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Tamer Başar · Quanyan Zhu

Published online: 14 September 2010
© Springer-Verlag 2010

Abstract The price of anarchy (PoA) has been widely used in static games to quantify the
loss of efficiency due to noncooperation. Here, we extend this concept to a general differ-
ential games framework. In addition, we introduce the price of information (PoI) to charac-
terize comparative game performances under different information structures, as well as the
price of cooperation to capture the extent of benefit or loss a player accrues as a result of
altruistic behavior. We further characterize PoA and PoI for a class of scalar linear quadratic
differential games under open-loop and closed-loop feedback information structures. We
also obtain some explicit bounds on these indices in a large population regime.

Keywords Differential games · Nash equilibria · Efficiency · Price of anarchy · Price of
information · Price of cooperation · Linear-quadratic games · Information structures

Introduction

It is well known that the non-cooperative Nash equilibrium in nonzero-sum games is gen-
erally inefficient [11], which means that it would be possible for all players to do better in
terms of attaining higher utilities or lower costs (than they would attain under Nash equi-
libria, even if the equilibrium is unique) through a cooperative behavior. This is true for
static deterministic games, and naturally also for stochastic games as well as dynamic and
differential games. In these latter classes of games, one could bring up additional issues with
regard to Nash equilibria beyond efficiency or lack thereof, such as whether an increase in
information to one player (or all, or a subset of the players) would be advantageous to that
player (or groups of players), in terms of attaining higher utilities or lower costs, or whether
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acquiring more information would be undesirable for a player. In the special class of games
where all players have the same utility function or cost function (that is, team problems) and
what is sought is the global maximum or global minimum of these functions, the answer to
such a query is clean, which is that additional information (defined as expansion of sigma
fields) can never hurt. The same is true for the special class of zero-sum games. In sto-
chastic games, or dynamic and differential games which are not team problems or zero-sum
games, however, the answer is not that clean, and one could encounter quite surprising and
at the outset counter-intuitive results. Perhaps the first demonstration of this was reported
in [5] and [8], where two classes of two-player stochastic static games were considered, one
a linear-quadratic-Gaussian (LQG) model and the other one a stochastic Cournot duopoly
model, both of which admit unique Nash equilibria. It was shown that for the LQG model
better information (on some stochastic variables) for only one player leads to lower average
Nash equilibrium costs for both players, but in the duopoly model only the player whose in-
formation is improved benefits while the other one hurts (in the sense that his average Nash
equilibrium cost increases). Another way of comparison would be in terms of the relative
values of the average Nash equilibrium costs attained by the players, when one player has
informational advantage over the other. It was again shown in [5] that, in an otherwise com-
pletely symmetric game, the player who has better information attains higher cost than the
other player in the LQG model (a counter-intuitive result), whereas he attains lower cost in
the duopoly model (an intuitive result). Several manifestations of these conclusions can be
seen also in dynamic and differential games; for example, time-consistent open-loop Nash
equilibrium is not necessarily inferior to the strongly time-consistent closed-loop feedback
Nash equilibrium [9].

Now coming back to inefficiency of Nash equilibrium in a fixed nonzero-sum game, one
question of interest is the exploration of the extent of this inefficiency, that is, how far off is
a Nash equilibrium from the socially optimal solution, which is obtained as the maximum
of the sum of the utilities of the players, or some convex combination of the utilities (or
minimum in the case of cost functions). The notion of the price of anarchy (PoA) was
introduced in [19] as a quantification of this offset, as a utility ratio between the worst
possible Nash solution (among multiple Nash equilibria) and the social optimum. In a way,
this index serves to quantify the loss of efficiency due to competition. It has been shown that
in routing games and resource allocation games (see, [19] and [16]), PoA is bounded by a
constant, allowing agents to achieve some level of efficiency despite being suboptimal.

The idea of quantifying the gap between social optimality and game equilibrium solu-
tions sparked many follow-up works in that same vein. In [20], the price of simplicity has
been introduced for a pricing game in communication networks as the ratio between the rev-
enue collected from a flat pricing rule and the maximum possible revenue. In [15], the price
of uncertainty has been introduced to measure the relative payoff of an expert user of a secu-
rity game under complete information to the one under incomplete information. In [22], the
price of leadership has been proposed as a measure of comparison of utilities in a power con-
trol game between Nash equilibria and Stackelberg solutions. In all of these works, primarily
communication networks have been used as a backdrop application domain, be it routing,
resource allocation, power control, or security. Game-theoretical methods along with Nash
equilibrium have found many applications in communication networks, with some selected
recent references being [1–3, 7, 16–18, 23].

In this paper, we discuss several indices which quantify variations or offsets in the payoff
values or costs attained under Nash equilibria in the context of differential games (DGs). We
first extend the notion of PoA to DGs, which heretofore has been primarily limited to static
continuous kernel games. We provide a characterization of PoA for a class of scalar linear-
quadratic (LQ) DGs, and quantify the efficiency loss in the long run when the players behave
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non-cooperatively under the Nash equilibrium concept. We consider both open-loop (OL)
and closed-loop (CL) information structures (ISs). We show that for the class of scalar LQ
DGs with CL IS using the strongly time-consistent CL feedback Nash equilibrium, the PoA
has some appealing computable upper bounds, which can further be approximated when the
number of players is sufficiently large (that is, the large population regime), whereas, under
the OL IS, it is possible to obtain an expression for the PoA in closed form.

As mentioned earlier, going from static to dynamic (differential) games brings in the
possibility of various ISs, which add richness to the (Nash equilibrium) solution of a game.
Different ISs (generally) yield different equilibrium solutions, and hence IS is a crucial
factor in the investigation of PoA in DGs. Motivated by this, we introduce another index, the
price of information (PoI), which is a result of the comparison of the equilibrium utilities
or costs under different ISs. For the class of scalar LQ DGs above, we show that the PoI
between the feedback and open-loop ISs is shown to be bounded from below by

√
2/2

and from above by
√

2, again in the large population regime. Finally, motivated by some
recent results reported in [4] on the level of cooperation between players in a routing game,
captured by the degree of willingness of a player to place partial weight on other players’
utilities in his utility function, we introduce the price of cooperation (PoC) as a measure of
benefit or loss to a player on his base Nash equilibrium payoff due to cooperation.

The structure of the paper is as follows. In section General Problem Formulation, we in-
troduce a general N -player DG framework with different ISs, and define in this context the
indices, PoA, PoI, and PoC. In section Scalar LQ Feedback Differential Games, we investi-
gate the PoA for a class of scalar LQ feedback DGs. In section Open-Loop LQ Differential
Games, we study the LQ DGs under open-loop IS, and in section Price of Information (PoI),
we establish bounds on the PoI. We conclude and identify future directions in section Appli-
cations and Illustrations. An earlier version of some of the results in this paper can be found
in the recent conference paper [21].

General Problem Formulation

In this section, we first introduce the general nonzero-sum differential games framework
along with the Nash equilibrium solution, and then introduce the three indices: prices of
anarchy, information, and cooperation.

Let N = {1,2, . . . ,N} be the set of players, and [0, T 〉1 be the time interval of interest.
At each time instant t ∈ [0, T 〉, each player, say Player i, chooses an mi -dimensional control
value (action) ui(t) from his set of feasible control values Ui ⊂ R

mi , where we also make the
standard assumption that as a function of t the control function ui(·) is piecewise continuous
on [0, T 〉. The state variable x is of dimension n, and takes values in R

n; as a function of
time, t , we assume x(·) to be piecewise continuously differentiable on [0, T 〉, and evolving
according to the differential equation:

ẋ(t) = f
(
x(t), u1(t), . . . , uN(t), t

)
, x(0) = x0,

where x0 ∈ R is the initial value of the state and the system dynamics f (·) : Ω → R
n is

defined on the set

Ω = {
(x,u1, . . . , uN , t)|x ∈ R

n, t ∈ [0, T 〉, ui ∈ Ui, i ∈ N
}
,

1The notation “〉” is introduced to capture two cases: finite horizon when T is finite (in which case we have
[0, T ]), and infinite horizon when T is infinite (in which case we have [0,∞)).
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as a jointly piecewise continuous function which is also Lipschitz in x, and also possibly
Lipschitz in the ui ’s, depending on whether the underlying information structure (IS) is an
open loop of closed loop feedback.

We will consider two different ISs: Open loop (OL), where the controls are just functions
of time, t (and also of initial state x0 which, however, is assumed to be fixed and a known
parameter of the game), and closed-loop state-feedback, where the controls are allowed to
be functions of current value of the state and of time, that is, for Player i, ui(t) = γi(t;x(t)).
In the latter case, γi : [0, T 〉×R

n → Ui is known as the policy variable (strategy) of Player i,
which is a mapping from the set of information available to the player to his control (action)
set.2 We require each γi(t; ·) to be Lipschitz in x, in addition to being jointly piecewise
continuous in its arguments, and denote the class of all such mappings by Γi . We further
require that f be Lipschitz not only in x but also in {u1, . . . , uN }, so that the differential
equation generating the state,

ẋ(t) = f
(
x(t), γ1

(
t;x(t)

)
, . . . , γN

(
t;x(t)

)
, t

)
, x(0) = x0,

admits a unique piecewise continuously differentiable solution for each γi ∈ Γi, i ∈ N .
Clearly, when a particular γi does not depend on x (such as the OL IS), then it would be
captured as a special case, and hence to capture this also notationally, we will write γi ∈ Γi

as γ
η

i ∈ Γ
η

i , where η stands for the underlying IS (which for the discussion in this paper is
either OL or CL SF).3

Each player i ∈ N is a cost-minimizer, with the objective function for Player i, as defined
on the state and action spaces, being given by

Li(u) =
∫ T

0
Fi

(
x(t), u1(t), . . . , uN(t), t

)
dt + Si

(
x(T )

)

when T < ∞, and

Li(u) =
∫ ∞

0
Fi

(
x(t), u1(t), . . . , uN(t), t

)
dt

when T = ∞, where u := {u1, . . . , uN }. In the expressions above, for each i ∈ N , the func-
tion Fi : Ω → R is Player i’s instantaneous (running) cost function, and in the first ex-
pression Si : R

n → R is the terminal value function. Substituting ui(t) = γi(t;x(t)) in the
above, we arrive at the normal or strategic form of the DG, where now the dependence
in Li is on γi ’s instead of ui ’s. Let us denote this new cost function representation by
Ji , for Player i, which we write more explicitly (showing its argument) as Ji(γ

η), where
γ η := {γ η

1 , . . . , γ
η

N } ∈ Γ η := Γ
η

1 × · · · × Γ
η

N , where again this covers also the OL IS as a
special case; we will occasionally drop the superscript η when the IS is clear from context.

Let γ
η

−i denote the collection of policies of all players except Player i, i.e., γ
η

−i =
(γ

η

1 , . . . , γ
η

i−1, γ
η

i+1, . . . , γ
η

N), in a game with IS η. If γ
η

−i is fixed as γ
η∗
−i , Player i is faced

2One can introduce more general ISs, such as those that involve memory, but here we will restrict the discus-
sion to only OL and CL state-feedback (SF) structures so as not to encounter informational non-uniqueness
of Nash equilibria [9].
3Even though, in general, different players can have different ISs, we will consider here only the case when
the IS in the entire DG is either OL or CL SF. Otherwise, the derivation of Nash equilibrium becomes com-
plicated, and one has to introduce small noise robustness in order to eliminate informational non-uniqueness,
even in LQ DGs [6, 9]. At the conceptual level, however, the analysis in this paper and the indices introduced
equally apply to the mixed IS case.



54 Dyn Games Appl (2011) 1: 50–73

with the dynamic optimization (optimal control) problem:4

(OC(i)) min
γi∈Γ

η
i

Ji

(
γi, γ

η∗
−i

) :=
∫ T

0
Fi

(
x, γi(η), γ

η∗
−i (η), t

)
dt + Si

(
x(T )

)
(1)

s.t. ẋ(t) = f
(
x, γi(η), γ

η∗
−i (η), t

)
, x(0) = x0.

In the case of infinite horizon, the problem remains the same with Si ≡ 0 and T = ∞. If
we denote the solution to OC(i) by γ

η

i

∗, and carry out the optimization for each i, then what
we have is a Nash equilibrium compatible with the IS that defines the DG. This is made
precise below.

Definition 1 (η-Nash equilibrium) For a DG with IS η, the policy N -tuple {γ η

i

∗
, i ∈ N } =:

γ η∗ is an η-Nash equilibrium if, for each i ∈ N , γ
η∗
i solves the optimal control problem

(OC(i)). Let Γ η∗ be the set of all η-Nash equilibria, as a subset of Γ η .

Now, for the CL IS case, one has to further refine the Nash equilibrium, in order to
eliminate informational non-uniqueness. Consider a family of DGs structured the same way,
but defined over the time interval [s, T 〉, where s > 0 is the parameter that identifies different
elements of the family. We say that an η-Nash equilibrium, when η is the CL IS, is strongly
time consistent if its restriction to [s, T 〉 is also an η-Nash equilibrium, and this being true for
each s and all x(s). Such Nash equilibria could also be called sub-game perfect equilibria,
by direct analogy with a similar concept in finite games. We will henceforth consider only
strongly time consistent Nash equilibria when η is CL, but will suppress that refinement in
the development below.

Let J
η∗
i , i ∈ N , denote the achieved values of the objective functions of the players under

a particular η-Nash equilibrium γ η∗, and a corresponding total cost achieved (as a convex
combination of the individual costs) be given by J η∗

μ = ∑
i∈N μiJ

η∗
i , where μi is a positive

weighting factor on Player i’s cost, satisfying the normalization condition
∑

i∈N μi = 1.
We assume, without any loss of generality, that J

η∗
i > 0 for all i ∈ N , and hence a fortiori

J η∗
μ > 0.

Now as a benchmark, let us consider the case of full coordination where the players
agree on minimizing a single objective function which is a convex combination of the indi-
vidual cost functions. We may call this also a socially optimal solution. The corresponding
underlying optimization problem is the optimal control problem:5

(COC) min
γ∈Γ

N∑

i=1

μi

{∫ T

0
Fi

(
x(t), γ (η), t

)
dt + Si

(
x(T )

)
}

s.t. ẋ(t) = f
(
x, γ (η), t

)
, x(0) = x0,

where the optimization could also be carried out with respect to control values, u, that is,
in an open-loop fashion, since the problem is deterministic and also is not strategic. Hence,
the optimal value of this optimal control problem is independent of the IS, which we denote
by J ◦

μ , and the corresponding (open-loop) optimal control by u◦ = [u◦
1, . . . , u

◦
N ]. Note that

we necessarily have 0 < J ◦
μ ≤ J η∗

μ , where J η∗
μ is under any Nash equilibrium solution out

of Γ η∗.

4We use “OC(i)” to denote Player i’s individual optimal control problem.
5The acronym “COC” stands for “Centralized Optimal Control”.
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Definition 2 (Price of Anarchy) Consider an N -person DG as above and its associated
optimal control problem (COC) with J ◦

μ > 0. The price of anarchy for the DG is6

ρ
η

N,μ,T = max
γ η∗∈Γ η∗ J η∗

μ /J ◦
μ, (2)

i.e., the worst-case ratio of the total game cost to the optimum social cost.

In addition to its dependence on the cost functions, PoA depends on the number of players
in the game, the IS, the weights on individual players, and the time horizon. Note that the
PoA as defined in (2) is lower-bounded by 1.

Definition 3 (Price of Information (PoI)) Let η1 and η2 be two ISs. Consider two N -person
DGs which differ only in terms of their ISs, with game 1 having IS η1, and game 2 hav-
ing η2. Let the values of a particular μ convex combination of the objective functions be
J η1

μ
∗ and J η2

μ
∗, respectively, achieved under the Nash equilibria γ η1 ∗ and γ η2 ∗. The price of

information between the two ISs (under cost minimization) is given by

χη2
η1

(μ) = max
γ

η∗
2 ∈Γ

η∗
2

J
η∗

2
μ / max

γ
η∗

1 ∈Γ
η∗

1

J
η∗

1
μ . (3)

The PoI compares the worst-case costs under two different ISs for the same convex com-
bination, and quantifies the relative loss or gain when the DG is played under a different
IS. Clearly, when χη2

η1
(μ) < 1, the IS η2 is superior to its counterpart η1. The connection

between PoI and PoA can be captured by χη2
η1

(μ) = ρ
η2
N,μ,T /ρ

η1
N,μ,T .

Before introducing the third index (the price of cooperation), let us define another class
of DGs, which is an intermediate case between full cooperation and full non-cooperation.
Consider the case where Player i, even though his cost function is Ji , adopts an altruistic
mode and minimizes instead a cost function that places some weight on other players’ costs.
Let λi := {λj

i , j ∈ N } be a set of nonnegative parameters adding up to 1,
∑

j∈N λ
j

i = 1. Let

J̃i (γ
η;λi), i ∈ N , be defined by

J̃i

(
γ η;λi

) :=
∑

j∈N

λ
j

i Jj

(
γ η

)
, i ∈ N .

Consider the η IS DG with cost functions J̃ ’s, and let Γ̃ η be the set of all its η-Nash equilib-
ria. For γ̃ η ∈ Γ̃ η , Player i achieves an actual cost of Ji(γ̃

η), which may be better (lower) or
worse (higher) than J

η∗
i defined earlier. Note that if λ

j

i = μi for all i, j ∈ N , then all players
have the same cost function, and every η-Nash equilibrium solution of the altruistic game is
a solution to COC, assuming that person-by-person optimal solutions of COC are globally
optimal. Hence, in this limiting case we have full cooperation. This now brings us to the
third index which is keyed to individual players.

Definition 4 (Price of Cooperation (PoC)) Consider an N-player DG with a fixed IS η, and
with a fixed set of cooperation vectors λ := {λi, i ∈ N }. Let J̃i , i ∈ N , and Γ̃ η be as defined

6If the maximum below does not exist, then it is replaced by supremum in the definition of PoA.
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above, and Γ η be the set of all Nash equilibria of the original game. Then, the price of
cooperation for Player i under the cooperation scheme λ is given by

ν
η

i (λ) = max
γ∈Γ̃ η

Ji(γ )/ max
γ∈Γ η

Ji(γ ). (4)

As indicated earlier, if λi = μ for all i, where μ = {μi, i ∈ N } as in PoA, then every
NE of {J̃i , i ∈ N } is a person-by-person optimal solution of the COC with cost function Jμ,
which would also be globally optimal under some appropriate convexity conditions. If γ 0 is
one such solution, minimizing Jμ, then the PoC is given by

ν
η

i (μ) = Ji(γ )/ max
γ∈Γ η

Ji(γ ),

which can be viewed as the reciprocal of individualized PoA, where the latter is a measure
of the loss or gain an individual player incurs on his individual cost when he (along with
other players) plays the worst NE strategy as opposed to the globally minimizing strategy
(again along with other players).

Scalar LQ Feedback Differential Games

The analysis of the price of anarchy is complex for general DGs as there often exists more
than one Nash equilibrium, which shows strong dependence on the underlying IS. For spe-
cific game structures, however, its analysis may be tractable provided that we avoid infor-
mational non-uniqueness. One such class is scalar linear quadratic DGs with state feedback
IS, which is what we focus on in this section. These games also enjoy wide applications in
economics and communication networks; see, [2, 10]. We first state our model and recall
some important relevant results on LQ feedback DGs; for details, see [9, 14].

Game Model

As a special case of the class of DGs considered in the previous section, consider the infinite-
horizon scalar N -person LQ DGs, with quadratic cost function

Li(u) =
∫ ∞

0

(
qix

2(t) + riu
2
i (t)

)
dt, i ∈ N , (5)

ẋ(t) = ax(t) +
N∑

i=1

biui(t), x(0) = x0, (6)

where qi > 0, ri > 0, x0 �= 0, bi �= 0 are all scalar quantities. Let b := [b1, . . . , bN ]. We
are interested in strongly time-consistent state-feedback (SF) Nash equilibrium (NE), where
further the NE policies are required to be stationary (that is, time invariant). We will refer to
such equilibria in short as Feedback NE. The following theorem provides their characteriza-
tion.

Theorem 1 (Feedback NE, [9, 14]) Let {ki, i ∈ N } solve the set of coupled algebraic Riccati
equations

2

(

a −
N∑

j=1

sj kj

)

ki + qi + sik
2
i = 0, i ∈ N , (7)
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satisfying the stability condition a − ∑N

i=1 siki < 0, where si := b2
i /ri . Then, the N -tuple of

policies γ ∗
i (x) = − bi

ri
kix, i ∈ N , constitutes a feedback NE, with the corresponding cost for

Player i being J ∗
i = kix

2
0 . Furthermore, the positively weighed total cost is J ∗

μ = k̄x2
0 , where

k̄ = ∑N

i=1 μiki .
If the set of coupled algebraic Riccati equations does not admit a solution which is also

stabilizing, then the DG does not have a feedback NE.

The main challenge in computing the feedback NE solution for this DG is that (7) is a
nonlinear coupled system of equations. The fact that we have a scalar problem alleviates the
difficulty somewhat, since it is possible to turn it into a linear problem through a change of
variables, as outlined in [12, 13]. Let σi = siqi , σmax = maxi σi , pi = siki, i = 1, . . . ,N , and

λ =
N∑

i=1

pi − a. (8)

Multiplying (7) by si , we rewrite it as

p2
i − 2λpi + σi = 0, i = 1, . . . ,N. (9)

Let Ω ⊂ N be an index set, Ω−i = Ω\{i}, and nΩ = |Ω|. For every Ω �= ∅, we have (after
some manipulations)

∏

j∈Ω

pjλ = 1

2nΩ − 1

{∑

i∈Ω

σi

∏

j∈Ω−i

pj −
∑

i /∈Ω

∏

j∈Ω

pjpi + a
∏

j∈Ω

pj

}
. (10)

When Ω = ∅, we define

∏

j∈Ω

pjλ := λ =
N∑

j=1

pj − a. (11)

Hence, for every Ω , we have an equation in the form of either (10) or (11). Let p =
[1,p1,p2, . . . , pN,p1p2, . . . , p1pN,p2p3, . . . , pN−1pN, . . . ,

∏N

i=1 pi]T . We can write (10)
and (11) as

M̃p = λp. (12)

Let p := [1, k1, k2, . . . , kN , k1k2, . . . , k1kN, k2k3, . . . , kN−1kN, . . . ,
∏N

i=1 ki]T and D =
diag{1, s1, s2, . . . , sN , s1s2, . . . , s1sN , s2s3, . . . , sN−1sN , . . . ,

∏N

i=1 si}. Hence, we can rewrite
p = Dk and (12) as

Mk = λk, where M := D−1M̃D. (13)

Equation (13) is an eigenvalue problem for each index set Ω corresponding to a row enu-
merated starting from the empty set. It has at maximum 2N distinct eigenvalues and 2N

eigenvectors. The vector formed by the second entry to the (N + 1)st entry of the eigenvec-
tors yields the solution to (7) when the first entry of the vector is normalized to 1 and they
satisfy the stability condition of Theorem 1. This leads to:

Theorem 2 (Feedback NE Computation, [14]) Suppose M is a nondefective matrix with
distinct eigenvalues. Let (λ,k) be an eigenvalue–eigenvector pair such that λ ∈ R+ and
λ > σmax. Then, a feedback NE γ ∗

i (x) = − bi

ri
kix, i ∈ N , is yielded by k∗ = 1T k provided



58 Dyn Games Appl (2011) 1: 50–73

that the resulting solution is stabilizing, where 1 = [0,1, . . . ,1,0, . . . ,0]T is a vector whose
2nd to (N + 1)st entries are 1s.

Theorem 3 (Uniqueness of Feedback NE) Let p̄ := ∑
j∈N pj ,p−i := ∑

j∈N ,j �=i pj . There
exists a unique feedback NE for the LQ DG described by (5) and (6) under either one of the
following two conditions:

(i) N is sufficiently large such that p−i > a,∀i, or (ii) a = 0.
Furthermore, the solutions to the coupled algebraic Riccati equations that characterize

the feedback NE are of the following forms under the corresponding conditions above:

(s-i) pi = (p̄ − a) − √
(p̄ − a)2 − σi ;

(s-ii) pi = p̄ − √
p̄2 − σi , where

p̄ − a = 1

N − 1

(
N∑

i=1

√
(p̄ − a)2 − σi + a

)

. (14)

Moreover, the stability condition a − ∑N

i=1 siki < 0 is satisfied, and hence the FB NE is
stabilizing.

Proof From (9), we obtain

p2
i + 2(p−i − a)pi − σi = 0, (15)

which admits the solutions:

pi = (a − p−i ) ±
√

(a − p−i )2 + σi. (16)

Since we need pi > 0, we retain the one with “+” sign. By rearranging the positive solution
of (16), we arrive at

(p̄ − a)2 = (p−i − a)2 + σi, (17)

and therefore, in terms of p̄, we have

pi = (p̄ − a) ±
√

(p̄ − a)2 − σi. (18)

Under condition (i), we have pi − p̄ + a < 0, hence we obtain the unique solution (s-i).
Under scenario (ii), (18) reduces to pi = p̄ ± √

p̄2 − σi. Since, pi < p̄, we again obtain the
unique solution (s-ii).

By summing over (18), we have a fixed point equation (14). Let

P̄ (p̄) := 1

N − 1

(
N∑

i=1

√
(p̄ − a)2 − σi + a

)

− (p̄ − a).

Its derivative is given by

dP̄

dp̄
= −1 + p̄ − a

N − 1

(
N∑

i=1

1
√

(a − p̄)2 − σi

)

.
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Since σi ≥ 0 and p̄ − a > 0, it follows that

dP̄

dp̄
≥ −1 + p̄ − a

N − 1

(
N

(p̄ − a)

)
(19)

= 1

N − 1
> 0, for N ≥ 2. (20)

This says that P̄ is a monotonically increasing function, and hence the solution to P̄ = 0 is
unique. Hence, under (i) or (ii), there exists a unique feedback NE.

The fact that the solution is stabilizing follows directly from (7), where the first term has
to be negative because the second and third terms are positive. �

Team Model

When players form a team to achieve an optimal social objective, a specific total cost is
minimized. Let q̄μ = ∑N

i=1 μiqi , Rμ = diag{μ1r1, . . . ,μNrN }, and consider

(FOC) min
u(t)

∫ ∞

0

(
q̄μx2(t) + uT (t)Rμu(t)

)
dt

s.t. ẋ(t) = ax(t) +
N∑

i=1

biui(t), x(0) = x0 �= 0.

The solution to this optimal control problem is standard, and is given below for future
reference (where we suppress the dependence of q̄ and R on μ).

Theorem 4 (Centralized Optimization) The optimal control problem (FOC) admits a
unique feedback solution which is further stabilizing. The optimal policies are

γ ◦
i (x) = − bi

μiri

k̂μx, k̂μ := a +
√

a2 + q̄b̄

b̄
, (21)

with b̄ := ∑N

i=1(b
2
i /μiri), and the minimum cost is J ◦

μ = k̂μx2
0 .

The optimal control can also be expressed in open-loop form as

u◦
i = − bi

μiri

k̂μΦ(t,0)x0,

where Φ(t,0) is the unique solution to

Φ̇(t,0) =
(

a −
N∑

i=1

b2
i

μiri

k̂μ

)

Φ(t,0), Φ(0,0) = 1.

Price of Anarchy (PoA)

Here, we provide a closed-form expression for the PoA in the feedback LQ DG, where we
make the natural assumption that x0 �= 0, as otherwise the costs are all zero.

Theorem 5 The PoA of the LQ feedback DG described by (5) and (6) is characterized by
the following:
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(i) Given a weight vector μ, the PoA ρμ is equal to

ρFB
μ = max

k∈K

[
μT k

]
/k̂, (22)

where μ = [0,μT ,0, . . . ,0]T and K is the set of all eigenvectors of the matrix M.
(ii) Suppose μi = μ̄i := si/

∑N

j=1 sj , i ∈ N . Then,

ρFB
μ̄ ≤ [

�(M) + a
]/ N∑

i=1

si k̂,

where �(M) is the spectral radius of M.
(iii) Let μs

max = maxi∈N μi/si . Given a weight vector μ that satisfies
∑N

i=1 μi = 1, the PoA
is bounded by

ρFB
μ ≤ μs

max

(
�(M) + a

)
/k̂. (23)

Proof The proof is a direct application of the results in Theorem 1 and Theorem 4. PoA
is the worst-case ratio of the game cost under feedback NE to the optimum social cost as
defined in (2). Under the feedback IS, an LQ DG has

ρFB
μ = max

k∗

∑N

i=1 μik
∗
i (x0)

2

k̂(x0)2
= max

k∈K

μT k

k̂
.

This leads to statement (i). The price of anarchy under μ̄ is

ρFB
μ̄ = max

k

∑N

i=1 μ̄iki

k̂
= max

k

siki
∑N

i=1 si k̂

= max
λ

λ + a
∑N

i=1 si k̂
. (24)

The last equality is due to (8). Hence, by taking the largest eigenvalue, we obtain (ii). The
equality is achieved when �(M) is an eigenvalue in the eigenvalue–eigenvector pair that
yields the equilibrium from Theorem 2. For an arbitrarily picked μ, (22) yields

ρFB
μ̄ = max

k

∑N

i=1
μi

si
siki

k̂
≤ max

k

us
max

∑N

i=1 siki

k̂

= max
λ

us
max(λ + a)

k̂
≤ us

max(�(M) + a)

k̂
. (25)

Using (8) and taking the worst case, we obtain statement (iii). Since

max
i∈N

μ̄i

si

= 1
∑N

j=1 sj

,

the last inequality is achieved when μ = μ̄. �

The next corollary further characterizes the bound on PoA.
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Corollary 1 The following follow from Theorem 5:

(i) Given a μ and a �= 0, PoA is bounded above by

ρFB
μ ≤

(
1 + 1

2a
(N + σmax − 1)

)
s•, (26)

where σmax = maxi∈N σi , and

s• :=
N∑

i=1

si

minj∈N sj

.

The upper-bound is independent of μ.
(ii) If a = 0, PoA is bounded above by

ρFB
μ ≤ μs

max√
q̄
√

μs
min

√
N(N + σmax − 1), (27)

where μs
min = mini∈N μi/si .

Proof The matrices M = [mij ] and M̃ = [m̃ij ], i, j = 1, . . . ,2N, share the same set of eigen-
values. From Gersgorin theorem, we can obtain

�(M̃) ≤ min

{

max
i

2N∑

j=1

|m̃ij |,max
j

2N∑

i=1

|m̃ij |
}

≤ max
i

2N∑

j=1

|m̃ij |.

From (10) and (11), the absolute row sum RSk, k = 1, . . . ,2N , can easily be evaluated by
letting pi = 1:

RSk =
[
a +

∑

i∈Ω

σi + (N − nΩ)

]/
[2nΩ − 1],

where k is the row index corresponding to the set Ω . When Ω = ∅, we let RS1 = N + a.
From (23),

ρFB
μ ≤ [

�(M) + a
]/(

k̂/μs
max

)
.

The numerator is upper-bounded by (skipping some steps):

�(M) + a ≤ max

{
max

1≤nΩ≤N

(2a + σmax − 1)nΩ + N

2nΩ − 1
,2a + N − 1

}

≤ max{2a + N + σmax − 1,2a + N − 1}
≤ 2a + N + σmax − 1. (28)

The second inequality holds because the quantity

(2a + σmax − 1)nΩ + N

2nΩ − 1
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increases with nΩ . The denominator has a lower bound:

2a

b̄μs
max

≥ 2a
∑N

i=1

( maxi∈N μi/si
μi

) b2
i

ri

≥ 2a
∑N

i=1
si

mini∈N si

= 2a

s• . (29)

The last inequality is due to maxi μi/si ≤ maxi μi maxi
1
si

. Combining (28) and (29), we
have, for a �= 0,

ρFB
μ ≤

(
1 + 1

2a
(N + σmax − 1)

)
s•.

When a = 0,

k̂ =
√

q̄/b̄ =
√

q̄
∑N

i=1
si
μi

≥
√

q̄μs
min√

N
.

Using this together with (28), we arrive at the inequality (27). �

The upper bound on price of anarchy in the preceding corollary provides a worst case of
efficiency loss.

The next result studies the large population game and its proof relies on the Taylor series
expansion of the square-root term in (18).

Theorem 6 Suppose the number of players in the LQ DG is sufficiently large so that

(C-i) p−i > a,∀i ∈ N , (C-ii) a � N, (C-iii) σmax � σ̄ ,

where σ̄ = ∑N

i=1 σi . Then, the following quantities can be approximated as

(i) pi ∼ σi√
2σ̄

, (ii) ui ∼ − σi

bi

√
2σ̄

x,

(iii) J ∗ ∼ q̄√
2σ̄

(x0)
2, (iv) J ∗ ∼ q̄√

2σ̄
(x0)

2,

(v) ρFB
μ ∼ q̄

k̂
√

2σ̄
, and for a = 0, ρFB

μ ∼
√

q̄b̄

2σ̄
.

Proof By Taylor series expansion, (18) can be written as

pi = (p̄ − a)

[
1 −

√
1 − σi

(p̄ − a)2

]

= σi

2(p̄ − a)

[
1 + O

(
σi

(p̄ − a)2

)]
, (30)
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where O(·) is a function such that limx→0 O(x) = 0. In a similar way, (14) can be rewritten
as (skipping some steps):

p̄ − a = p̄ − a

N − 1

(
N∑

i=1

√
1 − σi

(p̄ − a)2
+ a

)

= p̄ − a

N − 1

[
Nσ̄

2(p̄ − a)2

(
1 + O

(
σmax

2(p̄ − a)2

))
+ a

]
. (31)

Hence, we obtain for large N

p̄ − a =
√

σ̄

2

[
1 + O

(
σmax

2(p̄ − a)2

)]
. (32)

Note that p̄ −a > 0 due to the stability condition. Let σ̄ = ∑N

i=1 σi , as before. Let a solution
of (32) be p̄ = √

σ̄ /2 + a, i.e.,

p̄ − a =
√

σ̄

2

[
1 + O

(
σmax

σ̄

)]
. (33)

Then (33) is consistent provided that σmax � σ and a � N . Since, by Theorem 3, the solu-
tion is unique under (C-i), p̄ can indeed be approximated by p̄ ∼ a + √

σ̄ /2, which leads to
pi ∼ σi√

2σ̄
from (30). Hence, (ii)–(v) follow. �

Open-Loop LQ Differential Games

In this section, we go back to the DGs described by (5) and (6), but with open-loop infor-
mation. Each player knows only the value of the initial state of the system. Since the cost
runs from zero to infinity, we are interested in controls that yield finite costs. Accordingly,
we restrict the controls of the players to belong to the set

U OL(x0) = {
u ∈ L2[0,∞) | Ji(x0, u) < ∞,∀i ∈ N

}
,

where L2[0,∞) is the space of square-integrable functions on [0,∞).

Theorem 7 (Open-Loop NE, [9, 14]) Consider the N -person LQ DG in (5) and (6), and
assume that there exists a unique solution ξ� to the set of equations

0 = 2aξi + qi − ξi

(
N∑

j=1

sj ξj

)

, (34)

such that a − ∑N

j=1 sj ξ
�
j < 0, where si := b2

i /ri . Then, the game admits a unique open-loop
Nash equilibrium for every initial state, given by

u�
i (t) = −bi

ri

ξ �
i exp

[(

a −
N∑

j=1

sj ξ
�
j

)

t

]

x0. (35)
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The optimal cost to player i using u�
i is J �

i = k�
i x0, where k�

i is the unique solution to

2

(

a −
N∑

j=1

sj ξ
�
j

)

ki + qi + si(ξ
�
i )2 = 0. (36)

The quantities in Theorem 7 can be made more explicit as we discuss below. By a slight
abuse of notation, let pi := siξi as in the state-feedback information case. Multiplying (34)
and (36) by si , we obtain 0 = 2api + σi − pip̄, and 0 = 2siki(a − p̄) + σi + p2

i , where
p̄ = ∑N

i=1 pi . Hence we can solve for pi, ki , and obtain

pi = σi/(p̄ − 2a), (37)

ki = σi + p2
i /

(
2si(p̄ − a)

)
. (38)

To obtain p̄, we sum (37) over i and arrive at the quadratic equation p̄ = σ̄
p̄−2a

. Thus,

p̄ =
√

a2 + σ̄ + a, (39)

where we have retained only the positive solution of the quadratic equation for obvious
reasons. It should be pointed out that since the relevant p̄ is unique, we have a unique open-
loop NE. Using (39), we can determine the expression for ξ�

i (and thus the OL NE strategies
of the players 35), as

ξ�
i = qi√

a2 + σ̄ − a
. (40)

Note that these are necessarily stabilizing, that is, a − ∑N

j=1 sj ξ
�
j < 0, in view of (36). Now

using (39) and (37) in (38), we arrive at the closed-form expression for k�
i :

k�
i = 1√

a2 + σ̄

(
qi

2
+ σiqi

2(
√

a2 + σ̄ − a)2

)
. (41)

When a = 0, k�
i is reduced to

k�
i = 1√

σ̄

(
qi

2
+ σiqi

2σ̄

)
. (42)

Given weighting μ, the open-loop NE yields a total cost of

J �
μ =

N∑

i=1

μiJ
�
i =

N∑

i=1

μik
�
i (x0)

2 =: k�
μ(x0)

2.

Since the open-loop NE solution is unique, the PoA under open loop IS can thus be easily
found to be

ρOL
μ = k�

μ/k̂μ. (43)

We now capture all this in the corollary below.

Corollary 2 The OL LQ DG of Theorem 7 admits a unique OL NE given by (35) and (40),
which is also stabilizing. Furthermore, the OL PoA is given by (43).
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Price of Information (PoI)

In the previous sections, we have introduced PoA as a measure of efficiency in going from
cooperative to noncooperative framework, and obtained expressions for it for FB and OL LQ
DGs. Here, we study the price of information (PoI) as a measure of efficiency with respect to
the ISs for again the LQ DG. Following Definition 3, PoI between open-loop and feedback
ISs is defined by

χOL
FB = max

k�
J OL�/max

k∗ J FB∗, (44)

which can also be expressed in terms of the PoAs under the two ISs:

χOL
FB = ρOL

μ /ρFB
μ .

Using Theorem 5, we can obtain a bound on PoI:

χOL
FB ≥ k�

μs
max(�(M) + a)

.

The following theorem further characterizes the PoI in a special case.

Theorem 8 Suppose a = 0, and the number of players is large so that N satisfies (C-i),
(C-ii), and (C-iii). Then, the PoI is bounded from above and below by two constants:

√
2/2 ≤ χOL

FB ≤ √
2. (45)

Proof Under conditions (C-i), (C-ii), and (C-iii), we have a unique feedback NE that can be
approximated as in statement (iv) of Theorem 6. Hence, from (39) we obtain

χOL
FB = J OL�

J FB∗ =
√

2

2

(
1 +

∑N

i=1 μiqiσi

q̄σ̄

)

=
√

2

2

(
1 +

∑N

i=1 μiqiσi
∑N

i=1 μiqi

∑N

i=1 σi

)
≤ √

2,

where the last inequality is obtained by noting that

N∑

i=1

μiqiσi ≥
N∑

i=1

μiqi

N∑

i=1

σi.

The lower bound can be achieved by noting that σi, qi,μi are all nonnegative. �

Theorem 8 is useful in the design of games via access control or pricing mechanisms.
Let χ̄ ∈ (

√
2

2 ,
√

2] be some target PoI to achieve so that χOL
FB ≤ χ̄ . For example, when χ̄ = 1,

it means the game needs to be designed so that the open-loop NE yields no larger cost than
the feedback NE. Hence, a necessary condition to meet such a design criterion is

∑
i∈N μiqiσi

q̄σ̄
≤ √

2χOL
FB − 1. (46)
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An access control is to admit a set N of players so that (46) is satisfied when all the system
and player parameters are given. When set N is fixed and not adjustable, we may use “pric-
ing” mechanisms to control the parameters ri or qi , which reflect the unit “price” of penalty
on the control effort and the state, respectively. In the following corollary, we capture the
special case of homogeneous players.

Corollary 3 Suppose the LQ DG satisfies the conditions in Theorem 8. In addition, let the
players be symmetric so that σi = σ,pi = p,∀i ∈ N . When N ≥ 3, the open-loop IS yields
better total optimal cost; otherwise the FB information does better. In addition, as N → ∞,
limN→∞ χOL

FB =
√

2
2 at the rate of O( 1

N
).

Proof The proof directly follows from Theorem 8. The price of information under the ad-
ditional assumptions becomes χOL

FB = 1√
2
(1 + 1

N
). It is independent of the parameters of the

players and approaches
√

2
2 as N → ∞. By letting χOL

FB ≤ 1, we obtain N ≥ 1/(
√

2 − 1).
Hence, since N is an integer, the open-loop NE does better than the feedback NE when
there are 3 or more players. �

Theorem 8 and Corollary 3 have implications in the design of games via access control
when open loop is the preferred mode of play.

Applications and Illustrations

In this section, we apply the results obtained heretofore to two classes of application scenar-
ios in flow control.

Multiuser Rate-Based Flow Control

We adopt here the communication systems model described in [2], where the players are the
users or sources, and the action (control) variables are the flows into the network. If a link
receives more total flow than it can accommodate (measured by its capacity), then packets
queue up. Having long queues is not desirable because it leads to delays in transmission.
We call such links which are congested bottleneck links, and formulate the game around one
such link. Let ql(t) denote the queue length at such a bottleneck link and let s(t) denote
the total effective service rate available at that link. Assume that each user is assigned a
fixed proportion of the available bandwidth; more specifically, the traffic of source i, i =
1,2, . . . ,N , has an allotted bandwidth of wis(t), where wi ’s are positive parameters which
add up to 1. We assume that the users have perfect measurement of s(t), but occasionally
exceed or fall short of the bandwidth allotted to them due to fluctuations. Hence, if di(t)

denotes the rate of source i at time t , we can introduce ui(t) := di(t)−wisr(t) as the control
(action) variable of the source. Then, queue build-up is governed by the differential equation

q̇l(t) =
N∑

i=1

ui(t), (47)

where we assume that queue is relatively tightly controlled so that end effect constraints
(starvation and exceeding an upper limit) do not become active. The goal is to ensure that
the bottleneck queue size stays around some desired level q̄l , and good tracking between
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input and output rates is achieved. Toward that end, we consider the shifted variable x(t) :=
ql(t) − q̄l , which satisfies the following differential equation which is the shifted version
of (47):

ẋ(t) =
N∑

i=1

ui, x(0) = x0. (48)

We now consider a noncooperative scenario in which each source determines a linear feed-
back policy (or an open-loop policy) to minimize its own individual cost function

Li(u) =
∫ ∞

0

(∣∣x(t)
∣
∣2 + ∣

∣ui(t)
∣
∣2)

dt, (49)

which is consistent with the overall goal of keeping x and ui ’s small. We can also consider
a related team problem in which sources minimize cooperatively a common cost under the
same information structure (where as we know actually the IS does not make a difference in
this case):

L(u) =
∫ ∞

0

(

N
∣
∣x(t)

∣
∣2 +

N∑

i=1

∣
∣ui(t)

∣
∣2

)

dt. (50)

This is now within the framework of LQ DGs studied earlier, with the correspondences
being a = 0, x0 = 1, σi = si = qi = ri = bi = 1 in (5) and (6). To obtain some numerical
results, let us take x0 = 1.

In the case of the 2-person LQ feedback game, the M matrix introduced earlier becomes

M2 =

⎡

⎢⎢
⎣

0 1 1 0
1 0 0 −1
1 0 0 −1
0 1/3 1/3 0

⎤

⎥⎥
⎦

and if N = 3, we have

M3 =

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

0 1 1 1 0 0 0 0
1 0 0 0 −1 −1 0 0
1 0 0 0 −1 0 −1 0
1 0 0 0 0 −1 −1 0
0 1/3 1/3 0 0 0 0 −1/3
0 1/3 0 1/3 0 0 0 −1/3
0 0 1/3 1/3 0 0 0 −1/3
0 0 0 0 1/5 1/5 1/5 0

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

.

The positive eigenvalue of M2 is λ2 = 1.1547 and the corresponding vector is p2 = k2 =
[1.0000,0.5774,0.5774,0.3333]T . The sum of the optimal costs under equal weights is
J ∗

2 = 0.5774 while the optimal common cost is J ◦
2 = 0.5, yielding the price of anar-

chy value ρFB
μ,2 = 1.1547. For the case with 3 players, the eigenvector is found to be

p3 = k3 = [1.0000,0.4472,0.4472,0.4472,0.2000,0.2000,0.2000,0.0894]T correspond-
ing to λ3 = 1.3416. Again under equal weights, the total NE cost is J ∗

3 = 0.4472 and the
minimum social cost is J ◦

3 = 0.3333. Hence, the price of anarchy is given by ρFB
μ,3 = 1.3416.

When the number of players becomes large, ρFB
μ ∼

√
N
2 from Theorem 6.
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In the case of open-loop flow control, we obtain k�
i = 1√

N
( 1

2 + 1
2N

) and total NE cost as

J �
N = k�. In the 2-user game, J �

2 = 0.5303, yielding the price of information χOL
FB = 0.9184.

The open-loop NE thus yields 8.16% less cost in comparison to the closed-loop FB one. In
a 3-user game, J �

3 = 0.3849, leading to a price of information value of χOL
FB = 0.8607, which

yields a 13.93% more cost for the FB IS case. We also note that as the number of players
increases, the open-loop IS yields a cost approaching 0, i.e., limN→∞ J �

N = 0, while in the
feedback case, even though it still converges to 0, the rate is slower: J ∗ ∼ 1√

2N
→ 0. We

observe that χOL
FB goes to

√
2

2 at a rate of 1
N

as N gets large, i.e.,

lim
N→∞

χOL
FB =

√
2

2
+ 1

2N
→

√
2

2
.

It is also noted that open-loop NEs always yield less equilibrium costs even though they
require less information.

Due to the symmetry of players in the flow control problem, we can obtain exact closed-
form solutions to the equilibrium costs using (18) and (14) without approximation. It is not
hard to show that under equal weights,

J ∗
OL = ki = 1√

2N − 1
, J �

FB = 1√
N

(
1

2
+ 1

2N

)
and J ◦ = 1

N
.

In Fig. 1, we show the price of information under open-loop and feedback information struc-
tures, and in Fig. 2, we show the corresponding prices of anarchy. By exact calculation, we
find when N = 4, the open-loop NE cost to be J �

4 = 3
8 = 0.3125, which catches up with and

becomes better than the feedback NE cost: J ∗
4 = 1√

7
= 0.378. This is consistent with our

earlier observation based on large population approximation.
We observe in Fig. 1 that the NE costs are the same at N = 1 (as they should be), and as N

increases, both open-loop and feedback NE costs decrease. As N becomes large, both costs
approach 0. This happens because the queue length is fixed. When the number of players
goes to infinity, the contribution from each user is negligible. Moreover, the state x(t) can
be driven to zero very fast as the amount of total control effort increases with the number of
players. The cost incurred from the transient behavior of x(t) then goes to zero. In addition,
for N ≥ 2, open-loop NE yields better costs. The price of information χOL

FB is always below

1 but maintains its level above
√

2
2 . In Fig. 2, the price of anarchy starts at 1 when N = 1

and increases as the number of players grows. The cost under the feedback NE grows faster
than the one under open-loop NE.

Normalized Flow Control Dynamics

In this section, we investigate a general flow control dynamics, which differs from (48) by
inclusion of a population-dependent normalization factor f (N), where f (·) is an increasing
function of N :

ẋ(t) = 1

f (N)

N∑

i=1

ui, x(0) = 1. (51)

The introduction of a normalization factor is to adjust the queue length proportionally when
the number of users increases.
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Fig. 1 Price of information

Fig. 2 Price of anarchy

Proposition 1 The prices of anarchy ρOL
μ ,ρFB

μ , and the price of information χOL
FB are inde-

pendent of the normalization factor f (N), as summarized in Table 1.
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Table 1 Various indices for normalized flow control game

J ∗ (FB) J ◦ (TP) J � (OL) ρFB
μ ρOL

μ χOL
FB

f (N)√
2N−1

f (N)
N

f (N)√
N

( 1
2 + 1

2N
) N√

2N−1

√
N(N+1

2N
)

√
2 − 1

N
( 1

2 + 1
N

)

Proof Using (18) and (14), we obtain pi for a given N as follows:

p̄ = N

f (N)

1√
2N − 1

,

pi = 1

f (N)
√

2N − 1
,

ki = pi

si

= f (N)√
2N − 1

,

J ∗ =
N∑

i=1

1

N
kix

2
0 = ki .

The team problem yields an optimal cost of

J ◦ =
√

q̄

b̄
= f (N)

N
. (52)

Hence, the price of anarchy ρFB
μ under the state-feedback information structure is indepen-

dent of f (N), and is given by

ρFB
μ = N√

2N − 1
. (53)

The open-loop price of anarchy is also independent of the factor f (N). Since J � = f (N)√
N

( 1
2 +

1
N

), it is given by

ρOL
μ = √

N

(
N + 1

2N

)
. (54)

The price of information is also independent of f (N), and given by

χOL
FB =

√

2 − 1

N

(
1

2
+ 1

N

)
. (55)

�

As a case study, we let f (N) = 1
N

. Then, bi = 1
N

, si = σi = 1
N2 , for all i ∈ N . When the

population is large, we have J ∗ ∼
√

N
2 and J � = √

N( 1
2 + 1

N
). The price of anarchy remains

ρ ∼
√

N
2 . The price of information remains χOL

FB =
√

2
2 +

√
2

2N
→

√
2

2 as N → ∞. It can be

shown that χOL
FB does not change with the factor f (N). In Figs. 3 and 4, we show the prices

based on the exact closed form solution obtained in the same fashion as in the previous
section based on (18) and (14). We observe that the open-loop NE always outperforms the
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Fig. 3 Price of information in the normalized system, f (N) = N

Fig. 4 Price of anarchy in the normalized system, f (N) = N

feedback equilibrium. It should be pointed out that (i) in Fig. 3, the open-loop and feedback
costs increase with the number of users. This is due to the introduction of normalization
factor into the system dynamics. We allocate the queue length as an increasing function of
the number of users; (ii) Figs. 4 and 2 are identical due to the above proposition.

If we set f (N) = √
N , we have the open-loop and feedback optimal costs approach 1

2

and
√

2
2 respectively, as N → ∞. Figure 5 demonstrates that result.
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Fig. 5 Price of information in the normalized system, f (N) = √
N

Table 2 Indices under two normalization factors using the large population approximation

f (N) J ∗ (FB) J ◦ (TP) J � (OL) ρFB
μ ρOL

μ χOL
FB

1 1√
2N

1
N

1√
N

( 1
2 + 1

2N
)

√
N
2

√
N( 1

2 + 1
2N

)

√
2

2 +
√

2
2N

1
N

√
N
2 1

√
N( 1

2 + 1
2N

)

√
N
2

√
N( 1

2 + 1
2N

)

√
2

2 +
√

2
2N

A summary of the results with f (N) = 1 and f (N) = 1
N

under large population approx-
imation is provided in Table 2.

Conclusion

In this paper, we have introduced the notions of price of anarchy, price of information, and
price of cooperation for nonzero-sum differential games, have studied the first two exten-
sively for a class of scalar linear-quadratic differential games, and have obtained bounds and
approximations on them, with computable bounds available in the large population regime.
Future promising work is to extend these results to non-scalar differential games as well as
to obtain their counterparts for the price of cooperation. Also computing these indices for
specific models from communication networks and economics would be a fruitful area of
research.
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