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Abstract This survey paper presents some new advances in theoretical aspects of dif-
ferential game theory. We particular focus on three topics: differential games with state
constraints; backward stochastic differential equations approach to stochastic differential
games; differential games with incomplete information. We also address some recent devel-
opment in nonzero-sum differential games (analysis of systems of Hamilton–Jacobi equa-
tions by conservation laws methods; differential games with a large number of players, i.e.,
mean-field games) and long-time average of zero-sum differential games.

Keywords Differential game · Viscosity solution · System of Hamilton–Jacobi equations ·
Mean-field games · State-constraints · Backward stochastic differential equations ·
Incomplete information

1 Introduction

This survey paper presents some recent results in differential game theory. In order to keep
the presentation at a reasonable size, we have chosen to describe in full details three topics
with which we are particularly familiar, and to give a brief summary of some other research
directions. Although this choice does not claim to represent all the recent literature on the
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more theoretic aspects of differential game theory, we are pretty much confident that it cov-
ers a large part of what has recently been written on the subject. It is clear however that the
respective part dedicated to each topic is just proportional to our own interest in it, and not
to its importance in the literature.

The three main topics we have chosen to present in detail are:

– Differential games with state constraints,
– Backward stochastic differential equation approach to differential games,
– Differential games with incomplete information.

Before this, we also present more briefly two domains which have been the object of very
active research in recent years:

– nonzero-sum differential games,
– long-time average of differential games.

The first section of this survey is dedicated to nonzero-sum differential games. Although
zero-sum differential games have attracted a lot of attention in the 80–90’s (in particular,
thanks to the introduction of viscosity solutions for Hamilton–Jacobi equations), the ad-
vances on nonzero-sum differential games have been scarcer, and mainly restricted to linear-
quadratic games or stochastic differential games with a nondegenerate diffusion. The main
reason for this is that there was very little understanding of the system of Hamilton–Jacobi
equations naturally attached to these games. In the recent years the analysis of this sys-
tem has been the object of several papers by Bressan and his co-authors. At the same time,
nonzero-sum differential games with a very large number of players have been investigated
in the terminology of mean-field games by Lasry and Lions.

In the second section we briefly sum up some advances in the analysis of the large time
behavior of zero-sum differential games. Such problems have been the aim of intense re-
search activities in the framework of repeated game theory; it has however only been re-
cently investigated for differential games.

In the third part of this survey (the first one to be the object of a longer development)
we investigate the problem of state constraints for differential games, and in particular, for
pursuit-evasion games. Even if such class of games has been studied since Isaacs’ pioneer-
ing work [80], the existence of a value was not known up to recently for these games in a
rather general framework. This is mostly due to the lack of regularity of the Hamiltonian and
of the value function, which prevents the usual viscosity solution approach to work (Evans
and Souganidis [63]): Indeed some controllability conditions on the phase space have to be
added in order to prove the existence of the value (Bardi, Koike and Soravia [18]). Following
Cardaliaguet, Quincampoix and Saint Pierre [50] and Bettiol, Cardaliaguet and Quincam-
poix [26] we explain that, even without controllability conditions, the game has a value and
that this value can be characterized as the smallest supersolution of some Hamilton–Jacobi
equation with discontinuous Hamiltonian.

Next we turn to zero-sum stochastic differential games. Since the pioneering work by
Fleming and Souginidis [65] it has been known that such games have a value, at least in a
framework of games of the type “nonanticipating strategies against controls”. Unfortunately
this notion of strategies is not completely satisfactory, since it presupposes that the players
have a full knowledge of their opponent’s control in all states of the world: It would be
more natural to assume that the players use strategies which give an answer to the control
effectively played by their opponent. On the other hand it seems also natural to consider
nonlinear cost functionals and to allow the controls of the players to depend on events of
the past which happened before the beginning of the game. The last two points have been
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investigated in a series of papers by Buckdahn and Li [35, 36, 39], and an approach more
direct than that in [65] has been developed. The first point, together with the two others, will
be the object of the fourth part of the survey.

In the last part we study differential games with incomplete information. In such games,
one of the parameters of the game is chosen at random according to some probability mea-
sure and the result is told to one of the players and not to the other. Then the game is played
as usual, players observing each other’s control. The main difference with the usual case is
that at least one of the players does not know which payoff he is actually optimizing. All
the difficulty of this game is to understand what kind of information the informed player has
interest in to disclose in order to optimize his payoff, taking thus the risk that his opponent
learns his missing information. Such games are the natural extension to differential games
of the Aumann–Maschler theory for repeated games [11]. Their analysis has been developed
in a series of papers by Cardaliaguet [41, 43–45] and Cardaliaguet and Rainer [51, 52].

Throughout these notes we assume the reader to be familiar with the basic results of dif-
ferential game theory. Many references can be quoted on this subject: A general introduction
for the formal relation between differential games and Hamilton–Jacobi equations (or sys-
tem) can be found in the monograph Baçar and Olsder [13]. We also refer the reader to the
classical monographs by Isaacs [80], Friedman [67] and Krasovskii and Subbotin [83] for
early presentations of differential game theory. The recent literature on differential games
strongly relies on the notion of viscosity solution: Classical monographs on this subject are
Bardi and Capuzzo Dolcetta [17], Barles [19], Fleming and Soner [64], Lions [93] and the
survey paper by Crandall, Ishii and Lions [56]. In particular [17] contains a good introduc-
tion to the viscosity solution aspects of deterministic zero-sum differential games: the proof
of the existence and the characterization of a value for a large class of differential games can
be found there. Section 6 is mostly based on the notion of backward stochastic differential
equation (BSDE): We refer to El Karoui and Mazliak [60], Ma and Yong [96] and Yong and
Zhou [116] for a general presentation. The reader is in particular referred to the work by
S. Peng on BSDE methods in stochastic control [101]. Let us finally note that, even if this
survey tries to cover a large part of the recent literature on the more theoretical aspects of
differential games, we have been obliged to omit some topics: linear-quadratic differential
games are not covered by this survey despite their usefulness in applications; however, these
games have been already the object of several survey papers. Lack of place also prevented
us from describing advances in the domain of Dynkin games.

2 Nonzero-sum Differential Games

In the recent years, the more striking advances in the analysis of nonzero-sum differential
games have been directed in two directions: analysis by P.D.E. methods of Nash feedback
equilibria for deterministic differential games; differential games with a very large number
of small players (mean-field games). These topics appear as the natural extensions of older
results: existence of Nash equilibria in memory strategies and of Nash equilibria in feedback
strategies for stochastic differential games, which have also been revisited.

2.1 Nash Equilibria in Memory Strategies

Since the work of Kononenko [82] (see also Kleimenov [81], Tolwinski, Haurie and Leit-
mann [114], Gaitsgory and Nitzan [68], Coulomb and Gaitsgory [55]), it has been known
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that deterministic nonzero-sum differential games admit Nash equilibrium payoffs in mem-
ory strategies: This result is actually the counterpart of the so-called Folk Theorem in re-
peated game theory [100]. Recall that a memory (or a nonanticipating) strategy for a player
is a strategy where this player takes into account the past controls played by the other play-
ers. In contrast a feedback strategy is a strategy which only takes into account the present
position of the system. Following [82] Nash equilibrium payoffs in memory strategies are
characterized as follows: A payoff is a Nash equilibrium payoff if and only if it is reach-
able (i.e., the players can obtain it by playing some control) and individually rational (the
expected payoff for a player lies above its min-max level at any point of the resulting trajec-
tory).

This result has been recently generalized to stochastic differential games by Buckdahn,
Cardaliaguet and Rainer [38] (see also Rainer [105]) and to games in which players can play
random strategies by Souquière [111].

2.2 Nash Equilibria in Feedback Form

Although the existence and characterization result of Nash equilibrium payoffs in mem-
ory strategies is quite general, it has several major drawbacks. Firstly, there are, in general,
infinitely many such Nash equilibria, but there exists—at least up to now—no completely
satisfactory way to select one. Secondly, such equilibria are usually based on threatening
strategies which are often non credible. Thirdly, the corresponding strategies are, in general,
not “time-consistent” and in particular cannot be computed by any kind of “backward in-
duction”. For this reason it is desirable to find more robust notions of Nash equilibria. The
best concept at hand is the notion of subgame perfect Nash equilibria. Since the works of
Case [54] and Friedman [67], it is known that subgame perfect Nash equilibria are (at least
heuristically) given by feedback strategies and that their corresponding payoffs should be
the solution of a system of Hamilton–Jacobi equations. Up to now these ideas have been
successfully applied to linear-quadratic differential games (Case [54], Starr and Ho [113],
. . . ) and to stochastic differential games with non degenerate viscosity term: In the first
case, one seeks solutions which are quadratic with respect to the state variable; this leads
to the resolution of Riccati equations. In the latter case, the regularizing effect of the non-
degenerate diffusion allows us to use fixed point arguments to get either Nash equilibrium
payoffs or Nash equilibrium feedbacks. Several approaches have been developed: Borkar
and Ghosh [27] consider infinite horizon problems and use the smoothness of the invari-
ant measure associated to the S.D.E; Bensoussan and Frehse [21, 22] and Mannucci [97]
build “regular” Nash equilibrium payoffs satisfying a system of Hamilton–Jacobi equations
thanks to elliptic or parabolic P.D.E techniques; Nash equilibrium feedbacks can also be
built by backward stochastic differential equations methods like in Hamadène, Lepeltier
and Peng [75], Hamadène [74], Lepeltier, Wu and Yu [92].

2.3 Ill-posedness of the System of HJ Equations

In a series of articles, Bressan and his co-authors (Bressan and Chen [33, 34], Bressan and
Priuli [32], Bressan [30, 31]) have analyzed with the help of P.D.E methods the system of
Hamilton–Jacobi equations arising in the construction of feedback Nash equilibria for deter-
ministic nonzero-sum games. In state-space dimension 1 and for the finite horizon problem,
this system takes the form

∂Vi + Hi(x,DV1, . . . ,DVn) = 0 in R × (0, T ), i = 1, . . . , n,
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coupled with a terminal condition at time T (here n is the number of players and Hi is the
Hamiltonian of player i, Vi (t, x) is the payoff obtained by player i for the initial condition
(t, x)). Setting pi = (Vi )x and deriving the above system with respect to x one obtains the
system of conservation laws:

∂tpi + (Hi(x,p1, . . . , pn)
)
x
= 0 in R × (0, T ).

This system turns out to be, in general, ill-posed. Typically, in the case of two players (n =
2), the system is ill-posed if the terminal payoff of the players have an opposite monotonicity.
If, on the contrary, these payoffs have the same monotony and are close to some linear payoff
(which is a kind of cooperative case), then the above system has a unique solution, and one
can build Nash equilibria in feedback form from the solution of the P.D.E [33].

Still in space dimension 1, the case of infinite horizon seems more promising: The sys-
tem of P.D.E then reduces to an ordinary differential equation. The existence of suitable
solutions for this equation then leads to Nash equilibria. Such a construction is carried out
in Bressan and Priuli [32], Bressan [30, 31] through several classes of examples and by
various methods.

In a similar spirit, the papers Cardaliaguet and Plaskacz [47], Cardaliaguet [42] study
a very simple class of nonzero-sum differential games in dimension 1 and with a terminal
payoff: In this case it is possible to select a unique Nash equilibrium payoff in feedback
form by just imposing that it is Pareto whenever there is a unique Pareto one. However, this
equilibrium payoff turns out to be highly unstable with respect to the terminal data. Some
other examples of nonlinear-quadratic differential games are also analyzed in Olsder [99]
and in Ramasubramanian [106].

2.4 Mean-field Games

Since the system of P.D.Es arising in nonzero-sum differential games is, in general, ill-
posed, it is natural to investigate situations where the problem simplifies. It turns out that
this is the case for differential games with a very large number of identical players. This
problem has been recently developed in a series of papers by Lasry and Lions [87–90, 94]
under the terminology of mean-field games (see also Huang, Caines and Malhame [76–79]
for a related approach). The main achievement of Lasry and Lions is the identification of
the limit when the number of players tends to infinity. The typical resulting model takes the
form

⎧
⎪⎨

⎪⎩

(i) −∂tu − Δu + H(x,m,Du) = 0 in R
d × (0, T ),

(ii) ∂tm − Δm − div
(
DpH(x,m,Du)m

)= 0 in R
d × (0, T ),

(iii) m(0) = m0, u(x,T ) = G
(
x,m(T )

)
.

(1)

In the above system, the first equation has to be understood backward in time while the
second one is forward in time. The first equation (a Hamilton–Jacobi one) is associated
with an optimal control problem and its solution can be regarded as the value function for a
typical small player (in particular the Hamiltonian H = H(x,m,p) is convex with respect
to the last variable). As for the second equation, it describes the evolution of the density
m(t) of the population.

More precisely, let us first consider the behavior of a typical player. He controls through
his control (αs) the stochastic differential equation

dXt = αt dt + √
2Bt
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(where (Bt ) is a standard Brownian motion) and he aims at minimizing the quantity

E

[∫ T

0

1

2
L
(
Xs,m(s),αs

)
ds + G

(
XT ,m(T )

)
]
,

where L is the Fenchel conjugate of H with respect to the p variable. Note that in this cost
the evolving measure m(s) enters as a parameter. The value function of our average player
is then given by (1-(i)). His optimal control is—at least heuristically—given in feedback
form by α∗(x, t) = −DpH(x,m,Du). Now, if all agents argue in this way, their repartition
will move with a velocity which is due, on the one hand, to the diffusion, and, one the other
hand, to the drift term −DpH(x,m,Du). This leads to the Kolmogorov equation (1-(ii)).

The mean-field game theory developed so far has been focused on two main issues:
firstly, investigate equations of the form (1) and give an interpretation (in economics, for
instance) of such systems. Secondly, analyze differential games with a finite but large num-
ber of players and interpret (1) as their limiting behavior as the number of players goes to
infinity.

Up to now the first issue is well understood and well documented. The original works by
Lasry and Lions give a certain number of conditions under which (1) has a solution, discuss
its uniqueness and its stability. Several papers also study the numerical approximation of this
solution: see Achdou and Capuzzo Dolcetta [1], Achdou, Camilli and Capuzzo Dolcetta [2],
Gomes, Mohr and Souza [71], Lachapelle, Salomon and Turinici [85]. The mean-field games
theory has been used in the analysis of wireless communication systems in Huang, Caines
and Malhamé [76], or Yin, Mehta, Meyn and Shanbhag [115]. It seems also particularly
adapted to modeling problems in economics: see Guéant [72, 73], Lachapelle [84], Lasry,
Lions, Guéant [91], and the references therein.

As for the second part of the program, the limiting behavior of differential games
when the number of players tend to infinity has been understood for ergodic differential
games [88]. The general case remains mostly open.

3 Long-time Average of Differential Games

Another way to reduce the complexity of differential games is to look at their long-time be-
havior. Among the numerous applications of this topic let us quote homogenization, singular
perturbations and dimension reduction of multiscale systems.

In order to explain the basic ideas, let us consider a two-player stochastic zero-sum dif-
ferential game with dynamics given by

dXt,ζ ;u,v
s = b

(
Xt,ζ ;u,v

s , us, vs

)
ds + σ

(
Xt,ζ ;u,v, us, vs

)
dBs, s ∈ [t,+∞),

Xt = ζ,

where B is a d-dimensional standard Brownian motion on a given probability space
(Ω, F ,P ), b : R

N × U × V → R
N and σ : R

N × U × V → R
N×d , U and V being some

metric compact sets. We assume that the first player, playing with u, aims at minimizing a
running payoff � : R

N ×U ×V → R (while the second players, playing with v, maximizes).
Then it is known that, under some Isaacs’ assumption, the game has a value VT which is the
viscosity solution of a second order Hamilton–Jacobi equation of the form

{
−∂tVT (t, x) + H

(
x,DVT (t, x),D2VT (t, x)

)= 0 in [0, T ] × R
N,

VT (T , x) = 0 in R
N .
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A natural question is the behavior of VT as T → +∞. Actually, since VT is typically of
linear growth, the natural quantity to consider is the long-time average, i.e., limT →+∞ VT /T .

Interesting phenomena can be observed under some compactness assumption on the un-
derlying state-space. Let us assume, for instance, that the maps b(·, u, v), σ(·, u, v) and
�(·, u, v) are periodic in all space variables: this actually means that the game takes place in
the torus R

N/Z
N .

In this framework, the long-time average is well understood in two cases: either the dif-
fusion is strongly nondegenerate:

∃ν > 0, (σσ ∗)(x,u, v) ≥ νIN ∀x,u, v,

(where the inequality is understood in the sense of quadratic matrices); or σ ≡ 0 and H =
H(x, ξ) is coercive:

lim
|ξ |→+∞

H(x, ξ) = +∞ uniformly with respect to x. (2)

In both cases the quantity VT (x,0)/T uniformly converges to the unique constant c̄ for
which the problem

c̄ + H
(
x,Dχ(x),D2χ(x)

)= 0 in R
N

has a continuous, periodic solution χ . In particular, the limit is independent of the initial
condition. Such kind of results has been proved by Lions, Papanicoulaou and Varadhan [95]
for first order equations (i.e., deterministic differential games). For second order equations,
the result has been obtained by Alvarez and Bardi in [3], where the authors combine funda-
mental contributions of Evans [61, 62] and of Arisawa and Lions [7] (see also Alvarez and
Bardi [4, 5], Bettiol [24], Ghosh and Rao [70]).

For deterministic differential games (i.e., σ ≡ 0), the coercivity condition (2) is not very
natural: Indeed, it means that one of the players is much more powerful than the other one.
However, very little is known without such a condition. Existing results rely on a specific
structure of the game: see for instance Bardi [16], Cardaliaguet [46]. The difficulty comes
from the fact that, in these cases, the limit may depend upon the initial condition (see also
Arisawa and Lions [7], Quincampoix and Renault [104] for related issues in a control set-
ting). The existence of a limit for large time differential games is certainly one of the main
challenges in differential games theory.

4 Existence of a Value for Zero-sum Differential Games with State Constraints

Differential games with state constraints have been considered since the early theory of
differential games: we refer to [23, 28, 66, 69, 80] for the computation of the solution for
several examples of pursuit. We present here recent trends for obtaining the existence of
a value for a rather general class of differential games with constraints. This question had
been unsolved during a rather long period due to problems we discuss now.

The main conceptual difficulty for considering such zero-sum games lies in the fact that
players have to achieve their own goal and to satisfy the state constraint. Indeed, it is not
clear to decide which players has to be penalized if the state constraint is violated. For this
reason, we only consider a specific class of decoupled games where each player controls
independently a part of the dynamics. A second mathematical difficulty comes from the fact
that players have to use admissible controls i.e., controls ensuring the trajectory to fulfil
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the state constraint. A byproduct of this problem is the fact that starting from two close
initial points it is not obvious to find two close constrained trajectories. This also affects the
regularity of value functions associated with admissible controls: The value functions are, in
general, not Lipschitz continuous anymore and, consequently, classical viscosity solutions
methods for Hamilton–Jacobi equations may fail.

4.1 Statement of the Problem

We consider a differential game where the first player playing with u, controls a first system

{
y ′(t) = g

(
y(t), u(t)

)
, u(t) ∈ U,

y(t0) = y0 ∈ KU,
(3)

while the second player, playing with v, controls a second system

{
z′(t) = h

(
z(t), v(t)

)
, v(t) ∈ V,

z(t0) = z0 ∈ KV .
(4)

For every time t , the first player has to ensure the state constraint y(t) ∈ KU while the second
player has to respect the state constraint z(t) ∈ KV for any t ∈ [t0, T ]. We denote by x(t) =
x[t0, x0;u(·), v(·)](t) = (y[t0, y0;u(·)](t), z[t0, z0;v(·)](t)) the solution of the systems (3)
and (4) associated with an initial data (t0, x0) := (t0, y0, z0) and with a couple of controls
(u(·), v(·)).

In the following lines we summarize all the assumptions concerning with the vector fields
of the dynamics:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) U and V are compact subsets of some finite

dimensional spaces

(ii) f : R
n × U × V → R

n is continuous and

Lipschitz continuous (with Lipschitz constant M)

with respect to x ∈ R
n

(iii)
⋃

u f (x,u, v) and
⋃

v f (x,u, v) are convex for any x

(iv) KU = {y ∈ R
l , φU (y) ≤ 0} with φU ∈ C 2(Rl;R),

∇φU(y) �= 0 if φU(y) = 0

(v) KV = {z ∈ R
m,φV (z) ≤ 0} with φV ∈ C 2(Rm;R),

∇φV (z) �= 0 if φV (z) = 0

(vi) ∀y ∈ ∂KU,∃u ∈ U such that 〈∇φU(y), g(y,u)〉 < 0

(vii) ∀z ∈ ∂KV ,∃v ∈ V such that 〈∇φV (z),h(z, v)〉 < 0

(5)

We need to introduce the notion of admissible controls: ∀y0 ∈ KU , ∀z0 ∈ KV and ∀t0 ∈
[0, T ] we define

U (t0, y0) := {
u(·) : [t0,+∞) → U measurable | y[t0, y0;u(·)](t) ∈ KU ∀t ≥ t0

}

V(t0, z0) := {
v(·) : [t0,+∞) → V measurable | z[t0, z0;v(·)](t) ∈ KV ∀t ≥ t0

}
.
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Under assumptions (5), the Viability Theorem (see [9, 10]) ensures that for all x0 =
(y0, z0) ∈ KU × KV

U (t0, y0) �= ∅ and V(t0, z0) �= ∅.

Throughout the paper we omit t0 in the notations U (t0, y0) and U (t0, y0) whenever t0 = 0.
We now describe two quantitative differential games. Let us start with a game with an

integral cost:

Bolza Type Differential Game Given a running cost L : [0, T ] × R
N × U × V → R and

a final cost Ψ : R
N → R, we define the payoff associated to an initial position (t0, x0) =

(t0, y0, z0) and to a pair of controls (u, v) ∈ U (t0, y0) × V(t0, z0) by

J
(
t0, x0;u(·), v(·))=

∫ T

t0

L
(
t, x(t), u(·), v(·))dt + Ψ

(
x(T )

)
, (6)

where x(t) = x[t0, x0;u(·), v(·)](t) = (y[t0, y0;u(·)](t), z[t0, z0;v(·)](t)) denotes the solu-
tion of the systems (3) and (4). The first player wants to maximize the functional J , while
the second player’s goal is to minimize J .

Definition 1 A map α : V(t0, z0) → U (t0, y0) is a nonanticipating strategy (for the first
player and for the point (t0, x0) := (t0, y0, z0) ∈ R

+ × KU × KV ) if, for any τ > 0, for all
controls v1(·) and v2(·) belonging to V(t0, z0), which coincide a.e. on [t0, t0 + τ ], α(v1(·))
and α(v2(·)) coincide almost everywhere on [t0, t0 + τ ]. Nonanticipating strategies β for the
second player are symmetrically defined. For any point x0 ∈ KU × KV and ∀t0 ∈ [0, T ] we
denote by A(t0, x0) and by B(t0, x0) the sets of the nonanticipating strategies for the first
and the second player respectively.

We are now ready to define the value functions of the game. The lower value V− is
defined by:

V−(t0, x0) := inf
β∈B(t0,x0)

sup
u(·)∈U (t0,y0)

J
(
t0, x0;u(·), β(u(·))), (7)

where J is defined by (6). On the other hand we define the upper value function as follows:

V+(t0, x0) := lim
ε→0+ sup

α∈A(t0,x0)

inf
v(·)∈V(t0,z0)

Jε

(
t0, x0;α

(
v(·)), v(·)) (8)

with

Jε

(
t0, x0;u(·), v(·)) :=

∫ T

t0

L
(
t, x(t), u(t), v(t)

)
dt + Ψε

(
x(T )

)
,

where x(t) = x[t0, x0;u(·), v(·)](t) and Ψε is the lower semicontinuous function defined by

Ψε(x) := inf
{
ρ ∈ R | ∃y ∈ R

n with
∣∣(y,ρ) − (x,Ψ (x)

)∣∣= ε
}
.

The asymmetry between the definition of the value functions is due to the fact that one
assumes that the terminal payoff Ψ is lower semicontinuous. When Ψ is continuous, one
can check that V+ can equivalently be defined in a more natural way as

V+(t0, x0) := sup
α∈A(t0,x0)

inf
v(·)∈V(t0,z0)

J
(
t0, x0;α

(
v(·)), v(·)).
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We now describe the second differential game which is a pursuit game with closed target
C ⊂ KU × KV .

Pursuit Type Differential Game The hitting time of C for a trajectory x(·) := (y(·), z(·))
is:

θC

(
x(·)) := inf

{
t ≥ 0 | x(t) ∈ C

}
.

If x(t) /∈ C for every t ≥ 0, then we set θC(x(·)) := +∞. In the pursuit game, the first player
wants to maximize θC while the second player wants to minimize it. The value functions are
defined as follows: The lower optimal hitting-time function is the map ϑ−

C : KU × KV →
R

+ ∪ {+∞} defined, for any x0 := (y0, z0), by

ϑ−
C (x0) := inf

β(·)∈B(x0)
sup

u(·)∈U (y0)

θC

(
x
[
x0, u(·), β(u(·))]).

The upper optimal hitting-time function is the map ϑ+
C : KU × KV → R

+ ∪ {+∞} de-
fined, for any x0 := (y0, z0), by

ϑ+
C (x0) := lim

ε→0+ sup
α(·)∈A(x0)

inf
v(·)∈V(z0)

θC+εB

(
x
[
x0, α

(
v(·)), v(·)]).

By convention, we set ϑ−
C (x) = ϑ+

C (x) = 0 on C.

Remarks

– Note that here again the definition of the upper and lower value functions are not sym-
metric: this is related to the fact that the target assumed to be closed, so that the game is
intrinsically asymmetric.

– The typical pursuit game is the case when the target coincides with the diagonal: C =
{(y, z), | y = z}. We refer the reader to [6, 29] for various types of pursuit games. The
formalism of the present survey is adapted from [50].

4.2 Main Result

The main difficulty for the analysis of state-constraint problems lies in the fact that two
trajectories of a control system starting from two—close—different initial conditions could
be estimated by classical arguments on the continuity of the flow of the differential equation.
For constrained systems, it is easy to imagine cases where the constrained trajectories
starting from two close initial conditions are rather far from each other. So, an important
problem in order to get suitable estimates on constrained trajectories, is to obtain a kind
of Filippov Theorem with constraints. Namely a result which allows one to approach—
in a suitable sense—a given trajectory of the dynamics by a constrained trajectory. Note
that similar results exist in the literature. However, we need here to construct a constrained
trajectory in a nonanticipating way [26] (cf. also [25]), which is not the case in the previous
constructions.

Proposition 1 Assume that conditions (5) are satisfied. For any R > 0 there exist C0 =
C0(R) > 0 such that for any initial time t0 ∈ [0, T ], for any y0, y1 ∈ KU with |y0|, |y1| ≤ R,
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there is a nonanticipating strategy σ : U (t0, y0) −→ U (t0, y1) with the following property:
for any u0(·) ∈ U (t0, y0) and for any t ∈ [t0, T ] we have

∣
∣y0(t)−y1(t)

∣
∣+
∫ t

t0

∣
∣g
(
y0(s), u0(s)

)−g
(
y1(s), σ

(
u0(·)

)
(s)
)∣∣ds ≤ C0|y0 −y1|eC0(t−t0), (9)

where we have set for simplicity y0 = y[t0, y0;u0(·)] and y1 = y[t0, y1;σ(u0(·))](t).
In particular, if g is affine with respect to the control u, namely

g(y,u) = g1(y)u + g2(y),

where g1(y) is an invertible matrix with Lipschitz continuous inverse, then we have

∣∣y0(t) − y1(t)
∣∣+

∫ t

t0

∣∣u0(s) − σ
(
u0(·)

)
(s)
∣∣ds ≤ C1|y0 − y1|eC1(t−t0) (10)

for some constant C1 = C1(R) > 0.

A corresponding result for the other player can, of course, be stated and proved similarly.
We consider costs satisfying the following conditions:

⎧
⎪⎨

⎪⎩

(i) L : [0, T ] × R
n × U × V −→ R is a bounded and Lipschitz

continuous with respect to all the variables of constant M;
(ii) Ψ : R

n −→ R is bounded and lower semicontinuous.

(11)

We also have to assume some structure condition on g, h and L; namely, one of the following
conditions has to hold:

Condition 1—L := L(t, x) (L does not depend on u and v)

Condition 2—L := L(t, x,u, v) = L0(t, x) + L1(t, x)u + L2(t, x)v,

g(y,u) = g1(y)u + g2(y), h(z, v) = h1(z)v + h2(z)

where g1(y) and h1(z) are invertible bounded matrices

with inverse Lipschitz continuous w.r. to x.

(12)

Theorem 1 Assume that (5), (11), (12) hold. Then the Bolza Game has a value, and the
associated value function is lower semicontinuous:

∀(t, x) ∈ [0, T ] × KU × KV , V−(t, x) = V+(t, x).

The key ingredients for the proof of this Theorem is the reduction of the game to a
qualitative differential game and the fact that the Epigraphs of V− and V+ are both equal
to a suitable victory domain for this qualitative game. For the principle of the reduction to
a qualitative game we refer the reader to [49], for the study of qualitative games we refer
to [40]. The detailed proof of Theorem 1 can be found in [26]. We also mention that some
kind of constrained differential games with terminal cost can be treated by penalization
method; this gives rise to differential games with discontinuous costs (cf. [103, 108]).

Theorem 2 Assume that conditions (5) are fulfilled. Then the pursuit game has a value:

∀x0 ∈ KU × KV , ϑ−
C (x0) = ϑ+

C (x0).
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4.3 Hamilton–Jacobi–Isaacs Approach

We finally characterize the value function studied above as the unique viscosity solution to
a suitable PDE. This method has been introduced by Evans and Souganidis [63] for uncon-
strained differential games with a continuous value function (cf. also [18] for the extension
to some constrained cases). For the sake of shortness we only give results for the Bolza type
differential game. Let us first introduce the following Hamilton–Jacobi–Isaacs equation:

{
−∂tW(t, x) + H

(
t, x, ∂xW(t, x)

)= 0 on (0, T ) × KU × KV ,

W(T ,x) = Ψ (x) on KU × KV ,
(13)

where the Hamiltonian function H is given by

H(t, x,p) := max
v∈V (z)

min
u∈U(y)

{−〈f (x,u, v),p
〉− L(t, x,u, v)

}
,

and where L is the running cost function. The function H is, in general, discontinuous.
Therefore, in order to consider the notion of solution in viscosity sense, we have to use the
upper and lower semicontinuous envelopes of H , denoted by H ∗ and H∗ respectively (see
for instance [17]):

H ∗(t, x,p) := lim sup
(t ′,x′,p′)→(t,x,p)

H(t ′, x ′,p′),

H∗(t, x,p) := lim inf
(t ′,x′,p′)→(t,x,p)

H(t ′, x ′,p′).

Remark 1 Under assumption (12), the set-valued maps y � U(y) and z � V (z) are lower
semicontinuous and we have

H ∗(t, x,p) = max
v∈V

min
u∈U(y)

{−〈f (x,u, v),p
〉− L(t, x,u, v)

}

and

H∗(t, x,p) = max
v∈V (z)

min
u∈U

{−〈f (x,u, v),p
〉− L(t, x,u, v)

}
.

Definition 2 (Viscosity solution) A viscosity supersolution for the Hamilton–Jacobi–Isaacs
equation (13) is a lower semicontinuous function w : [0, T ) × KU × KV −→ R with the
following property: For any test function ϕ ∈ C 1 and any (t0, x0) ∈ [0, T ) × KU × KV such
that w − ϕ has a local minimum at (t0, x0), it holds

−∂tϕ(t0, x0) + H ∗(t0, x0, ∂xϕ(t0, x0)
)≥ 0.

An upper semicontinuous function w : [0, T ) × KU × KV −→ R is called viscosity subso-
lution of (13) if, for any test function ϕ ∈ C 1 and any (t0, x0) ∈ [0, T ) × KU × KV such that
w − ϕ achieves a local maximum at (t0, x0), we have

−∂tϕ(t0, x0) + H∗
(
t0, x0, ∂xϕ(t0, x0)

)≤ 0.

We say that a continuous function is a viscosity solution of (13) if it is both supersolution
and subsolution of (13) at the same time.
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Theorem 3 (cf. [26]) Under assumptions (5), (11), (12), the function V− = V+ is the small-
est lower semicontinuous supersolution to (13).

It is worth pointing out that we did not prove that the value is a viscosity solution of
the Hamilton–Jacobi–Isaacs (HJI) equation. Nevertheless, by proving that upper and lower
values are both minimal solutions to the HJI equation, we obtain that they coincide. In
general it is not true that the value can be characterized as the unique viscosity solution to
the HJI equation (when the Hamiltonian is not convex, uniqueness of discontinuous viscosity
solutions does not always hold). However, the characterization can be obtained if the value
is regular enough:

Proposition 2 Under the assumptions (5), (11), (12), if the final cost Ψ = Ψ (x) is locally
Lipschitz continuous, then the value function V− = V+ is also locally Lipschitz continuous.

Now recalling that an upper semicontinuous function w : [0, T ) × KU × KV −→ R is a
viscosity subsolution of (13) if and only if −w is a viscosity supersolution of

−∂tW(t, x) − H
(
t, x,−∂xW(t, x)

)= 0,

we obtain a complete characterization of the value:

Proposition 3 The Hamilton–Jacobi–Isaacs equation (13) admits a unique continuous vis-
cosity solution, which is the unique value of the Bolza type game.

Detailed proofs of results of this section can mainly be found in [26].

5 Stochastic Differential Games. A Backward SDE Approach

In this section, based on the papers by Buckdahn and Li [35–37, 39] the problem of existence
of a value for zero-sum two-player stochastic differential games for a nonlinear payoff is
revisited. This approach represent an alternative to that in the pioneering paper [65] on
two-player zero-sum stochastic differential games stochastic differential games by Fleming
and Souganidis. Unlike that approach we allow our control processes for a game over the
time interval [t, T ] to depend on the past of the driving Brownian motion over the interval
[0, t]. Once having shown that the upper and lower value functions in our approach are
deterministic -which is not evident in our framework- we can prove with the help of Peng’s
method of backward stochastic differential equations (see [101]) in a rather straight-forward
manner, without additional technical notions like r-strategies, and without approximations,
first the dynamic programming principle for the upper and the lower value functions, and
after, on the basis of the dynamic programming principle, the fact that both functions are
the viscosity solutions of their own associated Hamilton–Jacobi–Bellman–Isaacs equation.
Both equations coincide under Isaacs’ condition and so do the upper and the lower value
function, i.e., the game has a value. While the above cited papers consider games of the type
“strategy against control”, we consider here games of the type “nonanticipating strategy
with delay against nonanticipating strategy” by adopting the concept developed in [51, 52].
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5.1 Preliminaries and Value Functions

We begin with introducing the framework in which we want to investigate stochastic differ-
ential games (in short: SDG). Let (Ω, F ,P) be the classical Wiener space, i.e., given some
arbitrarily fixed time horizon T > 0, we consider Ω = C0([0, T ];Rd) as the space of contin-
uous functions h : [0, T ] → Rd with h(0) = 0, endowed with the supremum norm, and we
let P be the Wiener measure on the Borel σ -field B(Ω) over Ω , with respect to which the
coordinate process Wt(ω) = ω(t), t ∈ [0, T ], ω ∈ Ω, becomes a d-dimensional Brownian
motion. Denoting by NP the collection of all P-null sets in Ω , we define F = B(Ω)∨ NP as
the completion of B(Ω) under P. Moreover, we introduce the filtration F = (Ft )t∈[0,T ] gener-
ated by the coordinate process W and completed by all P-null sets: Ft = σ {Bs , s ≤ t} ∨ NP,
t ∈ [0, T ].

Let us now introduce the frame for the general two-player zero-sum SDG we want to
study. For this, let U and V be two compact metric spaces. We consider as set of admissible
controls for the first player the space U of all F-adapted, U -valued processes, and for the
second player the space V of F-adapted, but now V -valued processes. For any admissible
processes u ∈ U and v ∈ V, and for arbitrary initial data t ∈ [0, T ] and ζ ∈ L2(Ω, Ft ,P;R

d)

we define the controlled state process Xt,ζ ;u,v to be the unique solution in S 2
F
(t, T ;R

d) of
the following equation:

{
dXt,ζ ;u,v

s = σ
(
Xt,ζ ;u,v

s , us, vs

)
dWs + b

(
Xt,ζ ;u,v

s , us, vs

)
ds, s ∈ [t, T ],

X
t,ζ ;u,v
t = ζ.

(14)

We recall that S 2
F
(t, T ;R

d) denotes the space of R
d -valued, F-adapted continuous processes

(Xs)s∈[t,T ] such that E[sups∈[t,T ] |Xs |2] < +∞, while L2
F
(t, T ;R

d) is the space of all
R

d -valued, F-adapted processes which are square integrable over [t, T ] × Ω. The coeffi-
cients σ : R

d × U × V → R
d×d and b : R

d × U × V → R
d are supposed to be continuous

in (x,u, v) and Lipschitz in x, uniformly with respect to (u, v). It is well known that under
these assumptions SDE (14) possesses a unique solution Xt,ζ ;u,v ∈ S 2

F
(t, T ;R

d), and, for
any given p ≥ 1, there is some constant Cp such that

E

[
sup

s∈[t,T ]

∣
∣Xt,ζ ;u,v

s − ζ
∣
∣p | Ft

]
≤ Cp

(
1 + |ζ |p)(T − t)p/2,

E

[
sup

s∈[t,T ]

∣
∣Xt,ζ ;u,v

s − Xt,ζ ′;u,v
s

∣
∣p | Ft

]
≤ Cp|ζ − ζ ′|p,

(15)

for all t ∈ [0, T ], ζ, ζ ′ ∈ L2(Ω, Ft ,P;R
d), and for all u ∈ U , v ∈ V. We now associate with

our controlled state process a nonlinear cost functional defined with the help of a backward
stochastic differential equation (BSDE). Given a Lipschitz function Φ : R

d → R describing
the terminal cost, and a continuous function f : R

d × R × R
d × U × V → R, Lipschitz in

(x, y, z) ∈ R
d × R × R

d , uniformly in (u, v), describing the running cost, we consider the
BSDE
{

dY t,ζ ;u,v
s = −f

(
Xt,ζ ;u,v

s , Y t,ζ ;u,v
s ,Zt,ζ ;u,v

s , us, vs

)
ds + Zt,ζ ;u,v

s dWs, s ∈ [t, T ],
Y

t,ζ ;u,v

T = Φ
(
X

t,ζ ;u,v

T

); (16)

the initial data are here the same as those for the associated SDE (14). By standard estimates
combining those for SDE with those for BSDE we get that the existence of some constant
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C such that, for all t ∈ [0, T ], ζ, ζ ′ ∈ L2(Ω, Ft ,P;R
d) and all u ∈ U , v ∈ V, P-a.s.,

∣
∣Y t,ζ ;u,v

t

∣
∣≤ C

(
1 + |ζ |),

∣∣Y t,ζ ;u,v
t − Y

t,ζ ′;u,v
t

∣∣≤ C|ζ − ζ ′|.
(17)

In order to define the game over the time interval [t, T ] (0 ≤ t ≤ T ), we introduce the
following subspaces of admissible controls and also the notion of admissible strategies.
For this we define first the spaces Ut,T := L0([t, T ];U) and Vt,T := L0([t, T ];V ) of all
deterministic, measurable functions over [t, T ], with values in U and in V , respectively, and
we endow them with their Borel-σ -fields, denoted by B(Ut,T ) and B(Vt,T ), respectively.

Definition 3 The space Ut,T of controls admissible for the first player for the game over
the time interval [t, T ] is defined as the space of all controls u ∈ U restricted to [t, T ]:
u|[t,T ] := (us)s∈[t,T ]. In the same spirit is defined the space of admissible controls for a game
on [t, T ] for the second player; it is denoted by Vt,T .

Definition 4 A nonanticipating strategy with delay (NAD strategy) for player 1 is a mea-
surable mapping α : Ω × [t, T ] × Vt,T −→ U satisfying the following properties:

(i) (Progressive measurability) The mapping α is F-progressively measurable, i.e., for all
s ∈ [t, T ], the mapping α restricted to Ω × [t, s] × Vt,T is Fs ⊗ B([t, s]) ⊗ B(Vt,T ) −
B(U)-measurable;

(ii) (Strict nonanticipativity) For every F-stopping time τ : Ω → [t, T ] it holds for
P-almost every ω ∈ Ω :

If v, v′ ∈ Vt,T coincide a.e. on [t, τ (ω)], then also α(ω, ·, v) = α(ω, ·, v′)
a.e. on [t, τ (ω)].

(iii) (Nonanticipativity with delay) There exists an increasing sequence of stopping times
(Sn)n≥0 with t = S0 ≤ S1 ≤ · · · ≤ Sn ≤ · · · ≤ T and

⋃
n≥1{Sn = T } = Ω, P-a.s., such

that, for any k ≥ 0 and P-almost every ω ∈ Ω, it holds:

If v, v′ ∈ Vt,T are such that v = v′ a.e. on [t, Sk(ω)], then α(ω, ·, v) = α(ω, ·, v′)
on [t, Sk+1(ω)].

The NAD strategies β : Ω × [t, T ] × Ut,T −→ V for player 2 are defined in a symmetric
manner. The space of the NAD strategies for player 1 for games over the time interval [t, T ]
is denoted by At,T , that for player 2 by Bt,T .

The above definition of NAD strategies is strongly inspired by those given in the pioneer-
ing works by Cardaliaguet [41], and by Cardaliaguet and Rainer [51]. The nonanticipativity
with delay allows us to prove easily the following statement (for the idea of the proof, see:
Lemma 2.2 in [41] or Lemma 1.1 in [51]).

Lemma 1 For every couple (α,β) ∈ At,T × Bt,T there is a unique pair (u, v) of control
processes in Ut,T × Vt,T such that

α
(
ω, s, v.(ω)

)= us(ω) and β
(
ω, s,u.(ω)

)= vs(ω), dsP(dω)-a.e. on [t, T ] × Ω.

(18)
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Considering now ζ = x ∈ Rd , the above lemma allows one to define (Xt,x;α,β, Y t,x;α,β,

Zt,x;α,β) by the corresponding triple of processes (Xt,x;u,v, Y t,x;u,v,Zt,x;u,v) introduced
above by (14) and (16), where the couple of control processes (u, v) is associated with
(α,β) ∈ At,T × Bt,T by relation (18). In the same spirit we introduce the nonlinear cost
functional

J (t, x;α,β) := Y
t,x;α,β
t = Y t,x;u,v

t ,

with the help of which we define the lower and the upper value functions of the game over
the time interval [t, T ]:

W(t, x) := esssup
α∈At,T

essinf
β∈Bt,T

J (t, x;α,β),

U(t, x) := essinf
β∈Bt,T

esssup
α∈At,T

J (t, x;α,β), (t, x) ∈ [0, T ] × R
d .

(19)

Remark 2 In the above definition of the lower and the upper value functions the essen-
tial supremum and the essential infimum over the family of Ft -measurable random vari-
ables J (t, x;α,β), (α,β) ∈ At,T × Bt,T , are understood in the sense of Dunford and
Schwartz [59]. Since due to estimate (17) this family is essentially bounded, uniformly with
respect to (α,β) ∈ At,T × Bt,T , it follows that W(t, x) and U(t, x) are a priori bounded,
Ft -measurable random variables. However, the authors of [35] showed that, in fact, W and
U are deterministic (see Proposition 3.3 of [35]).

Theorem 4 For all (t, x) ∈ [0, T ] × R
d , it holds W(t, x) = E[W(t, x)], U(t, x) =

E[U(t, x)].

Remark 3 The above statement allows us to identify in all what follows the stochastic fields
W(t, x),U(t, x) with their deterministic versions E[W(t, x)], E[U(t, x)]. Moreover, from
estimate (17) we get that the functions W,U : [0, T ] × R

d → R are of linear growth and
Lipschitz in x, uniformly with respect to t .

Since the fact that our lower and upper value functions W and U are deterministic, plays a
central role in our approach, we will sketch the proof of the theorem. The proof is essentially
based on a Girsanov transformation argument. Let H := {∫ .

0 hs ds | h ∈ L2([0, T ];R
d)} de-

note the Cameron–Martin subspace of Ω (Recall that Ω = C0([0, T ];R
d)). For h ∈ H we

consider the Girsanov transformation τh : Ω → Ω , τh(ω) := ω + h, ω ∈ Ω. Obviously,
τh : Ω → Ω is bijective, τ−1

h = τ−h, and its law is of the form

P ◦ [τh]−1 = exp

{∫ T

0
ḣs dWs − 1

2

∫ T

0
|ḣs |2 ds

}
· P.

The following lemma (see, e.g., Lemma 3.4 in [35]) reduces the proof of Theorem 4 to a
verification of the invariance of W(t, x) and U(t, x) with respect of the Girsanov transfor-
mation introduced above.

Lemma 2 Let ζ be a random variable over the classical Wiener space (Ω, F ,P) such that,
for all h ∈ H : ζ ◦ τh = ζ, P-a.s. Then there is some constant c ∈ R such that ζ = c, P-a.s.

Proof of Theorem 4 Let us sketch the proof for U(t, x); that for W(t, x) uses the same
arguments. Since U(t, x) is an Ft -measurable random variable over the classical Wiener
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space (Ω, F ,P), it suffices due to the above lemma, to show for all h ∈ Ht := {h ∈ H |
h(s) = h(t), s ∈ [t, T ]} that U(t, x) ◦ τh = U(t, x), P-a.s. Let us fix an arbitrary h ∈ Ht .

Then, since τh : Ω → Ω is bijective and the law P◦ [τh]−1 is equivalent to P, it can be easily
shown that

U(t, x) ◦ τh = essinf
β∈Bt,T

esssup
α∈At,T

{
J (t, x;α,β) ◦ τh

}
, P-a.s.

Let us analyze now the expression J (t, x;α,β) ◦ τh. For this we begin with investigating
Xt,x;α,β ◦ τh. Let (u, v) ∈ Ut,T × Vt,T be associated with (α,β) ∈ At,T × Bt,T by relation
(18). By applying the Girsanov transformation τh to SDE (14) (notice that dWs(τh) = dWs ,
s ∈ [t, T ], since h(s) = h(t), s ∈ [t, T ]) we get the same SDE, but governed by the Gir-
sanov transformed controls (u ◦ τh, v ◦ τh). Obviously, also (u ◦ τh, v ◦ τh) belongs to
Ut,T × Vt,T , and from the uniqueness of the solution of SDE (14) it follows that Xt,x;u,v

s ◦τh =
X

t,x;u(τh),v(τh)
s , s ∈ [t, T ], P-a.s. But,

(
u(τh), v(τh)

)= (u, v) ◦ τh = (α(·, ·, v), β(·, ·, u)
) ◦ τh = (α(τh, ·, v(τh)

)
, β
(
τh, ·, u(τh)

))
,

where with (α,β) ∈ At,T × Bt,T also (α(τh, ·, ·), β(τh, ·, ·)) ∈ At,T × Bt,T . The proof of the
latter fact consists in a direct verification of the definition of the NAD strategies, which uses
the observation that, for any F-stopping time S : Ω → [t, T ], also S(τh) is an F-stopping
time. Thus, P-a.s., on [t, T ],

Xt,x;α,β ◦ τh = Xt,x;u,v ◦ τh = Xt,x;u(τh),v(τh) = Xt,x;α(τh,·,·),β(τh,·,·).

By using this equality of the processes Xt,x;α,β ◦ τh and Xt,x;α(τh,·,·),β(τh,·,·) and combining it
with the above arguments translated from the SDE framework to the BSDE one, we obtain

(
Xt,x;α,β, Y t,x;α,β,Zt,x;α,β

) ◦ τh = (Xt,x;α(τh,·,·),β(τh,·,·), Y t,x;α(τh,·,·),β(τh,·,·),Zt,x;α(τh,·,·),β(τh,·,·)).

Thus, in particular, with the notation (αh,βh) := (α(τh, ·, ·), β(τh, ·, ·)) we have

J (t, x;α,β) ◦ τh = Y
t,x;α,β
t ◦ τh = Y

t,x;αh,βh
t = J (t, x;αh,βh), P-a.s.

Moreover, since (α−h)h = α−h(τh, ·, ·) = α(τh ◦ τ−h, ·, ·) = α and, analogously, (β−h)h = β,

for all α ∈ At,T , β ∈ Bt,T , we see that {αh : α ∈ At,T } = At,T and {βh : β ∈ Bt,T } = Bt,T .
Consequently, by summarizing our above arguments we obtain

U(t, x) ◦ τh = essinf
β∈Bt,T

esssup
α∈At,T

{
J (t, x;α,β) ◦ τh

}

= essinf
β∈Bt,T

esssup
α∈At,T

J (t, x;αh,βh)

= essinf
β∈Bt,T

esssup
α∈At,T

J (t, x;α,β)

= U(t, x), P-a.s.

This completes the proof in virtue with what was pointed out already at the beginning of the
proof. �
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5.2 Dynamic Programming Principle

Once having proved that the lower and the upper value functions W and U are deterministic,
we want to show that they satisfy the dynamic programming principle (DPP). Translating
Peng’s approach for stochastic control problems to the framework of stochastic differential
games, Peng’s notion of backward stochastic semigroup (see S. Peng [101]) turns out to be
also here a powerful and very efficient tool.

For (t, x) ∈ [0, T ) × R
d and (u, v) ∈ Ut,T × Vt,T , we let Xt,x;u,v be the unique solution

of SDE (14). Given δ > 0 with t + δ ≤ T , and an arbitrary η ∈ L2(Ω, Ft+δ,P), we denote
by (Y δ,η

s ,Zδ,η
s )s∈[t,t+δ] the unique solution of the BSDE

dY δ,η
s = −f

(
Xt,x;u,v

s , Y δ,η
s ,Zδ,η

s , us, vs

)
ds + Zδ,η

s dWs, s ∈ [t, t + δ], Y
δ,η

T = η,

and we put

G
t,x;u,v
s,t+δ [η] := Y δ,η

s , s ∈ [t, t + δ]. (20)

We observe that the such defined backward stochastic semigroup Gt,x;u,v
s,r , 0 ≤ s ≤ r ≤ T ,

has all the properties of a semigroup. In particular, we have the following lemma which can
be derived easily from the uniqueness of the solution of the BSDE which driving coefficient
is Lipschitz in (y, z), from BSDE standard estimates and from Peng’s comparison theorem
for BSDE.

Lemma 3 For all 0 ≤ t ≤ t + δ ≤ T , x ∈ R
d , and for all (u, v) ∈ Ut,t+δ × Vt,t+δ it holds:

(i) (Semigroup) Gt,x;u,v
s,r ◦ G

t,x;u,v
r,t+δ (:= Gt,x;u,v

s,r [Gt,x;u,v
r,t+δ (·)]) = G

t,x;u,v
s,t+δ , t ≤ s ≤ r ≤ t + δ ≤

T ;
(ii) (Monotonicity) G

t,x;u,v
s,t+δ [η] ≤ G

t,x;u,v
s,t+δ [η′], s ∈ [t, t + δ],P-a.s., for all η, η′ ∈

L2(Ω, Ft+δ,P) with η ≤ η′, P-a.s.;
(iii) (L2-Lipschitzianity) E[sups∈[t,t+δ] |Gt,x;u,v

s,t+δ [η]−G
t,x;u,v
s,t+δ [η′]|2 | Ft ] ≤ CE[|η−η′|2 | Ft ],

P-a.s., for all η,η′ ∈ L2(Ω, Ft+δ,P), where the constant C ∈ R+ depends only on the
Lipschitz constants of σ,b and f with respect to x and (x, y, z), respectively.

For arbitrarily given (α,β) ∈ At,t+δ × Bt,t+δ let (u, v) ∈ Ut,t+δ × Vt,t+δ be associated with
by relation (18). Then, in coherence with the definition of (Xt,x;α,β, Y t,x;α,β,Zt,x;α,β) we put

G
t,x;α,β

s,t+δ := G
t,x;u,v
s,t+δ .

Remark 4 Let us point out two special cases in which the semigroup can be explicitly de-
scribed:

(1) If the running cost f (x, y, z,u, v) is independent of (y, z), the semigroup has the fol-
lowing form: for (u, v) ∈ Ut,t+δ × Vt,t+δ and η ∈ L2(Ω, Ft+δ,P),

G
t,x;u,v
s,t+δ [η] = E

[
η +

∫ t+δ

s

f
(
Xt,x;u,v

r , ur , vr

)
dr
∣∣ Fs

]
, s ∈ [t, t + δ], P-a.s.

(2) For (u, v) ∈ Ut,T × Vt,t+δ, let η = Y
t,x;u,v
t+δ . Recalling that (Y t,x;u,v,Zt,x;u,v) is the unique

solution of BSDE (16), we see easily that

G
t,x;u,v
s,t+δ

[
Y

t,x;u,v
t+δ

]= Y t,x;u,v
s , s ∈ [t, t + δ], P-a.s.
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These both special cases and earlier results on the dynamic programming principle in
stochastic control problems but also for stochastic differential games suggest the following:

Theorem 5 Our upper and our lower value functions U(t, x) and W(t, x) satisfy the fol-
lowing DPP: For all 0 ≤ t < t + δ ≤ T , x ∈ R

d , P-a.s.,

U(t, x) = essinf
β∈Bt,t+δ

esssup
α∈At,t+δ

G
t,x;α,β

t,t+δ

[
U
(
t + δ,X

t,x;α,β

t+δ

)]
,

W(t, x) = esssup
α∈At,t+δ

essinf
β∈Bt,t+δ

G
t,x;α,β

t,t+δ

[
W
(
t + δ,X

t,x;α,β

t+δ

)]
.

(21)

Proof Although being rather straight-forward, the proof turns out to be also a bit technical.
In order to give an idea of the techniques, we propose to prove the relation

U(t, x) ≤ Uδ(t, x) := essinf
β∈Bt,t+δ

esssup
α∈At,t+δ

G
t,x;α,β

t,t+δ

[
U
(
t + δ,X

t,x;α,β

t+δ

)]
. (22)

For the complete proof, however in a different framework (in that of stochastic differential
games of the type “nonanticipating strategies against controls”) the reader is referred to [35].

Proof of (22) The initial data (t, x) ∈ [0, T ) × R
d as well as 0 < δ ≤ T − t are fixed during

this proof. By introducing the family of Ft -measurable random variables

H(β1) := esssup
α1∈At,t+δ

G
t,x;α1,β1
t,t+δ

[
U
(
t + δ,X

t,x;α1,β1
t+δ

)]
, β1 ∈ Bt,t+δ,

we have, for some sequence βn
1 ∈ Bt,t+δ , n ≥ 1, that

Uδ(t, x) = essinf
β1∈Bt,t+δ

H(β1) = inf
n≥1

H
(
βn

1

)
, P-a.s.

Given an arbitrarily small ε > 0, it can be easily verified with the help of standard arguments
that, with the notation Δn := {H(βn

1 ) ≤ Uδ(t, x)+ ε,H(β
j

1 ) > Uδ(t, x)+ ε, 1 ≤ j ≤ n− 1},
n ≥ 1, the mapping βε

1(·) :=∑n≥1 IΔnβ
n
1 (·) belongs to Bt,t+δ and is such that

Uδ(t, x) ≥ H
(
βε

1

)− ε = esssup
α1∈At,t+δ

G
t,x;α1,βε

1
t,t+δ

[
U
(
t + δ,X

t,x;α1,βε
1

t+δ

)]− ε, P-a.s. (23)

Indeed, Δn ∈ Ft , for all n ≥ 1,
∑

n≥1 Δn = Ω , P-a.s., and from the uniqueness of the
solution of SDE (14) and the definition of the NAD strategies it follows that, for all

α1 ∈ At,t+δ, X
t,x;α1,βε

1
s =∑n≥1 IΔnX

t,x;α1,βn
1

s , s ∈ [t, t + δ]. This allows to show with the help

of the uniqueness of the solution of BSDE (16), that also G
t,x;α1,βε

1
t,t+δ [U(t + δ,X

t,x;α1,βε
1

t+δ )] =
∑

n≥1 IΔnG
t,x;α1,βn

1
t,t+δ [U(t +δ,X

t,x;α1,βn
1

t+δ )], P-a.s. Consequently, H(βε
1) =∑n≥1 IΔnH(βn

1 ), P-
a.s., and the wished result follows easily.

We consider now a partition {Oj , j ≥ 1} ⊂ B(Rd) of R
d , which elements Oj are non-

empty with diameter less than or equal to ε. Let us fix in every Oj an element yj . An ar-
gument similar to that developed above shows that, for all j ≥ 1, there is some β

j

2 ∈ Bt+δ,T

such that
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U(t + δ, yj ) ≥ esssup
α2∈At+δ,T

J
(
t + δ, yj ;α2, β

j

2

)− ε, P-a.s., j ≥ 1.

Given an arbitrary α ∈ At,T which we fix, and an arbitrary v2 ∈ Vt+δ,T , we put
α1(·, ·, v1) := α(·, ·, v1 ⊕ v2)/[t,t+δ], v1 ∈ Vt,t+δ . Here the notation v1 ⊕ v2 stands for the
process v ∈ Vt,T which restriction v/[t,t+δ] to the interval [t, t + δ] coincides ds dP-a.e. with
v1, and which restriction v/(t+δ,T ] to (t + δ, T ] is v2. Obviously, the such defined map-
ping α1 belongs to At,t+δ , but without depending on v2. Thus, there is a unique solution
(uε

1, v
ε
1) ∈ Ut,t+δ × Vt,t+δ of the relations α1(·, ·, vε

1) = uε
1, βε

1(·, ·, uε
1) = vε

1, and we can de-
fine the mapping αε

2 ∈ At+δ,T by setting

αε
2(ω, ·, v2) := α

(
ω, ·, vε

1(ω) ⊕ v2

)
/[t+δ,T ], v2 ∈ Vt+δ,T , ω ∈ Ω.

Let βε
2(·) :=∑j≥1 IOj

(X
t,x;α1,βε

1
t+δ )β

j

2 (·), and βε(·, ·, u) := βε
1(·, ·, u1) ⊕ βε

2(·, ·, u2), for u =
u1 ⊕ u2, u1 ∈ Ut,t+δ, u2 ∈ Ut+δ,T . While it is obvious that βε

2 ∈ Bt,t+δ , the proof that βε ∈
Bt,T is a bit more tricky. Let us show the nonanticipativity with delay of βε; for its strict
nonanticipativity the argument given in Lemma 3.9 of [35] can be adapted to the present
framework. Since both βε

1 and βε
2 are nonanticipating with delay, there exist two increasing

sequences of stopping times (S1,n)n≥1 and (S2,n)n≥1 with S1,0 = t, S2,0 = t + δ,
⋃

n≥1{S1,n =
t + δ} = Ω and

⋃
n≥1{S2,n = T } = Ω, P-a.s., with respect to which the nonanticipativity

condition in Definition 4(iii) holds for the intervals [t, t + δ] and [t + δ, T ], respectively.
Then, putting τ := inf{� ≥ 1 : S1,� = t + δ}, Sn := S1,nI {S1,n < t + δ} + S2,n−τ I {S1,n =
t + δ}, n ≥ 0, is an increasing sequence of stopping times with respect to which βε satisfies
condition (iii) in Definition 4.

With the strategies introduced above, by using the Lipschitz continuity of U(t + δ, ·) as
well as that of J (t + δ, ·, u, v), which is independent of the controls u,v, we obtain, with L

denoting the Lipschitz constant,

U
(
t + δ,X

t,x;α1,βε
1

t+δ

) ≥
∑

j≥1

IOj

(
X

t,x;α1,βε
1

t+δ

)
U(t + δ, yj ) − Cε

≥
∑

j≥1

IOj

(
X

t,x;α1,βε
1

t+δ

)
J
(
t + δ, yj ;αε

2, β
j

2

)− (C + 1)ε (Recall the

definition of β
j

2 , j ≥ 1)

=
∑

j≥1

IOj

(
X

t,x;α1,βε
1

t+δ

)
J
(
t + δ, yj ;αε

2, β
ε
2

)− (C + 1)ε

≥ J
(
t + δ,X

t,x;α1,βε
1

t+δ ;αε
2, β

ε
2

)− (2C + 1)ε

= Y
t,x;α,βε

t+δ − (2C + 1)ε, P-a.s.

For the latter relation we have used that, for (uε
2, v

ε
2) ∈ Ut+δ,T × Vt+δ,T such that αε

2(·, ·, vε
2) =

uε
2, βε

2(·, ·, uε
2) = vε

2 , and for (uε, vε) := (uε
1, v

ε
1) ⊕ (uε

2, v
ε
2),

J
(
t + δ,X

t,x;α1,βε
1

t+δ ;αε
2, β

ε
2

) = J
(
t + δ,X

t,x;uε
1,vε

1
t+δ ;uε

2, v
ε
2

)= J
(
t + δ,X

t,x;uε,vε

t+δ ;uε, vε
)

= J
(
t + δ,X

t,x;α,βε

t+δ ;α,βε
)
.

Indeed, α(·, ·, vε) = α1(·, ·, vε
1) ⊕ αε

2(·, ·, vε
2) = uε

1 ⊕ uε
2 = uε and βε(·, ·, uε) = βε

1(·, ·, uε
1) ⊕

βε
2(·, ·, uε

2) = vε
1 ⊕ vε

2 = vε.
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Therefore, from Lemma 3 and Remark 4(2),

Uδ(t, x) ≥ G
t,x;α1,βε

1
t,t+δ

[
U
(
t + δ,X

t,x;α1,βε
1

t+δ

)]− ε (Recall (23))

≥ G
t,x;α1,βε

1
t,t+δ

[
Y

t,x;α,βε

t+δ − (2C + 1)ε
]− ε

≥ G
t,x;α1,βε

1
t,t+δ

[
Y

t,x;α,βε

t+δ

]− (C(2C + 1) − 1
)
ε

= G
t,x;α,βε

t,t+δ

[
Y

t,x;α,βε

t+δ

]− (C(2C + 1) − 1
)
ε

= J
(
t, x;α,βε

)− (C(2C + 1) − 1
)
ε, P-a.s.,

i.e.,

Uδ(t, x) ≥ J
(
t, x;α,βε

)− (C(2C + 1) − 1
)
ε, P-a.s.

Recalling that βε has been chosen independently of α ∈ At,T , we obtain Uδ(t, x) ≥
U(t, x) − (C(2C + 1) − 1)ε by taking first the essential supremum over α ∈ At,T . Finally,
by letting ε → 0, we get Uδ(t, x) ≥ U(t, x). Thus, the proof is complete.

�

With the help of the above DPP, but also with standard BSDE estimates it can be shown
now that the upper and lower value functions are 1/2-Hölder continuous in t . More precisely,
we have

Proposition 4 Under our standard assumptions there exists some constant C ∈ R+ such
that, for all t, t ′ ∈ [0, T ] and for all x ∈ R

d ,
∣∣W(t, x) − W(t ′, x)

∣∣+ ∣∣U(t, x) − U(t ′, x)
∣∣≤ C

(
1 + |x|)√|t − t ′|.

For the proof of this proposition the reader is referred to Theorem 3.10 of [35]. Although
in that paper stochastic differential games of the type “strategy against control” are studied,
the arguments of the proof can be easily translated to our present framework. The above
proposition together with Remark 3 shows that the upper and the lower value functions are
continuous and of most linear growth. This continuity property combined with the dynamic
programming principle allows to investigate the associated Bellman–Isaacs equations.

5.3 Viscosity Solutions of Bellman–Isaacs’ Equations

The goal of this subsection is to associate our lower and upper value functions with the
following both Isaacs’ equations:

⎧
⎨

⎩

∂

∂t
W(t, x) + H−(x,W,DW,D2W

)= 0, (t, x) ∈ [0, T ) × R
n,

W(T , x) = Φ(x), x ∈ R
n,

(24)

⎧
⎨

⎩

∂

∂t
U(t, x) + H+(x,U,DU,D2U

)= 0, (t, x) ∈ [0, T ) × R
n,

U(T , x) = Φ(x), x ∈ R
n,

(25)

where, for

H(x,y,p,A,u, v) := 1

2
tr
(
σσ ∗(x,u, v)A

)+ pb(x,u, v) + f
(
x, y,pσ(x,u, v), u, v

)
,
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(x, y,p,A,u, v) ∈ R
d × R × R

d × Sd × U × V, the Hamiltonians H+ and H− are defined
as follows:

H−(x, y,p,A) := sup
u∈U

inf
v∈V

H(x, y,p,A,u, v),

H+(x, y,p,A) := inf
v∈V

sup
u∈U

H(x, y,p,A,u, v).

As usual, Sd denotes the set of all symmetric real d × d-matrices.
Under our standard assumptions on the coefficients b,σ,f and Φ, we have the following

theorem.

Theorem 6 The lower value function W is a viscosity solution of (24), while the upper value
function U is a viscosity solution of (25). Moreover, both solutions are unique in the class
Θ of continuous functions V : [0, T ] × R

d → R which are such that, for some constant C

(which, of course, may depend on V ) the following growth condition is satisfied:

lim
|x|→+∞

(
sup

t∈[0,T ]

∣∣ϕ(t, x)
∣∣
)

exp
{−C

(
ln
(
1 + |x|))2}= 0.

For the definition of a viscosity solution, sub- and supersolution we refer the reader
to [56]. To the proof that W and U are viscosity solutions, we will come a bit later. This
proof will allow to show with which efficiency the BSDE method, introduced by Shige
Peng in the framework of stochastic control, works also here in the context of stochastic
differential games. Concerning the uniqueness of the viscosity solutions W and V , it is a
direct consequence of the comparison principle which we can formulate for (24) and (25).
The reader interested in the proof or in more details is referred to [35].

Theorem 7 Let V1 ∈ Θ be a viscosity subsolution of (24) (or of (25), respectively) and
V2 ∈ Θ a viscosity supersolution of (24) (or of (25), respectively). Then V1(t, x) ≤ V2(t, x),
(t, x) ∈ [0, T ] × R

d .

A comparison theorem using the growth condition, which is contained in the definition of
Θ , was established the first time in [20]. This growth condition, which allows the functions
in Θ to have a growth more than polynomial but less than exponential, was shown in [20]
to be optimal for the heat equation. A direct consequence of the above comparison principle
is the existence of a value of the game under

Isaacs’ condition: H+(x, y,p,A) = H−(x, y,p,A), for all (x, y,p,A) ∈ R
d × R ×

R
d × Sd.

More precisely, we have

Corollary 1 Under the above Isaac condition the lower and the upper value functions co-
incide: W(t, x) = U(t, x), (t, x) ∈ [0, T ] × R

d .

Indeed, under Isaacs’ condition (24) and (25) are the same and, hence, W and U are
viscosity solutions of the same equation, both belonging to Θ . Consequently, they must
coincide.
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In what follows we sketch the proof of the fact that the upper value function U is a
viscosity solution of (25). The main idea of the proof consists in translating Shige Peng’s
BSDE method from the frame of stochastic control to that of stochastic differential games.
In [35] this was done for stochastic differential games of the type “strategies against con-
trols”, while here games of the type “NAD strategy against NAD strategy” are discussed.
This change of the type of the game involves some major modifications in the proof.

Since, due to the definition of the cost functionals J (t, x;u,v) = Y
t,x;u,v
t through

BSDE (16), the upper value function U coincides at time T with the function Φ , we only
have to show that, for any given test function ϕ ∈ C3

�,b([0, T ] × R
d)1 and any (t0, x0) ∈

[0, T ) × R
d with

U −ϕ ≤ U(t0, x0)−ϕ(t0, x0) = 0 (U −ϕ ≥ U(t0, x0)−ϕ(t0, x0) = 0, respectively) (26)

it holds that

∂

∂t
ϕ(t0, x0) + H+(x,

(
ϕ,∇ϕ,D2ϕ

)
(t0, x0)

)≥ 0

(
∂

∂t
ϕ(t0, x0) + H+(x, (ϕ,∇ϕ,D2ϕ)(t0, x0)

)≤ 0, respectively

)
.

(27)

Indeed, if this is the case, U is a viscosity subsolution (viscosity supersolution, respectively),
and if it is both a viscosity sub- as well as a viscosity supersolution, then it is by definition
a viscosity solution. In order to verify that we have the both properties in (27), let us arbi-
trarily fix a test function ϕ ∈ C3

�,b([0, T ] × R
d) and a point (t0, x0) ∈ [0, T ) × R

d , and let us
introduce the function

F(t, x, y, z,u, v) = ∂

∂t
ϕ(t, x) + 1

2
tr
(
σσ ∗(x,u, v)D2ϕ(t, x)

)+ ∇ϕ(t, x)b(x,u, v)

+ f
(
x, y + ϕ(t, x), z + ∇ϕ(t, x)σ (x,u, v), u, v

)
, (28)

for all (t, x, y, z,u, v) ∈ [t0, T ] × R
d × R × R

d × U × V. We emphasize that verifying (27)
is equivalent to showing that under the condition (26) we have

inf
v∈V

sup
u∈U

F (t0, x0,0,0, u, v) ≥ 0
(

inf
v∈V

sup
u∈U

F (t0, x0,0,0, u, v) ≤ 0, respectively
)
. (29)

The relations in (29) will be derived from the DPP (21) with the help of essentially two
BSDEs. For any δ > 0 with t0 + δ ≤ T , let us introduce the couple (Y 1,δ,u,v,Z1,δ,u,v) ∈
S 2

F
(t0, t0 + δ;R) × L2

F
(t0, t0 + δ;R

d) as the solution of the BSDE

dY 1,δ,u,v
s = −F

(
s,Xt0,x0;u,v

s , Y 1,δ,u,v
s ,Z1,δ,u,v

s , us, vs

)
ds + Z1,δ,u,v

s dWs,

s ∈ [t0, t0 + δ],
Y

1,δ,u,v
t0+δ = 0,

(30)

where Xt0,x0;u,v is the solution of SDE (14), and (u, v) ∈ Ut0,t0+δ × Vt0,t0+δ. Since the co-
efficient F(t, x, y, z,u, v) is Lipschitz in (y, z), uniformly with respect to (t, x,u, v), and

1C3
�,b

([0, T ]×R
d ) denotes the space of the three times continuously differentiable functions over [0, T ]×R

d

which derivatives of order 1, 2 and 3 are bounded.
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|F(t, x,0,0, u, v)| ≤ C(1+|x|2), (t, x, u, v) ∈ [0, T ]×R
d ×U ×V, for some real constant

C, we have the existence and the uniqueness for this BSDE. Moreover, the unique solution
(Y 1,δ,u,v,Z1,δ,u,v) of this BSDE satisfies the following relation which can be checked by an
easy forward computation (see the proof of Lemma 4.3 in [35]):

Lemma 4 For all δ > 0 and s ∈ [t0, t0 + δ], it holds

Y 1,δ,u,v
s = G

t0,x0;u,v

s,t0+δ

[
ϕ
(
t0 + δ,X

t0,x0;u,v

t0+δ

)]− ϕ
(
s,Xt0,x0;u,v

s

)
. (31)

The above BSDE will allow one to translate the DPP into an inequality involving Y
1,δ,u,v
t .

However, in order to prove (29), we will have to replace Y 1,δ,u,v by the solution of the
following BSDE:

dY 2,δ,u,v
s = −F

(
s, x0, Y

2,δ,u,v
s ,Z2,δ,u,v

s , us, vs

)
ds + Z2,δ,u,v

s dWs,

s ∈ [t0, t0 + δ], Y
2,δ,u,v
t0+δ = 0, (32)

(u, v) ∈ Ut0,t0+δ × Vt0,t0+δ. The fact that, for δ > 0 small enough, the distance between the
process X

t0,x0;u,v
s , s ∈ [t0, t0 + δ], and its initial condition x0 is of the order δ1/2 (see estimate

(15) with T = t + δ and ζ = x), allows to prove the following by using BSDE standard
estimates:

Lemma 5 There is a constant C ∈ R+ independent of δ > 0, such that for all u ∈ Ut0,t0+δ

and v ∈ Vt0,t0+δ ,
∣
∣Y 1,δ,u,v

t0
− Y 2,δ,u,v

t0

∣
∣≤ Cδ3/2, P-a.s. (33)

After the above preparation we now can begin with the

Proof that U is a viscosity subsolution of (25) For this we assume that U −ϕ ≤ U(t0, x0)−
ϕ(t0, x0) = 0 and that

inf
v∈V

sup
u∈U

F (t0, x0,0,0, u, v) < 0. (34)

We have to prove that the latter hypothesis leads to a contradiction, i.e., (29) holds true.
Under the above hypothesis, thanks to the continuity F , there exists some θ > 0, R ∈ (0, T −
t0] and v∗ ∈ V such that

sup
u∈U

F (s, x0,0,0, u, v∗) ≤ −θ, for all s ∈ [t0, t0 + R].

On the other hand, from U −ϕ ≤ U(t0, x0)−ϕ(t0, x0) = 0, the DPP (5) for U as well as the
Lemmata 3(ii) and 4 it follows that, for all 0 < δ ≤ T − t0,

0 ≤ essinf
β∈Bt0,t0+δ

esssup
α∈At0,t0+δ

(
G

t0,x0;α,β

t,t+δ

(
ϕ
(
t0 + δ,X

t0,x0;α,β

t0+δ

))− ϕ(t0, x0)
)

= essinf
β∈Bt0,t0+δ

esssup
α∈At0,t0+δ

Y
1,δ;α,β
t0

, P-a.s., (35)

where Y
1,δ;α,β
t0

:= Y
1,δ;u,v
t0

, for (u, v) ∈ Ut0,t0+δ × Vt0,t0+δ such that α(·, ·, v) = u, and
β(·, ·, u) = v. Consequently, taking into account that β∗(ω, s, u) := v∗, (ω, s, u) ∈ Ω ×
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[t0, t0 + δ] × Ut0,t0+δ , defines an element of Bt0,t0+δ , (33) yields

0 ≤ esssup
α∈At0,t0+δ

Y
1,δ;α,β∗
t0

≤ esssup
α∈At0,t0+δ

Y
2,δ;α,β∗
t0

+ Cδ3/2

= esssup
α∈At0,t0+δ

Y
2,δ;α(v∗),v∗
t0

+ Cδ3/2

≤ esssup
u∈Ut0,t0+δ

Y 2,δ;u,v∗
t0

+ Cδ3/2, P-a.s. (36)

Then, by applying a standard argument, we get, for all δ > 0, the existence of a control
uδ ∈ Ut0,t0+δ such that

0 ≤ esssup
u∈Ut0,t0+δ

Y 2,δ;u,v∗
t0

+ Cδ3/2

≤ Y 2,δ;uδ,v∗
t0

+ 2Cδ3/2, P-a.s. (37)

On the other hand, denoting by L the Lipschitz constant of F(s, x0, y,0, u, v) with respect
to y, we consider the function Ỹ δ

s = − θ
L
(1 − e−L(t0+δ−s)), s ∈ [t0, t0 + δ]. This function is

the unique solution of the (deterministic) backward equation

dỸ δ
s = −(−θ + L

∣
∣Ỹ δ

s

∣
∣)ds, s ∈ [t0, t0 + δ], Ỹ δ

t0+δ = 0. (38)

Thus, since

F(s, x0, y,0, u, v∗) ≤ F(s, x0,0,0, u, v∗) + L|y| ≤ −θ + L|y|,
(s, y,u) ∈ [t0, t0 + R] × R × U,

the comparison of the backward equations solved by Y 2,δ;uδ,v∗
and Ỹ δ , respectively, yields

that

Y 2,δ;uδ,v∗
t0

≤ Ỹ δ
t0

= − θ

L

(
1 − e−Lδ

)
, P-a.s., for all δ ∈ (0,R].

Combining this latter relation with (37) we obtain

−2Cδ1/2 ≤ − θ

Lδ

(
1 − e−Lδ

)−→ −θ, as δ → 0.

However, since the left-hand side converges to 0, when δ → 0, we have a contradiction
which has its origin in hypothesis (34). This proves that U is a viscosity subsolution
of (25). �

Let us now tackle the

Proof that U is a viscosity supersolution of (25) Also this proof turns out to be quite dif-
ferent of that in the case of games of the type “strategy against control” studied in [35]. Let
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us assume that U − ϕ ≥ U(t0, x0) − ϕ(t0, x0) = 0. Then, in particular, U ≥ ϕ, and from the
DPP (5) for U it follows that, for all δ > 0 with t0 + δ ≤ T ,

0 ≥ essinf
β∈Bt0,t0+δ

esssup
α∈At0,t0+δ

(
G

t0,x0;α,β

t0,t0+δ

(
ϕ
(
t0 + δ,X

t0,x0;α,β

t0+δ

))− ϕ(t0, x0)
)
,

and Lemma 4 yields

0 ≥ essinf
β∈Bt0,t0+δ

esssup
α∈At0,t0+δ

Y
1,δ;α,β
t0

, P-a.s.

Thus, due to Lemma 5 there is some constant C > 0 such that, for all δ > 0 with t0 + δ ≤ T ,

0 ≥ essinf
β∈Bt0,t0+δ

esssup
α∈At0,t0+δ

Y
2,δ;α,β
t0

− Cδ3/2, P-a.s.

Then a standard argument shows that, for all δ > 0 with t0 + δ ≤ T , there is some βδ ∈
Bt0,t0+δ such that

0 ≥ esssup
α∈At0,t0+δ

Y
2,δ;α,βδ

t0
− 2Cδ3/2, P-a.s. (39)

Since βδ ∈ Bt0,t0+δ , we can find a sequence of stopping times (Sn)n≥1 with t0 = S0 ≤ S1 ≤
· · · ≤ Sn ≤ · · · ≤ t0 + δ and

⋃
n≥1{Sn = t0 + δ} = Ω, P-a.s., such that, for all n ≥ 0, and all

u,u′ ∈ Ut0,t0+δ with u = u′, ds dP-a.e. on the stochastic interval [[t0, Sn]], it holds βδ(u) =
βδ(u′), ds dP-a.e. on [[t0, Sn+1]]. Consequently, vδ

s := βδ(s, u), s ∈ [[t0, S1]], is independent
of the special choice of u ∈ Ut0,t0+δ. So we can define uδ on [[t0, S1]] as the process such
that uδ

·∧S1
∈ Ut0,t0+δ and

F
(
s, x0,0,0, uδ

s , v
δ
s

)= sup
u∈U

F
(
s, x0,0,0, u, vδ

s

)
, s ∈ [[t0, S1]].

We now set vδ
s := βδ(s, uδ

·∧S1
), s ∈ ]]S1, S2]], and we extend the control process uδ to the

interval [[t0, S2]] by choosing (uδ
(·∧S2)∨S1

) ∈ Ut,t+δ such that

F
(
s, x0,0,0, uδ

s , v
δ
s

)= sup
u∈U

F
(
s, x0,0,0, u, vδ

s

)
, s ∈ ]]S1, S2]].

With this choice we have

F
(
s, x0,0,0, uδ

s , β
δ
(
s, uδ

·∧S2

)) = sup
u∈U

F
(
s, x0,0,0, u, vδ

s

)

≥ inf
v∈V

sup
u∈U

F (s, x0,0,0, u, v), s ∈ [[t0, S2]].

By iterating the above argument and taking into account that
⋃

n≥1{Sn = t + δ} = Ω, P-a.s.,
we construct a control uδ ∈ Ut0,t0+δ such that, for all n ≥ 1,

F
(
s, x0,0,0, uδ

s , β
δ
(
s, uδ

·∧Sn

)) = sup
u∈U

F
(
s, x0,0,0, u,βδ

(
s, uδ

·∧Sn

))

≥ inf
v∈V

sup
u∈U

F (s, x0,0,0, u, v), s ∈ [[t0, Sn]].

Finally, from the nonanticipativity property of the strategy βδ it follows that

F
(
s, x0,0,0, uδ

s , β
δ
(
s, uδ

))≥ inf
v∈V

sup
u∈U

F (s, x0,0,0, u, v), s ∈ [t0, t0 + δ]. (40)
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Since αδ(ω, s, v) := uδ
s (ω), (ω, s, v) ∈ Ω × [t0, t0 + δ] × Vt0,t0+δ defines an element of

At0,t0+δ , we obtain from (39) that

0 ≥ Y
2,δ;αδ,βδ

t0
− 2Cδ3/2

= Y
2,δ;uδ,βδ(uδ)
t0

− 2Cδ3/2, P-a.s. (41)

On the other hand, relation (40) allows us to compare the BSDE solved by Y 2,δ;uδ,βδ(uδ),

dY 2,δ;uδ,βδ(uδ)
s = −F

(
s, x0, Y

2,δ;uδ,βδ(uδ)
s ,Z2,δ;uδ,βδ(uδ)

s , uδ
s , β

δ
(
s, uδ

))
ds + Z2,δ;uδ,βδ(uδ)

s dWs,

s ∈ [t0, t0 + δ], Y
2,δ;uδ,βδ(uδ)

t0+δ = 0,

with the (deterministic) backward equation

dY δ
s = −

(
inf
v∈V

sup
u∈U

F (s, x0,0,0, u, v) − L
∣
∣Y δ

s

∣
∣
)

ds, s ∈ [t0, t0 + δ], Y δ
t0+δ = 0, (42)

where L denotes again the Lipschitz constant of F(s, x0, y,0, u, v) with respect to y. By the

comparison theorem for BSDEs we get that Y
2,δ;uδ,βδ(uδ)
t0

≥ Y δ
t0
. Thus, from (41) and (42),

δ1/2 ≥ 1

δ
Y δ

t0
→ inf

v∈V
sup
u∈U

F (s, x0,0,0, u, v), as δ → 0.

Consequently, infv∈V supu∈U F (s, x0,0,0, u, v) ≤ 0. Therefore, we have (29), and the proof
is complete. �

6 Stochastic Differential Games with Incomplete Information

A differential games with incomplete information is a differential game in which

– at least one of the players has some private knowledge on the structure of the game: For
instance, he may know precisely the random payoff or the random initial position of the
game, while the other are only aware of the law of the payoff or of the initial position.

– the players observe each other’s control perfectly. In this way they can try to guess their
missing information by observing the behavior of the other players.

This class of problems is the transposition to differential games for Aumann–Maschler
analysis of repeated games with incomplete information [11] (see also Mertens and Za-
mir [98]). It has been investigated in a series of papers by Cardaliaguet [41, 43, 45] and
Cardaliaguet and Rainer [51, 52] for two-player zero-sum differential games. Here we
mostly describe the existence and the characterization of the value for a zero-sum two-player
differential games with incomplete information on the terminal payoff.

6.1 Description of the Game

Our game involves:

– a terminal time T > 0 and an initial time t0 ∈ [0, T ],
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– an initial position x0 ∈ R
N and a stochastic controlled system:

dX
t0,x0;u,v
s = b

(
s,X

t0,x0;u,v
s , us, vs

)
ds + σ

(
s,Xt0,x0;u,v, us, vs

)
dBs, s ∈ [t, T ],

X
t0,x0;u,v

0 = x0,
(43)

where B is a d-dimensional standard Brownian motion on a given probability space
(Ω, F ,P), b : [0, T ] × R

N × U × V → R
N and σ : [0, T ] × R

N × U × V → R
N×d ,

U and V being some metric compact sets,
– a family of types i ∈ {1, . . . , I } for the first player and j ∈ {1, . . . , J } for the second one,

and a family of terminal payoffs gij : R
N → R indexed by the types,

– two probability measures p and q on {1, . . . , I } and {1, . . . , J } respectively.

The game is played in the following way: At the initial time t0 the types i and j are
chosen randomly accordingly to the probability p ⊗ q . The type i is announced to the first
player, but not to the second one, while the type j is announced to the second player and not
to the first one. Then the players control the stochastic differential equation (43) as usual,
the first player trying to minimize the terminal payoff E[gij (XT )], while the second one
seeking at maximizing it. Note however that the players do not know which payoff there are
actually optimizing.

In order to describe rigorously the results, we first state some assumptions and then de-
scribe the concept of strategies used along the section. Throughout the section we assume
that the functions b and σ are continuous, bounded, and Lipschitz continuous with respect
to (t, x), uniformly in (u, v) ∈ U × V . We also suppose that, for 1 ≤ i ≤ I,1 ≤ j ≤ J , gij

are Lipschitz continuous and bounded. Finally we assume that Isaacs’ condition holds: for
all (t, x) ∈ [0, T ] × R

n, ξ ∈ R
n, and all A ∈ Sn (where Sn is the set of symmetric n × n

matrices), we have

H(t, x, ξ,A) := inf
u

sup
v

{
〈
b(t, x,u, v), ξ

〉+ 1

2
Tr
(
Aσ(t, x,u, v)σ ∗(t, x,u, v)

)
}

= sup
v

inf
u

{〈
b(t, x,u, v), ξ

〉+ 1

2
Tr
(
Aσ(t, x,u, v)σ ∗(t, x,u, v)

)}
. (44)

The description of the notion of strategies takes some time (and some notations). For
R ∈ N

∗, we denote by Δ(R) the set of all (r1, . . . , rR) ∈ [0,1]R that satisfy
∑R

n=1 rn = 1.
Elements of Δ(R) are identified with probability measures over {1, . . . ,R}. We usually use
the notation p for elements of Δ(I) and q for elements of Δ(J ).

For s ∈ [t, T ], we set

Ft,s = σ
{
Br − Bt, r ∈ [t, s]}∨ N ,

where N is the set of all null sets of P. Our definition of admissible control is very close to
(but slightly differs from) Definition 3:

Definition 5 An admissible control u for player 1 (resp. 2) on [t, T ] is a process taking
values in U (resp. V ), progressively measurable with respect to the filtration (Ft,s , s ≥ t).

The set of admissible controls for player 1 (resp. 2) on [t, T ] is denoted by U (t) (resp.
V(t)).

Under assumption (H), for all (t0, x0) ∈ [0, T ]×R
n and (u, v) ∈ U (t)× V(t), there exists

a unique solution to (43) that we denote by Xt0,x0;u,v
. . In this framework of controls we can

define the notion of nonanticipating strategies as in Sect. 5:
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Definition 6 A nonanticipating strategy with delay (NAD strategy) for player 1 is a mea-
surable mapping α : Ω × [t, T ] × V(t) −→ U satisfying the following properties:

(i) (Progressive measurability) The mapping α is Ft,·-progressively measurable, i.e., for all
s ∈ [t, T ], the mapping α restricted to Ω × [t, s] × U (t) is Ft,s ⊗ B([t, s]) ⊗ B(U (t)) −
B(U)-measurable;

(ii) (Strict nonanticipativity) For every Ft,·-stopping time τ : Ω → [t, T ] it holds for P -
almost every ω ∈ Ω :

If v, v′ ∈ U (t) coincide a.e. on [t, τ (ω)], then also α(ω, ·, v) = α(ω, ·, v′)
a.e. on [t, τ (ω)].

(iii) (Nonanticipativity with delay) There exists an increasing sequence of stopping times
(Sn)n≥0 with t = S0 ≤ S1 ≤ · · · ≤ Sn ≤ · · · ≤ T and

⋃
n≥1{Sn = T } = Ω, P -a.s., such

that, for any k ≥ 0 and P -almost every ω ∈ Ω, it holds:

If v, v′ ∈ U (t) are such that v = v′ a.e. on [t, Sk(ω)], then α(ω, ·, v) = α(ω, ·, v′)
on [t, Sk+1(ω)].

The NAD strategies β : Ω × [t, T ] × V(t) −→ V for player 2 are defined in a symmetric
manner. The space of the NAD strategies for player 1 for games over the time interval
[t, T ] is denoted by A(t), that for player 2 by B(t).

As in Lemma 1 we have

Lemma 6 For every couple (α,β) ∈ A(t) × B(t) there is a unique pair (u, v) of control
processes in U (t) × V(t) such that

α
(
ω, s, v·(ω)

)= us(ω) and β
(
ω, s,u·(ω)

)= vs(ω), dsP (dω)-a.e. on [t, T ] × Ω.

(45)

We denote by X
t0,x0,α,β
· the process X

t0,x0,u,v
· , with (u, v) associated to (α,β) by rela-

tion (45).
In the frame of incomplete information it is necessary to introduce random strategies:

indeed this is a way for the players to hide their private information.

Definition 7 A random strategy α for player 1 is given by some R ∈ N
∗ and some R-tuple

α = (α1, . . . , αR; r1, . . . , rR), with (α1, . . . , αR) ∈ (A(t))R, (r1, . . . , rR) ∈ Δ(R).

The heuristic interpretation of ᾱ is that player 1’s strategy amounts to choose the pure
strategy αk with probability rk . We define in a similar way the random strategies for player 2,
and denote by Ar (t) (resp. Br (t)) the set of all random strategies for player 1 (resp. player 2).

Finally, identifying α ∈ A(t) with (α;1) ∈ Ar (t), we can write A(t) ⊂ Ar (t), and the
same holds for B(t) and Br (t).

Finally, since the first player knows the index i, a strategy for this player has to depend on
i. We denote with a hat the elements of (Ar (t))

I : α̂ = (α1, . . . , αI ) which are interpreted as
the admissible strategies of the first player. In a symmetric way, β̂ = (β1, . . . , βJ ) ∈ (Br (t))

J

denote the admissible strategies of the second player.
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Payoffs and value functions For fixed (i, j) ∈ {1, . . . , I } × {1, . . . , J } and random strate-
gies (α,β) ∈ Ar (t) × Br (t), with α = (α1, . . . , αR; r1, . . . , rR) and β = (β1, . . . , βS; s1,

. . . , sS), we set

Jij (t, x,α,β) =
R∑

k=1

S∑

l=1

rksl
E
[
gij

(
X

t,x,αk,βl

T

)]
.

This is the average of the payoffs with respect to the probability distributions associated to
the strategies. Now, given (p, q) ∈ Δ(I) × Δ(J ), with p = (p1, . . . , pI ), q = (q1, . . . qJ ),
and α̂ = (α1, . . . , αI ) ∈ (Ar (t))

I and β̂ = (β1, . . . , βJ ) ∈ (Br (t))
J , we use the notation

Jp,q(t, x, α̂, β̂) =
I∑

i=1

J∑

j=1

piqjJij (t, x,αi, βj ).

This is the average of the payoffs with respect to the probability distributions p and q .
We define the value functions for the game by

V+(t, x,p, q) = inf
α̂∈(Ar (t))I

sup
β̂∈(Br (t))J

J p,q(t, x, α̂, β̂),

V−(t, x,p, q) = sup
β̂∈(Br (t))J

inf
α̂∈(Ar (t))I

J p,q(t, x, α̂, β̂).

Obviously, we have that

V−(t, x,p, q) ≤ V+(t, x,p, q)

and the main part of the work consists in proving the reverse inequality. One can show that
V+ and V− are bounded, Lipschitz continuous with respect to x,p, q and Hölder continuous
with respect to t . The main structure property of V+ and V− is given by the following:

Lemma 7 For all (t, x) ∈ [0, T ] × R
n, the maps (p, q) → V+(t, x,p, q) and (p, q) →

V−(t, x,p, q) are convex in p and concave in q .

Concavity of V+ with respect to q can easily be understood, because V+ can be rewritten
as

V+(t, x,p, q) = inf
α̂∈(Ar (t))I

J∑

j=1

qj sup
β∈Br (t)

I∑

i=1

piJi,j (t, x,αi, β).

Convexity of V+ with respect to p is more subtle: It is proved, as in the repeated game
theory with incomplete information, by using the so-called splitting method (see Aumann
and Maschler [11]).

Because the value functions are convex/concave, it is natural to consider their Fenchel
conjugates with respect to p,q . For a general map w : [0, T ] × R

N × Δ(I) × Δ(J ) �→ R,
we denote by w∗ its convex conjugate with respect to variable p:

w∗(t, x, p̂, q) = sup
p∈Δ(I)

p̂.p − w(t, x,p, q) ∀(t, x, p̂, q) ∈ [0, T ] × R
N × R

I × Δ(J ).

In particular V−∗ and V+∗ denote the convex conjugate with respect to the p-variable of the
functions V− and V+.
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In a symmetric way we denote by w� = w�(t, x,p, q̂) the concave conjugate with respect
to q of w:

w�(t, x,p, q̂) = inf
q∈Δ(J)

q̂.q − w(t, x,p, q) ∀(t, x,p, q̂) ∈ [0, T ] × R
N × Δ(I) × R

J .

6.2 Subdynamic Programming Principle and Hamilton–Jacobi Equations

We now describe a striking property of the value functions: the fact that one of their Fenchel
conjugates satisfies a dynamic programming principle. Let us point out that this is far from
obvious. Indeed, contrary to what usually happens in differential game theory, the players,
by observing each other’s control, do really learn something on the game along the time. So
it cannot be expected that a classical dynamic programming principle holds. However, we
have:

Proposition 5 (Subdynamic programming principle for V−∗) For all 0 ≤ t0 ≤ t1 ≤ T ,x0 ∈
R

n, p̂ ∈ R
I , q ∈ Δ(J ), the following inequality holds:

V−∗(t0, x0, p̂, q) ≤ inf
β∈B(t0)

sup
α∈A(t0)

E
[
V−∗(t1,X

t0,x0,α,β
t1

, p̂, q
)]

. (46)

Idea of proof It can first shown that V−∗ can be rewritten as:

V−∗(t, x, p̂, q) = inf
β̂∈(Br (t))J

sup
α∈A(t)

max
i∈{1,...,I }

{
p̂i − J

q

i (t, x,α, β̂)
}
. (47)

Now we note that, if the second player plays some strategy independent of j on the time
interval [t0, t1] in the above expression, then he reveals nothing between t0 and t1. So the
information structure remains unchanged up to t1 and, as in the usual dynamic programming
principle, the game can be restarted at t1. Of course, playing in this way on [t0, t1] is in
general suboptimal for the second player, so that there is just an inequality in (46).

A classical consequence of the subdynamic programming principle for V−∗ is that this
function is a subsolution of some associated Hamilton–Jacobi equation:

Corollary 2 For any (p̂, q) ∈ R
I × Δ(J ), V−∗(·, ·, p̂, q) is a subsolution in the viscosity

sense of

wt + H−∗(t, x,Dw,D2w
)= 0, (t, x) ∈ (0, T ) × R

n,

with

H−∗(t, x,p,A) = −H−(t, x,−p,−A)

= inf
v∈V

sup
u∈U

{〈
b(t, x,u, v),p

〉+ 1

2
Tr
(
Aσ(t, x,u, v)σ ∗(t, x,u, v)

)}
. (48)

For V+ we have in a symmetric way:

Proposition 6 (Superdynamic programming principle and HJ equation for V+�) For all
0 ≤ t0 ≤ t1 ≤ T , x0 ∈ R

n, p ∈ Δ(I), q̂ ∈ R
J , it holds that

V+�(t0, x0,p, q̂) ≥ inf
β∈B(t0)

sup
α∈A(t0)

E
[
V+�

(
t1,X

t0,x0,α,β
t1

,p, q̂
)]

.
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As a consequence, for any (p, q̂) ∈ Δ(I)× R
J , V+�(·, ·,p, q̂) is a supersolution in viscosity

sense of

wt + H+∗(t, x,Dw,D2w
)= 0, (t, x) ∈ (0, T ) × R

n,

where

H+∗(t, x,p,A) = −H+(t, x,−p,−A)

= sup
u∈U

inf
v∈V

{
〈
b(t, x,u, v),p

〉+ 1

2
Tr
(
Aσ(t, x,u, v)σ ∗(t, x,u, v)

)
}
. (49)

6.3 Comparison Principle and Existence of a Value

We now know that V−∗ and V+� satisfy some Hamilton–Jacobi inequalities. Let us point
out that these functions cannot be compared at the terminal time T , so one cannot apply the
classical comparison principle to deduce some inequality of the form V−∗ ≤ V+�.

In order to show inequality V− ≥ V+, we have to use a comparison principle adapted
to the convex/concave structure of the value functions. Let H : [0, T ] × R

n × R
n × Sn ×

Δ(I) × Δ(J ) → R be continuous and satisfy

H(s, y, ξ2,X2,p, q) − H(t, x, ξ1,X1,p, q)

≥ −ω
(|ξ1 − ξ2| + a

∣∣(t, x) − (s, y)
∣∣2 + b + ∣∣(t, x) − (s, y)

∣∣(1 + |ξ1| + |ξ2|
))

, (50)

where ω is continuous and non decreasing with ω(0) = 0, for any a, b ≥ 0, (p, q) ∈ Δ(I)×
Δ(J ), s, t ∈ [0, T ], x, y, ξ1, ξ2 ∈ R

n and X1,X2 ∈ Sn such that
(−X1 0

0 X2

)
≤ a

(
I −I

−I I

)
+ bI.

Definition 8 We say that a map w : (0, T ) × R
n × Δ(I) × Δ(J ) → R is a supersolution in

the dual sense of equation

wt + H
(
t, x,Dw,D2w,p,q

)= 0 (51)

if w = w(t, x,p, q) is lower semicontinuous, concave with respect to q and if, for any
C 2((0, T ) × R

n) function φ such that (t, x) → w∗(t, x, p̂, q̄) − φ(t, x) has a maximum at
some point (t̄ , x̄) for some (p̂, q̄) ∈ R

I × Δ(J ) at which ∂w∗
∂p̂

exists, we have

φt (t̄ , x̄) − H
(
t̄ , x̄,−Dφ(t̄, x̄),−D2φ(t̄, x̄), p̄, q̄

)≥ 0, where p̄ = ∂w∗

∂p̂
(t̄ , x̄, p̂, q̄).

We say that w is a subsolution of (51) in the dual sense if w is upper semicontinuous,
convex with respect to p and if, for any C 2((0, T ) × R

n) function φ such that (t, x) →
w�(t, x, p̄, q̂)−φ(t, x) has a minimum at some point (t̄ , x̄) for some (p̄, q̂) ∈ Δ(I)× R

J at
which ∂w�

∂q̂
exists, we have

φt (t̄ , x̄) − H
(
t̄ , x̄,−Dφ(t̄, x̄),−D2φ(t̄, x̄), p̄, q̄

)≤ 0, where q̄ = ∂w�

∂q̂
(t̄ , x̄, p̄, q̂).

A solution of (51) in the dual sense is a map which is sub- and supersolution in the dual
sense.



106 Dyn Games Appl (2011) 1: 74–114

Remark 5 There are several equivalent definitions of the notion of dual solutions (see
Cardaliaguet [44]). Here is another very convenient one: a continuous convex/concave map
w is a supersolution in the dual sense of (51) if and only if it satisfies, in the viscosity sense,

min

{
wt + H(t, x,Dw,D2w,p,q);λmin

(
∂2w

∂p2

)}
≤ 0.

It is a dual supersolution of (51) if and only if it satisfies, in the viscosity sense,

max

{
wt + H

(
t, x,Dw,D2w,p,q

);λmax

(
∂2w

∂q2

)}
≥ 0.

As usual when dealing with viscosity solutions, the most important result is a comparison
principle:

Theorem 8 (Comparison principle) Let us assume that H satisfies the structure condition
(50). Let w1 be a bounded, Hölder continuous subsolution of (51) in the dual sense which
is uniformly Lipschitz continuous w.r. to q and w2 be a bounded, Hölder continuous super-
solution of (51) in the dual sense which is uniformly Lipschitz continuous w.r. to p. Assume
that

w1(T , x,p, q) ≤ w2(T , x,p, q) ∀(x,p, q) ∈ R
n × Δ(I) × Δ(J ). (52)

Then

w1(t, x,p, q) ≤ w2(t, x,p, q) ∀(t, x,p, q) ∈ [0, T ] × R
n × Δ(I) × Δ(J ).

Remark 6 The regularity conditions are here for simplicity and can be relaxed.

As a consequence of the comparison principle we have:

Theorem 9 (Existence of a value) The game has a value:

V+(t, x,p, q) = V−(t, x,p, q) ∀(t, x,p, q) ∈ (0, T ) × R
n × Δ(I) × Δ(J ).

Furthermore V+ = V− is the unique solution in the dual sense of HJ equation (51) with
terminal condition

V+(T , x,p, q) = V−(T , x,p, q) =
I∑

i=1

J∑

j=1

piqjgij (x) ∀(x,p, q) ∈ R
n × Δ(I) × Δ(J ).

Remark 7 The result can be extended to differential games with incomplete information on
the running payoff, or on the terminal condition.

The proof of Theorem 9 is a straightforward consequence of Corollary 2, Proposition 6
and Theorem 8.
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6.4 An Example of Continuous-time Game Without Dynamics

In order to illustrate the previous results, we now consider a simple class of examples: a two-
player zero-sum continuous-time game without dynamics, in which the first player has a
private information on the random running payoff. The description of the game involves

(i) an initial time t0 ≥ 0 and a terminal time T > t0,
(ii) I integral payoffs (where I ≥ 2): �i : [0, T ] × U × V → R for i = 1, . . . , I where U

and V are compact subsets of some finite dimensional spaces,
(iii) a probability p = (pi)i=1,...,I belonging to the set Δ(I) of probabilities on {1, . . . , I }.
As before the game is played in two steps: at time t0, the index i is chosen at random among
{1, . . . , I } according to the probability p ; the choice of i is communicated to player 1 only.
Then the players choose their respective controls in order, for player 1, to minimize the
integral payoff

∫ T

t0
�i(s, u(s), v(s)) ds, and for player 2 to maximize it. We again assume

that both players observe their opponent’s control. Note, however, that player 2 does not
know which payoff he/she is actually maximizing.

The existence and the characterization of a value for this game is a particular case of the
already described results: if Isaacs’ condition holds:

H(t,p) = inf
u∈U

sup
v∈V

I∑

i=1

pi�i(t, u, v) = sup
v∈V

inf
u∈U

I∑

i=1

pi�i(t, u, v) ∀(t,p) ∈ [0, T ] × Δ(I),

(53)
the game has a value V = V(t0,p) given by

V(t0,p) = inf
(αi )∈(Ar (t0))I

sup
β∈Br (t0)

I∑

i=1

piEαiβ

[∫ T

t0

�i

(
s,αi(s), β(s)

)
ds

]

= sup
β∈Br (t0)

inf
(αi )∈(Ar (t0))I

I∑

i=1

piEαiβ

[∫ T

t0

�i

(
s,αi(s), β(s)

)
ds

]
, (54)

for any (t0,p) ∈ [0, T ] × Δ(I). This value can be characterized as the unique dual solution
of the HJ equation (51), or, as explained in Remark 5, as the unique solution to

min

{
wt + H(t,Dw,p),λmin

(
∂2w

∂p2

)}
= 0.

Our first aim is to compute explicitly V under some conditions.

Example 1 Assume that I = 2 and that there exists h1, h2 : [0, T ] → [0,1] continuous,
h1 ≤ h2, h1 decreasing and h2 increasing, such that

VexH(t,p) = H(t,p) ⇔ p ∈ [0, h1(t)
]∪ [h2(t),1

]
(55)

(where VexH(t,p) denote the convex hull of H(t, ·)) and

∂2H

∂p2
(t,p) > 0 ∀(t,p) with p ∈ [0, h1(t)

)∪ (h2(t),1
]
. (56)
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For instance, if U = [−1,1], V = [0,2π ] and

�1(t, u, v) = u + α(t) cos(v), �2(t, u, v) = −u + α(t) sin(v) ∀(u, v) ∈ U × V,

where the smooth map α : [0, T ] → R is decreasing and such that α(t) > 2 for any t ∈
[0, T ], then

H(t,p) = −|2p − 1| + α(t)
√

p2 + (1 − p)2

satisfies (55) and (56) with h1(t) = 1/2 − 1/(2α2(t) − 4)
1
2 , h2(t) = 1/2 + 1/(2α2(t) − 4)

1
2 .

Proposition 7 Under the assumptions of Example 1,

V(t,p) =
∫ T

t

VexH(s,p)ds ∀(t,p) ∈ [0, T ] × Δ(I).

Remark 8 The above representation for V does not hold true in general. For instance let
H(t,p) = λ(t)p(1 − p) where λ : [0, T ] → R is Lipschitz continuous. We set Λ(t) =∫ T

t
λ(s) ds. If

λ > 0 on [0, b), λ < 0 on (b, T ], Λ(a) = 0

for some 0 < a < b < T , then it can be easily checked that

V(t,p) =
{

0 if t ∈ [0, a],
Λ(t)p(1 − p) if t ∈ [b,T ].

In particular

V(t,p) �=
∫ T

t

VexH(s,p)ds = Λ(b)p(1 − p) ∀(t,p) ∈ (a, b) × (0,1).

Proof of Proposition 7 Let w : [0, T ] × [0,1] → R be defined by

w(t,p) =
∫ T

t

VexH(s,p)ds ∀(t,p) ∈ [0, T ] × Δ(I).

We note that w(T ,p) = 0, w(t,0) = V(t,0) and w(t,1) = V(t,1). It can be easily checked
that w is a solution of the Hamilton–Jacobi equation

⎧
⎪⎨

⎪⎩

min

{
∂tw + H(t,p),

∂2w

∂p2

}
= 0,

w(T ,p) = 0.

Indeed, if p ∈ (h1(t), h2(t)), then

∂2w

∂p2
(t,p) = 0 and ∂tw(t,p) = −H

(
t, h1(t)

)≥ −H(t,p).

If p ∈ (0, h1(t)] ∪ [h2(t),1), then

∂2w

∂p2
(t,p) ≥ 0 and ∂tw(t,p) = −H(t,p)
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(where the first equality holds in the viscosity sense since w is convex with respect to p).
Therefore w = V. �

In order to describe the strategy of the informed player, we need to provide a further
characterization of the value. For this let us introduce some notations: Let D(t0) be the set
of càdlàg functions (i.e., functions which are right-continuous and have a left limit at each
point) from R → Δ(I) which are constant on (−∞, t0) and on [T ,+∞), let t �→ p(t) be
the coordinate mapping on D(t0) and let G = (Gt ) be the filtration generated by t �→ p(t).

Given p0 ∈ Δ(I), we denote by M(t0,p0) the set of probability measures P on D(t0)

such that, under P, (p(t), t ∈ [0, T ]) is a martingale and satisfies

for t < t0, p(t) = p0 and, for t ≥ T , p(t) ∈ {ei, i = 1, . . . , I } P-a.s.

Finally for any measure P on D(t0), we denote by EP[. . . ] the expectation with respect to P.
The following equality holds:

Theorem 10

V(t0,p0) = min
P∈M(t0,p0)

EP

[∫ T

t0

H
(
s,p(s)

)
ds

]
∀(t0,p0) ∈ [0, T ] × Δ(I). (57)

Theorem 10 allows to describe the optimal strategy of the informed player: Let (t0,p0) ∈
[0, T ) × Δ(I) be fixed, P̄ be optimal in the problem (57). Let us set Ei = {p(T ) = ei} and

define the probability measure P̄i by: ∀A ∈ G , P̄i (A) := P̄[A|Ei] = P̄(A∩Ei)

pi
, if pi > 0, and

P̄i (A) = P (A) for an arbitrary probability measure P ∈ M(t0,p0) if pi = 0.
We also set

ū(t) = u∗(t,p(t)
) ∀t ∈ R,

where u∗ = u∗(t,p) is a Borel measurable selection of argminu∈U(maxv∈V

∑I

i=1pi�i(t, u, v))

and where we denote by ūi the random control ūi = ((D(t0), G, P̄i ), ū) ∈ Ur (t0).

Theorem 11 The strategy consisting in playing the random control (ūi )i=1,...,I ∈ (Ur (t0))
I

is optimal for V(t0,p0). Namely

V(t0,p0) = sup
β∈Br (t0)

I∑

i=1

piEūi

[∫ T

t0

�i

(
s, ūi (s), β(ūi )(s)

)
ds

]
. (58)

Since the computation of the optimal strategy of the informed player can be reduced to
the computation of the optimal martingale measure in (57), it would be very interesting to
have a full characterization of such measure. Unfortunately, up to now, only some neces-
sary and some sufficient conditions for a measure to be optimal are known. However, in
Example 1 it is possible to identify explicitly this optimal martingale measure:

Proposition 8 Under the assumptions of Example 1, there is a unique optimal martingale
measure P̄. Under this martingale measure, the process p is purely discontinuous and satis-
fies:

p(t−) = p0 ∀t ∈ [t0, t∗]P̄-a.s., where t∗ = inf
{
t ≥ t0 | p0 ∈ [h1(t), h2(t)

]}
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and

p(t) ∈ {h1(t), h2(t)
} ∀t ∈ [t∗, T )P̄-a.s.

In particular,

P̄
[
p(t) = h1(t) | p(s) = h1(s)

]= h2(t) − h1(s)

h2(t) − h1(t)
∀t∗ ≤ s ≤ t < T . (59)

6.5 Generalizations and Open Problems

Literature on differential games with information issues (games with incomplete informa-
tion or games with signals) is rather scarce and the problem is, in general, poorly understood.
In most papers the authors construct a strategy for a non-fully informed controller, the other
player being seen as a disturbance: see, for instance, the monograph by Baçar and Bern-
hard [12] and the papers by Baras and Patel [15], Baras and James [14]. In terms of game
this means that a kind of worst case design is looked at. In contrast, few works are devoted
to the existence of a value for this class of games: Rapaport and Bernhard [107], on the one
hand, and Petrosjan [102], on the other hand, analyze this question through some interesting
classes of examples. Cardaliaguet and Quincampoix [48] consider a general class of differ-
ential games where the players share the same information on the random distribution of
the initial position of the system. The associated Hamilton–Jacobi equation turns out to take
place in the Wasserstein space of probability measures. Cardaliaguet and Souquière [53]
analyze a game where one of the players is blind while the other one has a perfect observa-
tion. Here again the value exists and can be characterized as the unique viscosity solution of
some HJ equation in the Wasserstein space. However the existence of the value comes from
min-max arguments, and not from usual uniqueness result in PDE, because one of the value
functions does not seem to satisfy a dynamic programming principle naturally.

The game studied in this chapter is strongly inspired by repeated games with lack of
information introduced by Aumann and Maschler: see the monographs by Aumann and
Maschler [11] and by Sorin [109] for a general presentation. In this framework the dual
approach was initiated by De Meyer in [57] and later developed by De Meyer and Rosen-
berg [58] and by Laraki [86].

The first adaptation of the Aumann–Maschler’s theory to differential games goes back
to Cardaliaguet [41], which deals with deterministic differential games with a terminal pay-
off, and with games where there is some private information on the initial position of the
system. It is generalized to stochastic differential games and to games with running pay-
offs in Cardaliaguet and Rainer [51]. The infinite horizon problem is considered in As
Soulaimani [8]. Examples of such games are analyzed in Cardaliaguet [43], Cardaliaguet
and Rainer [52] and Souquière [110], while the construction of ε-optimal strategies and ap-
proximation of the value function are carried out in Cardaliaguet [45] and Souquière [110].

The construction of the optimal strategy of the informed player in a game without dy-
namics, as explained in subsection 6.4, is borrowed from Cardaliaguet and Rainer [52]. This
result strongly uses the fact that there is no dynamics and the corresponding construction for
genuine differential games is unclear. As for the strategy of the informed player, it can be
built by using a kind of “approachability technique” combined with a stable bridge approach
(Souquière [112]).

Up to now most analysis of differential games with incomplete information has been
restricted to zero-sum differential games in which the private information is revealed to the
players at the initial time. It would be very interesting to investigate games in which this
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private information is disclosed all along the game: however this problem is open. Another
open question is the generalization of the theory described above to nonzero-sum differential
games.
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