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Abstract Cooperative advertising is a key incentive offered by a manufacturer to influ-
ence retailers’ promotional decisions. We study cooperative advertising in a dynamic retail
oligopoly where a manufacturer sells his product through N competing retailers. We model
the problem as a Stackelberg differential game in which the manufacturer announces his
shares of advertising costs of the N retailers or his subsidy rates, and the retailers in re-
sponse play a Nash differential game in choosing their optimal advertising efforts over time.
We obtain the feedback equilibrium solution consisting of the optimal advertising policies
of the retailers and manufacturer’s subsidy rates. We identify key drivers that influence the
optimal subsidy rates and, in particular, obtain the conditions under which the manufacturer
will not support the retailers. For the special case of two retailers we obtain insights on some
key supply chain issues. First, we analyze its impact on profits of channel members and the
extent to which it can coordinate the channel. Second, we investigate the case of an anti-
discrimination act which restricts the manufacturer to offer equal subsidy rates to the two
retailers.

Keywords Cooperative advertising · Nash differential game · Stackelberg differential
game · Sales-advertising dynamics · Sethi model · Feedback Stackelberg equilibrium ·
Retail level competition · Channel coordination · Robinson–Patman act

1 Introduction

Cooperative advertising is a common means by which a manufacturer incentivizes its retail-
ers to advertise its product to increase its sales. In a typical arrangement, the manufacturer
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contributes a percentage of a retailer’s advertising expenditures to promote the product. We
consider a marketing channel involving a manufacturer and N retailers. We model the prob-
lem of the channel as a Stackelberg differential game in which the manufacturer acts as the
leader by announcing its subsidy rate, i.e. its share of retailer’s advertising cost to each of the
N retailers who act as followers and play a Nash differential game to obtain their optimal
advertising efforts in response to the support offered by the manufacturer.

Cooperative advertising is a fast increasing activity in retailing amounting to billions of
dollars a year. Nagler [21] found that the total expenditure on cooperative advertising in
2000 was estimated at $15 billion, compared with $900 million in 1970, and according to
some recent estimates, it was higher that $25 billion in 2007. Cooperative advertising can be
a significant part of the manufacturer’s expense according to [7], and as many as 25–40 %
of local advertisements and promotions are cooperatively funded. In addition, Dutta et al.
[9] report that the subsidy rates differ from industry to industry: it is 88.38 % for consumer
convenience products, 69.85 % for other consumer products, and 69.29 % for industrial
products.

Many researchers in the past have used static models to study cooperative advertising.
Berger [3] modeled cooperative advertising in the form of a wholesale price discount offered
by the manufacturer to its retailer as an advertising allowance. He concluded that both the
manufacturer and the retailer can do better with cooperative advertising. Dant and Berger [7]
extended the Berger’s model to incorporate demand uncertainty and considered a scenario
when the manufacturer and its retailer have a different opinion on anticipated sales. Kali [19]
examined cooperative advertising subsidy with a threshold minimum advertised price by the
retailer, and found that the channel can be coordinated in this case. Huang et al. [15] allowed
for advertising by the manufacturer in addition to cooperative advertising, and justified their
static model by making a case for short-term effects of promotion.

Jørgensen et al. [16] formulated a dynamic model with cooperative advertising, as a
Stackelberg differential game between a manufacturer and a retailer with the manufacturer
as the leader. They considered short-term as well as long-term forms of advertising efforts
made by the retailer as well as the manufacturer. They showed that the manufacturer’s sup-
port of both types of retailer advertising benefits both channel members more than support
of just one type, which in turn is more beneficial than no support at all. Jørgensen et al. [17]
modified the above model by introducing decreasing marginal returns to goodwill and stud-
ied two scenarios: a Nash game without advertising support and a Stackelberg game with
support from the manufacturer as the leader. Jørgensen et al. [18] explored the possibility
of advertising cooperation even when the retailer’s promotional efforts may erode the brand
image. Karray and Zaccour [20] extended the above model to consider both the manufac-
turer’s national advertising and the retailer’s local promotional effort. All of these papers use
the Nerlove and Arrow [23] model, in which the rate of change of goodwill w.r.t. time in-
creases linearly in advertising and decreases linearly in goodwill, and there is no interacting
term between sales and advertising effort in the dynamics of sales.

He et al. [12] solved a manufacturer–retailer Stackelberg game with cooperative advertis-
ing using the stochastic sales-advertising model proposed by Sethi (see [26]), in which the
effectiveness of advertising in increasing sales decreases as sales increase. The Sethi model
was validated empirically by [5] and [22]. Despite the presence of the interactive term in-
volving sales and advertising, [12] were able to obtain a feedback Stackelberg solution for
the retailer’s optimal advertising effort and the manufacturer’s subsidy rate, and provided a
condition for positive subsidy by the manufacturer. This paper extends the work of [12] to
allow for retail level competition and provides useful managerial insights on the impact of
this competition on the manufacturer’s decision. It contributes to the cooperative advertising
literature in the following ways.
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Table 1 A comparison of various research papers based on issues addressed

Issues addressed Papers

[3] [7] [19] [15] [16] [17] [18] [20] [12] [13] This paper

Dynamic model � � � � � � �
Advertising interacting with sales � �
Stochastic demand � � �
Feedback strategy � � � � � � �
Retail level competition � � �
Channel performance & coordination � � � � � � �
Anti-discrimination legislation �

Firstly, most of the cooperative advertising literature uses a one manufacturer, one re-
tailer setting, with the exception of [13, 14]. He et al. [13] study a duopoly retail market
with two symmetric retailers and [14] consider the oligopoly case and retailer asymmetry.
Their formulations are based on the Lanchester-type extensions of the Sethi model (see
[27] and [24]), in which the two competitors split the total market. Moreover, in [13, 14],
the manufacturer sells through only one retailer and the remaining retailer(s) act as outside
competition. We use Erickson’s [10] oligopolistic extension of the Sethi model, in which
the manufacturer sells through N independent and competing retailers and the competitors
could increase their shares of a given total potential market at the same time. In [13, 14],
only one retailer is supported by the manufacturer at any time. In our model, however, more
than one retailer can be supported simultaneously. We formulate the model as a Stackelberg
differential game between the manufacturer as the leader and the retailers as the followers.
Furthermore, the retailers competing for market share play a Nash game between them-
selves. While our model is considerably more complicated, we are still able to obtain, like
in [12], a feedback equilibrium solution, sometimes explicitly and sometimes by numerical
means. We also explore the threshold conditions under which no retailer will be supported
by the manufacturer and a non-cooperative solution is optimal. We consider the case when
only one retailer, say retailer 1, sells from this manufacturer and the other N − 1 retailers
compete with retailer 1 and the manufacturer for the market share. In this case we investigate
the impact of retail level competition on the manufacturer’s tendency to support retailer 1.

Secondly, for a case of retailer duopoly (N = 2), we investigate in detail the issue of
supply chain coordination with cooperative advertising. We study the extent to which the
supply chain can be coordinated with cooperative advertising, and its effect on the profits of
all the parties in the supply chain. We find that cooperative advertising can coordinate the
channel, but interestingly, if the difference between the subsidy rates to the two retailers is
large enough, the channel can perform worse than without cooperative advertising. Finally,
for the case of two retailers, we contribute by investigating the case of anti-discrimination
legislation (such as the Robinson–Patman Act against price discrimination), under which the
manufacturer is required to offer equal subsidy rates to the two retailers. We obtain feedback
Stackelberg equilibrium in this case and compare the optimal common subsidy rate with the
two optimal subsidy rates without such an act. We also investigate the impact of such acts on
the profits of manufacturer, the retailers and the overall supply chain, and subsequently, its
role in coordinating the supply chain. Table 1 summarizes a comparison of several research
papers in the cooperative advertising area, including ours, and positions our paper on the
basis of various issues that are self-explanatory.
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The rest of the paper is organized as follows. We describe our model in Sect. 2 and present
preliminary results in Sect. 3. We obtain explicit analytical results for a special case of iden-
tical retailers in Sect. 4. We perform numerical analysis for the general case in Sect. 5. In
the next two sections we discuss supply chain issues like channel performance and coordi-
nation, and impact of an anti-discrimination legislation. Due to the analytical complexity of
the general model, it is very difficult to analyze these issues with N retailers. We therefore
present these segments for retailer duopoly. In Sect. 6, for a retailer duopoly, we discuss the
issue of channel coordination brought about by cooperative advertising and analyze its ef-
fect on the manufacturer’s and retailers’ profits. In Sect. 7, for a retailer duopoly, we present
an extension in which the manufacturer is required to offer equal subsidy rates, if any, to
both retailers. We conclude the paper in Sect. 8. Proofs of some of the results are relegated
to Appendices A, B and C.

2 The Model

We consider a dynamic market channel where a manufacturer sells its product through N

competing retailers, labeled 1,2, . . . ,N . The manufacturer may choose to subsidize the ad-
vertising expenditures of the retailers. The subsidy, expressed as a fraction of a retailer’s total
advertising expenditure, is referred to as the manufacturer’s subsidy rate for that retailer. We
use the following notation in the paper:

t Time t ∈ [0,∞);
i Indicates retailer i, i = 1,2, . . . ,N , when used as a subscript;
xi(t) ∈ [0,1] Retailer i’s proportional market share;
x̄(t) = ∑N

j=1 xi(t), Combined market share of N retailers;
X(t) ≡ (x1(t), x2(t), . . . , xN(t)), Market share vector of N retailers at time t ;
ui(t) Retailer i’s advertising effort rate at time t ;
θi(t) ≥ 0 Manufacturer’s subsidy rate for retailer i at time t ;
Θ(X(t)) ≡ (θ1(X(t)), . . . , θN(X(t))), Subsidy rate vector in feedback form at time t ;
ρi > 0 Advertising effectiveness parameter of retailer i;
δi ≥ 0 Market share decay parameter of retailer i;
r > 0 Discount rate of the manufacturer and the retailers;
mi ≥ 0 Gross margin of retailer i;
Mi ≥ 0 Gross margin of the manufacturer from retailer i;
Vi,Vm Value functions of retailer i and of the manufacturer, respectively;
V Value function of the integrated channel.

Also, Vixj
= ∂Vi/∂xj ,Vmxi

= ∂Vm/∂xi , and Vxi
= ∂V/∂xi , for i = 1,2, . . . ,N, j =

1,2, . . . ,N . Furthermore, for simplicity, X(t) and Θ(X(t)) are also written as X, and Θ(X),
respectively.

The state of the system is represented by the market share vector (x1, x2, . . . , xN), so that
the state at time t is (x1(t), x2(t), . . . , xN(t)), which is also written as X(t), or simply X. The
sequence of events is as follows. First, the manufacturer announces the subsidy rate θi(t) for
retailer i, i = 1,2, . . . ,N, t ≥ 0. In response, the retailers choose their respective advertising
efforts ui(t), i = 1,2, . . . ,N , in order to compete for market share. This situation is modeled
as a Stackelberg game between the manufacturer as the leader and the retailers as followers
and a Nash differential game between the retailers; see Fig. 1. The solution concept we
employ is that of a feedback Stackelberg equilibrium. The cost of advertising is assumed to
be quadratic in the advertising effort, signifying a marginal diminishing effect of advertising.
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Fig. 1 Sequence of events

Given the subsidy rates θi , the retailer i’s advertising expenditure is (1 − θi)u
2
i . The total

advertising expenditure for the manufacturer is
∑N

i=1 θiu
2
i . The quadratic cost function is

common in the literature (see, e.g., [4, 8, 10, 11, 16, 24] and [12]).
To model the effect of advertising on sales over time, we use an oligopolistic extension of

the Sethi model (see [26]), proposed by [10]. This extension is different from the duopolistic
extensions of the Sethi model studied by [24, 25, 27] and [13], where the competitors split
a given total market. Here, a gain in the market share of one retailer comes from an equal
loss of the market share of the other. In contrast, the Erickson extension permits even a
simultaneous increase of the retailers’ shares of a given total market potential. Moreover,
[10] used his extension to study the competition between Anheuser-Busch, SABMiller, and
Molson Coors in the beer industry.

We use the Erickson extension as our market share dynamics:

ẋi (t) = ρiui

√
1 − x̄(t) − δixi(t), xi(0) = xi ∈ [0,1], (1)

where, for i = 1,2, . . . ,N , xi(t) is the fraction of the total market captured by retailer i at
time t , ui(t) is retailer i’s advertising effort at time t , ρi is the effectiveness of retailer i’s
advertising effort, and δi is the rate at which market share is lost by retailer i due to fac-
tors such as competition, obsolescence, customers switching to other substitutable products,
forgetting, etc.

Because the total market share captured by the manufacturer is x1(t) + x2(t) + · · · +
xN(t) = x̄(t) at any time t , the advertising effort of a retailer acts upon the square-root of
the uncaptured market potential, i.e., (1 − ¯x(t)). This is a key distinguishing feature of the
models which are extensions of the Sethi model, from the classical Vidale–Wolfe model
(see [28]) where the advertising effort acts simply upon the uncaptured market potential.
Some justification of the square-root feature and its empirical validation can be found in
[5, 22, 23, 27], and [10, 11]. Furthermore, the advertising effort ui is subject to marginally
diminishing returns modeled by having its cost as u2

i , i = 1,2, . . . ,N . Finally, the subsidy
rates do not affect the market share dynamics, as they simply reflect the internal cost sharing
arrangements between the manufacturer and the retailers.

Since we are interested in obtaining a feedback Stackelberg solution, the manufacturer
announces his subsidy rate policy Θ(X) as functions of the market share vector X. This
means that the subsidy rates at time t ≥ 0 are θi(x1(t), x2(t), . . . , xN(t)), respectively, for
i = 1,2, . . . ,N . The retailers then choose their optimal advertising efforts by solving their
respective optimization problems in order to maximize the present value of their respective
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profit streams over the infinite horizon. Thus, retailer i’s optimal control problem is

Vi(X) = max
ui (t)≥0,t≥0

∫ ∞

0
e−rt

(
mixi(t) − (

1 − θi(X)
)
u2

i (t)
)
dt, i = 1,2, . . . ,N, (2)

subject to (1), where we stress that xi, i = 1,2, . . . ,N , are initial conditions, which can
be any given values satisfying xi ≥ 0,∀i = 1,2, . . . ,N , and

∑N

i=1 xi ≤ 1. Since retailer i’s
problem is an infinite horizon optimal control problem, we can define Vi(x1, x2, . . . , xN) ≡
Vi(X) as his so-called value function. In other words, Vi(x1, x2, . . . , xN) also denotes
the optimal value of the objective function of retailer i at a time t ≥ 0, so long as
xi(t) = xi, i = 1,2, . . . ,N , at that time. It should also be mentioned that the prob-
lem (1)–(2) is a Nash differential game, whose solution will give retailer i’s feed-
back advertising effort, expressed with a slight abuse of notation as ui(x1, x2, . . . , xN |
θ1(x1, x2, . . . , xN), . . . , θN(x1, x2, . . . , xN)) ≡ ui(X | Θ), respectively, for i = 1,2, . . . ,N .

The manufacturer anticipates the retailers’ optimal responses and incorporates these into
his optimal control problem, which is also a stationary infinite horizon problem. Thus, the
manufacturer’s problem is given by

Vm(X) = max
0≤θi (t)≤1,i=1,2,...,N

t≥0

∫ ∞

0
e−rt

N∑

j=1

[
Mjxj (t) − θj (t)

[
uj

(
X(t) | θ1(t), . . . , θN (t)

)]2]
dt,

(3)

subject to, for i = 1,2, . . . ,N ,

ẋi (t) = ρiui

(
X(t) | θ1(t), . . . , θN (t)

)√
1 − x̄ − δixi(t), xi(0) = xi ∈ [0,1]. (4)

Here, with an abuse of notation, θi(t), i = 1,2, . . . ,N , denote the subsidy rates at time t ≥ 0
to be obtained. Solution of the control problem (3)–(4) yields the optimal subsidy rates
policy in feedback form expressed as θ∗

i (x1, x2, . . . , xN) ≡ θ∗
i (X), i = 1,2, . . . ,N . Further-

more, we can express retailer i’s feedback advertising policy, with an abuse of notation, as
u∗

i (X) ≡ u∗
i (X | θ∗

1 (X), . . . , θ∗
N(X)) ≡ u∗

i (X | Θ∗(X)), i = 1,2, . . . ,N .
The policies θ∗

i (X) and u∗
i (X), i = 1,2, . . . ,N , constitute a feedback Stackelberg equi-

librium of the problem (1)–(4), which is time consistent, as opposed to an open-loop Stackel-
berg equilibrium, which, in general, is not. Substituting these policies into the state equa-
tions in (1) yields the market share process X∗(t) ≡ (x∗

1 (t), x∗
2 (t), . . . , x∗

N(t)), t ≥ 0, and the
respective decisions, with notational abuses, as θ∗

i (t) = θ∗
i (X∗(t)) and u∗

i (t) = u∗
i (X

∗(t)),
t ≥ 0, i = 1,2, . . . ,N .

3 Preliminary Results

We first solve the problem of retailer i to find the optimal advertising policy u∗
i (X | Θ(X)),

given the subsidy policies θj (X), j = 1,2, . . . ,N , announced by the manufacturer. The
Hamilton–Jacobi–Bellman (HJB) equations for the value functions Vi(X), i = 1,2, . . . ,N ,
are

rVi(X) = max
ui≥0

[

mixi − (
1 − θi(X)

)
u2

i +
N∑

j=1

Vixj
(ρjuj

√
1 − x̄ − δxj )

]

, (5)
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where Vixj
can be interpreted as the marginal increase in the total discounted profit of re-

tailer i, i = 1,2, . . . ,N , with respect to an increase in the market share of retailer j, j =
1,2, . . . ,N .

Remark 1 Before proceeding further, we note that while we restrict θi(X), i = 1,2, . . . ,N ,
to be nonnegative, it should be obvious that 0 ≤ θi(X) < 1,∀i = 1,2, . . . ,N . This is be-
cause, were the optimal θj (X) ≥ 1, for any j = 1,2, . . . ,N , retailer j would set uj (X)

to be infinitely large, resulting in the value function of the manufacturer to be −∞. This
would mean that the manufacturer, who is the leader, would have even less profit than he
would by setting θj (X) = 0. This leads to a contradiction, and proves that θi(X) < 1,∀i =
1,2, . . . ,N . Thus, in what follows, any positive θi(X) will be an interior solution satisfying
θi(X) < 1, i = 1,2, . . . ,N .

We can now prove the following result characterizing the optimal advertising policy
given the subsidy rates of the manufacturer.

Proposition 1 For a given subsidy rate policy θi(X), i = 1,2, . . . ,N , the optimal feedback
advertising decision of retailer i is

u∗
i = u∗

i

(
X | Θ) = Vixi

ρi

√
1 − x̄

2(1 − θi(X))
, i = 1,2, . . . ,N, (6)

and the value function Vi(X) satisfies

rVi(X) = mixi −
N∑

j=1

δjxjVixj
+ Vixi

2(−1 + x̄)ρ2
i

4(−1 + θi(X))
+

∑

j 
=i

[
Vjxj

Vixj
(−1 + x̄)ρ2

j

2(−1 + θj (X))

]

. (7)

Proof Since the cost of advertising effort ui is u2
i , it is clear that there is no sense in hav-

ing a negative ui, i = 1,2, . . . ,N . Thus, we can use the first-order conditions w.r.t. ui ,
i = 1,2, . . . ,N , in (5) to obtain (6), and use (6) in (5) to obtain (7). We can also see that
Vi(X) given by (5) is concave in ui , thus satisfying the second-order condition w.r.t. ui .

We see that the advertising effort by retailer i is proportional to the marginal benefit of his
own market share, i = 1,2, . . . ,N . Moreover, the higher is the uncaptured market (1 − x̄),
the greater is the advertising effort by retailer i.

After each retailer decides on an optimal response to the manufacturer’s announced sub-
sidy rates policy, the manufacturer solves his problem, taking into account the retailers’
choices, and decides the optimal subsidy rates. The HJB equation for the manufacturer’s
value function Vm(X) is

rVm(X) = max
θi≥0,i=1,2,...,N

N∑

i=1

[
Mixi − θiu

∗
i

2 + Vmxi

(
ρiu

∗
i

√
1 − x̄ − δixi

)]
.

Using (6), we can rewrite the above HJB equation as

rVm(X) = max
θi≥0,i=1,2,...,N

N∑

i=1

[

Mixi − δxiVmxi
+ Vixi

(1 − x̄)(2Vmxi
(1 − θi) − Vixi

θi)ρ
2
i

4(−1 + θi)2

]

.

(8)



354 Dyn Games Appl (2012) 2:347–375

We can now state the following result characterizing the manufacturer’s optimal subsidy
rates policy. �

Proposition 2 The manufacturer’s optimal subsidy rates are

θ∗
i (X) = max

{
θ̂i (X),0

}
, i = 1,2, . . . ,N, (9)

where

θ̂i (X) = 2Vmxi
− Vixi

2Vmxi
+ Vixi

, i = 1,2, . . . ,N, (10)

and the manufacturer’s value function Vm(X) satisfies

rVm(X) =
N∑

j=1

[

Mjxj − δjxjVmxj
+ Vjxj

(1 − x̄)(2Vmxj
(1 − θ∗

j (X)) − Vjxj
θ∗
j (X))ρ2

j

4(−1 + θ∗
j (X))2

]

.

(11)

Proof The first-order conditions w.r.t. θi, i = 1,2, . . . ,N , in (8) give a unique solution,
i.e., θ̂i as shown in (10). We then, in view of Remark 1, characterize the optimal subsidy
rate policy as in (9). Using (9) in (8) gives (11). To verify the second-order conditions

w.r.t. θi, i = 1,2, . . . ,N , we first find the Hessian matrix, i.e., ∂2Vm(X)

∂θi ∂θj
, i = 1,2, . . . ,N, j =

1,2, . . . ,N , from (8). We see that ∂2Vm(X)

∂θi ∂θj
= 0 whenever i 
= j , and ∂2Vm(X)

∂θi
2 < 0 when

we use θi = θ̂i , i = 1,2, . . . ,N . We thus see that this Hessian is negative definite when
θi = θ̂i , i = 1,2, . . . ,N . Thus, the optimal subsidy rates policy given by (9)–(10) is a maxi-
mum.

A number of important insights follow from our analysis thus far. Equation (10) says that
the optimal subsidy rate offered by the manufacturer to a retailer increases as the manufac-
turer’s marginal profit, with respect to the market share of that retailer increases. Thus, the
manufacturer provides more support to the retailer who offers a higher marginal profit from
his market share to the manufacturer. The increased subsidy from the manufacturer would
also increase the retailer’s advertising effort. On the other hand, as a retailer’s own marginal
profit from his own market share increases, then the subsidy rate offered by the manufac-
turer to that retailer decreases. The intuition behind this result is that the manufacturer would
lower his subsidy to the retailer from the knowledge that the retailer has his own incentive
to increase his very profitable market share anyway by advertising at a higher rate. Thus, we
can expect that the advertising effort by the retailer will increase with the marginal profit of
the retailer as well as that of the manufacturer from that retailer. This is confirmed by the
following relation, which is derived from (6) and (10):

u∗
i (X) = ρi(2Vmxi

+ Vixi
)
√

1 − x̄

4
.

In the dynamic programming equations (7) and (11), we see that their right-hand sides
are linear in xi, i = 1,2, . . . ,N , except for θ∗

i (X), i = 1,2, . . . ,N , to be determined. Taking
a cue from [23], we shall look for linear value functions. That is, we use the forms

Vi(X) = αi + βixi +
∑

j 
=i

γij xj , i = 1,2, . . . ,N, j = 1,2, . . . ,N, j 
= i, (12)



Dyn Games Appl (2012) 2:347–375 355

Vm(X) = α +
N∑

j=1

Bjxj , (13)

and then try to solve for the coefficients αi, βi, γij , α and Bi , i = 1,2, . . . ,N, j =
1,2, . . . ,N, j 
= i. With these, we see that

βi = Vixi
, γij = Vixj

, Bi = Vmxi
, i = 1,2, . . . ,N, j = 1,2, . . . ,N, j 
= i, (14)

and therefore θ̂i (X) and θ∗
i (X), i = 1,2, . . . ,N , given in (9) and (10) would be constants.

Thus, from here on, we shall simply denote them as θ̂i and θ∗
i , respectively, i = 1,2, . . . ,N .

We substitute (12)–(13) into (7) and (11), set the coefficients of xi, i = 1,2, . . . ,N , and
the constant terms equal to zero in the resulting equations, and obtain the following sys-
tem of equations to be solved for the coefficients in (12)–(13): For i = 1,2, . . . ,N, j =
1,2, . . . ,N, j 
= i,

4rαi = − β2
i ρ

2
i

(−1 + θ∗
i )

+
∑

k 
=i

2βkγikρ
2
k

(−1 + θ∗
k )

, (15)

4rβi = 4mi − 4βiδi +
∑

k 
=i

2βkγikρ
2
k

(−1 + θ∗
k )

+ β2
i ρ

2
i

(−1 + θ∗
i )

, (16)

4rγij = −4γij δj +
∑

k 
=i

2βkγikρ
2
k

(−1 + θ∗
k )

+ β2
i ρ

2
i

(−1 + θ∗
i )

, (17)

rα = −
N∑

k=1

βk(2Bk(−1 + θ∗
k (X)) + βkθ

∗
k (X))ρ2

k

4(−1 + θ∗
k )2

, (18)

rBi = Mi − Biδi +
N∑

k=1

βk(2Bk(−1 + θ∗
k (X)) + βkθ

∗
k (X))ρ2

k

4(−1 + θ∗
k )2

, (19)

θ∗
i = max

{
2Bi − βi

2Bi + βi

,0

}

. (20)

Our analysis also reveals a condition under which the manufacturer will support his retailers.
To explore this, we let

Pi = 2Vmxi
− Vixi

= 2Bi − βi, i = 1,2, . . . ,N. (21)

Then, the subsidy rate for retailer i (given by (9) and (10)) depends on the sign of Pi, i =
1,2, . . . ,N . Thus, when Pi > 0, the manufacturer supports retailer i, otherwise he does not.

When Pi ≤ 0,∀i = 1,2, . . . ,N , no retailer receives any advertising support from the
manufacturer. In this case, θ∗

i = 0,∀i = 1,2, . . . ,N , and Eqs. (15)–(17) can be solved inde-
pendently of (18)–(19). Using θ∗

i = 0,∀i = 1,2, . . . ,N , in (15)–(19), we can solve for the
coefficients αi, βi, γij , α, and Bi, i = 1,2, . . . ,N, j = 1,2, . . . ,N, j 
= i. We can then write
the conditions for a non-cooperative solution, i.e., Pi ≤ 0,∀i = 1,2, . . . ,N , in terms of the
parameters mi,Mi,ρi, δi, i = 1,2, . . . ,N . It is also clear that in this case, our model reduces
to the oligopoly model of advertising competition studied by [10].

The explicit solution of the system of equations (15)–(20) is difficult to obtain in general,
and therefore, the condition Pi ≤ 0, i = 1,2, . . . ,N , for non-cooperation cannot be given
explicitly.
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In the special case of identical retailers, defined when mi = m,ρi = ρ, and δi = δ,∀i =
1,2, . . . ,N , some explicit results can be obtained. In addition to this, when Mi = M,∀i =
1,2, . . . ,N , which we refer to as the case of symmetric retailers, we can obtain additional
explicit results. Nevertheless, even in the general case, it is easy to solve the system numer-
ically. �

4 Identical Retailers

Let mi = m,ρi = ρ, and δi = δ,∀i = 1,2, . . . ,N . Recall that Pi ≤ 0,∀i = 1,2, . . . ,N , en-
sures that no retailer will be supported by the manufacturer. In order to obtain the required
condition for no cooperation at all, we set θ∗

i = 0,∀i = 1,2, . . . ,N , in the system of equa-
tions (15)–(19), and then explicitly solve for all of the coefficients. Then, using (21) we
obtain, for i = 1,2, . . . ,N ,

Pi = Mi

(r + δ)

[
m(N − 1)ρ2 + √

4(r + δ)4 + 4mN(r + δ)2ρ2 + m2(N − 1)2ρ4

(r + δ)2 + mNρ2

]

− M−i

(r + δ)

[
2(r + δ)2 + m(N + 1)ρ2 −

√
4(r + δ)4 + 4mN(r + δ)2ρ2 + m2(N − 1)2ρ4

(r + δ)2 + mNρ2

]

− m(N − 1)

(r + δ)(2N − 1)
+ 2(r + δ)2 − √

4(r + δ)4 + 4mN(r + δ)2ρ2 + m2(N − 1)2ρ4

(r + δ)(2N − 1)ρ2
,

(22)

where, M−i = ∑
j 
=i Mj . The calculation of (22) is explained in Appendix A.

Proposition 3 When Pi ≤ 0,∀i = 1,2, . . . ,N , where Pi, i = 1,2, . . . ,N , is given by (22),
we have a non-cooperative equilibrium in which it is optimal for the manufacturer to not
support any retailer. Furthermore, if Pk > 0, for some k ∈ 1,2, . . . ,N and Pj ≤ 0,∀j =
1,2, . . . ,N, j 
= k, then only retailer k is supported and all others are not.

One can observe that Pi, i = 1,2, . . . ,N , are linear in M1,M2, . . . ,MN . In Pi , the coef-
ficient of Mi is positive and that of Mj, j 
= i, is negative. Thus, Pi increases as the margin
of the manufacturer from retailer i increases, and it decreases as that from any other retailer
increases. When Pk ≤ 0,∀k = 1,2, . . . ,N , as retailer i offers a higher margin to the manu-
facturer, he gets closer to the point of getting advertising support. Moreover, this increase in
margin from retailer i further hampers the case of retailer j, j 
= i, in getting support from
the manufacturer. Indeed, from (22), it can be seen that

Pi − Pj = 2(Mi − Mj)

(r + δ)
, i = 1,2, . . . ,N, j = 1,2, . . . ,N, i 
= j, (23)

which means that Mi > Mj implies Pi > Pj . Thus, in the case when no retailer is supported,
i.e., when Pk ≤ 0,∀k = 1,2, . . . ,N , as long as we have Mi > Mj, j 
= i, we will never see a
scenario when a change in the parameters (Mk, k = 1,2, . . . ,N,m,ρ, δ, r) will induce the
manufacturer to start supporting retailer j and not retailer i. In other words, if we assume
M1 > M2 > · · · > MN , retailer 1 will be the first to start receiving a positive subsidy rate
(if at all any retailer does get supported), whenever changes in the parameters take place, as
P1 would change sign from negative to positive before P2,P3, . . . ,PN .
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The expression for Pi, i = 1,2, . . . ,N , in (22) is still quite complicated. It simplifies a
great deal, however, if we assume that the decay coefficient and the discount rate are very
small, i.e., r + δ ≈ 0. Under this condition, after taking appropriate limits, we get

sgn(Pi) = sgn

[

Mi − M−i

(N − 1)
− mN

(2N − 1)

]

, (24)

where sgn(y) represents the sign of y.
Our analysis of the identical retailers case with small r and small δ reveals some impor-

tant insights. First of all, we can interpret the term M−i/(N − 1) as the average margin of
the manufacturer from all the retailers except retailer i, where M−i = ∑

j 
=i Mj . We then
see from (24) that if Mi < M−i/(N − 1), then retailer i does not get any advertising sup-
port. Thus, we can say that retailer i will not be supported if it offers to the manufacturer a
margin which is less than the average margin from all the other retailers. Retailer i will be
supported only when the his margin to the manufacturer is at least mN/(2N − 1) more than
the average margin the other retailers offer to the manufacturer.

This last observation clearly and explicitly brings out the effect of retail level competition
on the manufacturer’s subsidy rate policy, when compared to the results obtained in [12]
which dealt with a one-manufacturer-one-retailer channel. For small r and δ, they concluded
that if the manufacturer’s margin from the retailer is greater than the retailer’s margin, then
the retailer will be supported. In our case, the manufacturer will support retailer i only when
Mi − M−i

(N−1)
exceeds (N)

(2N−1)
times retailers’ margin. To make the comparison even clearer,

if we assume that only one retailer, say retailer 1, sells the manufacturer’s product and all
the other N − 1 retailers buy from another manufacturer and are simply outside competitors
to retailer 1 and the manufacturer, then M2 = M3 = · · · = MN = 0, hence M−1 = 0, and
manufacturer supports retailer 1 when M1 > mN/(2N − 1). Thus, the threshold condition
for support for N = 2 is M1 > 2m/3, for N = 3 is M1 > 3m/5, and so on. If the number of
competing retailers is very large, i.e., N− > ∞, then the manufacturer supports his retailer
when his margin is at least half of the retailer’s margin. If we assume N = 1, then the
threshold condition is M1 > m, which is consistent with the result found by [12].

An interesting and related question is, how will the manufacturer’s subsidy rate decision
change as the number of retailers selling his product changes? In other words, would the
manufacturer tend to support more when he has more retailers, or less? While it is analyti-
cally difficult to answer this in the general case, the following segment does it for a case of
symmetric retailers.

4.1 N Symmetric Retailers (M1 = M2 = · · · = MN = M)

In this case, (22) ∀i = 1,2, . . . ,N reduces to

Pi = M

(r + δ)

×
[

N
√

4(r + δ)4 + 4mN(r + δ)2ρ2 + m2(N − 1)2ρ4 − (N − 1)(Nmρ2 + 2(r + δ)2)

(r + δ)2 + mNρ2

]

− m(N − 1)

(r + δ)(2N − 1)
+ 2(r + δ)2 − √

4(r + δ)4 + 4mN(r + δ)2ρ2 + m2(N − 1)2ρ4

(r + δ)(2N − 1)ρ2
.

(25)
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After a simple algebraic analysis, it can be shown that Pi in (25) decreases as N increases
for N ≥ 2. This leads to the following result.

Proposition 4 When all the retailers are symmetric in nature, the manufacturer’s support
will be equal for all the retailers and his tendency to support his retailers decreases as the
number of retailers increases.

A possible explanation of this result is that as N increases, the competition among
retailers for the market share increases and the retailers themselves have an incentive
to advertise on their own accord to increase their respective sales. Then, the manufac-
turer need not provide as much advertising support. Furthermore, when (r + δ) ≈ 0, then
Pi < 0,∀i, i = 1,2, . . . ,N ; and no retailer gets any support, which can also be verified
by (24).

In the special case of two symmetric retailers, i.e., M1 = M2, along with m1 = m2 = m,
ρ1 = ρ2 = ρ, and δ1 = δ2 = δ, we can solve the system of equations (15)–(20) completely
and explicitly. Moreover, it can be shown that this solution is unique. We can now state the
following.

Proposition 5 In the case of two symmetric retailers, the solution to the Stackelberg–Nash
cooperative advertising game, obtained by solving the system of equations (15)–(20), is
unique.

See Appendix B for proof.
In the general case, however, the system of equations (15)–(20) is too difficult to solve

explicitly and a proof of uniqueness cannot be established. Even when we have N sym-
metric retailers, proving uniqueness is extremely difficult. However, while performing the
numerical analysis for a general case, always a unique solution was found.

5 Non-identical Retailers: Numerical Analysis

The system of equations (15)–(20) constitutes a total of (2N + 1) + N(N + 1) nonlinear
equations that can be solved numerically to get insights on the optimal advertising and sub-
sidy rates policy. We carried out the numerical analysis for the case of two as well as three
retailers, but for clarity we present the analysis for two retailers in this section, as the insights
that follow are similar for N = 2 and N = 3. We perform numerical analysis to study the de-
pendence of the manufacturer’s subsidy rates on the manufacturer’s margins (M1,M2) from
retailers 1 and 2, respectively, the retailers’ margins (m1,m2), the advertising effectiveness
coefficients (ρ1, ρ2), and the decay coefficients (δ1, δ2). In the results presented, the base
case is M1 = M2 = 1,m1 = m2 = 0.25, ρ1 = ρ2 = 1, δ1 = δ2 = 0.2, and r = 0.05. We then
vary each parameter one by one to study how it affects θ∗

1 and θ∗
2 .

The numerical analysis involves only solving a system of equations, which is fairly
straightforward to carry out. In all instances, we find a unique solution to the system. For
the case of two symmetric retailers, we prove the uniqueness in Appendix B. We describe
the results as follows.

(a) The effect of the manufacturer’s margin (Fig. 2): If the manufacturer’s margin from
retailer 1 increases, the manufacturer starts offering a higher subsidy rate to retailer 1
and reduces the subsidy rate to retailer 2. Thus, the manufacturer rewards retailer 1 for
providing him a higher margin in two ways.
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Fig. 2 Subsidy rates vs. M1

Fig. 3 Subsidy rates vs. m1

(b) The effect of a retailer’s margin (Fig. 3): As the margin of retailer 1 increases, both
θ∗

1 and θ∗
2 decrease. The decrease in θ∗

2 is smaller compared to that in θ∗
1 . Since the

manufacturer’s margins are kept constant, we can say that if the margin of retailer 1
increases relative to the margin he offers to the manufacturer, then the manufacturer
starts reducing his subsidy to both retailers, and more drastically with retailer 1 than
with retailer 2. Thus, if all other parameters remain the same, the retailer with the higher
margin gets a lower subsidy rate.

(c) The effect of the advertising effectiveness parameter (Fig. 4): As the advertising effec-
tiveness of retailer 1 increases, the subsidy rates for both retailers decrease. The rate of
decrease is higher for retailer 2 than for retailer 1. All other parameters being the same,
the retailer with the more effective advertising gets a higher subsidy rate.

(d) The effect of the decay coefficient (Fig. 5): As δ1 increases, the subsidy rates for both
retailers increase. However, θ∗

2 is more sensitive to increase in δ1 than θ∗
1 .
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Fig. 4 Subsidy rates vs. ρ1

Fig. 5 Subsidy rates vs. δ1

6 Cooperative Advertising and Channel Coordination: Two Retailers

In this section, for a retailer duopoly, we analyze the role of cooperative advertising as a
tool to better coordinate the channel and improve the overall channel profit. We evaluate and
compare the channel profit in three cases. First, we consider an integrated channel where the
advertising decisions are based on the maximization of total profit for the manufacturer and
the retailers together. Second, we consider a decentralized channel with the optimal subsidy
rates. Third, we consider a decentralized channel without cooperative advertising.

In the first case, given the retailers’ and manufacturer’s margins (m1,m2,M1,M2), the
optimization problem for the integrated channel can be written as follows:

V (x1, x2) = max
u1(t)≥0,u2(t)≥0,t≥0

∫ ∞

0
e−rt

(
(M1 +m1)x1(t)+ (M2 +m2)x2(t)−u2

1(t)−u2
2(t)

)
dt

(26)
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subject to

ẋi (t) = dxi(t)

dt
= ρiui(t)

√
1 − x1(t) − x2(t) − δixi(t), xi(0) = xi ∈ [0,1], i = 1,2.

(27)
The HJB equation for the value function V is

rV (x1, x2) = max
u1≥0,u2≥0

[
(M1 + m1)x1 + (M2 + m2)x2 − u2

1 − u2
2 + Vx1 ẋ1 + Vx2 ẋ2

]
, (28)

where ẋ1 and ẋ2 are given by (27). Using (27) in the HJB equation (28) and applying the
first-order conditions for maximization w.r.t. u1 and u2 give the following result.

Proposition 6 For the integrated channel, the optimal feedback advertising policies are

u∗
1 = 1

2
ρ1Vx1

√
1 − x1 − x2, u∗

2 = 1

2
ρ2Vx2

√
1 − x1 − x2, (29)

and the integrated channel’s value function satisfies

4rV (x1, x2) = 4(M1 + m1 − Vx1δ1)x1 + 4(M2 + m2 − Vx2δ2)x2

+ (1 − x1 − x2)
(
V 2

x1
ρ2

1 + V 2
x2

ρ2
2

)
. (30)

Once again, we conjecture a linear value function of the form V (x1, x2) = αI + βI
1 x1 +

βI
2 x2, where αI ,βI

1 = Vx1 and βI
2 = Vx2 are constants, and solve the following system of

equations:

4rαI = βI 2
1ρ

2
1 + βI 2

2ρ
2
2 , (31)

4rβI
i = 4(mi + Mi) − 4βI

i δi − βI 2
i ρ

2
i − βI 2

3−iρ
2
3−i , i = 1,2. (32)

The set of equations (31)–(32) is obtained by comparing the coefficients of x1 and x2, and
the constant terms in (30) with βI

1 (= Vx1), βI
2 (= Vx2), and αI , respectively.

In the second case, we have a decentralized channel with cooperative advertising, for
which we define the channel value function as V c(x1, x2) = V c

m(x1, x2) + V c
r (x1, x2), where

V c
m is the manufacturer’s value function (given by (13)) and V c

r is the total value function of
both retailers (obtained by (12) for i = 1,2).

In the third case, namely, a decentralized channel with no cooperation, the channel
value function is defined as V n(x1, x2) = V n

m(x1, x2) + V n
r (x1, x2), where V n

m and V n
r are

the manufacturer’s value function and the sum of the two retailers’ value functions in the
non-cooperative setting, respectively. These are computed by simply setting θ∗

1 = θ∗
2 = 0 in

(15)–(19) and then using (12)–(13).
Before we proceed further, let us observe that the manufacturer is the leader and he

obtains his optimal subsidy rates by maximizing his objective function. Therefore, it should
be obvious that

V c
m(x1, x2) ≥ V n

m(x1, x2). (33)

Thus, it remains to study the effect of cooperative advertising on the retailers’ profits and
the total channel profit. First, we examine this in the simple case of symmetric retailers. We
now present the following result.
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Fig. 6 Channel value functions
in integrated, cooperative, and
non-cooperative cases

Proposition 7 In the case of symmetric retailers, the value functions V c
r (x1, x2) and

V n
r (x1, x2) depend only on the sum (x1 + x2), and can thus be expressed as V c

r (x1 + x2)

and V n
r (x1 + x2), with a slight abuse of notation. Furthermore, we have

V c
r (x1 + x2) ≥ V n

r (x1 + x2). (34)

The proof of Proposition 7 is provided in Appendix C. It is clear from (33) and (34)
that in the symmetric case, cooperative advertising can partially coordinate the channel, and
that the manufacturer as well as the retailers are better off with cooperative advertising than
without it.

We now return to the general case where explicit analytical relationships between various
value functions are difficult to establish. We, therefore, resort to numerical analysis, and
report our findings based on the results obtained. We compare V,V c , and V n with varying
values of the optimal subsidy rates. Since the value functions depend on the state (x1, x2),
the analysis was carried out for different values of (x1, x2).

We would like to study V,V c , and V n with respect to the changes in the optimal sub-
sidy rates brought about by changes in the model parameters; for this we consider varying
retailer 1’s margin. As m1 increases, we know from Fig. 3 that the subsidy rates for both
retailers decrease. As a result, we can compare the various value functions as m1 increases
or, roughly speaking, as subsidy rates decrease. Figure 6 depicts the values of V , V c , and
V n for x1 = x2 = 0.3. The data range for the calculations shown are the same as those used
for the results shown in Fig. 3. Thus, for any point in Fig. 6, the values of the optimal sub-
sidy rates are the same as the corresponding values in Fig. 3. Recall that as m1 increases,
the overall cooperation by the manufacturer decreases. It is found that under all instances,
V is greater than V c as well as V n. This is understandable as we expect the channel value
function in the integrated case to be higher than in the decentralized case, with or without
cooperative advertising. In the scenario when both retailers get advertising support, we find
that V c > V n, indicating that the channel attains partial coordination. Moreover, it is found
that the difference V − V c is minimum at the point when both retailers receive equal posi-
tive subsidy rates, and it increases as the difference between the two subsidy rates increases.
These results indicate that the level of coordination achieved is maximum when both retail-
ers receive equal positive subsidy rates.
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Fig. 7 Difference between the
value functions in the cooperative
case and the non-cooperative
case for each channel member

An interesting, perhaps even counter-intuitive observation is that in the case when it is
optimal for the manufacturer to support only one retailer, we find that the overall value func-
tion of the channel in the non-cooperative scenario is slightly higher than in the cooperative
case. Thus, from the channel’s perspective, it is better in this case not to support any retailer
than to support only one of the two.

This analysis was carried out for changes in parameters m1, ρ1 and δ1 with the corre-
sponding changes in the optimal subsidy rates as shown in Figs. 3, 4 and 5, respectively,
as well as for different values of (x1, x2). However, we find that the nature of changes
in V , V c , and V n with respect to varying optimal subsidy rates and the overall insights
do not change. Figure 7 shows the difference in the value functions between the coopera-
tive and non-cooperative settings for the manufacturer and the two retailers, respectively.
As expected, the manufacturer always benefits from cooperative advertising. The retailers,
however, do not always seem to benefit from cooperative advertising. Furthermore, the man-
ufacturer’s benefit from cooperative advertising increases as his subsidy increases. For the
two retailers, it is found that as the difference between the two subsidy rates increases, the
retailer getting the lower subsidy rate has a lower value function than in the non-cooperative
setting. Moreover, as this difference in the subsidy rates increases further, even the com-
bined value function of the retailers is lower than in the non-cooperative setting. Figure 7
also shows that the region in which both retailers benefit from cooperative advertising is
a small “window” around the point where the retailers get the same positive subsidy rate
from the manufacturer. In other words, for both retailers to benefit from cooperative ad-
vertising, their subsidy rates should not differ significantly. Thus, the retailer getting a sig-
nificantly lower subsidy rate might not be happy with such a cooperative advertising pro-
gram.

These observations raise an interesting issue relating to the differential treatment of the
retailers by the manufacturer, i.e., when only one retailer is favored, then in some situations
the channel makes less profit with cooperative advertising than without it. Indeed, this might
be viewed as an additional argument for the non-discriminating practice legislated under
such acts as the Robinson–Patman Act of 1936 in the context of price discrimination, for
reasons to enhance competition. In view of these results, we study next the case of non-
discrimination in the context of cooperative advertising.
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7 Equal Subsidy Rate for All Retailers: Two Retailers

We consider the case when the manufacturer is restricted to offer the same subsidy rate
to its retailers. As in the previous section, we restrict our analysis to a retailer duopoly
due to the analytical complexity of a general N retailer model. This case is motivated by
possible legal issues that may arise when the manufacturer discriminates between the two
retailers in terms of subsidy rates. Note that discrimination in terms of price, promotions,
discounts, etc. is prohibited by the Robinson–Patman Act of 1936. Specifically, the Act
proscribes discrimination in price between two or more competing buyers in the sale of
commodities of like grade and quality. This and other anti-discrimination acts, such as the
Sherman Antitrust Act of 1890, the Clayton Act of 1914, and the Celler–Kefauver Act of
1950, prevent discriminatory policies which might lead to reduced competition and create
monopolies in the market.

In our model, different optimal subsidy rates for the two retailers arise from factors
such as difference in the manufacturer’s margins relative to the retailers’ margins, which
affect the manufacturer’s profit. However, if the manufacturer is not allowed to offer
different subsidy rates to the retailers, we need to reformulate our problem so that the
manufacturer’s optimization problem has only one subsidy rate decision. In this case, let
V RP

m (x1, x2),V
RP

1 (x1, x2),V
RP

2 (x1, x2) and V RP denote the value functions of the manufac-
turer, retailer 1, retailer 2, and the total channel, respectively, with the superscript RP stand-
ing for Robinson and Patman. These value functions solve the control problems defined by
(1)–(4) with θ1 = θ2 = θ . Once again, we expect these value functions to be linear in the
market share vector, and express them as in (12)–(13), except that the coefficients will now
be denoted as α̃, α̃1, α̃2, β̃1, β̃2, γ̃1, γ̃2, B̃1, and B̃2. These coefficients will satisfy the system
of equations obtained by setting θ∗

1 = θ∗
2 = θ∗ in (15)–(19). Thus, we have the following

equation system: For i = 1,2,

4rα̃i = − β̃2
i ρ

2
i

(−1 + θ∗)
+ 2β̃3−i γ̃iρ

2
3−i

(−1 + θ∗)
, (35)

4rβ̃i = 4mi − 4β̃iδi + 2β̃3−i γ̃iρ
2
3−i

(−1 + θ∗)
+ β̃2

i ρ
2
i

(−1 + θ∗)
, (36)

4rγ̃i = −4γ̃iδ3−i + 2β̃3−i γ̃iρ
2
3−i

(−1 + θ∗)
+ β̃2

i ρ
2
i

(−1 + θ∗)
, (37)

rα̃ = − β̃2
i ρ

2
i θ

∗

4(−1 + θ∗)2
+ β̃i B̃iρ

2
i

2(−1 + θ∗)
+ β̃2

3−iρ
2
3−iθ

∗

2(−1 + θ∗)2
+ β̃3−i B̃3−iρ

2
3−i

2(−1 + θ∗)
, (38)

rB̃i = Mi − B̃iδi + β̃2
i ρ

2
i θ

∗

4(−1 + θ∗)2
+ β̃i B̃iρ

2
i

2(−1 + θ∗)

+ β̃2
3−iρ

2
3−iθ

∗

4(−1 + θ∗)2
+ β̃3−i B̃3−iρ

2
3−i

2(−1 + θ∗)
, (39)

θ∗ = max

{
β̃1(2B̃1 − β̃1)ρ

2
1 + β̃2(2B̃2 − β̃2)ρ

2
2

β̃1(2B̃1 + β̃1)ρ
2
1 + β̃2(2B̃2 + β̃2)ρ

2
2

,0

}

. (40)
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Fig. 8 Subsidy rate vs. M1

The common threshold condition for no cooperation to be optimal is that

P = β̃1(2B̃1 − β̃1)ρ
2
1 + β̃2(2B̃2 − β̃2)ρ

2
2 ≤ 0. (41)

In the case of identical retailers, i.e., m1 = m2 = m,ρ1 = ρ2 = ρ, and δ1 = δ2 = δ, we can
solve Eqs. (35)–(39) explicitly when θ∗ = 0. The condition for no support by the manufac-
turer, in this scenario, reduces to

9(r + δ)2ρ2(M1 + M2)

+ (
2(r + δ)2 − mρ2 −

√
4(r + δ)4 + 8m(r + δ)2ρ2 + m2ρ4

)

× ((r + δ)2 + mρ2 + √
4(r + δ)4 + 8m(r + δ)2ρ2 + m2ρ4)

3(r + δ)
≤ 0. (42)

In the general case, we performed numerical analysis to see the behavior of θ∗ with re-
spect to different model parameters. Figures 8, 9, 10 and 11 show the dependence of θ∗ on
M1,m1, ρ1 and δ1, respectively, and compare the θ∗ with the optimal subsidy rates for two
retailers without any legislation, i.e., θ∗

1 and θ∗
2 . We find that as M1 increases, the manufac-

turer has higher incentive to support retailer 1 and thus θ∗ increases, but with a decreasing
rate. Rate of increase of θ∗ is lower than the rate of increase of θ∗

1 , which could be attributed
to the fact that the subsidy rates have to be equal for both the retailers even though retailer 2
does not offer any incentive for higher support. The overall impact of parameters m1, ρ1

and δ1 on manufacturer’s support is similar to the general model, i.e., the subsidy rate θ∗
decreases with m1, decreases with ρ1, and increases with δ1. Moreover, as is the case in the
unrestricted model, the rate of change of θ∗ (in absolute sense) decreases as the value of
these parameters increases. It is noticeable though that θ∗ lies between θ∗

1 and θ∗
2 , and the

retailer who is less profitable for the manufacturer and would have received a lower subsidy
rate in the unrestricted model, benefits from this legislation.

Next, we study the impact of anti-discriminatory act on the profits of all the parties in
the supply chain and on the total channel profit. We compare the value functions in three
cases: a channel without any cooperative advertising, a channel with no anti-discriminatory
act and optimal subsidy rates, and a channel with an anti-discriminatory act and optimal
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Fig. 9 Subsidy rate vs. m1

Fig. 10 Subsidy rate vs. ρ1

Fig. 11 Subsidy rate vs. δ1
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Fig. 12 Value function with a
non-discriminatory act minus
value function without a
non-discriminatory act

Fig. 13 Value functions in
different cases divided by
integrated channel value function

common subsidy rate for the two retailers. Figure 12 shows the difference between the value
functions in the cases of with and without the non-discriminatory legislation, with changes
in subsidy rates brought about by the changes in m1. As anticipated, the manufacturer earns
less profit because of the added constraint to his optimization problem. The manufacturer’s
loss is higher when m1 is low, i.e., when subsidy rates θ∗, θ∗

1 and θ∗
2 are high. We find that

the retailer who would have obtained a higher subsidy rate in the absence of such legislation
also earns less profit, whereas a less efficient retailer who would have earned a lower subsidy
rate in an unconstrained problem benefits from this act. When m1 is very low, the gain of the
less efficient retailer is not able to offset the losses of the other two parties, and the supply
chain in the whole loses. However, for a larger set of values of m1, the inefficient retailer’s
gain is more than the losses of the other two parties and the total channel profit is higher.
This result indicates that better supply chain coordination can be obtained with the anti-
discriminatory act in effect. Figure 13 compares the total profit of an integrated channel (V )

with the total channel profit in three cases: no advertising cooperation (V n), cooperation
with no legislation (V c), and cooperation with equal subsidy rates (V RP). Here again, we
see that with the non-discriminatory act, we are able to achieve a higher level of channel
coordination in most cases, except when m1 is too low.
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8 Concluding Remarks

We consider a cooperative advertising model with a manufacturer supplying to N retailers,
and formulate it as a Stackelberg differential game. We obtain the Stackelberg feedback
equilibrium and derive the conditions under which there will or will not be any cooperative
advertising. We also provide the sensitiveness of the optimal subsidy rates with respect to the
various problem parameters. We study the effect of retail level competition on the manufac-
turer’s subsidy rate decisions. In the case of N identical retailers, when only one retailer sells
the manufacturer’s product and the remaining (N − 1) retailers are outside competitors, we
show that the manufacturer’s threshold to start supporting his retailers eases as the number
of competing retailers increases. In other words, when the number of competing retailers is
higher, the manufacturer supports his retailer under a larger set of conditions. Furthermore,
when all of the retailers sell the manufacturer’s product, we show that the manufacturer’s
tendency to provide support to each retailer decreases as the number of retailers increases.

In the case of retail duopoly, we examine some important supply chain issues. We study
the issue of channel coordination with cooperative advertising and find that partial coordi-
nation can be achieved when both retailers are supported. When only one of the retailers is
supported, there are cases when the manufacturer’s gain from cooperative advertising does
not offset the loss incurred by the retailers. This leads us to also examine the model when
the manufacturer is required to offer the same subsidy rates to both retailers, in the spirit
of non-discriminating legislations such as the Robinson–Patman Act of 1936. We find that
the optimal common subsidy rate lies between the two optimal subsidy rates that would
prevail in the absence of any such legislation. We find that the legislation benefits the less
efficient retailer, and takes away some profits from the manufacturer and the other retailer.
We also see evidence of a higher channel profit and better supply chain coordination with
the legislation.

There are a number of ways in which our research can be extended. First, we have as-
sumed margins for the retailers and the manufacturer as exogenous variables. It is possible
to extend our model to include wholesale and retail pricing decisions as in [12] and [6]. Sec-
ond, our problem is modeled as a Stackelberg game with the manufacturer as the leader and
the retailers as followers. One may consider modeling the problem in a mixed leadership
setting involving several decision variables (see, e.g., [1, 2]) in which the manufacturer is
the leader for some decisions and the retailers take the lead in others.

Appendix A: Derivation of Pi, i = 1,2, . . . ,N , for N Identical Retailers

For N identical retailers, with θ∗
i = 0,∀i = 1,2, . . . ,N , by subtracting (17) from (16),

we get γij = βi − m
(r+δ)

, i = 1,2, . . . ,N, j = i = 1,2, . . . ,N, j 
= i. Since the retailers are
identical, it is not surprising that γij is same for all j ’s, where i = 1,2, . . . ,N, j = i =
1,2, . . . ,N, j 
= i. Using this relation in (16), we can rewrite (16) as

4(r + δ)βi = 4m − ρ2β2
i − 2ρ2

∑

k 
=i

βk

[

βi − m

(r + δ)

]

, i = 1,2, . . . ,N.

From the above equation we can say that β1 = β2 = · · · = βN = β , which is intuitive as the
retailers are identical. With this we get a quadratic equation in β which gives two roots, one
negative and one positive. Clearly it makes sense to have the value function of retailer i, i.e.,
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Vi(X), increase with his own market share xi . Therefore, we expect βi = ∂Vi(X)/∂xi > 0.
Thus, we ignore the negative root and get for i = 1,2, . . .N ,

βi = β = (n − 1)mρ2 − 2(r + δ)2 + √
4(r + δ)4 + 4nmρ2(r + δ)2 + (n − 1)4m2ρ4

(2n − 1)ρ2(r + δ)2
. (43)

Using (43) in (19) we solve for Bi, i = 1,2, . . .N , and then using (21) we get (22).

Appendix B: Uniqueness of Optimal Solution in the Case of Two Symmetric Retailers

The uniqueness of an optimal solution to the problem defined by (6), (7), (9)–(11) is guar-
anteed by a unique solution of the system of equations (15)–(20). It appears to be difficult
to prove the uniqueness in the general case. However, in the special case of symmetric re-
tailers (M1 = M2 = M,m1 = m2 = m,δ1 = δ2 = δ and ρ1 = ρ2), we can establish the result
as follows.

We first look at the signs of αi, βi and γi, i = 1,2. It is expected that βi > 0. Now con-
sider γi , which can be expressed in terms of β1 and β2 by using Eq. (17):

γi = β2
i (−1 + θ∗

3−i )ρ
2
i

2(−1 + θ∗
i )((r + δ3−i )(−1 + θ∗

3−i ) − β3−iρ
2
3−i )

, i = 1,2.

Since βi > 0 and θ∗
i < 1, i = 1,2, we have γi = Vix3−i

< 0, as intuition would suggest on
account of the competition between the retailers. We can also use (16) and (17) to write

γi = −mi + βi(r + δi)

(r + δ3−i )
. (44)

Since γi < 0, we must have

βi <
mi

(r + δi)
. (45)

Now consider αi , which is retailer i’s value function when the initial market is zero for
both retailers. We now show that this value is positive. By adding (15) and (17), we can
conclude that αi = −γi(r + δ3−i )/r , which is positive since γi < 0. Thus,

αi = mi − βi(r + δi)

r
> 0. (46)

Moreover, using (44) in Eq. (15), we can write αi in terms of β1 and β2, and then rewrite
(46) as

αi = 1

4r

[
2β3−i (mi − βi(r + δi))ρ

2
3−i

(r + δ3−i )(−1 + θ3−i )
− β2

i ρ
2
i

(−1 + θi)

]

> 0, i = 1,2. (47)

Clearly, in the symmetric case, we will have α1 = α2 = α,β1 = β2 = β , γ1 = γ2 = γ ,
B1 = B2 = B , and hence θ∗

1 = θ∗
2 = θ∗. We can thus rewrite (47) as

β(2m − 3β(r + δ))ρ2

2r(r + δ)(−1 + θ)
> 0.
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This, along with β > 0 and θ < 1, gives us

β >
2m

3(r + δ)
. (48)

From (45) and (48), we have

2m

3(r + δ)
< β <

m

(r + δ)
. (49)

To prove a unique solution to Eqs. (15)–(20), we reduce them into one equation of a
single variable β , and then aim for the unique solution of β . We will separately consider the
cases of a cooperative equilibrium where θ∗ > 0 and a non-cooperative equilibrium where
θ∗ = 0.

Case I: Cooperative equilibrium (θ∗ > 0) Since β1 = β2 = β and B1 = B2 = B in the
symmetric case, (20) reduces to θ∗ = (2B −β)/(2B +β). Using this, (44), and (46), we can
reduce Eqs. (15)–(20) to two equations in variables β and B , i.e.,

4r(r + δ)β = 4(r + δ)(m − βδ) + (β + 2B)
(
2m − 3β(r + δ)

)
ρ2, (50)

4rB = 4M − 4Bδ − (β + 2B)2ρ2. (51)

Using (50), (51) and (14) in (21) and setting P1 = P2 = P on account of the case being
symmetric, we obtain the participation threshold function

P = 2B − β = 8(r + δ)(−m + 2M + (β − 2B)δ) − (β + 2B)(2m − (β − 4B)(r + δ))ρ2

8r(r + δ)
.

(52)
Using (50), we can write B in terms of β as follows:

B = −2m(4(r + δ) + βρ2) + β(r + δ)(8(r + δ) + 3βρ2)

2(2m − 3β(r + δ))ρ2
. (53)

Now using (52) and (53), we can rewrite P in terms of β only, and then write the condition
of the cooperative equilibrium as

P = −4m((r + δ)2 + βρ2) + 2β(r + δ)(4(r + δ) + 3βρ2)

(2m − 3β(r + δ))ρ2
> 0. (54)

Next, we find the values of β for which the inequality in (54) holds. In order to see how
P varies with β , we first find the roots of the equation P = 0. The numerator is quadratic in
β with the roots denoted as η1 and η2:

η1 = −2(r + δ)2 + mρ2 + √
4(r + δ)4 + 8m(r + δ)2ρ2 + m2ρ4

3(r + δ)ρ2
,

η2 = −2(r + δ)2 + mρ2 − √
4(r + δ)4 + 8m(r + δ)2ρ2 + m2ρ4

3(r + δ)ρ2
.

Clearly, η1 > 0 and η2 < 0. Also, the denominator (2m− 3β(r + δ))ρ2 of (54) changes sign
at β = 2m/3(r + δ); the denominator is strictly positive when β < 2m/3(r + δ) and strictly
negative when β > 2m/3(r + δ).
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We will now compare the value of η1 with m/(r + δ) and 2m/3(r + δ). We can see that
the difference

η1 − 2m

3(r + δ)
= −2(r + δ)2 − mρ2 + √

4(r + δ)4 + 8m(r + δ)2ρ2 + m2ρ4

3(r + δ)ρ2
> 0,

and thus η1 > 2m/3(r + δ). Furthermore,

η1 − m

(r + δ)
= −2(r + δ)2 − 2mρ2 + √

4(r + δ)4 + 8m(r + δ)2ρ2 + m2ρ4

3(r + δ)ρ2
< 0,

and thus we have

2m

3(r + δ)
< η1 <

m

(r + δ)
. (55)

We can then conclude from (54) that P > 0 is satisfied when

β ∈ (−∞,−η2) or β ∈
(

2m

3(r + δ)
, η1

)

. (56)

Therefore, the conditions (49), (55) and (56) along with the fact that β > 0 give us the
desirable range of the solution for β , i.e.,

β ∈
(

2m

3(r + δ)
, η1

)

. (57)

Now using (53) in (51), we can write a single equation in β . After some steps of algebra,
for the symmetric retailer case with positive cooperation, this single equation for β can be
written as

F(β) = 8β(r + δ)3(m − β(r + δ)) − (2m − 3β(r + δ))2(2M + β(r + δ))ρ2

(2m − 3β(r + δ))2ρ2
= 0.

Thus, a unique cooperative solution in the symmetric retailer case is guaranteed when ex-
actly one root of the equation F(β) = 0 lies in the range given by (57). The numerator of
the above expression, denoted as N(β), is cubic in β . Thus, we can rewrite the equation for
β as

N(β) = aβ3 + bβ2 + cβ + d = 0, (58)

where

a = −9(r + δ)3ρ2, b = −8(r + δ)4 + 6(2m − 3M)(r + δ)2ρ2,

c = 4m(r + δ)
(
2(r + δ)2 − (m − 6M)ρ2

)
and d = −8m2Mρ2.

Since the denominator of F(β) is positive for all values of β except 2m/3(r + δ), the sign
of F(β) is the same as that of N(β). In what follows, we perform a simple sign analysis of
N(β) to draw inference about the roots of (58). After a few steps of algebra with the help of
Mathematica, the following observations can be made:

N(β) → ∞ as β → −∞;
N(β) = −8m2Mρ2 < 0 when β = 0;
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Fig. 14 Subsidy rates vs. M1

N(β) = 16

9
m2(r + δ)2 > 0 when β = 2m

3(r + δ)
;

N(β) = −m2(m + 2M)ρ2 < 0 when β = m

(r + δ)
;

N(β) → −∞ as β → ∞.

These observations make it clear that the equation N(β) = 0 has three real roots in the
following intervals:

(−∞,0),

(

0,
2m

3(r + δ)

)

and

(
2m

3(r + δ)
,

m

(r + δ)

)

.

Moreover, from (55) and (57), we see that there should be exactly one root in the desired
interval ( 2m

3(r+δ)
, η1) for there to be cooperation in the equilibrium solution. In fact, the loca-

tion of the third root in the interval ( 2m
3(r+δ)

, m
(r+δ)

) w.r.t. η1 determines whether we will have
a cooperative or non-cooperative equilibrium. Figure 14 shows the curve N(β) when β > 0.
This curve gives us an idea of when exactly one of the two positive roots of the equation
N(β) = 0 would be in the interval ( 2m

3(r+δ)
, η1). Note that one root of this equation is nega-

tive and is not shown in the figure. It can be easily seen that to attain exactly one root in the
interval ( 2m

3(r+δ)
, η1) and thereby to have a cooperative equilibrium, we must have

F(β)|β=η1 < 0, (59)
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which, when using β = η1 in F(β), gives us

1

9

(
2m2ρ2

(r + δ)2
+ (r + δ)2 − 18Mρ2 − √

4(r + δ)4 + 8m(r + δ)2ρ2 + m2ρ4

ρ2

+ m

(

7 + 2
√

4(r + δ)4 + 8m(r + δ)2ρ2 + m2ρ4

(r + δ)2

))

< 0. (60)

After a few steps of algebra, one can see that the condition (60) has just the opposite sign
to the one that ensures a non-cooperative solution in the case of symmetric retailers, which
can be obtained by simply using M1 = M2 = M in Proposition 3. In other words, when the
parameters m,M, r, δ, and ρ are such that the inequality (60) is not satisfied, then the third
root of the equation N(β) = 0 will be greater than or equal to η1, and the optimal solution
will be a non-cooperative one. Thus, a unique cooperative equilibrium is guaranteed when
(60) is satisfied.

Case II: Non-cooperative Equilibrium We now consider the non-cooperative equilibrium
(θ∗ = 0) in the symmetric retailer case. As illustrated in Appendix A, the system of equa-
tions (15)–(20) can be solved explicitly in the non-cooperative case to get a unique positive
solution of β1 and β2, given by (43). Since the symmetric retailer case is a further simplifi-
cation of the case of identical retailers, i.e., with M1 = M2 = M , the solution of β is unique
and is given by (43). Note that this value of β equals η1.

Appendix C: Proof of Proposition 7

As defined in Sect. 7, V c
r is the combined value function of the two retailers in the coopera-

tive scenario and V n
r is the same in the non-cooperative scenario. We can write γi and αi in

terms of βi from (44) and (46), respectively. Recall that in the case of symmetric retailers,
α1 = α2 = α,β1 = β2 = β , and γ1 = γ2 = γ . Furthermore, when there is no cooperation,
β = η, and its value is given by (43). Using β = η, (44), and (46), we can find V n

r by adding
computing (12) for i = 1,2, and adding the two. After a few steps of algebra, we get

V n
r = 2(x1 + x2)(m(r + 2δ) − 2δ(r + δ)η1) + (−1 + x1 + x2)η1(2m − 3(r + δ)η1)ρ

2

2r(r + δ)
.

(61)
In the case of symmetric retailers with cooperation, using (44) and (46) from Appendix B,
and using the fact that α1 = α2 = α,β1 = β2 = β and γ1 = γ2 = γ , we get

V c
r = 4(x1 + x2)(m(r + 2δ) − 2βδ(r + δ)) − (β + 2B)(1 − x1 − x2)(2m − 3β(r + δ))ρ2

4r(r + δ)
.

(62)
Clearly, V n

r and V c
r depend only on the sum (x1 + x2), and this proves the first statement

of Proposition 7. Next, we define �Vr = V c
r − V n

r , which can be computed as follows:

�Vr = −8xδ(r + δ)(β − η1)+ (−1 + x)(2m(β + 2B − 2η1)−3(r + δ)(β2 + 2Bβ − 2η2
1))ρ2

4r(r + δ)
,

where x = x1 + x2. �Vr is linear in x, and we will write it as �Vr(x). We can see that
�Vr(1) = 2δ(η1 −β)/r > 0. This is because we know from (57) that to sustain a cooperative
equilibrium, the parameters (m,M, r, δ, ρ) should be such that β < η1.
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Now consider

�Vr(0) = (−2m(β + 2B − 2η1) + 3(r + δ)(β2 + 2Bβ2 − 2η2
1))ρ

2

4r(r + δ)
.

Substituting the value of B in terms of β (from (53)) in the above expression, we can write

�Vr(0) = 4(r + δ)(m − β(r + δ)) + η(2m − 3(r + δ)η)

2r(r + δ)
. (63)

It is clear by (63) that a decrease in the value of β (caused by changes in parameters) also
decreases the value of �Vr(0). We know that for a cooperative equilibrium, β < η1, and so
a lower bound for �Vr(0) can be obtained by using β = η1 in (63). This lower bound is

4m(r + δ) + 2mηρ2 − (r + δ)η(4(r + δ) + 3ηρ2)

2r(r + δ)
.

By using the value of η1 from Appendix B, and after a few steps of algebra, we can see that
the above expression reduces to zero. Therefore, �Vr(0) > 0.

Because �Vr(x) is linear in x, �Vr(0)> 0, and �Vr(1)> 0, we can say that �Vr(x)> 0,

∀x ∈ [0,1]. Thus, V c
r (x) > V n

r (x), ∀x ∈ [0,1]. The equality holds when β = η1, i.e., when
non-cooperation is optimal for the manufacturer.
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