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Abstract This article provides a comprehensive survey of models of dynamic games in
the exploitation of renewable and exhaustible resources. It includes dynamic games at the
industry level (oligopoly, cartel versus fringe, tragedy of the commons) and at the inter-
national level (tariffs on exhaustible resources, fish wars, entry deterrence). Among more
recent topics are international strategic issues involving the link between resource uses and
transboundary pollution, the design of taxation to ensure efficient outcomes under sym-
metric and asymmetric information, the rivalry among factions in countries where property
rights on natural resources are not well established. Various extensions are considered, such
as (i) modeling the effects of the concern for relative performance (relative income, rela-
tive consumption, and social status) on the over-exploitation of resources, (ii) applying the
tragedy of the commons paradigm to the declining effectiveness of antibiotics and pesti-
cides. Outcomes under Nash equilibria and Stackelberg equilibria are compared. The paper
ends with some suggestions for future research.

Keywords Exhaustible resources · Renewable resources · Over-exploitation · Property
rights

Introduction

Natural resources play an important role in economic development and economic growth.
They are also potential sources of conflicts among nations, and among rival groups within
a nation. The fact that many resources are common properties has raised serious concerns
about excessive exploitation and the potential collapse of many species. The use of several
resources has been linked to pollution problems which are themselves subject of interna-
tional disputes. Analysis of these national and global issues requires the use of dynamic
games.
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At the microeconomic level, to develop a thorough understanding of pricing and supply
behavior of resource-extracting firms, economists have also relied on dynamic games as a
main tool of analysis. Advances in dynamic games have shaped progress in the economic
theory of natural resources. Conversely, in studying natural resource problems, economists
have come up with a number of questions that help sharpen the theoretical tools of dynamic
games.

The purpose of this article is to provide an overview of the main issues in natural resource
economics that have been successfully analyzed with the help of dynamic games, and to
point to some issues that are emerging as possible interesting future topics for research in
this important field.

Exhaustible Resources

Formal dynamic analysis of exhaustible resources began with Hotelling [79] who used the
calculus of variations to study the optimal behavior of mining firms. The famous Hotelling
Rule describes the equilibrium condition for the evolution of resource prices. However,
Hotelling’s work contained no game-theoretic considerations. Dynamic games began to be
used by resource economists around 1975–1980. The concepts of open-loop Nash equilib-
rium (OLNE) and open-loop Stackelberg equilibrium (OLSE) were featured in a number of
early articles and two early books on dynamic models of exhaustible resources, namely [35]
and [92]. Since then, the emphasis has shifted to feedback Nash equilibrium (also called
Markov-perfect Nash equilibrium, MPNE) and feedback Stackelberg equilibrium (FBSE),
and issues concerning mechanism designs, such as dynamic corrective taxation for resource
markets.1

Exhaustible Resources and Industrial Structures

While the theory of the extractive industry under perfect competition and under monopoly
was formally developed by Hotelling in 1931, it took a long time before theories of other
forms of imperfect competition in the extractive industry came into being. We discuss below
the theory of cartel versus fringe and the theory of oligopoly in the context of an exhaustible
resource, such as oil.

A Cartel and a Competitive Fringe

One of the first game-theoretic papers on exhaustible resources is [132] who investigates
the (open-loop) equilibrium resource-extraction path in an industry consisting of a dominant
firm and a fringe of perfectly competitive firms (the price takers).

Salant assumes zero extraction cost and a stationary inverse demand curve P = f (Q)

with f ′(Q) < 0, and f (0) ≡ P > 0.
The representative fringe firm takes the price path P (t) as given, and chooses its extrac-

tion rate qi(t) to maximize the integral of its stream of discounted profits,

max
∫ ∞

0
e−rtP (t)qi(t) dt

1The crucial distinction between OLNE and MPNE was made transparent in [128]. Dockner et al. [45]
offered a more detailed treatment, with many examples in resource economics.
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(where r > 0 is the discount rate) subject to qi(t) ≥ 0 and
∫ ∞

0
qi(t) dt = Xi,

where Xi is the initial size of its deposit. Let Qc(t) denote the fringe’s aggregate extraction
at t .

By definition of an open-loop Nash–Cournot equilibrium, the dominant firm takes the
time path Qc(t) as given and chooses its own time path of extraction Qd(t) to maximize the
integral of its stream of discounted profits,

max
∫ ∞

0
e−rtf

(
Qc(t) + Qd(t)

)
Qd(t) dt

subject to Qd(t) ≥ 0 and ∫ ∞

0
Qd(t) dt = Xd,

where Xd is the initial size of its deposit.
Salant shows that the equilibrium extraction path consists of two phases, of lengths θ1

and θ2, respectively. In Phase 1, the price rises at the rate of interest, Ṗ (t)/P (t) = r for all
t ∈ [0, θ1]. In Phase 2, only the dominant firm supplies, and its discounted marginal revenue
at any two points of time must be equalized. Suppose that initially the industry is perfectly
competitive. Let a subset of competitive firms form a cartel (a dominant firm). It can be
shown that the sum of discounted profit of each extractor rises. However, the profit of each
non-member jumps by a larger percentage than the profit of members of the cartel.

Extending Salant’s model, Ulph and Folie [146] derive the open-loop Nash equilibrium
under constant marginal extraction costs, possibly different between the cartel and the fringe.
Other related studies (such as [100, 125, 133]) also use the open-loop Nash equilibrium.

Salant’s dynamic game of cartel versus fringe is somewhat different from the standard
static model of cartel versus fringe that one encounters in most textbooks, where the cartel
does not take the output of the fringe as given, but rather commits in advance to a price (or
output) to induce an output response from the fringe, i.e., the cartel is a Stackelberg leader.

Gilbert [66] considers the case where an exhaustible-resource cartel is an open-loop
Stackelberg leader while the fringe firms are followers. The cartel determines its extrac-
tion path first, and the fringe reacts to that. A problem with the open-loop leader–follower
formulation is that, in general, the open-loop Stackelberg equilibrium is not time-consistent:
in the absence of binding commitment, the leader will have an incentive to renege on its an-
nounced path. This was discussed in [147]. An interesting feature of the cartel–fringe model
with an exhaustible resource is that there is a small subset of parameter values such that the
open-loop Stackelberg solution is time-consistent [70, 122, 145].

To avoid the problem of time inconsistency, Groot et al. [71] propose a model of cartel
and fringe under the feedback Stackelberg assumption. Taking the limit case where the
number of fringe firms becomes arbitrarily large, they propose that the value function for
each fringe member is linear in its own stock and independent of the stock of any other firm
(fringe or cartel): V

f

i = λf S
f

i . Here λf is treated by the fringe firm as a constant, though, of
course, it would depend on the stock of the cartel. Given this assumption (a form of myopia
imposed on the fringe), the authors obtain the value function for the cartel in terms of some
transformed variables which themselves are implicit functions of the stocks. It turns out that
for those parameter values such that the open-loop Stackelberg solution is time-consistent,
the open-loop solution path and the feedback solution path coincide.
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Oligopoly in an Extractive Industry

Loury [115] characterizes the open-loop Nash equilibrium in a game among n oligopolists
that have the same marginal cost k but different initial deposit sizes Xi , i = 1,2, . . . , n. Let
qi(t) be the rate of extraction of firm i at time t. The total quantity sold is

Q(t) =
n∑

i=1

qi(t).

The price is P = P (Q), P ′(Q) < 0. Each firm realizes that it can influence the price P (t)

by its choice qi(t). Let Q−i (t) = Q(t) − qi(t). Each firm i takes the time path Q−i (t) as
given, and chooses qi(t) to maximize its discounted stream of profit

∫ ∞

0
e−rt

[
P

(
Q−i (t) + qi(t)

) − k
]
qi(t) dt

subject to qi(t) ≥ 0, and

Ẋi(t) = −qi(t), Xi(0) = Xi, lim
t→∞Xi(t) ≥ 0.

Loury shows that in an open-loop Nash equilibrium (a) the average and marginal return on
resource stocks are decreasing in the initial stock sizes, (b) aggregate output falls over time,
(c) firms with smaller deposits exhaust their stocks before firms with larger deposits, and
(d) industry production maximizes a weighted average of profits and consumer’s welfare.

Lewis and Schmalensee [100] consider firms which differ in extraction costs. They show
that, contrary to what would be dictated by a social planner, in an open-loop Nash equilib-
rium the lowest cost deposit may not be exhausted first. An empirical test is performed by
Polasky [127]. Further results on open-loop oligopoly in exhaustible resources are obtained
by Benchekroun et al. [13, 14], under the assumption that there are two groups each consist-
ing of identical firms, and firms can differ across groups both in deposit size and in marginal
cost. Under linear demand, they show that in open-loop Nash equilibrium there almost al-
ways exists a phase where both types of firms simultaneously produce. Interestingly, when
the high cost deposits are exploited by the group of firms whose number goes to infinity,
the equilibrium approaches the cartel-versus-fringe model. Deposits with lower extraction
costs may not be exhausted first. They also find that an increase in the aggregate stock of the
fringe (which has higher extraction cost) may reduce social welfare. This result is a dynamic
counterpart of a result obtained in static oligopoly models [97, 112], where a fall in the mar-
ginal cost of higher cost firms may induce them to increase their market shares, leading to
productive inefficiency and welfare loss.

Gaudet and Long [60] study the effect of a marginal transfer of resource from one firm to
another in an extractive duopoly. Restricting attention to open-loop equilibrium, they show
that if the initial deposits are sufficiently different in size, a transfer that renders the stock
distribution more unequal will increase the industry’s profit. In contrast, when the sizes of
deposits are similar, a marginal transfer has no effect on the industry’s output and profit.
These results have static counterparts in the static Cournot oligopoly model of Bergstrom
and Varian [18], who consider an increase in the marginal cost of one firm accompanied by
an equal decrease in the marginal cost of its rival. Benchekroun et al. [12] show how the
anticipation of a future oligopoly phase may influence the extraction path of an oil cartel.

Kemp and Long [90], drawing on [88, 89], study the case where firms are uncertain
about the size of their deposits. Even if firms are ex-ante identical, each will take account
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of the possibility that at some future time it may be the only remaining firm with a positive
resource stock, so that it becomes a monopoly. They show that in the absence of a complete
set of state-contingent markets (i.e., in the absence of a full set of Arrow–Debreu securities),
price-taking behavior, in conjunction with a recognition of possible monopoly power in the
future, may result in an equilibrium that is socially more inefficient than monopoly.

What can be said about feedback Nash equilibrium in an extractive oligopoly? It turns out
that results for this case are scarce. Under the assumption of a constant elasticity of demand
and zero extraction cost, explicit value functions for oligopolists can be found, see [51, 128],
and [9]. The latter paper considers the case where the firms have different deposit sizes. It
is found that a uniform addition (e.g., by new discoveries of deposits) to all reserves could
harm firms that have larger stock sizes.

An alternative model of extractive duopoly is proposed by Salo and Tahvonen [134].
There are n firms: firm i owns a resource deposit Xi (i = 1,2, . . . , n). The surface area of
each deposit is unity, so the depth at which the last unit of resource can be found is Xi. The
marginal cost of extraction increases with the depth of the mine. Let Si(t) denote the depth
reached by firm i at time t and qi(t) the rate of extraction of firm i. Then Ṡi (t) = qi(t). At
any time, the cost of extracting qi is ciSiqi , i.e., the marginal cost of extraction is ciSi . The
inverse demand function of the resource good is

p = a −
n∑

i=1

qi, a > ci, (1)

where p is the price the consumers have to pay per unit. The parameter a is the ‘choke
price.’ It is the marginal utility of consuming the first unit. Let Si denote the depth at which
the marginal extraction cost from deposit i equals the choke price, i.e., ciSi = a. Assume that
Xi is greater than Si . Then, efficiency implies that the resource stock of firm i is abandoned
at the depth Si = a/ci , i.e., before physical exhaustion of the stock. This is called economic
abandonment. It can be shown that as t tends to infinity, Si(t) tends to a/ci . The assumption
of economic abandonment enables Salo and Tahvonen [134] to obtain analytically the Nash
equilibrium feedback strategies. The implications of their model are quite different from the
model based on stock-independent marginal cost (such as Lewis and Schmalensee [100],
and Loury [115], who only consider open-loop strategies). These earlier papers predict
that small firms will exhaust their stocks before large firms do, leading possibly to eventual
monopolization of the market. In contrast, the Salo–Tahvonen model predicts that as the
price rises along the demand curve, more firms will become active, and that eventually firms
with the same cost parameter have equal market shares, regardless of the different initial
depth of their mines, Si(0).

Generalizing to non-linear demand, and extraction costs that are initially independent of
the stocks when these are large, Salo and Tahvonen [134] obtain numerical solution for feed-
back Nash equilibrium. Extraction paths may at first be similar to the model of Loury [115],
but eventually they resemble the equilibrium of the economic abandonment model under
linear demand.

Extraction of Exhaustible Resources under Common Access

It has been recognized that not all extractive firms have exclusive access to their own re-
source stocks. Firms with adjacent and interconnected gas fields may siphon off the gas that
“belongs” to their rivals. Similarly, while oil-well owners have the right to extract the oil
located under their own properties, oil may seep from one pool to another. This problem has



120 Dyn Games Appl (2011) 1: 115–148

been studied by Khalatbari [93], Dasgupta and Heal [35, Chap. 12], Kemp and Long [92],
and Sinn [136], under the assumption that firms use open-loop strategies.2 McMillan and
Sinn [119] review the various open-loop assumptions, and consider conjectural variation
with closed-loop (but not Markov-perfect) decision rules. They find that there are infinitely
many equilibria, most of which display excessive exploitation.

Analytical expressions for feedback Nash equilibrium extraction of an exhaustible re-
source under common access can be found for a class of problems, when the utility of each
player depends only on his own extraction rates [29, 108]. Long et al. [114] suppose there
are n players with different utility functions, ui(qi) = q

βi

i where 0 < βi < 1, and different
discount rates, ri �= rj . They have access to a common stock of exhaustible resource S. Then

Ṡ = −
n∑

i=1

qi.

Each player i believes that player j has a feedback strategy φj (·) such that qi(t) = φj (S(t)).
The optimization problem of player i is

max
∫ ∞

0
exp(−ri t)

[
qi(t)

]βi
dt, where ri �= rj

subject to qi(t) ≥ 0, Ṡ = −qi − ∑
j �=i φj (S), and limt→∞ S(t) ≥ 0, S(0) = S0. Long et al.

[114] show that there exists a unique feedback equilibrium in linear strategies, with φj (S) =
γjS where in general γi �= γj . There is, in general, a continuum of feedback equilibria in
non-linear strategies, a problem that is also discussed in, e.g., [104] and [32] in somewhat
different contexts.

The case of exploitation of a common pool where the utility of agent i depends on both
his extraction qi and the stock S is studied in [108]. Suppose there are n identical players,
each with the utility function ui = U(qi, S) = (q

1/2
i S1/2)α where 0 < α < 1. Provided that

2 > αn, it can be shown that there is a unique feedback equilibrium in linear strategies,
qi(t) = γ S(t) where γ = rS/(2 − αn).

The effectiveness of an antibiotic drug or a pesticide has also been modeled as an ex-
haustible resource. The resistance of bacteria to drugs has been a concern in the medical
profession. Cornes et al. [32] see an isomorphism between the decline in effectiveness of
antibiotics and pesticides (due to repeated uses), and the exhaustibility of natural resources
(due to extraction). They consider farmers who as individuals do not fully take into account
the social consequence of their applications of doses which contribute to the decline in ef-
fectiveness of the pesticide. They offer two dynamic game models, one in discrete time
and one in continuous time. Both models have multiple feedback Nash equilibria that can be
ranked in terms of social inefficiency. In the continuous time model, there is a feedback Nash
equilibrium in linear strategies and a continuum of feedback Nash equilibria in non-linear
strategies that result in exhaustion of the effectiveness of the pesticide in finite time.

While most economic articles on exhaustible resources assume that the extracted re-
sources are final goods, some authors (e.g., [35, 139]) specify that the resources are only an
input which must be used with capital to produce a final output. Let K ≥ 0 denote the capital
stock, S ≥ 0 the resource stock, and R ≥ 0 the rate of extraction. Extraction is costless, and
the production function for the final output is

Y = AKαR1−β, 0 < α < 1,0 < β < 1.

2As the speed of seepage becomes infinite, one obtains the pure common pool problem, see [20].
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Let C denote consumption and I denote investment, where C + I = Y . The dynamic system
of equations is

K̇ = AKαR1−β − C, K(0) = K0, K(t) ≥ 0,

Ṡ = −R, S(0) = S0, S(t) ≥ 0.

Solow [139] and Dasgupta and Heal [35] were interested in a central planning problem,
and did not consider any game-theoretic situation for this two-asset economy. Long and
Katayama [106] modify this model and consider a game among n infinitely-lived indi-
viduals. In this game, the stock of resource is a common property. The players accumu-
late their own capital stocks. Each player has an instantaneous utility function U(Ci) =
(1 − γ )−1C

1−γ

i where Ci is his own consumption, and 0 < γ < 1. Let ρ > 0 denote the
discount rate. Each chooses his control variables Ri and Ci to solve the following problem

max
∫ ∞

0
e−ρt (1 − γ )−1C

1−γ

i dt

subject to

K̇i = AiK
α
i R

1−β

i − Ci, Ki(0) = Ki0,

Ṡ = −Ri −
∑
j �=i

Rj , S(0) = S0.

Player i thinks that player j uses some feedback extraction strategy Rj = φj (S,Kj ) and
consumption strategy Cj = θj (S,Kj ). Long and Katayama [106] show that in the special
case where Ai = Aj = A and γ = α, if 1 > n(1 − β), there exists a symmetric Markov-
perfect equilibrium where each agent uses linear strategies: Ri = ηS and Ci = (ρ/α)Ki ,
where

η ≡ ρ

1 − n(1 − β)
.

Long and Katayama [106] demonstrate the existence of a phase of capital accumulation
followed by a phase of dissaving. The consumption path displays a hump-shaped profile.
Net saving becomes negative even before consumption reaches its peak. When agents are
heterogeneous in terms of productive efficiency (Ai �= Aj), the more productive agents will
invest more in capital. However, all players use the same feedback consumption strategy and
the same feedback resource-extraction strategy.

In a companion paper, Katayama and Long [87] modify the model in [106] by assuming
that (i) extraction cost is not zero (i.e., extraction requires labor input Li ), and (ii) an indi-
vidual’s utility is decreasing in effort and depends not only on his consumption but also his
status, defined as the ratio of his consumption over some index of average consumption in
the community. Specifically, they assume the utility function

ui = 1

1 − γ
C

1−γ

i

[
Ci

δCi + (1 − δ)C−i

]λ

− χLσ
i ,

where

C−i ≡ 1

n − 1

∑
j �=i

Cj
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and 0 < δ < 1, 0 < γ < 1, λ > 0, χ > 0, σ > 0. To extract the amount Ri , individual i must
uses (εRi)

μ units of effort, i.e., Li = (εRi)
μ where μ > 0 and ε > 0. Another feature of the

model is that the capital stock is also a common property. Player i chooses Ci and Ri (which
determines Li ) to maximize ∫ ∞

0
e−ρtui dt

subject to

K̇ = [
KαR

1−β

i − Ci

] +
∑
j �=i

[
KαR

1−β

j − Cj

]
, K(0) = K0,

Ṡ = −Ri −
∑
j �=i

Rj , S(0) = S0.

In the special case where α = γ and μσ = 1 − β , it is found that there exists a Markov-
perfect Nash equilibrium where all players use linear feedback strategies. The authors show
that the degree of status-consciousness has an important impact on the Markov-perfect Nash
equilibrium. A higher degree of status-consciousness (i.e., a higher λ) results in more ex-
cessive consumption, and a slower rate of capital accumulation. Under costless extraction
(i.e., ε = 0), status-consciousness has no impact on the extraction/resource-stock ratio. In
contrast, under costly extraction, this ratio is decreasing in the level of status-consciousness.
This result is plausible though at first it might seem puzzling. Since individuals want to
surpass their rivals in terms of relative consumption, they find it more advantageous to over-
exploit the common man-made capital stock.

van der Ploeg [150] considers a game of exploitation of an exhaustible common pool
among N agents (or factions) who can build up their private capital stocks, as in [106].
He assumes that all factions have the same objective: to maximize its minimum level of
consumption. Consider the utility function

U(Ci) = 1

1 − (1/θ)
C

1−(1/θ)

i ,

where θ is the intertemporal rate of substitution. The extreme case where θ → 0 corresponds
to the maximin criterion. Faction i owns a stock of man-made capital Ki . The final output
produced by faction i is

Yi = Kα
i R

γ

i L
1−α−γ

i ,

where 0 < α < 1, 0 < γ < 1, α + γ < 1 and Li = 1/N . Since there is no depreciation,
K̇i = Yi − Ci .

van der Ploeg characterizes a feedback Nash equilibrium under the maximin criterion in
which each faction i adopts the following extraction strategy

Ri = σS

Ki

and saves a constant fraction of output Yi . He shows that this equilibrium differs from the
outcome under the social planner (who also has the maximin objective): the Nash equilib-
rium constant gross output is too high and constant consumption is too low, as factions try
to invest excessively in their private capital stocks. van der Ploeg shows that in the Nash
equilibrium, genuine saving (using correct shadow prices) is zero. If savings are measured
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using market prices, they are positive, but such measures are misleading because the market
prices fail to reflect social opportunity costs.

A game among N agents that exploit N interconnected pools is modeled by van der
Ploeg [151], which is an extension of [150]. Agent i extracts Ri from pool i. The rate of
depletion of the stock Si is

Ṡi = −Ri −
∑
j �=i

π(Si − Sj ),

where π ≥ 0 is the seepage rate.3 Let K ≡ ∑
i Ki denote the aggregate capital stock. van der

Ploeg [151] assumes that π is a decreasing function of K , suggesting that property rights
improve as the economy moves along its development path. The following specific function
form is assumed: π = ε/K . Focussing on this extreme case, van der Ploeg shows that there
exists a symmetric open-loop Nash equilibrium where output, consumption, and investment
are constant over time, while the capital stocks increase without bound, and the resource
stocks fall to zero asymptotically. Comparing this Nash equilibrium outcome with the stan-
dard maximin solution under a social planner, van der Ploeg concludes that under rivalry
society ends up with a higher level of output, but a lower level of consumption. Individuals
accumulate too much capital, and the aggregate resource stock is being extracted at too fast
a rate.

Exhaustible Resources and Pollution

There are links between the exploitation of exhaustible resources and pollution. The most
prominent link is the excessive accumulation of carbon dioxide in the atmosphere and the
extraction and use of fossil fuels such as oil, gas, and coal. The proposed introduction of
carbon taxes by many countries has raised some interesting issues: How do fossil fuel ex-
porting countries (say OPEC) react to carbon taxes, and how do carbon taxes serve to reduce
OPEC rents? Some authors have developed models to gain insights into the dynamic inter-
actions between tax policies and the pricing or extraction strategies of resource cartels. In
what follows, we survey some theoretical attempts in that direction.

The simplest models contain only one state variable, namely accumulated extraction,
and consider it as the stock of pollution. This may be justified on the grounds that the rate
of decay of atmospheric CO2 concentration is very low.

Nash Equilibrium under Constant Extraction Cost and Non-decaying Pollution

Wirl [154] develops a model involving two players: the government of a fossil-fuel im-
porting country and a monopolist seller of fossil fuels from a stock of resource S. To sim-
plify, assume that the consumption of fossil fuels occurs only in the importing country. The
amount consumed at time t is y(t). It generates a flow pollution, with flow damages 1

2ωy(t)2

and contributes to a stock pollution, with damages 1
2DZ(t)2 where Z(t) is the stock of pol-

lution, assumed to be identical to accumulated consumption. Simultaneously, the monop-
olist sets the producer price, p(t), and the importing country sets a tax rate τ(t) per unit.
The consumer price is p(t) + τ(t). The demand function of the representative consumer is
y = a − (p + τ). The consumer’s surplus is 1

2 (a − p − τ)2 for p + τ ≤ a. The importing

3A similar problem of interconnected pools was analyzed by Dasgupta [34, p. 287] in a partial equilibrium
setting.
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country’s instantaneous payoff, UI , is the sum of consumer surplus and the tax revenue, net
of pollution damages,

UI = 1

2
(a − p − τ)2 + τ(a − p − τ) − 1

2
ωy2 − 1

2
DZ2.

Assume that the exporting country does not care about pollution. Its instantaneous payoff is
UX = py = p(a − (p + τ)). The instantaneous global welfare is defined as UG = UI + UX .
Denote the consumer’s price by θ ≡ p+τ . Let Z∗∞ denote the steady state stock of pollution
under cooperation. Let ρ > 0 be the common discount rate. It can be shown that at the
cooperative steady state, the present value of the infinite stream of marginal damage cost is
equated to the choke price:

DZ∗∞
ρ

= a (2)

provided that S ≥ aρ

D
.

Now consider a dynamic game between the two countries. The focus is on feedback
Nash equilibrium. The importing country takes as given the feedback pricing strategy of
the monopolist seller, denoted by p(t) = φ(Z(t)). Its Hamilton–Jacobi–Bellman (HJB)
equation is

rJI (Z) = max
τ

{
UI

(
τ,Z

) + J ′
I (Z)

(
a − φ(Z) − τ

)}
. (3)

The solution of the importer’s HJB equation yields a decision rule τ = g(Z).
The exporting country believes that the importing country uses a feedback strategy τ =

g(Z). Its HJB equation is

ρJX(Z) = max
p

{
p
(
a − p − g(Z)

) + J ′
X(Z)

(
a − p − g(Z)

)}
.

The solution of the exporter’s HJB equation yields a decision rule p = φ(Z). In a Nash
equilibrium, expectations are correct. Then

p = 1

2 + ω

[
a + J ′

I (Z) − (1 + ω)J ′
X(Z)

]
,

τ = 1

2 + ω

[
aω + ωJ ′

X(Z) − 2J ′
I (Z)

]
,

θ ≡ p + τ = 1

2 + ω

[
a(1 + ω) − J ′

I − J ′
X

]
.

Define the function J (Z) ≡ JI (Z) + JX(Z). Then our problem reduces to solving a single
differential equation

ρJ (Z) = −1

2
DZ2 + Ω

(
a + J ′(Z)

)
, (4)

where

Ω ≡ (3 + ω)

2(2 + ω)2
.

Now impose the boundary condition that when Z is at the socially optimal steady state,
extraction is zero and the flow of welfare is equal to the value of damages caused by the
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stock:

ρJ

(
aρ

D

)
= −1

2
D

(
aρ

D

)2

. (5)

Equation (4) and the above boundary condition give rise to the following quadratic value
function

J (Z) = A

2
Z2 + BZ + C,

where

A = 1

4Ω

[
ρ −

√
ρ2 + 2DΩ

]
< 0,

B = 2aΩA

ρ − 2ΩA
< 0,

C = Ω(a + B)2 > 0.

As the stock of pollution accumulates, the consumer price rises gradually toward a. The
equilibrium feedback strategies are, for all Z ≤ aρ/D,

τ = g(Z) = a + 2A2 − 2D(2 + ω)2

ρ(2 + ω)3

(
aρ

D
− Z

)
,

p = φ(Z) = D(2 + ω)2 + 2bA2

ρ(2 + ω)3

(
aρ

D
− Z

)
.

Along the equilibrium path, the producer price declines gradually to zero, and the tax τ

grows toward a.
According to [154], there exist other Nash equilibria where both countries use non-linear

strategies, and these equilibria lead to some steady state Z∗∗∞ < aρ/D. However, one could
argue that, in the context of this model, such equilibria are not subgame perfect, in the
sense that if both players find themselves at Z∗∗∞ < aρ/D, they would want to have more
output and hence more pollution, and that both would gain by departing from Z∗∗∞ . Wirl and
Dockner [156] consider a variation of [154] by allowing a political economy approach to
government policy formulation.

Stagewise Stackelberg Leadership by the Resource-Exporting Country

Tahvonen [142] uses a model similar to [154] to analyze a leader–follower game. He ab-
stracts from the flow pollution and assumes that the exporter is the leader. The model is
limited to stagewise leadership, which can be explained as follows. If the time horizon is
finite, and time is discrete, stagewise leadership by the exporter means that in each period,
the resource-exporting country moves first by announcing the wellhead price for that period.
The importing country reacts to that price, and chooses the per unit tax for that period. Each
party’s equilibrium payoff for period T − 1 can be computed as function of the opening
stock ZT −1. Working backwards, in period T − 2, the leader announces his pT −2, and the
follower reacts by choosing τT −2, etc. Extending the stagewise formulation to the case of
a continuous-time and infinite-horizon game involves the feeding of one HJB equation into
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another, as the analysis by Tahvonen shows. As demonstrated below, the stagewise Stackel-
berg equilibrium for this model is identical to the Nash equilibrium found by Wirl [154].4

Define the stock that remains at time t as x(t). Assume x(0) = S, and Z(0) = 0. Then,
since Z(t) is the cumulative extraction, S − x(t) = Z(t). Tahvonen [142] assumes that S >

aρ/D. For simplicity, assume that extraction is costless.
Unlike the simultaneous-move formulation in [154], in the stagewise Stackelberg formu-

lation by Tahvonen, the importing country observes the actual price p(t) before it chooses
its tariff rate τ(t), and it also knows that p(t) = h(x(t)), which is a stationary rule. Tahvo-
nen’s approach begins with the following (time-independent) HJB equation of the importing
country:

ρVI (x) = max
τ

{
1

2
(a − p)2 − 1

2
τ 2 − D

2
(S − x)2 − V ′

I (x)(a − p − τ)

}
, (6)

where p = h(x). Now, assume that h(x) is linear, i.e., h(x) = αx + β where a and β are to
be determined. Then it is reasonable to conjecture that VI (x) is quadratic. Let us write

VI (x) = 1

2
AIx

2 + BIx + CI .

Clearly, AI , BI , and CI should be dependent on α and β . Equation (6) gives the necessary
condition −τ + AIx + BI = 0. Note that the quantity demanded is y = a − p − AIx − BI

where p = h(x) = αx + β . Tahvonen obtains the HJB equation for the seller

ρVX(x) = max
p

{
p(a − p − AIx − BI ) − V ′

X(x)(a − p − AIx − BI )
}
.

This yields a solution that is identical Wirl’s Nash equilibrium solution. It would seem that
if one maximizes the leader’s welfare integral with respect to the parameters α and β , one
would obtain higher welfare for the leader; see [57] for the use of this alternative type of
Stackelberg leadership, in a different context.

Bilateral Monopoly with Non-decaying Pollution and Stock-Dependent Extraction Cost

Rubio and Escriche [130] modified the model of Wirl [154] by assuming that extraction cost
increases as the remaining stock falls. Let Z(t) be accumulated extraction, so that Ż(t) =
y(t). Let cZ(t)y(t) be the cost of extracting y(t). Consider first the Nash equilibrium. The
HJB equations yield the following pair of nonlinear differential equations:

ρJX(Z) = 1

4
(a − cZ + J ′

I + J ′
X)2,

ρJI (Z) = −1

2
DZ2 + 1

8
(a − cZ + J ′

I + J ′
X)2.

The consumer price, denoted by θ , satisfies

θ = 1

2

[
a + cZ − (J ′

I + J ′
X)

]
.

4For a diagramatic interpretation of this result, see [57].
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Rubio and Escriche [130] thought that in the Nash equilibrium, the tax τ is just a Pigou-
vian Tax without a rent-shifting component. The authors wrote a Bellman equation for the
consumers that they interpreted as representing their perfectly competitive behavior. How-
ever, that equation, which contains the term J ′

I (Z)y, means that consumers are not price
takers: they realize that more consumption today will increase future values of Z which
will, in turn, affect the future wellhead price, according to the seller’s feedback pricing rule.

Rubio and Escriche [130] also considered the stagewise Stackelberg leadership by the
exporting country. They showed that it is identical to the Nash equilibrium. This is sim-
ilar to the identity between the Nash equilibrium in [154] and the stagewise Stackelberg
equilibrium found by Tahvonen [142] in the case of zero extraction cost.

Turning to the case where the importing country is the stagewise Stackelberg leader, the
authors showed that while the long-run pollution stock in this equilibrium is identical to
that of the Nash equilibrium, the time paths of pollution in the two cases are substantially
different. The initial consumer price and tax rate are lower in the Nash equilibrium than
under the importing country’s stagewise leadership. The life-time payoff of the importing
country is higher under its stagewise leadership than under the Nash equilibrium, and the
opposite ranking applies to the exporter’s life-time profit.

In an elegant paper, Liski and Tahvonen [102] revisit the Nash equilibrium of the model
of Rubio and Escriche [130].They decompose the Nash equilibrium carbon tax into a pure
Pigouvian component and a rent-shifting component. Letting x = S − Z, Liski and Tahvo-
nen find that the Nash equilibrium strategy of the seller can be an increasing function or a
decreasing function. If there are no pollution damages (D = 0), then it is a decreasing func-
tion of x, i.e., the producer price will be rising over time (as x falls over time). However, if
D is sufficiently large, then it is an increasing function, i.e., the producer price will be falling
over time. The carbon tax rises (respectively, falls) over time if the damage parameter D is
large (respectively, small).

Models of Carbon Taxes with Pollution Decay

The one-to-one relationship between the cumulative extraction and the pollution stock no
longer exists if pollution is subject to decay. In this case, the dynamic game becomes more
complicated, as it involves two state variables. This case is taken up in [155], which is an
extension of [154] in two directions: the pollution stock has a constant rate of decay, and
the extraction cost increases as the remaining stock dwindles. An analytical solution does
not seem possible for this game with two state variables. The author relies on numerical
methods to indicate possible paths of tax, price, and pollution. Tahvonen [142] considers a
similar two-state variable game, but focuses on the case where the exporting country exer-
cises stagewise Stackelberg leadership.

Exhaustible Resources and International Trade

Optimal Export Tax by a Resource-Exporting Country when the Resource-Importing
Country is Passive

Kemp and Long [91] consider trade between a resource-rich and a resource-poor economy.
The former exports its resource which is used in the production of a final good produced by
the latter. Extraction is costless. The resource-exporting country seeks to influence its terms
of trade by choosing a time path of export tax. Let τ(t) be the ad-valorem export tax rate,
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defined by

pf (t) = p∗(t)
1 + τ(t)

,

where p∗(t) is the world price, pf (t) is what the producer gets, and the tariff revenue per
unit of export is τ(t)pf (t). Acting as an open-loop leader, this country commits to a time
path of ad-valorem export tax rate. Kemp and Long show that at the optimum, the leader’s
export volume m∗(t) (i.e., import volume by the resource-poor economy) and its optimal
ad-valorem export tax rate τ ∗(t) satisfy the leader’s optimality condition

1 + τ ∗(t) = 1

β[1 + δ(m∗(t))] ,

where δ(m) is the elasticity of marginal productivity of the resource input,

δ(m) ≡ m

p∗
dp∗

dm
,

and β is an arbitrary positive constant. This shows that in equilibrium the relationship be-
tween the producer’s price pf (t) and the price that importers pay, p∗(t), is given by

pf (t) = p∗(t)β
[
1 + δ

(
m∗(t)

)]
.

Since β is an arbitrary positive constant, the above equation indicates that only the rate
of change in the tax rate matters, not its level.5 This is because if the time path pf (t) is
multiplied by a constant, extracting firms will not change their supply behavior, and it is
a matter of indifference to citizens of the resource-exporting country whether they receive
their income as dividends or tax hand-outs.

In the special case where the production function of the resource-rich country is Cobb–
Douglas, so that the input demand is iso-elastic, the resource-rich country has no market
power. This is consistent with the result of Weinstein and Zeckhauser [153] and Stiglitz [141]
that under zero extraction cost and constant elasticity of demand, the exhaustible resource
monopoly has no market power.

Optimal Tariff by Resource-Importing Countries when the Resource-Exporting Country Is
Passive

Bergstrom [17] models a game involving n resource-importing countries facing competitive
extractive firms operating from a resource-exporting country. Bergstrom assumes that these
countries are constrained to choose a time-invariant tariff rate.6 He shows that the importing
countries can extract substantial rents from resource-owners.

Kemp and Long [92] allow a resource-poor economy (called Home) to choose a time-
varying ad valorem tariff rate τ(t) on the resource good imported from resource-rich coun-
try (called Foreign) in which extractive firms are price-takers. Home acts as an open-loop

5This result and further results on supply response to resource taxation are explored in more details in [109].
Supply response to tax changes is a key building block in the literature on the “Green Paradox” [65, 69, 78,
137, 138, 152]. Another mechanism behind the Green Paradox is the uncertainty about future carbon taxes,
which is akin to uncertainty about future expropriation [103].
6Brander and Djajic [21] also assume a constant ad-valorem tariff.
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Stackelberg leader. This problem can be analyzed by asking what is an optimal precommit-
ted time path of per unit tariff θ(t). Kemp and Long [92] show that such an optimal tariff
path is time-inconsistent, in the sense that at a later date the importing country would want
to renege from the precommitted path.

To see this result on time inconsistency most clearly, let us assume that the extraction
cost is zero and that there is a third country (called ROW, for “the rest of the world”) that
imports the resource good without trying to influence the terms of trade. The inverse demand
function is pc(t) = a − bq(t), where pc(t) is the price facing the consumer (inclusive of the
per unit tariff rate θ ) and q(t) is the quantity demanded. The price that foreign firms receive
is pf (t). Then, in Home, pc

H (t) = pf (t) + θ(t) ≡ pf (t)[1 + τ(t)] while in ROW, which
does not impose a tariff, pc

R(t) = pf (t), where the subscripts H and R refer to Home and
ROW.

Efficient allocation in Home requires that pc
H (t) rises exponentially at a rate equal to the

rate of interest r until some time T where the pc
H (T ) = a. On the other hand, since extraction

cost is zero, Hotelling’s Rule requires ṗf /pf = r . It follows that θ̇/θ = r , which implies
a constant ad-valorem tariff rate, τ(t) = τ . Note that at time T , consumers in Home stop
importing because the consumer price has reached a, but the exporting country is still selling
to the Rest of the World, as consumers in ROW are still paying for the resource at a price
below the choke price a. Clearly, at T it will be in the interest of Home to cut the tariff rate
so that their consumers can benefit from trade. This shows that its originally announced tariff
path is time-inconsistent. If producers are smart, they will recognize from the start this time-
inconsistency, and they will not believe in the announced tariff path. The time-inconsistency
issue is considered in more detail by Karp [83] and Maskin and Newbery [117].

Karp and Newbery [86] consider time-consistent tariff policies. They assume a pas-
sive resource-exporting country with a large number of perfectly competitive sellers, and
n resource-importing countries that behave strategically. The supply side is represented by
a Markovian decision rule: aggregate extraction y(t) is a function of the aggregate stock
S(t). In importing country i, the demand function is qi = bi(a − pi) where pi = p + τi

(with p being the world price and τi being the per-unit tariff imposed by country i). The
instantaneous welfare Wi of importing country i is the sum of consumers surplus and tariff
revenue:

Wi = bi

2
(a − p − τi)(a − p + τi). (7)

Assume n = 2. The market-clearing price is p(t) = a −y(t)−b1τ1(t)−b2τ2(t). All players
move simultaneously. Suppose that importing country i believes that importing country j

uses a Markovian tariff rule τj = gj (S). Then its instantaneous welfare is

Wi(τι, S) = bi

2

[
Y (S) + bjgj (S) − (1 − bi)τi

][
Y (S) + bjgj (S) + (1 + bi)τi

]
.

Let Vi(S) denote the value function for country i. Its HJB equation is

rVi(S) = max
τi

[
Wi(τi, S) − V ′

i (S)Y (S)
]
.

This gives the first order condition τi = bi(a − p). Thus, in equilibrium, τ1/τ2 = b1/b2, and
the equilibrium strategies satisfy

gi(S) = bi

(
1 − b2

1 − b2
2

)
Y (S).
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The equilibrium price is a function of S:

p(S) = a − [
1 − (

b2
1 + b2

2

) + (
b2

1 + b2
2

)2]
Y (S) ≡ a − μY(S).

The equilibrium supply function Y (S) can be determined as follows. From the Hotelling
Rule, the price must rise at the rate of interest r

r = ṗ

p
= p′(S)

p(S)
Ṡ = μY ′(S)Y (S)

a − μY(S)
.

This first order differential equation and the boundary condition that Y (0) = 0 allow Karp
and Newbery [86] to compute the equilibrium supply rule Y (S) numerically. Comparison
with the free trade case indicates that the importing countries can be worse off compared
with free trade. However, free trade is not an equilibrium of the game in which suppliers
believe that buyers have market power.

Karp and Newbery [85] propose two different models of market power by resource-
importing countries facing perfectly competitive exporters. In their EMF (or exporters move
first) model, the sellers move first in each period. In the limit, as the length of each period
shrinks to zero, the equilibrium of this model is the same as that of Karp and Newbery [86].
In their IMF (or importers move first) model, the authors assume that in each period, the
importers make the first move by choosing quantities. For a wide range of numerical values,
the ratio of an importing country’s welfare under EMF to that under IMF depends on the
initial stock S0. For small values of S0, it is disadvantageous for importing countries to be
the first mover. In contrast, for very large values of S0, their welfare under IMF is greater
than under EMF.

If extraction costs rise with cumulative extraction, it is not always the case that the entire
resource stock eventually will be exhausted. When the extraction cost becomes as high as the
choke price the resource will be abandoned. Karp [83] explores the issues of time-consistent
tariff under economic abandonment using a two-country model: a resource-importing coun-
try and a resource-exporting country that consists of competitive extractive firms. His pro-
posed solution supposes that the importing country behaves as if it would want to maximize
world welfare. If the seller is a monopolist, then for this method to work, it would be nec-
essary to assume that the monopolist does not take into account that fact that the importing
country uses a feedback decision rule.

Optimal Tariff on an Exhaustible Resource in a Market Characterized by Bilateral
Monopoly

We have considered the case of bilateral monopoly in a resource market where its consump-
tion generates pollution; see, e.g., [130]. By dropping the pollution aspect, Rubio [129]
obtained similar results in a two-country model of trade in an exhaustible resource where
both parties have market power.

Chou and Long [26] derive Markov-perfect tariff strategy when the resource-exporting
country exercises its monopoly power, while two importing countries either form a coalition
or they choose their tariff strategies non-cooperatively. They restrict attention to price-setting
behavior. Several interesting results are obtained in the case where the two importing coun-
tries are not identical. As the two importing countries become more asymmetric in terms
of their relative size, their aggregate gain from trade is more likely to be higher under non-
cooperative tariff war than under global free trade. They also consider the case where the
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resource-exporting country can commit to earmark the resource stocks to serve the two im-
porting countries separately. The optimal division is that which divides up the resources in
proportion to relative size of the importing countries. However, such commitment makes the
exporting country worse off compared with the case of undivided reserves.

Fujiwara and Long [57] extend the analysis of Chou and Long [26] to the case where
the importing country is a global (as opposed to stagewise) feedback Stackelberg leader,
and to the case where it is a global feedback Stackelberg follower. They show that being
a global feedback Stackelberg leader makes the importing country better off than being a
stagewise Stackelberg leader. On the other hand, world welfare under Nash equilibrium is
strictly higher than under global Stackelberg equilibrium. Regardless of which country is
the leader, world welfare under stagewise Stackelberg leadership is higher than under global
Stackelberg leadership.7

R&D on a Substitute for an Exhaustible Resource

Research and development on a substitute for an exhaustible resource is one of the policy
priorities of major resource-importing countries. Davidson [39] analyzes optimal control
problems involving R&D for a substitute. Hoel [75–77] study the optimal extraction path of
a monopolist facing the possibility of substitute production by competitive firms.

A number of authors study a game-theoretic situation where a resource-importing coun-
try, M, seeks to reduce reliance from a resource-exporting country, X, by investing in a
substitute. Dasgupta et al. [36], Gallini et al. [58], and Olson [123] determine the optimal
timing of innovation, T . They assume that M can commit to its choice of T before country
X chooses its output path.8 Dasgupta et al. [36] raise the possibility that by delaying T , M

may be able to induce X to hasten extraction. However, Olson [123] points out that the range
of parameter values consistent with this possibility is very small.

There are two main weaknesses in the above-mentioned approach. First, it is implausi-
ble that the innovation date is deterministic. Second, one cannot expect that a country can
commit to a time path of R&D independently of its resource stock level.

Lewis et al. [101] consider a three-period model in which country M can invest in capac-
ity that becomes productive in the following period. They show that M may over-invest in
order to induce a more advantageous extraction path.

Harris and Vickers [73] develop a model of R&D where the date of discovery is uncertain.
They seek a Markov-perfect equilibrium for the game between M and X. They rely on an
approximate reformulation of the concept of Markov strategy, by allowing X to choose a
time path for the resource stock (rather than a decision rule on extraction rate) subject to a
set of consistency conditions. They find that M increases its R&D intensity as the resource
stock dwindles. This induces X to reduce the rate of decline in the stock. Thus a non-
monotone extraction path may emerge.

Optimal Taxation of Resource-Extracting Firms

In designing a tax-subsidy scheme to induce efficient extraction by a monopolist, the gov-
ernment is acting as a leader. Bergstrom et al. [19] consider an open-loop formulation and

7For further discussion of (non-stagewise) feedback Stackelberg equilibrium, see [45, 135], and [111].
8In contrast, Hung and Quyen [80] argue that country X is a natural Stackelberg leader. In their model,
country M can at any time invent the substitute by paying a fixed lump-sum cost.
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show that by choosing an appropriate time path of subsidy, a government can induce a mo-
nopolist to extract at the socially optimal rate. Interestingly, there is a family of such time
paths. As pointed out by Karp and Livernois [84], if the government is unable to commit to
its chosen time path of subsidy, the monopolist will have an incentive to deviate from the
extraction path the government wants because by doing so he can force the government to
change the subsidy path. In other words, the subsidy policies advanced by Bergstrom et al.
are not subgame perfect. Karp and Livernois demonstrate the existence of a family of linear
Markovian subsidy rule that would induce the monopolist to extract at the socially efficient
rate; for similar results in a more general setting, see [6, 8, 11].9

The problem of extracting rent from a mining firm under asymmetric information is ad-
dressed by Gaudet et al. [62]. The firm’s cost is its private information. The government
designs an incentive scheme to maximize social welfare subject to the extractive firm’s ra-
tionality constraint. The government is a Stackelberg leader and the firm is the follower.
The optimal non-linear resource royalty schedule is characterized. For related analyses of
principal agent problems in a dynamic context, see [63, 64].

Renewable Resources

Renewable resources are natural resources that, under careful management, could be main-
tained at positive steady-state levels. Examples of renewable resources include forests,
aquifers, fish species and other animal species. Many renewable resources are threatened
by excessive exploitation, partly because of lack of cooperation among agents who have
common access to them. This problem is known as the tragedy of the commons [27, 67, 72].

The Tragedy of the Commons

When agents have common access to a resource stock, over-exploitation tends to occur.
While institutions and social norms can be developed to mitigate the tragedy of the com-
mons [74, 124], obvious instances of over-exploitation abound. In 2007, 80% of fish stocks
are exploited at or beyond their maximum sustainable yield [54]. Grafton et al. [68] provide
evidence of serious over-exploitation of several fish species. McWhinnie [120] finds that
shared fish stocks are prone to excessive exploitation.

The fishery model has been used as a metaphor for almost any kind of renewable re-
source, especially when property rights are not well defined [22, 25, 31].

Over-exploitation of a Renewable Resource: An Open-Loop Approach

Clark and Munro [28] propose an open-loop differential game involving N fishermen who
share a fishing ground. The price of fish is P per unit. Each fisherman’s effort denoted by
Ei ∈ [0,E]. His landing is Qi = ωEiX

η where η > 0 and ω > 0. The fish stock X evolves
according to the dynamic equation

Ẋ = g(X) −
N∑

i=1

ωEiX
η,

9An alternative mechanism for achieving efficiency (at least approximately) is to build up cooperation as an
outcome of a differential game [10].
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where g(X) is the natural growth function. Let c > 0 denote the effort cost per unit. Player
i’s profit is

πi = pωEiX
η − cEi.

The utility of profit is

U(πi) = π1−θ
i

1 − θ
,

where θ ≥ 0.10

All players have the same discount rate ρ > 0. Player i chooses his time path of effort
Ei(t) to maximize his life-time payoff,

Ji =
∫ ∞

0
e−ρtU(πi) dt.

If the players cooperate and coordinate their effort to maximize the sum of their payoffs,
the resulting steady-state stock, denoted by Xso∞, will satisfy the following “modified golden
rule”

ρ = g′(X∞) + η

(
g(X∞)

X

)[
c

pω(X∞)η − c

]
. (8)

The left-hand side of (8) is the rate of impatience. The right-hand side of (8) is the rate of
return of leaving a fish in the pool instead of catching it. It is the sum of two terms. The first
term is the marginal natural growth rate of the stock (called the biological rate of interest)
and the second term is the marginal benefit (in terms of cost reduction) of keeping an extra
fish in the pool: it is equal to the group steady-state harvest per unit of stock, multiplied by
the cost/profit ratio (per unit of effort), and the elasticity of harvest with respect to stock, η.

Without cooperation, each player does not take into account the fact that his effort today
will raise other fishermen’ costs tomorrow via its effect on tomorrow’s stock. The sym-
metric open-loop Nash equilibrium results in a steady state XOL∞ that satisfies the following
“externality-distorted modified golden rule”:

ρ = g′(XOL
∞

) + η

N

(
g(XOL∞ )

X

)[
c

pω(XOL∞ )η − c
− (N − 1)

]
. (9)

In the second term on the right-hand side of (9), only the individual steady-state harvest
is counted in the marginal benefit term, and the steady-state harvest of the other N −1 agents
is considered as a reduction in the individual’s rate of return in leaving an additional fish in
the pool. Notice that if N = 1 then the two equations (9) and (8) would be identical.

This model has been generalized by Long and McWhinnie [107], who assume that fish-
ermen care about relative income, i.e.,

U = 1

1 − θ
(πi − γπ)1−θ

where π is the average profit in the industry and 0 ≤ γ ≤ 1. They show that to achieve
efficiency, two taxes are required: a tax on relative profit, and a tax on output.

10Clark and Munro [28] consider the case where θ = 0.
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Note that the steady-state distortion in the model of Clark and Munroe arises because the
stock X is an argument the harvesting function, i.e., η > 0. If the harvest is independent of X

(i.e., η = 0) then there is no externality in the steady state. In fact, in a multi-species model,
Chiarella et al. [24] show that when the stock level has no effects on harvesting, there exist
open-loop Nash equilibria that are Pareto-efficient (and other OLNEs that are not Pareto-
efficient). These results are confirmed by Dockner and Kaitala [42]. On the other hand,
as demonstrated by Martín-Herrán and Rincón-Zapareto [116], if fishermen use feedback
strategies that are continuous in the state variable, the resulting feedback Nash equilibrium
is inefficient.

Feedback Nash Equilibrium Exploitation of a Common-Property Renewable Resource

One of the most well-known papers on feedback Nash equilibrium is the fish-war model of
Levhari and Mirman [99]. Let st be the stock of fish at time t . It is exploited by two countries,
country 1 and country 2. Their harvest rates are denoted by q1

t and q2
t . The evolution of the

fish stock obeys the difference equation

st+1 = (
st − q1

t − q2
t

)κ
, 0 < κ < 1.

The utility function of country i is ln(qi
t ). Let β ∈ (0,1) be the discount factor.

If the two countries cooperate, st will converge to a unique steady state ŝ = (βκ)κ/(1−κ).
In the non-cooperative case, country i thinks that country j uses the harvesting strategy

q
j
t = φj (st ),

where φj (0) = 0 and φ
j
s (s) > 0. Country i takes φj (·) as given, and finds the path qi

t to
maximize

∞∑
t=0

βt lnqi
t

subject to st+1 = (st − φj (st ) − qi
t )

κ . The Bellman equation for country i is

V i(st+1) = max
qi
t

{
lnqi

t + βV i
[(

st − φj (st ) − qi
t

)α]}
.

Suppose country i thinks that country j uses the linear feedback strategy φj (s) = ωjs where
0 < ωj < 1.

Player i’s response is to choose the feedback strategy qi = (1 − βκ)(1 − ωj )s ≡ ωis. In
a symmetric Nash equilibrium,

ω1 = ω2 = ω = 1 − βκ

2 − βκ
. (10)

Under this feedback equilibrium, the evolution of the fish stock is

st+1 = [st − 2ωst ]α =
(

βκ

2 − βκ

)κ

sκ
t .

This results in the non-cooperative steady-state stock

s̃ =
(

βκ

2 − βκ

)κ/(1−κ)

< ŝ.
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Thus, under feedback strategies, the tragedy of the commons can occur even if the harvesting
function depends only on the effort and is independent of the stock. This result contrasts
sharply with the open-loop result found by Chiarella et al. [24].

The model of Levhari and Mirman [99] has been generalized by Koulovatianos et al. [95]
to the case where the evolution of the fish stock takes the form

st+1 = θ
[
κ(yt )

λ−1
λ + (1 − κ)k

λ−1
λ

] λ
λ−1 ,

where yt = st − ∑
qi

t and k is a positive constant.11 They postulate the utility function

u(q) = q
λ−1
λ − 1
λ−1
λ

,

where λ > 0 is the intertemporal rate of substitution. The limiting case where λ → 1 corre-
sponds to the model of Levhari and Mirman [99]. Note the assumption that the utility func-
tion and the transition function have the same parameter λ. This coincidence of parameter
values permits the existence of a Markov-perfect equilibrium in linear feedback strategies.
Treating θ is a random variable, Koulovatianos et al. [95] show that changes in riskiness
will have an effect of the equilibrium feedback strategy (except in the case where λ = 1).
Under the assumption that θ has a log-normal distribution they demonstrate that an increase
in the variance will magnify the tragedy of the commons if λ < 1.

Additional contributions of differential games of common access fisheries include [7,
15, 33, 38, 43, 53, 118, 121, 126], and [4, 5, 55], among others. Dutta and Sundaram [47,
48] and Duffie et al. [46] examine conditions for the existence of a MPNE (with or without
random disturbance). Amir [2] proves some existence results for fishery games with con-
vex transitions under uncertainty. For empirical models of dynamic fishery games, see, for
example, [96] and [120].

It is well-known that in static repeated games if players use trigger strategies to punish
deviation from an allocation, non-cooperative players can achieve Pareto-efficient outcomes,
provided that their discount factor is close enough to 1. In dynamic games, trigger strate-
gies can also serve to achieve a cooperative outcome (see, e.g., [15, 43]). Trigger strategies
require memory of the history of the play, and therefore are not Markov-perfect.12

Martin-Herrán and Rincón-Zapareto [116] show that under certain conditions a Markov-
perfect Nash equilibrium may achieve Pareto efficiency, and apply these conditions to a
fishery game proposed by Clemhout and Wan [29]. In this game, despite common access,
under certain parameter values, a Markov-perfect Nash equilibrium can be efficient if each
player derives pleasure from other players’ consumption. This is because the positive exter-
nalities of altruism and the negative externalities of common access cancel each other out
under suitable parameter values.

Linear Feedback Strategies in Fishery Problems

In general, it is difficult to obtain closed-form solution for feedback Nash equilibria in fish-
ery games. An exception is the class of games where each player’s problem can be trans-
formed into an optimization problem that is linear in the (transformed) state variable in such

11When the number of players is 1, this model reduces to the case studied by Benhabib and Rustichini [16].
12Another route to achieve efficiency is via the concept of “incentive equilibrium”; see, e.g., [49, 50] and [82].
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a way that the first order condition with respect to the control variable is independent of the
state variable. For example, consider the Levhari–Mirman model [99]. Assume qi

t = ωi
t st

where ωi
t ∈ (0,1). Then the transition equation is ln st+1 = κ ln st + κ ln(1 − ωi

t − ω
j
t ). Con-

sider the transformation of variable yt = ln st . Then both the objective function and the state
dynamic equation become linear in zt

max
∞∑
t=0

βt
[
yt + lnωi

t

]

subject to

yt+1 = κyt + κ ln
(
1 − ωi

t − ω
j
t

)
.

This gives rise to a Bellman equation that is linear in the new state variable z:

Vi(yt ) = max
γ i
t

{
zt + lnωi

t + βVi

(
κzt + κ ln

(
1 − ωi

t − ω
j
t

))}
. (11)

We can conjecture that Vi(z) is linear. Then, assuming symmetry, V ′(y) = A, a constant.
Then we can show

ω = 1 − κβ

2 − κβ

which is identical to (10).
For continuous time fishery models, a pair of linear harvest rules, qi = ωis, i = 1,2,

constitutes a Markov-perfect Nash equilibrium if by a suitable transformation of variables,
the value function is linear in s. To illustrate, suppose the stock of fish is s(t) and its net
growth rate is

ṡ(t) = Bs(t)η − δs(t) − q1(t) − q2(t), B > 0,

where qi is the harvest by country i. Assume 0 < η < 1, δ > 0 and B > 0.
Assume the utility function is

U(qi) = q
1−β

i

1 − β
.

Now consider the very special case where β = η. Transform the state variable

Y ≡ s1−η.

Define the variable ωi(t) as the catch rate per unit of stock. Then

Ẏ = (1 − η)B − (1 − η)(δ + ω1 + ω2)Y. (12)

Country i’s objective function is

∫ ∞

0
e−ρt

[
(ωi(t)s(t))

1−β

1 − β

]
dt.

Then, with β = η, the optimization problem is linear in the state variable

max
ωi

∫ ∞

0
e−ρt

[
(ωi(t))

1−η

1 − η
X(t)

]
dt
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subject to (12).
This implies that ωi(t) is independent of ωj . Conjecture the value function Vi(Y ) =

Ei + KiY , where Ki > 0. The maximized HJB equation is

ρE + ρKY = Y

1 − η

[
(1 − η)K

](η−1)/η + (1 − η)AK + (1 − η)KY
[
δ + 2

[
(1 − η)K

]−1/η]
,

and it is simple to determine K and E.
Consider next the case of a natural growth function that has a finite derivative at s = 0.

Suppose

ṡ(t) = rs(t) − Bs(t)η − q1(t) − q2(t),

where r > 0, B > 0, and η > 1. Use the transformation Z(t) ≡ s(t)1−η . Notice that since
1 − η < 0, higher value of Z means lower value of the fish stock s. As Z → ∞, s → 0. So
we expect the shadow price of X to be negative. Again, writing qi(t) = ωi(t)s(t), we get

Ż = (η − 1)B + (η − 1)(ω1 + ω2 − r)Z.

Assume the utility function

U(qi) = q
1−β

i

1 − β
.

Take the case where β = η. Since η > 1, the utility function is bounded above by zero. Try
the value function Vi(Z) = Di − GiZ where Gi > 0. This means V ′

i (Z) = −Gi < 0 as we
would expect since high Z means low s. The HJB equation for player i is

ρVi(Z) = max
ωi

{
Zω

1−η

i

1 − η
+ V ′

i (Z)
[
(η − 1)B + (η − 1)(ωi + ωj − r)Z

]}
.

This yields

ω
−η

i = (η − 1)Gi > 0.

In conclusion, to have Markov-perfect equilibrium harvesting strategies of the form qi =
ωis, the natural growth function and the utility function must have a common parameter [29,
59, 148, 149].

Koulovatianos [94] proposes a more general model, with two fish species. Their stocks
are u(t) and v(t). The aggregate harvest rates from these stocks are denoted by qu(t) and
qv(t).

The dynamic equations are

u̇(t) = Auu(t)η −
{
δu + Du

[
v(t)

u(t)

]1−η}
u(t) − qu(t),

v̇(t) = Avv(t)η −
{
δv + Dv

[
u(t)

v(t)

]1−η}
v(t) − qv(t).

Assume 0 < η < 1, δu > 0, δv > 0.
The case Du > 0 and Dv > 0 implies competing species. In contrast, if Du < 0 and

Dv > 0, then the two species bear a predator–prey relationship. Consider the linear strategies
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qu(t) = buu(t) and qv(t) = bvv(t). Transform the state variables, so that U ≡ u1−η and
V ≡ v1−η . Then we can write

Ż = A + JZ, (13)

where

Z ≡
[

U
V

]
, A ≡ (1 − η)

[
Au

Av

]
,

J ≡ (1 − η)

[−δu − bu −Du

−Dv −δv − bv

]
.

Assume that det(J ) > 0. Then both eigenvalues are negative. The system has a unique
and stable steady state Zss = −J−1A. Thus,

U ss = (1 − η)[Au(δv + bv) − DuAv]
(δu + bu)(δv + bv) − DuDv

.

Parameter values must be restricted such that U ss and V ss are positive. Koulovatianos [94]
shows that the case where the growth rates are affected by Brownian motions can be ana-
lyzed without much complication.

Oligopoly in Renewable Resource Markets

When players are large enough to influence the market price, we have an oligopolis-
tic fishery. Models of this type include Dockner et al. [44], Jørgensen and Yeung [81],
Benchekroun [4, 5], Fujiwara [55, 56]. Benchekroun [4] shows that an exogenous uni-
lateral restriction in one firm’s harvest can lead to a decrease in the steady-state stock.
Benchekroun [5] shows that an increase in the number of firms results in a lower steady-state
industry output. Another kind of oligopolistic dynamic games involves the rivalry between
a producer of industrial material derived from a virgin source (e.g., paper from cutting down
trees) and a producer of industrial material derived from recycling [61].

Jørgensen and Yeung [81] specify the following stochastic differential equation for a fish
stock s exploited by N oligopolists:

ds =
[
as1/2 − bs −

N∑
i=1

qi

]
dt + σs dW, (14)

where W is a Wiener process, i.e., dW is normally distributed with mean zero and variance
σ 2. Here qi(t) is agent i’s harvest at time t . The parameter b is the death rate.

The total amount of fish caught at time t is

Q(t) =
N∑

i=1

qi(t).

It is assumed that the inverse demand function is P = Q−1/2. Player i’s total cost of catching
qi fish is

C(qi, s) = c√
s
qi .
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Player i seeks to maximize

E0

{∫ ∞

0
e−ρt

[
Pqi − c√

s
qi

]
dt

}
.

Jørgensen and Yeung [81] show that the value function of i is Vi(s) = A
√

s + B , where A

is the unique positive root of the cubic equation

1

4
φA3 + φcA2 +

[
φc2 + 4N2 − 8N + 3

8N2

]
A = (2n − 1)c

4n3

and B = (2N−1)c

4N3 , where φ ≡ ρ + σ 2

8 + b
c
. Assuming symmetry, the Nash equilibrium feed-

back strategies are

q1(s) = q2(s) =
(

(2N − 1)c

4N3

)(
c + A

2

)−2

s.

This equilibrium implies that at any given fish stock, the harvest rate is increasing in the
death rate b and in the variance σ 2, but it is decreasing in the cost parameter c. The model
can be generalized as follows. Consider a more general transition equation

ds =
[
asθ − bs −

N∑
i=1

qi

]
dt + σs dW, where θ ∈ (0,1). (15)

Assume P = Q−(1−θ) and

C(qi, s) = cqi

s1−θ
.

Define the harvesting intensity of firm i as

ωi(t) = qi(t)

s(t)
.

The profit of firm i is

πi = Pqi − cqi

s1−θ
= ωis[

ωi + ∑
j �=i ωj

]1−θ
s1−θ

− cωis

s1−θ

= sθ

[
ωi(

ωi + ∑
j �=i ωj

)1−θ
− cωi

]
. (16)

Perform a transformation of variable by defining Y = sθ ≡ F(s). Then

dY =
[
θa − θY

(
b + 1

2
(1 − θ)σ 2 +

N∑
j=1

ωj

)]
dt + θσY dW. (17)

Thus we have transformed the generalized model into a differential game that is linear in the
state variable. The solution is now straightforward.
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Entry Deterrence

There are situations where the number of fishermen are endogenous, for example, when
incumbents must choose whether to accommodate or to deter entrants. Crabbé and Long [33]
consider a country facing foreign poachers. If poachers take the average catch per vessel as
given, the country, acting as the Stackelberg leader, can deter entry by overfishing, since
a lower stock level raises the harvesting costs of poachers. In contrast, if poachers adopt
Cournot behavior, the Stackelberg leader will find it optimal to accommodate entry. Mason
and Polasky [118] consider a two-period model with an incumbent facing the potential entry
of a rival firm. The incumbent deters entry by increasing its fishing effort, thus driving down
the resource stock to raise the rival’s cost. Social welfare falls as a result of entry deterrence.
There is a parallel between this result and the result on “welfare-reducing enclosure” by
Long [104], who shows that when the welfare of poachers is part of the social welfare,
property owners’ enclosure decision can reduce welfare, even though the final outcome is a
competitive equilibrium.

Why Does Capital Fly from Poor Countries to Rich Countries? Resource-Extraction as a
Metaphor for Corruption

Tornell and Velasco [144] consider a variant of the fish-war model of Levhari and Mir-
man [99], re-interpreting it as a model of corruption by two or more rivalrous powerful
fractions that dominate the local economy. By allowing these fractions to invest their ill-
gotten funds in assets created by advanced economy, they explain capital flows from poor
countries to rich countries. Tornell and Lane [143] explain the idea further. They coin the
term “voracity effect”: an apparently favorable shock, such as increase in the price of the
country’s exported goods, can perversely generate a disproportionate increase in corruption
and have harmful effects on the country’s growth rate. A dilution of the concentration of
power leads to faster growth and lower voracity.

The Basic Model of Voracity

Let us begin with the simplest model. Let S denote a stock of renewable resource. There are
n rival groups (or factions) that exploit this resource. Let Ri(t) be the rate of extraction by
group i at time t . Faction i seeks to maximize its infinite-horizon payoff function

∫ ∞

0

(
σ

σ − 1

)[
Ri(t)

](σ−1)/σ
exp(−δt) dt

subject to

Ṡ(t) = Ak(t) − Ri(t) −
∑
j �=i

Rj (t), A ≥ 0,

where Ri = 0 if S = 0. Here σ > 0 is the intertemporal elasticity of substitution.
Faction i believes that all other factions j �= i use a linear feedback strategy Rj = αjS.

Define

β̃ ≡
∑
j �=i

αj .
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Let Ri(t) = αi(t)S(t). Faction i’s HJB equation is

δVi(k) = max
αi

{(
σ

σ − 1

)
[kαi](σ−1)/σ + V ′

i (k)(A − β̃ − αi)k

}
.

Conjecture the value function

Vi(S) = Bσ

σ − 1
k(σ−1)/σ ,

where B is to be determined. The Nash equilibrium intensity of exploitation is

αN = σδ + (1 − σ)A

n − σ(n − 1)
,

where we assume n − σ(n − 1) > 0.
In a more general version of the model, Tornell and Velasco assume that these rivalrous

factions can invest their funds in a foreign economy that yields a rate of return r > 0. Assume
A > r . Each faction now extracts Ri(t) from the renewable resource and invest it abroad.
Consumption Ci(t) is financed by withdrawing from this privately-owned asset, denoted by
X i . Thus each faction faces two differential equations

Ṡ(t) = AS(t) − Ri(t) −
∑
j �=i

Rj (t),

Ẋi(t) = rXi(t) + Ri(t) − Ci(t).

Assume that there are exogenous bounds on extractions, bLS ≤ Ri ≤ bHS. There are
three symmetric Nash equilibria: (i) an interior equilibrium where all factions use the ex-
traction strategy Ri = βoS where bL < βo < bH , (ii) a pessimistic equilibrium, where they
extract at the maximum rate, Ri = bH S, and (iii) an optimistic equilibrium, Ri = bLS.

For a symmetric interior equilibrium, we conjecture that the value function is of the form

Vi(Xi, S) = Bσ

σ − 1
(Xi + S)(σ−1)/σ .

Then

β0 = A − r

n − 1
> 0

provided that bL < (A − r)/(n − 1) < bH . The equilibrium consumption strategy is

Ci = [
δσ + r(1 − σ)

]
(Xi + S) ≡ B−σ (Xi + S).

This model shows that capital can flow from a poor country dominated by rivalrous fac-
tions to a rich country where the rate of return is lower. Each faction knows that while the
social of return of holding asset in their home country is A, its own private rate of return is
only A− (n− 1)βo, for its (n− 1) rivals appropriate part of the common return. Tornell and
Lane [143] point out that the interior equilibrium exhibits “the voracity effect”: an increase
in A will lead to an increase in the equilibrium βo. In other words, if the poor country ex-
periences a technical progress or an improvement in its terms of trade, the rivalrous factions
will appropriate more than proportionately, resulting in a greater rate of depletion of the
country’s productive asset.
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In the pessimistic Nash equilibrium, extraction is at the upper bound because each player
has the self-fulfilling belief that all factions extract as much as they can. In this pessimistic
scenario, the value function is

Vi(Xi, S) = Bσ

σ − 1
(Xi + qS)(σ−1)/σ ,

where q and B are to be determined. One can show that

q = bH

A − r + nbH

< 1.

At the pessimistic Nash equilibrium, the extraction strategy is Ri = bH S and the consump-
tion strategy is

Ci = [
δσ + r(1 − σ)

]
(Xi + qS) ≡ B−σ (Xi + qS).

Extensions of the Model of Voracity

The original authors of the capital flight model thought that including extraction costs or
adjustment costs “would add nothing to the insights provided by the model” [143]. That be-
lief turns out to be wrong. Later contributors Sorger [140], and Long and Sorger [110] show
that modeling of extraction costs yield important additional insights. Long and Sorger [110]
prove that an increase in appropriation costs reduces the growth rate of the common as-
set. This is a striking result: at a corruption equilibrium, higher costs of money laundering
correspond to lower economic growth.

Long and Sorger [110] add the assumption that the agents derive utility not only from
consumption but also from wealth.13 They do not rely on iso-elastic utility functions. They
find that an increase in the degree of heterogeneity of cost leads to poorer growth perfor-
mance, and under certain conditions, a higher elasticity of substitution between wealth and
consumption can lead to more voracious extraction, and thus slower the growth rate of the
productive asset.

Both Tornell and his co-authors and Long and Sorger share the assumption that the utility
of the players depends on their absolute consumption levels and/or absolute wealth levels.
That assumption has recently been re-examined because of mounting empirical evidence
that individual utility is affected by relative consumption (or relative income): a person’s
level of satisfaction depends on the comparison of his consumption level with that of other
members of his reference group. Thus it becomes important to ask: If agents exploiting a
common property resource care about their relative consumption, would social welfare and
the growth rate of the public asset be more adversely affected? This question is taken up by
Long and Wang [113]. Consider a lake shared by a number of municipalities, or provinces.
Assume the reward to the administrator of each province is proportional to a relative per-
formance criterion (e.g., relative employment levels or relative GDP growth rates). Would
these government officials have stronger incentives to allow local businesses to pollute the
lake? Long and Wang [113] explore the effect of the concern for relative performance on the
tragedy of the commons, both in the sense of common access natural resources, and in the
sense of rent-seeking fiscal appropriations. They also extend the model to the case where

13Wealth is a vehicle for achieving social status, see [30].
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agents differ with respect to some characteristics. Two sources of heterogeneity are consid-
ered: the degree of status-consciousness and the level of appropriation costs. The authors
find that social welfare decreases in the degree of heterogeneity in terms of status-seeking,
but increases in the degree of heterogeneity in terms of appropriation costs.

New Directions

An interesting extension of dynamic games in natural resource economics is the study of
coalition formation in the management of common property resources. For example, in a
multi-country version of the fish war model of Levhari and Mirman, one can investigate
the possible gainfulness of forming a coalition. A coalition is said to be stable in the sense
of d’Aspremont et al. [37] if it is both internally stable (i.e., a member cannot gain from
defection, given that all other players maintain their member/non-member status) and ex-
ternally stable (i.e., no outsider wants to become member). This type of stability has been
termed “myopic stability” [40]. An alternative assumption is the farsightedness assumption
(e.g., [41]). It is important to explore dynamic games under various possible coalition struc-
tures under this assumption.14

Another area of research is a dynamic game analysis of the endogenous evolution of
property right regimes. Recall that Ploeg [151] assumes that as the aggregate stock of pri-
vate capital increases, the property rights of natural resources will be strengthened. It would
be desirable to replace that assumption by an analysis of a process that leads to stronger
enforcement of property rights. Such a process may be of a political-economy nature (e.g.,
by voting and lobbying for legislative changes).15 The development of social norms to over-
come the tragedy of the commons may also be studied as a differential game, along the line
proposed by Benchekroun and Long [10].

Dynamic analysis of the tragedy of the commons has typically assumed that all players
begin the game at the same time, and have a common time horizon. An interesting area of
research is dynamic games of resource extraction involving forward-looking overlapping
generations where later generations may or may not care about the welfare of earlier ones.16

Finally, games of common property resources between countries having different
philosophies have not been explored. In the real world, countries are heterogeneous not
only in terms of technology and endowments, but also in terms of philosophical outlook.
What happens if one country has the utilitarian objective while the other country has the
maximin objective, or a linear combination of the two objectives?17
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14For some preliminary steps in this direction, see [23] and [131].
15Leonard and Long [98] explore these issues in an overlapping-generation model.
16The second case involves an “ancestor-insensitive welfare function,” a term coined by Asheim [3]. A sketch
of games involving overlapping generations can be found in [105].
17For infinite-horizon optimization models using a linear combination of the utilitarian objective and the
maximin objective, see [1] and [52].
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