)xN(t)
[
xN

i (t + 1) − uN
i (t) − gi

(
xN

i (t), t
)

− αi(t)xN(t)
]}

, (13)

P (t + 1) = P (t) − P 2(t)x2
N(t)

1 + x2
N(t)P (t)

, (14)

then by CE principle, instead of α, the estimation αi(t) could be used to construct the control
law

uN
i (t) = Φ

(
t, f ∗(t)

) − gi

(
xN

i (t), t
) − αi(t)f

∗(t), i = 1,2, . . . ,N. (15)

However, the control law (13)–(15) is not decentralized due to the use of the PSA in the
identification algorithm. Since the PSA xN(t) is unknown for agent i, we use f ∗(t), which is
the estimation of xN(t) based on the NCE principle, to construct the identification algorithm
of agent i:

αi(t + 1) = αi(t) + (
1 + P (t)f ∗2

(t)
)−1{

P (t)f ∗(t)
[
xN

i (t + 1) − uN
i (t) − gi

(
xN

i (t), t
)

− αi(t)f
∗(t)

]}
, αi(0) = α0, (16)

P (t + 1) = P (t) − P 2(t)f ∗2
(t)

1 + f ∗2
(t)P (t)

, P (0) = P0, (17)

where α0 and P (0) = P0 are initial conditions to be designed, and f ∗(t) is computed off-
line by (8). The identification algorithm (16) and (17) is decentralized, since it only uses
the local state and input of each agent. Then by CE principle, we use the estimate αi(t) to
construct the control law:

uN
i (t) = Φ

(
t, f ∗(t)

) − gi

(
xN

i (t), t
) − αi(t)f

∗(t), i = 1,2, . . . ,N. (18)

It can be seen that the control law (16)–(18) is decentralized and it is designed based on both
the NCE and the CE principles.

Remark 1 Here, a decentralized two-level control scheme is used for adaptive mean field
adaptive games. On the high level, the PSA is estimated based on the NCE principle. On
the low level, the coupling strength is identified based on the decentralized LS algorithms
and the estimate of the PSA. The decentralized control law is constructed by combining the
NCE and the CE principles.
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4 Closed-Loop Analysis

In this section, we analyze the identification algorithm, stability and optimality of the closed-
loop system and the consistency of the estimates for the PSA and the coupling strength.

4.1 Identification Algorithm Analysis

From the model (1) and (16), one gets

α̃i (t + 1) =
(

1 − P (t)f ∗2
(t)

1 + P (t)f ∗2
(t)

)
α̃i (t) − P (t)f ∗(t)(αξN(t) + ωi(t + 1))

1 + P (t)f ∗2
(t)

, (19)

where α̃i (t)
�= α − αi(t) is the estimation error for the coupling strength α, and ξN(t) is the

estimation error for the PSA given by (11).
Denote Vi(t + 1) = α̃2

i (t + 1)P −1(t + 1), r(T ) = e + ∑T

t=0 f ∗2
(t). From (17), we know

that

P −1(t + 1) = P −1(t) + f ∗2
(t). (20)

Then summing the above equation from both sides, we have

P −1(t + 1) = P −1
0 +

t∑

k=0

f ∗2(k), (21)

From (19) and (20), we have

Vi(t + 1) = Vi(t) − α̃2
i (t)f

∗2
(t)

1 + P (t)f ∗2
(t)

− 2
α̃i (t)f

∗(t)(αξN(t) + ωi(t + 1))

1 + P (t)f ∗2
(t)

+ P (t)f ∗2
(t)(αξN(t) + ωi(t + 1))2

1 + P (t)f ∗2
(t)

. (22)

For the identification algorithm (16) and (17), we have the following results, which are
important for the closed-loop analysis of the decentralized control law.

Theorem 1 If Assumption (A1) holds and

lim sup
T →∞

f ∗2
(T )

P −1
0 + ∑T −1

t=0 f ∗2
(t)

< C, for some C > 0, (23)

then the identification algorithm (16) and (17) have the following properties:
(i)

Vi(T + 1) +
T∑

t=0

(̃αi(t)f
∗(t) + αξN(t))2

1 + P (t)f ∗2
(t)

≤ α2 2C + 1

C + 1

T∑

t=0

ξ 2
N(t) + o

(
T∑

t=0

ξ 2
N(t)

)

+ o

(
T∑

t=0

(̃αi(t)f
∗(t) + αξN(t))2

1 + P (t)f ∗2
(t)

)
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+ O
(
ln r(T )

)
, a.s. (24)

(ii)

α̃2
i (n + 1) ≤ α2 2C + 1

C + 1

∑T

t=0 ξ 2
N(t)

r(T )
+ o

(∑T

t=0 ξ 2
N(t)

r(T )

)

+ O

(
ln r(T )

r(T )

)
, a.s., i = 1,2, . . . ,N, (25)

(iii)

T∑

t=0

(̃αi(t)f
∗(t) + αξN(t))2

1 + P (t)f ∗2
(t)

≤ α2(2C + 1)

(1 − δ)(C + 1)

T∑

t=0

ξ 2
N(t)

+ o

(
T∑

t=0

ξ 2
N(t)

)

+ O
(
ln r(T )

)
, a.s. ∀δ ∈ (0,1), i = 1,2, . . . ,N. (26)

Proof From (23), we have

P (t)f ∗2
(t)

1 + P (t)f ∗2
(t)

≤ C

1 + C
, ∀t ≥ t1, for some t1 > 0. (27)

Then summating both sides of (22) from t = t1 to t = T , we get

Vi(T + 1) +
T∑

t=t1

α̃2
i (t)f

∗2
(t)

1 + P (t)f ∗2
(t)

+ 2
T∑

t=t1

α̃i (t)f
∗(t)αξN(t)

1 + P (t)f ∗2
(t)

+
T∑

t=t1

α2ξ 2
N(t)

1 + P (t)f ∗2
(t)

= Vi(t1) +
T∑

t=t1

α2ξ 2
N(t)

1 + P (t)f ∗2
(t)

− 2
T∑

t=t1

(̃αi(t)f
∗(t) + αξN(t))ωi(t + 1)

1 + P (t)f ∗2
(t)

+ 2
T∑

t=t1

αξN(t)ωi(t + 1)

1 + P (t)f ∗2
(t)

+ 2
T∑

t=t1

P (t)f ∗2
(t)(αξN(t) + ωi(t + 1))2

1 + P (t)f ∗2
(t)

. (28)

From the above equation, (23) and Lemma A.1, we have

Vi(T + 1) +
T∑

t=t1

(̃αi(t)f
∗(t) + αξN(t))2

1 + P (t)f ∗2
(t)

≤ Vi(t1) + α2 2C + 1

C + 1

T∑

t=0

ξ 2
N(t) + O

((
T∑

t=t1

(̃αi(t)f
∗(t) + αξN(t))2

1 + P (t)f ∗2
(t)

)1/2+ε)

+ O

((
T∑

t=0

ξ 2
N(t)

)1/2+ε)

+ 2
T∑

t=0

P (t)f ∗2
(t)ω2

i (t + 1)

1 + P (t)f ∗2
(t)

. (29)
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From (21), we have

T∑

t=0

P (t)f ∗2(t)

1 + P (t)f ∗2
(t)

=
T∑

t=0

f ∗2(t)

P −1
0 + ∑t

k=0 f ∗2
(k)

, (30)

and then

T∑

t=0

P (t)f ∗2
(t)

1 + P (t)f ∗2
(t)

=
T∑

t=0

P −1(t + 1) − P −1(t)

P −1(t + 1)

≤
T∑

t=0

∫ P−1(t+1)

P−1(t)

dx

x

= lnP −1(T + 1) + lnP0 = O
(
ln r(T )

)
. (31)

Denote Ft = σ(
⋃N

j=1 F j
t ). For any given ν ∈ (2,min{β,4}], by Cr inequality, we have

sup
t≥0

E
[∣∣ω2

i (t + 1) − E
(
ω2

i (t + 1)
∣
∣Ft

)∣∣ν/2∣∣Ft

] ≤ sup
t≥0

E
[∣∣ωi(t + 1)

∣
∣ν

∣
∣Ft

]

+ sup
t≥0

E
[∣∣E

(
ω2

i (t + 1)
∣∣Ft

)∣∣ν/2∣∣Ft

]
,

which together with Assumption (A1) and Lyapunov inequality leads to

sup
t≥0

E
[∣∣ω2

i (t + 1) − E
(
ω2

i (t + 1)
∣∣Ft

)∣∣ν/2∣∣Ft

]

≤ sup
t≥0

E
[∣∣ωi(t + 1)

∣
∣ν

∣
∣Ft

] + sup
t≥0

∣
∣E

(
ω2

i (t + 1)
∣
∣Ft

)∣∣ν/2

≤ 2 sup
t≥0

E
[∣∣ωi(t + 1)

∣∣ν∣∣Ft

]

≤ 2
(

sup
t≥0

E
[∣∣ωi(t + 1)

∣∣β ∣∣F i
t

])ν/β

< ∞, a.s. (32)

Then by Lemma A.1, (30) and (31), for any given ε > 0, noting that 0 ≤ f ∗2
(t)

P−1
0 +∑t

k=0 f ∗2
(k)

≤ 1,

we have

T∑

t=0

P (t)f ∗2
(t)ω2

i (t + 1)

1 + P (t)f ∗2
(t)

=
T∑

t=0

P (t)f ∗2
(t)

1 + P (t)f ∗2
(t)

(
ω2

i (t + 1) − E
(
ω2

i (t + 1)|Ft

))

+
T∑

t=0

P (t)f ∗2
(t)

1 + P (t)f ∗2
(t)

E
(
ω2

i (t + 1)|Ft

)

≤ sup
t≥0

E
(
ω2

i (t + 1)|F i
t

) T∑

t=0

P (t)f ∗2
(t)

1 + P (t)f ∗2
(t)

+ O

((
T∑

t=0

(
P (t)f ∗2

(t)

1 + P (t)f ∗2
(t)

)ν/2
)2/ν+ε)
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= O

(
T∑

t=0

f ∗2
(t)

P −1
0 + ∑t

k=0 f ∗2
(k)

)

+ O(1) = O
(
ln r(T )

)
. (33)

which together with (29) leads to (i) and (iii). Combining (i) and (iii), we get (ii). �

Remark 2 By (11), the model (1) can be rewritten as

x̂N
i (t + 1) = gi

(
x̂N

i (t), t
) + ûN

i (t) + αf ∗(t) + αξN(t) + ωi(t + 1), t ≥ 0, i = 1,2, . . . ,N.

So, (16), (17), and (18) can be viewed as the identification algorithm and adaptive control
law for model

x̂N
i (t + 1) = gi

(
x̂N

i (t), t
) + ûN

i (t) + αf ∗(t) + ωi(t + 1), t ≥ 0, i = 1,2, . . . ,N,

with αξN(t) as the unmodelled dynamics. It can be seen that αξN(t) contains the states
of all other agents, due to decentralized information pattern, the conditions on unmodelled
dynamics used in robust adaptive control [8, 10] cannot be used here.

4.2 Stability, Optimality, and Consistency

Substitute the control (18) to the model (1), we get the closed-loop equation of agent i

xN
i (t + 1) = α̃i (t)f

∗(t) + αξN(t) + Φ
(
t, f ∗(t)

) + ωi(t + 1). (34)

Summate the above equation for i = 1,2, . . . ,N , then by (8) we know that ξN(t) satisfies
the following recursive equation:

ξN(t + 1) = αξN(t) + f ∗(t)
1

N

N∑

j=1

α̃j (t) + 1

N

N∑

j=1

ωj (t + 1). (35)

From (19) and (35), it can be seen that the dynamic equation (35) of the estimation error
and the dynamic equation (19) of the identification error are coupled together. Below is the
main result of this paper.

Theorem 2 If Assumptions (A1)–(A4) hold, then for the system (1), under the control (8),
(16), (17), and (18), we have

(i) The estimate for PSA is asymptotically consistent:

lim sup
T →∞

‖ξN‖2
T = O(1/N), a.s., (36)

where ‖ξN‖T =
√

1
T

∑T

t=0 ξ 2
N(t).

(ii) The closed-loop system is almost surely uniformly stable:

sup
N≥1

max
1≤i≤N

lim sup
T →∞

1

T

T∑

t=0

[
xN

i (t)
]2

< ∞ a.s. (37)

(iii) Furthermore, if there exists γ > 0, such that for any x, y ∈ R and t ≥ 0, we have
|Φ(t, x) − Φ(t, y)| ≤ γ |x − y|, then {UN = {ui(t), 1 ≤ i ≤ N}, N ≥ 1} is an almost sure
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asymptotic Nash equilibrium with respect to the associated sequence of cost function groups,
and the cost function of each agent is almost surely asymptotically optimal with the conver-
gence rate O(N−1) given that all other agents also employ the strategy specified by the
asymptotic Nash equilibrium:

max
1≤i≤N

JN
i

(
uN

i , uN
−i

) ≤ σ 2 + 2σ 2(γ 2 + α2)

N(1 − α2)
, a.s. (38)

Proof Take positive real numbers ε ∈ (0, 1−α2

2α2 ) and δ ∈ (0,1 − α2(2ε + 1)). From Assump-
tion (A4), we know that

lim sup
T →∞

f ∗2
(T )

P −1
0 + ∑T −1

t=0 f ∗2
(t)

< ε, (39)

and similar to (27), we have

P (t)f ∗2
(t)

1 + P (t)f ∗2
(t)

≤ ε

1 + ε
, ∀t ≥ tε, tε > 0. (40)

From (8) and Assumption (A3), we know that r(T ) = O(T ), n → ∞. Then by (39), (40),
and (iii) of Theorem 1, we have

T∑

t=0

(
α̃i (t)f

∗(t) + αξN(t)
)2 ≤ α2(2ε + 1)

1 − δ

T∑

t=0

ξ 2
N(t)

+ o

(
T∑

t=0

ξ 2
N(t)

)

+ o(T ), i = 1,2, . . . ,N, (41)

which together with (35) leads to

T∑

t=0

ξ 2
N(t + 1) ≤ α2(2ε + 1)

1 − δ

T∑

t=0

ξ 2
N(t) + o

(
T∑

t=0

ξ 2
N(t)

)

+ o(n) +
T∑

t=0

(
1

N

N∑

j=1

ωj (t + 1)

)2

. (42)

From the above and Assumption (A1), we get

lim sup
T →∞

1

T

T∑

t=0

ξ 2
N(t) ≤ σ 2

N(1 − μ(α, ε, δ))
, a.s., (43)

where μ(α, ε, δ)
�= α2(2ε+1)

1−δ
. This together with (41) leads to

lim sup
T →∞

1

T

T∑

t=0

(
α̃i (t)f

∗(t) + αξN(t)
)2 ≤ σ 2μ(α, δ)

N(1 − μ(α, ε, δ))
, a.s. (44)

Furthermore, by (34), Assumption (A3) and Lemma A.1, we have (ii).
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From (34), (2), and Assumption (A1), it follows that

JN
i

(
uN

i , uN
−i

) = lim sup
T →∞

1

T

T∑

t=0

[
α̃i (t)f

∗(t) + αξN(t) + Φ
(
t, f ∗(t)

) − Φ
(
t, xN(t)

)

+ ωi(t + 1)
]2 = IN

1 + IN
2 + σ 2, (45)

where

IN
1 = 2 lim sup

T →∞
1

T

T∑

t=0

[
α̃i (t)f

∗(t) + αξN(t) + Φ
(
t, f ∗(t)

) − Φ
(
t, xN(t)

)]
ωi(t + 1),

and

IN
2 = lim sup

T →∞
1

T

T∑

t=0

[
α̃i (t)f

∗(t) + αξN(t) + Φ
(
t, f ∗(t)

) − Φ
(
t, xN(t)

)]2

≤ 2 lim sup
T →∞

1

T

T∑

t=0

[
α̃i (t)f

∗(t) + αξN(t)
]2 + 2γ 2 lim sup

T →∞
1

T

T∑

t=0

ξ 2
N(t),

which together with (45), (43), (44), and Lemma A.1 leads to

max
1≤i≤N

JN
i

(
uN

i , uN
−i

) ≤ σ 2 + 2σ 2(γ 2 + μ(α, ε, δ))

N(1 − μ(α, ε, δ))
, a.s. (46)

Letting ε and δ go to zero in (46) and (43), we get (iii), and

lim sup
T →∞

1

T

T∑

t=0

ξ 2
N(t) ≤ σ 2

N(1 − α2)
, a.s., (47)

which gives (i). �

Remark 3 Compared (36) and (38) with (10) and (12), it is shown that for the case with
unknown coupling strength, under the adaptive control law designed, the convergence rates
of the estimation error for PSA and the cost function of each agent to the best response value
are the same as those for the case with known coupling strength.

Remark 4 From Theorem 2, we can see that to ensure the control law to be an asymptotic
Nash equilibrium, the consistency of the identification for the coupling strength α is not
necessary. This is similar to the case of LS based adaptive tracker (Guo and Chen [12]).

In the following theorem, under certain excitation condition on the non-linear iteration,
we get the asymptotic consistency of the identification algorithm, that is, the upper limit of
the identification error vanishes as the number N of agents increases to infinity. We need the
following assumption.

(A5) The solution of the non-linear iteration x(t + 1) = Φ(t, x(t)) with x(0) = x0 satis-
fies

lim inf
T →∞

1

T

T∑

t=0

x2(t) > 0.
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Theorem 3 If Assumptions (A1)–(A5) hold, then for the system (1), under the control (8),
(16), (17), and (18), the closed-loop system satisfies

lim sup
t→∞

α̃2
i (t) ≤ α2σ 2

N(1 − α2)f
, i = 1,2, . . . ,N, a.s.,

where f = lim infT →∞ 1
T

∑T

t=0(f
∗(t))2 > 0.

Proof By (ii) of Theorem 1 and Assumption (A4), we have

α̃2
i (T + 1) ≤ α2 2ε + 1

ε + 1

∑T

t=0 ξ 2
N(t)

r(T )
+ o

(∑T

t=0 ξ 2
N(t)

r(T )

)
+ O

(
ln r(T )

r(T )

)
, a.s.,

i = 1,2, . . . ,N, ∀ε > 0. (48)

From Assumption (A5), we know that there exists c0 > 0, such that r(T ) ≥ c0T for suf-
ficiently large T , which together with (48), (i) of Theorem 2, and Assumption (A5) leads
to

lim sup
t→∞

α̃2
i (t) ≤ α2σ 2

N(1 − α2)f

2ε + 1

ε + 1
, a.s., i = 1,2, . . . ,N.

Letting ε go to zero, we get the conclusion of this theorem. �

5 Numerical Example

In this section, a numerical example is given to demonstrate stability of the closed-loop sys-
tem and that the decentralized control law is designed to be an asymptotic Nash equilibrium.

The dynamic equation for the ith agent is given by

xN
i (t + 1) = xN

i (t) + uN
i (t) + 0.5xN(t) + ωi(t + 1),

where the initial value xN
i (0) has the normal distribution N(5,1), {ωi(t), t ≥ 0} is a sequence

of Gaussian white noise with distribution N(0,2). So α = 0.5, σ = 2. The non-linear cou-
pling function in the cost function is Φ(t, x) = 5 sin(x) + 6. The initial parameter estimate
is taken as a0 = 2 and P0 = 10.

From (18), the decentralized control law is taken as

uN
i (t) = 5 sin

(
f ∗(t)

) + 6 − xN
i (t) − 0.5f ∗(t), i = 1,2, . . . ,N, (49)

where f ∗(t) is iteratively given by

f ∗(t + 1) = 5 sin
(
f ∗(t)

) + 6, t ≥ 0, f ∗(0) = 5,

with (16) and (17) as the decentralized LS identifiers. Let N = 10. The evolution of the
estimation error of PSA, the states of agents are shown in Fig. 1. It can be seen that ‖ξ10‖2

t

converges to σ 2

N(1−α2)
= 8/15, as t → ∞ and the closed-loop system is stable. We let N vary

from 1 to 2000. The evolution of the maximum values of the cost functions with respect to
N is shown in Fig. 2. It can be seen that the maximum values of the cost functions converges
to the optimal value σ 2 = 25, as N → ∞.
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Fig. 1 Trajectories of ‖ξ10‖2
t and xi (t), i = 1,2, . . . ,10 with respect to t

Fig. 2 Trajectory of max1≤i≤N JN
i

with respect to N

6 Conclusions

A decentralized adaptive tracking-type game has been considered in this paper for
individual-population interacting systems, in which each agent interacts with the overall
population via the PSA in the individual dynamics and cost function. The coupling strength
with the PSA is unknown. A two-level adaptive control law is designed based on the NCE
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and the CE principles. Firstly, the PSA is estimated based on the NCE principle, then the
estimation of the PSA is used to construct the decentralized LS identification algorithm for
the coupling strength; finally, the estimates for the coupling strength and the PSA are used to
construct the decentralized control law based on the NCE and the CE principles. It is shown
that under mild conditions, in probability one, the closed-loop system is stable, the decen-
tralized control law is an asymptotic Nash equilibrium, and the estimates are asymptotically
consistent as the number of agents goes to infinity.

Here, as a preliminary research for this direction, we give a framework for this problem
and consider the case with scalar dynamic models of agents. For the LS estimation, we know

that the estimation error ‖θ̃ (t)‖2 = O(
ln(1+∑t

i=0 ‖φi‖2)

λmin(
∑t+1

i=0 φiφ
T
i

)
). If the regression vector φi is a scalar

variable, then the LS algorithm is easily consistent, however, for the case with high dimen-
sional regression vectors, the consistency requires additional excitation conditions [7]. So
for adaptive control systems, there are essential differences between the scalar system mod-
els and high dimensional models For future research, the extension to general linear models
may be interesting. Another important issue is to consider the case with both unknown local
and global parameters, which may be more widely applicable, but much more difficult.

Acknowledgements The research of Tao Li and Ji-Feng Zhang was supported by the National Natural
Science Foundation of China under Grants 60934006 and 61004029.

Appendix

Lemma A.1 (Chen and Guo [7]) Let {X(t), Ft } be a matrix martingale difference sequence,
{M(t), Ft } an adapted sequence of random matrices, ‖M(t)‖ < ∞, ∀t ≥ 0. If

sup
t≥0

E
[∥∥X(t)

∥∥α∣∣Ft−1

]
< ∞ a.s.,

for some α ∈ (0,2], then as T → ∞,

T∑

t=0

M(t)X(t + 1) = O
(
sT (α) ln1/α+η

(
sα
T (α) + e

))
a.s., ∀η > 0,

where

sT (α) =
(

T∑

t=0

∥∥M(t)
∥∥α

)1/α

.
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