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Abstract In this work, a high accurate method is given for solving the nonlinear fractional delay integro-
differential equations, numerically. By considering the equation before and after delay time, we first apply
the delay function in the equation and propose an equivalent system. By discretization in the Jacobi-Gauss
collocation points, an algebraic nonlinear system is then proposed to approximate the solution of main equation.
The convergence of method is fully given in spaces LZ‘; 5 (1) and Lim 5 (1), and the error bounds are specified for
obtained approximations. Finally, some numerical examples are provided to show the capability and efficiency
of method.
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1 Introduction

Fractional calculus is a popular branch of mathematics that, in addition to attracting a lot of attention, also
appears in various fields of science, medicine, physics, etc. Fractional differential equations (FDEs) are part
of mathematical analysis that study derivative and integral operations of fractional order, and as we know, it
originated in 1965 by Hopital and then several researchers have analytically and numerically examined different
types of these equations. For example, Chouhan et al. [10] constructed generalized fractional Bernoulli wavelet
functions to numerically solve the diffusion modelling anomalous infiltration problems using a class of nonlinear
FDEs with variable order. They first generated generalized Bernoulli wavelets of fractional order and then
extracted the operational integration matrices and used them to convert the FDEs into a system of algebraic
equations. In [3], a new kind of wavelet method is proposed for solving the nonlinear FDEs. In this work,
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Alkhalissi et al. proposed this method based on a generalized Gegenbaur-Humbert polynomial and they obtained
operational matrices for fractional and integer order derivatives. Finally, they used these operational matrices to
obtain a system of algebraic equations. Mohammadizadeh et al. generated the two unique piecewise C>-splines
of six and eight degrees to approximately solve the fractional differential integro equations (FDIEs). They proved
the uniqueness of the second-order solution to these equations and analysed the convergence analysis and error of
their method [23]. Shokri and Mirzaei [33], performed a pseudospectral method based on Lagrange polynomials
to numerically investigate the time-FDEs of multi terms. They used a semi-discrete approximate scheme to
convert these equations into a system of ordinary FDEs, and also used the Mittag-Leffler function to achieve
the accuracy of their method. In [2], the asymptotic optimal homotopy method was generalized to a system of
FDIEs. Akbar et al. investigated these equations as test examples and used the least squares method to achieve the
optimal values of auxiliary constants. Dehestani et al. [14] combined the Lucas wavelets with Gauss Legendre
quadrature rule and used them to solve the fractional differential Volterra Fredholm integral equations. They
obtained the operational matrices for the Lucas wavelet functions and utilized them to arrive at their numerical
scheme. They also obtained an error bound for their numerical method, which showed good behavior for their
method.

Delay differential equations (DDEs) are actually a type of differential equations in which the unknown
function can be defined at a specific time and in terms of the function and its derivative at earlier times and
places. These equations have wide applications in science and engineering. The genesis of field of DDEs can
be seen in Minorsky studies (1941) when examining the motion of a ship. Since ancient times, a lot of research
has been done on different types of DDEs, and we will review several numerical methods which such equations
investigated. To learn more about DDEs, reader can refer to [5,6,8, 15—-18,20,34,35]. In these books, the history of
the emergence of DDESs and their different types have been reviewed. Among the works that have been discussed
here is the theory and applications of DDEs, various aspects of nonlinear DDEs, and various quantitative theories,
including normal forms, centre manifold and Hopf bifurcation theory in finite dimension. Control systems and
stability analysis methods, Hopf bifurcations and center manifold analysis, numerical computations of DDE
solutions, neural systems, and stochastic DDEs are also covered. Analytical and numerical solutions, existence,
uniqueness and regularity of results for very famous classes of these equations, general formulas and convergence
results for discrete and continuous methods are presented.

Now, if derivative order in DDEs is fractional, a new type of DDEs, known as the fractional delay differential
equations (FDDEs), will emerge. Usman et al. [36] used a new operational matrix method to solve the FDDE:s.
They applied these matrices to fractional derivatives and integrals using the concept of shifted Gegenbauer
polynomials, and finally obtained a system of algebraic equations. In [12], Daftardar-Gejji et al. utilize a method
called the new iterative method for solving the nonlinear and linear FDDEs. They obtained their corrector predictor
formula by using the fractional Adams method and completed their work by investigating the error analysis of
their method under Lipschitz conditions. In [22], Moghaddam et al. used Brownian motion to approximate a
class of stochastic FDDEs. They applied quadrature spline of the piecewise integral quadrature to approximate
the fractional integral and demonstrated the efficiency of their computational scheme by evaluating the exact
solutions using statistical predictors. Agarwal et al. [1], proposed a function called the mild solution of a fractional
delay integro-differential equations (FDIDEs). For the existence of mild solutions of a class of these equations,
they could expressed sufficient conditions. By using this function, they were able to achieve the application of
concrete in the conduction heat in materials with memory. In [31], an operational matrix was formulated for
the Tau method and for approximately solving a class of FDIDEs by Shahmorad et al. Dabas and Cahuhan [13]
examined the existence and uniqueness of the mild solution of a class of infinite FDIDEs. They used the fixed
point technique to achieve their results by using the solution operator in a complex Banach space.

Although many numerical methods have been used to solve the types of FDDEs and FDIDE, we can still feel
the absence of an efficient method for solving different classes of these equations with high convergence rate
and low error. Here, we propose a new Jacobi-Gauss collocation (JGC) method for solving a class of nonlinear
FDIDEs. We totally analyze the convergence of our method in the LZ‘(’,, s (1) and Lim_ 5 (1) spaces by generalizing
the proposed technique in the work [38] for linear FDDEs. The process of implementing the method is that we
first convert the original equation into an equivalent time-dependent system and then we discrete the resulting
system at JGC points and arrive at a system of algebraic equations that simultaneously gives us the approximate
values of the solution and its fractional derivative. By investigate the method error, we find that the error bounds of
our method tend to zero by increasing the number of collocation points, and also by providing several numerical
examples, we can observe the acceptable results.

This paper is organized as follows: Some basic definitions and notations are provided in Sect. 2. We state
the problem and perform our numerical approach in Sect. 3. In Sect. 4, we survey the convergence and error
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analysis of the method in spaces LZO% s (1) and Lim s (1) by giving some useful lemmas. In Sect. 5, by presenting
some numerical examples, we represent the preference and advantages of proposed method. At last, we present
the suggestions conclusions.

2 Preliminaries and notations

In this section, we review some of the preliminary definitions and necessary concepts including the concept of
the Caputo fractional derivative, and express the definitions of Jacobi polynomials and required spaces of the
issue.

Definition 1 ([19,27]) Suppose that g(-) is given on [a, b]. The Caputo fractional derivative of g(-) is expressed
as follows

cry o g™
<D g(t)—F(n_y)/a (,_9)<y7n+1)d9’ t € (a,bl, (1)

where n — 1 < y < n is the order of Caputo derivative, n is a positive integer and I"(-) shows the Gamma
function.

Definition 2 ([19,30]) With the assumptions of definition 1, we have the Riemann-Liouville fractional integral
of g(-) as follows
L
— [Tt —0)~1g@)do, y > 0,
gltyg(t): F(]/) fa( ) g( ) 14
g(), y =0.

)

Remark 2.1 ([27,30]) We can express a useful relation between Caputo derivative and Riemann-Liouville frac-
tional integral as follows

t
51} (gD;/g(f)> =g(1)—2g(k)(a)ﬁ. 3)
k=0
In the following, a useful relation of the fractional calculus is presented, which we use in the numerical section
([7.201)

0, g € Nogand g < [y],
Cp! 1) = I'(g+1)

t1777, g e Noand g > [ylor, q ¢ Nyand g > [a] — 1,
I'g—y+1

where Ng = {0} UN.

Definition 3 ([32,38]) Jacobi polynomials are a class of classical orthogonal polynomials that symbolized by
P)* and they are orthogonal with respect to weight function w”*(t) = (1 — )Y (1 + ) on I = [—1, 1] for
y, o. We can calculated these polynomials by using the following formula

v.a v,a V.o V.o v.a py,o
Pn+1:(an 1 — by )Pn (1) — cn P, n>1,

v y.a 1 1
Py () =1, P| (t)zz()/+ot+2)t+§(y—a), “)

where

ya  Cn+y+a+DCn+y+a+2)
o 2+ Dn+y+a+1)

B @ —yHQn+y+a+1)

2+ Dty +a+Du+y+a)
ya  m+y)n+a)2n+y+a+2)

T+ Dty +a+ D2ty +a)

)

,a
by

(&)

@ Springer



N. Peykrayegan et al.

Definition 4 ([32,38]) The Lf)y,a (I)-space for 1 < p < oo is defined as follows
Lf)y,u (I) ={u : uis measurable and ||u||pra < 00},

where 1

1 .
lallyr, 0y = (/1) @1 @dr) " 1< p < oo,

ullLos, , (1) = ess sup,ep [u(®)l, p = oo.

Also, {Pny’“ ®)}° o constitute a complete orthogonal Lim s (1) space where {P,%’ ’a(t)}flozo is a the set of Jacobi

polynomials. We can show the inner product in Lim (1) as follows

1
(£ 912, 1) = / ST (e, VS g € Lo (D).

Definition 5 ([32,38]) The JG integration formula for JG points {t}/’a}é.vzo and their corresponding weights

v

{a)j ’0[}].:O is as follows

1 N
f ] g’ (dt =Y g(x] !, (6)
- =

where N is a given positive integer.

Definition 6 ([32,38]) Let Py be the space of polynomials of almost N. Then, the Lagrange interpolating
polynomial for any f € C(I) is defined as follows

N
U f@ =Y fEIOL), %)
j=0

where this polynomial is satisfying in 1% f(t]"*) = f(z]"*),0 < j < Nand L;(1), j =0, 1,..., N are the
Lagrange interpolating basis functions associated with points {t}/’a}ﬁyzo.

Definition 7 ([32]) We can define the Sobolev space H" (I) for m € N as follows
H’"(I):{feLz(I):f(k)eLz(I), k=o,1,...,m}. ®)
This space contains the following semi-norm and norm

L lmz = 1S Ol 201y,

m YA : ©)
11t = (Zho 1P RO, )
Also, a Hilbert space is a space H™ (1) if equipped with the inner product
m
(Feoms =Y [ 10w 0. (10)
k=01
and the Sobolev space of weighted Jacobi for m € N can be expressed as follows
H (D= {1 100 € L2, k=0,1,2,. m]. (11)
and has the following norm
1
m 2
Ly gy = X % 0] (12)

k=min(m,N+1)
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3 Problem statement and implementing

Now, we investigate the following nonlinear FDIDE

{gDZX(t) = F(t, X(1), X(t = 8)) + [3 G(t,0, X(0), X(6 —5)do, 0 <1 <T, 13

Xt)=9(@), —-6=1=0,

where, F, G : [0,T] x Rx R — Rand ¢ : [0, T] — R are given function that are continuously differentiable,
X : [0, T] — Ris aunknown function, 0 < y < l and 0 < é < T is a specified delay parameter.
In beginning, the above equation converts as follows

F(t,X(@), ¢t —9)) +f(§ G(t,0,X@),¥y(0O—=68)do, 0<t <5,

C nY —
OD““”_{meaxxa—a»+ﬁﬂﬂnﬁxwlxw—””w’3<ffT’ w

X(0) = ¢ (0).
Then, we let the change of variables

t—T(l+) _ 2 1, 0= (1+1§‘) 19—29 15—25 1 (15)
B R A T T

to exert the Jacobi polynomials. By defining v(z) = X(7(1 + 7)), we got v(z — 5§ —1) = X (¢ — &) and then
V(=8 =y(3 -5,

F(z,v(2), vz =86 - 1) =F(§ (1+z) X(%(1+z)) X(]Z(1+z)—§(l+5))), . (16)
G(z. 0, v(®), v(ﬁ—B—l)_G( (I+2), 50+, X(GU+9). X(E0+9)— T +9)).

We use the following Lemma to implementation the method
T
Lemma 3.1 Consider v(z) = X <§(1 + z)) , 2 € (—1,1] where X : [0,T] — R is a given differentiable

T
function. Then fort = 5(1 + 2) and any z € (—1, 1], we have
Crv T\ ¢ ,»
ol X(t) = (5> I v(2),
S\ 7 (17)
Sl x(t) = <?) ¢, DYv(2),

where 0 <y < 1.

Proof The proof is similar to the Lemma 1 in [26] and Theorem 4.1 in [25]. Let z € (—1, 1] is given and put
T t

t= 5(1 + z). Forall T € (—1, z], define 6 = —

dt and hence

Z

T
-1
G X0 =5 f(( (1+Z)) <L(l+r)))y v(r)( d >dr
I'(y) 1+z T
- —r! r _(TY L[
_F(W/ ( ) oo ”(t)<2>df_<2) r(y)/_l(z v
:<5> 1 (),

1 CXO / M2y () (t5)dr
F(I—V) 0o (t—=0) F(l—y) 1(t—1+z(1+r))7’

/ v(r)dr _(_> / v (t)dt
ru—w AT Fa—w 1 (z—1)

= (%) _IDV'U(Z).

and

$Dlx(t) =
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Now, we use the (15), (16) and (17) for converting (14) into the equivalent form below.

T Y _ _ _ T )/+1 _ B _ _
<§> F(z,v@), ¥(z—98)) + <5> [5G (20 v@), v (@ —8))dd, —1<z=3,

ngZU(Z) =

2

Y ~ T y+1 _ _ _

<—) F(zv@,vz—5§—1)+ (5) [5G (2.9, v@), v@ — §—1))dv, §<z <1,
v(=1) = ¥ (-1).

(18)

Let () = legv(z). By (2) and (3), we have

T Y _ _ _ T }/+1 _ B B B
(—) F (. v(z),w<z—8))+<—> J31 G (2 0@, 9@ —5)dy, —1<z<5,
®(2) = 2 2

Yo B T y+1 _ _ _
<5> F(z,v@,vz—8-1)+ <5> [5G (0 v@®),v@® —5—1)dy, §<z<1,

1 -
V@) = —— [{@=9)Te)dd + (-1, —l<z=<1
L'(y)
19)
Also we see, in the above system, there are two singular integrals. Therefore, for approximate these integrals via
JG formula, we utilize ¥(z, 7) = %r + % and by this, we can convert the above system into the following
equivalent form

T\ - . _ T\ /14 -
(5) F(z,v(2), ¥(z —9)) + <5> ( 5 )f_ll Gz, (z,1),
V(@1 (2, 1)), ¥ (91 (z, 1) — §))drt
) _1 =< 85
Q=1 oy T TN 142 -
(5) F (e, vz =5 — D) + (5) ( - )f_l Geti@n, QO
v(1(z. 1), v (D12, 1) =8 — 1)) dt
0<z<=1,
l 1+Z Y 1 -
=— 1-o)r~low d -1, —1 <1
v(z) F(y)( > ) S -1 @1z, ) dt + ¢ (=1) <z=
Assume that @ = 1 — y and let collocation points {z; a’_a}f\’: o - be the set of JG points with the corresponding
weight function ™% ~%. Define
N N
v T, B =@, wv@) =Y viLi@), Py =Y ®L;(). @1
j=0 j=0
Therefore,
N
oy —8—1) =) vjLjz—5§-1). (22)

j=0

Now, we use the Gauss quadrature formula to approximate the integrals in (20)

/_11 & (Zi_a’_a’ D1 0), v (ﬁl((zi—a,—a, 7:)) a7 (?91(1,‘_0[’_“9 7) — S)) dr

M=

~

G (s o v (01 w) (91w = 5) ) ),

=~
Il

0

1
f G (™G 0. (G D) v (N D =8 - 1)) dr

1

N
=Y G (5 w0 (DT ) v (T T =8 - 1)) o,
k=0
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f 11<1 — D) (91T D)) dr i @ (9177 10) 0", (23)
- k=0

where {7 }/ICV:() and {fk},ivzo are two sets of JG points with respect to the weight functions {w,({)’o},i\;o and {w,;a’o},ivzo.
Finally, we achieve the following system by these relations

(5) Frmvm=n)

14 Zi_a’_a T v N A —o,—o —o,— N —o,—a
() (3) Tl (e w0 DL (1T ).
_ -

v (ﬁl((Zi “ ) — 3)) wy?,
O; = i=1,2,..1;

N . y - ) 1+Z.—a,—a T y+1
(5) F(z,- T v oL 0‘_5—1))+(+ (5>

SV,G (zi_“’_“, DGO ). g vi L (ﬁl(zi_a’_a, Tk)) :
NI AT TG ST B P
i=Il+1,...,N,

1 1+Zi_a’_a ! N N —o,—a A —a,0 - .
v o N0 @iy (M1 80) o + P, i =12, N,

T TG 2

(24)
where (vg, v1,...,vy) and (Pg, 1, ..., Py) are the unknown variables and as we see, above system is a
nonlinear algebraic system where /; satisfies in 2y < § < U1 < T and we show that we can simultaneously
obtain the values of approximate solution and its values of fractional derivatives.

4 Convergence and error analysis

Now, we investigate the error analysis in two spaces LZ)W (I) and LS o (I). We begin our work by presenting
several Lemmas.

Lemma 4.1 (/9,37]) Assume that f € HZZ’N o

ciated with the (N + 1) JG points {tj};V:O, namely, Iy % f = Z?’:O ft;)L(t;). Then the following relations
1

hold for the Chebyshev weight function o€ = w~2°72

and denote by 1 ];a’fa f its interpolation polynomial asso-

||11;a’_af - f||L27u,7ot(1) S C1,1N7m|f|HmV,1\é(1), (25)
CLIN' " flymy iy 0= <3,
IV f — 00 < o 26

Lemma 4.2 ([21]) Let {L (t)}j.v:0 be the N-th degree Lagrange basis polynomials. Then, the following relation
holds for the Gauss points of the Jacobi polynomials

O(ogN), —1 <y, <—1,

27
O(NﬁJr%)’ B = max(y, ¢), otherwise. @7

N
17 gl < max L) =
113 8l (1)_16[_1,”@ 10l
j:

Lemma 4.3 (/28,29]) Let || - ||, be the standard norm in C?-4(I) and assume that Ly be a linear operator
from space CP-4 (1) into the space Py. Then, there exist a a constant Cp, , > 0 for q € (0, 1) and a non-negative
integer p and a polynomial function Ly f € Py for any function f € CP1(1) such that

I1f = Ly fliLeay < CpgN~PTD|| flicra. (28)
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Lemma 4.4 ([11]) Let« € (0, 1) and K (-, -) be a function. Also, assume that [J be defined by

t
70 = [ @-07 K@D 29)
-1
Then, we have the following relation for a positive constant C2 5 (may depend on ||K || <y and ||K||coq for
E = [—1, 11?) for any function f € C(I) such that
|Tf)— T[]

|t/ —t"]4

< Cyomax | f(1)],
tel

under the assumption that 0 < g < 1 —«, foranyt',t" € I andt' #1".
This implies that
I Tf llcoa < C2,2I?5X|f(l)|, 0<g<l—-a

Lemma 4.5 ([24]) Let f(-) be a bounded function. Then, due to Lagrange interpolation basis polynomials
L;),j=0,1,..., N withrespect to JGC points {tj}j-vzo, we have

N
sup || jZOf(rpL i 2 )= Copmax| ),

where C » is a constant which is independent of function f(-).

Theorem 4.1 Let v(-) is the smooth exact solution for nonlinear FDIDE (19). If0 <y <1, ve H Zj{y}_a ()
and o = 1 — y, then for the approximate solutions vy (-) and ®n(-) of (24)

y+1
AvN ||, mN +4MNy_% Z [v] mN l<y<1
! H™Y () 2 H™ () 2 = ’
w 2772

NE”N @)ooy < o 202 il | (30)
v.N z -
Bl <|q)|Hm,l\{ 1(1)+4M10gN<2) |U|Hm,l\{ 1(1)>, OS)/ < 2,
w 277 w 272
v.N v.N
Dl |q>|Hm71\i 7l(1)+F1 |‘U|I_Im;Nl 7l(1), E <y < 1,
e N (@) Loory < N w 202 N @ 272 1 31)
Gl |q)|HmA; 1(1)+H1 |U|Hm[\{ 1(1), OSJ/ < z,
w 272 w 272
where Cy,1, C3 3, C2 2 and Cy 4 are constants independent of N and
M = max(Mi, M), (32)
E"N(z) = Oy (2) — @(2), "V (2) = vy (2) — v(2), 33)
N CiNYT™
AV = , (34

V(TN 1
1 —4MNY ™2 <5> (1 + C1,]C2,2C(),qNV_7_q)

1
CiiN27"log N
B{/,N _ 1,1 0g ’ (35)

T )/+1
1 —4Mlog N (5> (14 C1,1C22C0,yN~710g N)

y CLaNT=" (14 C1,1Co2Co NV 7377)
pyY = , (36)

LT\ 1
1—4MNY ™2 (E) (1 + C1,1C2,2C0,qu_7_q>

_ _1_ T\
Ci1NY m(1+C1,1C272C07qNV 2 q) 4MNY ™2 3

v.N _ y—m
F" =C11N + N ENAL 1
| —4MN?~3 (5) (1 + cl,lcz,zco,qzvy—rq)
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CLINT™™log N (1 4 C1,1C22Co 4N~ log N)

y,N
Gy = —NZE , (38)
1 —4Mlog N <5> (14 C1,1C22C0,¢N~4910g N)
1 y+1
CiiN27"1logN (1 + C1,1C2,2C0,qN_q log N) 4M log N (E)
Hr‘Nzcl,]N%_’"logN—i- AT
1 —4Mlog N <5> (1 + C1,1C22C0,gN~1log N)
(39
Proof By Assuming @y (z) =~ Z;V:O ®;L;(z) € Py, we get
1 N
/ (1—1) %Dy (191 @, r)) dv =3 oy (191 @G, rk)) Wy,
-1 k=0
—a,—o —a,—a
—o,— Zi + 1 Zi - 1 . . . —a,—0\N
where 91(z; 7 7, o) = 3 T+ 5 . By approximating (19) at the JG points {z, = " };L,, we
can get
T\" - —a,—«a To—a,—a 3 T s Y S 77 S
3) P nd@ = =0)+(3) [ (5o w@).d@ -5)av.
i=1,2,, .15
i = T\" - —a,—a —a,—a 3 7\ 7 S —a—a g
3) PG =5-0)+(5) [5G (" v v @), on(@=5-1) dv,
i=l+1,..,N,
1 —a,—a o _ )
"I T S5 @ =0 T oN@)dY + P (1), i=1,2,... N,
(40)

where o = 1 — y. We have the following by multiplying both sides of (40) by L;(z) and then summing from O
to N

T Y _ _ _ T J/*‘rl _ B B
<5> I (F (2, 0(), ¥ (2 = ) + <5> IV (2, G (2.9, on (), ¥ (9 = §)) dD),
-1<z<4,
ON@D =1 (T @ aa - . TN a2 A
N (5) Iy (F (2. v(2), v(z—6—D))) + <3> I ()2, G (2, 9, o8 (9),
v (@ —5—1)) dv),
§<z<1,
_ y—a,—a 1 4 9\« —a,—a L 2z _ 9 @«Egv.N
UN_(Z) =1y <_F(y) =) <D(z9)dl9) + 1y (F(y) “@—9)"YEY (ﬂ)dﬁ)
+y(—1), —1l<z<l1
(41
We arrive to the following system by (19)
T y+1 _ _ _
I};a,—a <d)(Z) _ (E) ffl G (Z, D, v(d), v — 5)) dl?)
T y+1 B _ _ _
+ <5> I ([5G (20 on @),y (@ —8))dd), —1<z=5,
e <<I>(z) - (3) J21 G (2 2000, v =5 - 1>)dz‘f‘> @
T y+1 _ _ _
+ <5> IV ([5G (20 on @), on@ =8 — 1)) dd), §<z=<1,
N (@) = Iy* 0@ + %y)’&“"“ (L@ = ErN@)dd), —1<z=1,
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where [ Iga’_a is the Lagrange operator which defined in Lemma 4.1. Now, according to (33)

T y+1 Cva .- _ _ . - _ B
<3> I (5, G (2, 0 on @), Y (@ — 8)) dd — [*, G (z. 9, v(@®), Y (& — §)) d?)
+J1(Z)7 _1<Z§(§a
ENy =1\ e A 5 i &
(5 IV (G (0 on®), on@ =8 — 1)) dY — [*,G (2,9, v(®),
V(@ -8 —1)dv)
+J1(2), §<z<1,

(43)
NG = / (=) “E"N@)dY + h(2) + J3(z), —1<z=<1 (44)
I'(y) Jo
where
J12) = Iy ®(2) — ®(2), L(2) =I1y" “v(2) —v(2), (45)
J(z) = L (1,;“"“ /Z (z =) YE"N@)dy — /Z (z—0)77 EV’N(ﬂ)dz?) . (46)
C'(y) -1 -1

From (43), we have

T y+1 _ _ _ _ _ _
<—) ™ (5, G (2, on @), Y (@ — 8)) do — [*, G (z, 9, v(@®), Y (& — §)) dP) |

2
+H @], —1<z<8,

E}/,N() S T }/+1 o _ _ 7 =
| 2 E) 154 (2, G (2,9, on (@), un(® =8 — 1)) dD — [5G (2, 9, v(®),

V(@ — 58— 1)dv)|
+HAh@)], d<z=1.

(47)
Now, we get from triangular inequality

IE Y @lleoery < max {Ly, Lo}, (48)

where

o

+ 11 Lo (1) (49)

V+] 7 _ _
) = a(/ G (2. 0, vy (), vy (@ — 5 — 1)) ¥

-1

V+1 z B B 7z _ B B
) P (/ G (2.9, on(®), ¥ (s — 8)) dv —/lG (z. 0, 0@, Y (@ —8))d1§‘> || Lo (1)

n=
(

With a similar process, we conclude from (44) that

\[\H’ﬂ

(z,9,v(®), v(@®@ =8 — 1) dl?) ooy + 1@ Lo (r)- (50)

He” N @Iy < NEYN @leeory + 2@ Loy + 13 L) (51
Using Lemma 4.2, the relation (48) and Lipschitz condition, we have

v </ G (z, 0 on (@), ¥ (¥ — 5)) do — / 1 G (z. 0 v(@®), Yy — S))dz?) oo

-1
N1=® max | J21G (2.0, o8 @), Y (@ — ) d — [Z, G (2.9, v(@), ¥ (9—0)) dP|, O<a<j,
logN[mia;l(] 1[G (2. O on @), ¥ (F =) do — [*, G (2,9, v(@®), ¥ (¥ — 8))d?|, 5 <a<l,
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_ 2Nt emyllon @) — vy, 0 < < 3,
= | 2log NMi[loy (@) — vy, 3 <o < 1,

- INI Myl N[y, 0 <a < 3
- 210gNM1||€y’N||LOO(1), %<Ol<1,

[T (f G (z. 0 v (@), oy — 8 — 1)) dV — / G (2,9, v@), v(® — & — 1))dz9> Lo (1)
—1 —1

Nz max | [21 G (.0, vx (), vx (9 =8 = D) d9 = [%, G (=9, v(), v(@ — 5 — 1) ],
- O<a< %,
~ | log N max 1/, G (= 9. ow @), on @ =5 = D)dd = [%, G (2.9, (@), 09 =5 = 1)) D],
% <a <1,
1 i i
< 2Nz (Mallon () = vl Ly + Mallon (@ =8 = 1) = v(® =8 = Dlleqn) . 0 <o <3,
=1 210g N (lelvN(l?) —v()||roay + Malloy(@ —8 — 1) —v(@® — 68 — 1)||Loo(1)), % <a <1,
1_ 1
< 4ne aM2||€y'j\\:||L°°(l)’ (1)< o< 5, (52)
4log NMy|le” ™| ooy, 5 <a < 1.

We have from Lemma 4.1

cl,lNl—ﬂf—m|o1>|Hm;Nl Lap O0sas 5
112 Lee(ry < 1 © 22 1
Cl’lNZ mlOgN|q)|Hm_]\i _l(l)’ 3 <a< 1,
w 272
l—a—m 1
Cl,lN ¢ |U|Hm;1\i 7L(I)’ O S o< jv
[12(2) Loy < 1 o 22 (53)
Ci1N2 mlogN|v|Hm.1\1/ Ly % <a<l.
w 272

By Lemmas 4.1, 4.3 and 4.4, we conclude that
3@l = 11 (137 = 1) TE NIy
=11 (13 = 1) (BN = Ly TEPY Y ear
< (14 177) CogNIITEVllcag

g 1
< C1,1C2,2Co,qu * qllEV’Nllleoo(l), ?S o<z, (54)
C1,1C22C0, g N T log N|IEV ™ |1y, 3 Sa < L.

Note that we employ the Lemma 4.4 under the following assumptions

%—a<q<l—n,0§a<%, (55)
O0<g<l—a, %§a<1.

Now, we give the following relations by Combining (52)-(54) in (48) and (51)

y+1
y,N 1_ T 1
Al (|¢|H/n,]\{ 1(1) +4MN?2 o (5) |U|Hm_1\i _l(l)> s 5 <y < l’
EYN (2)||eory < © 22
BV’N(
1

[}

w 22

-7

v+l 1 (56)
|d)|Hm,l\i 1(])+4M10gN<3) |U|Hm,l\{ 1(1)),0§)/<§,
w 2

v.N
DY ™[]y

y,N
R L P

1
2

lle" N @)Ly < N v SN v 1 (57)
G| |¢|Hm'1\i 1(1)4-1"11 |U|Hm,1\{ 1(1),053/ <3
w 272 w 272
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1.5

(o] Approximate solution [o] Approximate solution
— Exact solution — Exact solution

DX(t)

0 0.5 1 .
t t
Fig. 1 The exact and approximate solution with y = 0.5, § = 0.25 and N = 5 for Example 1

2

O =05

D7X(t)

0 0.5 1
t
Fig. 2 The approximate solutions for y = 0.5,0.7,0.9, 5 = 0.25 and N = 5 for Example |

log, o E™(1)
log,,(E™™(1))

0 0.5 1 .
t t

Fig. 3 The error fory = 0.8, = 0.25and N = 3,5, 7 for Example 1

Theorem 4.2 By considering the assumptions of Theorem 4.1, we have

v,N v,N 1
A @l gy T By Wlgmvy. 3=y <1,
NE"N @2 g < v 1 (58)
Pt y.N v.N —
S2 |(I)|Hm,1\{ 1(1)+Q2 |U|Hm1\{ 1(1)505‘}/ < 27
w 272 o 272
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-4 T -4

log,,(EN(1)
log,o(E"N(1))

4=0.9

4=0.99

7=0.999
0.5

t 1
Fig. 4 The error for y = 0.9, 0.99, 0.999, § = 0.25 and N = 5 for Example 1

o
—_

y,.N y,.N 1
R2 |¢|Hm_}\i 1(1)+M2 |U|Hm_}\i _1(1)>7 E SV < 17
s T2

”eV’N(Z)”LZ_a_a([) < © 272 o 2 (59)
e y.N y.N
(G2 |CD|Hm;Ai _l(l) + F2 |v|H'"_’\i _7(]) 5 0 = Yy <3
w 272 w 272
where
5 _ T y+1
P 4CCy2CCo M (E) N2—3=4
A;’N = 1’;1/+1 ~ | 1+ LT\ 1 ’
1—4 (5) CMNY—? | —4MNY—3 (5) (1 +Cl,lc2,2co,qNV—z—q)
(60)
N y+1 B T y+1
4C11CM <5> Ny_%_ 4C2,2CCO’qM (5> NZ)/—%—Q
v.N _
B = - [T\ | e V(T 1 ’
| —4C <3> MNY—3 | —4MNY—3 (5> (1 +Cl,lcz,2c0,qNV—z—Q)
(61)
o T y+1
P AMCy2CCCo log NN 74 <3) log N
Y.N _ 1,1
= y+1 I+ y+1 ’
1—4 <5) CMlog N 1 —4Mlog N (5) (14 C1,1C2,2C0,¢N~—4910g N)
(62)
y+1 B y+1
4C1,CM <5) N~™log N 4C32CCoyMlog N (E) N271logN
VN _
Q2 - T )/+1 » 1 + _ T }/+1 ’
1 _4<5> CMlog N 1 —ClMlogN<E) (14 C1,1C2,2C0,¢N~4910g N)
(63)
~ _ T }/+1
P 4CCy2CCo M (5) N2—3—4
y.N _ 1,1
R = T\"*! . 1 b L (T\"! 1
1-4(5) CMNY~3 | —4MN7~2 <5> (1 +C1‘1C2,2Co,qN”_7_q>
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Ci C2’2C_‘C0’qu_m_q

+ - (64)
LT\ |
1—4MNY 2 <5> (1 + C1,1C2,2C0,4Ny_7_q>
_ T V+1 1
4MC1’]C2,2CCO’(] <5> N2y—z—m—q
V.N _ —m
My, =Ci) N ™+ W ENAL 1
| —4MNY~1 <3> (1 + cl,lcmco,qNV*T’f)
~ T )/+1 _ T }/Jr]
4Cy CM <5> NY=2 4C,CCo M (5) N2r=1-4
* - (T\' ! 1 b LT\ |
| —4C <5> MN7~? | —4MN7~? <5) (1 + Cl,lcz,zco,qNV—z—Q)
4 (65)
o 1 T )/Jr]
AMCy2CCCoqylogNN279 [ — log N
2 = T\’ + T\ 7!
1 —4<§) CMlog N 1—4M10gN<5) (1+C1,1C2,2C0,qN—‘1 logN)
= 1
C1.1CCr2Cy N2 11og N
4 1,1T )2/—2H 0,9 g (66)
1 —4MlogN (5) (14 C1,1C22Co,yN~910g N)
_ T 7+1 |
4C1,1CC22Co gM log N (E) N27""4]og N
N -
F2y = Clle "+ y+1
1 —4Mlog N <E) (1 +C1,1C2’2C0’qN—q ]()gN)
~ T y+1 _ T )/+1 |
4C1 1 CM (E) N7 log N 4C22CCogMlog N (5> N279]log N
+ T )/+1 » 1+ _ T )/+]
1—4(5) CMlog N ]—C]MlOgN<E> (1+C1,1C2,2C0’qN7(110gN)
(67)
Proof We conclude that from (43) and generalization of the triangular inequality
NEPNOllg2 oy < max {L], L)} (68)

where

T V+l o z _ B B z ~ ~
L) = (5> 11y </ G (z, 0, vN(z?),w(z?—(S))dﬁ—/_lG(z, ﬁ,v(z?),1ﬂ(z9—8))d1?> IPER—

-1
TGS

7\ t! z _
L= (5> [y </] G (z, 0, on (D), on (@ — 8 — 1)) dV

< - —_
—/ G (2. 0, v@), v(® — 5 — l))dﬂ) [P
-1 0™ % ¥
A2, oy (69)

and
Ne" N @2 oy NE"N @2y + 2@ oy + 152

W~
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1 > 1.5

Approximate solution o]

Approximate solution
— Exact solution

— Exact solution

DX(t)

0 0.5 1 .
t t
Fig. 5 The approximate and exact solutions of Example 2 for y = 0.5,§ =0.25and N =5

'm% = ) 20 os
4=05

~+=0.7
~+=0.7
a ~+=0.9
~=0.9

0.8

DX(t)

1
t t
Fig. 6 The approximate solutions of Example 2 for y = 0.5,0.7,0.9,§ =0.25and N =5
-4 . -4
N=4
eSS
N=8
__ -5 —~ 67
S =
ZLIJ =
< -6 w -8
2 =}
& g
= 7 2 10
==
-8 -12
0 0.5 1 0 0.5 1
t t

Fig. 7 The error of Example 2 for y =0.8,§ =0.25and N = 4,6, 8

where J1(z), J2(z) and J3(z) are described in (45) and (46). Now, it conclude from (52) that

Z

11y (/ G (z, 0 on®), ¥ (¥ — 8))dV _/

1 G (2. 0. v(@). ¥ (¥ —5)) dﬁ) ez,

< e (/ G (2,9, on (@), Y (& — §)) dv — f 1 G (2,9, v@®), ¥ — S))dl?) oot

-1
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-2 Ev:O.S
~v=0.7
~v=0.9

= = 4
zJ i
\./o EJ/ '6
o 2
= 3 8
-10
0 0.5 1 0 0.5 1
1 1
Fig. 8 The error of Example 2 for y = 0.5,0.7,0.9,§ =0.25and N =5
-4 Ea:o.z -2 E(s 0.2
5=0.4 5=0.4
5-0.6 5-0.6
__ 45 = 4
= =
z -5 -
L e
=y < °
. s .l
-6 -
-6.5 -10
0 0.5 1 0 0.5 1
t 1

Fig. 9 The error of Example 2 for y = 0.5, =0.2,0.4,0.6and N =5

< ZGN%iaMIHeV’NHLoo(]), O<a< %,
- 2C10gNM1||eV'N||Loo(1), % <a<l1,

11 & ™ (/ G (z, 9 on®), on (@ — 8 — 1)) dV —/ G (z,9,v(®),v(® —§ — 1))d19) 2 o
-1 —1 0THT

<G|y (/1G(Z’ D, on (8), vy (P —8 — 1))dz9—/ G (z.v, v(ﬁ),v(ﬁ—g—l))dﬁ> [0 r)

-1
A4CNI~My|e? V| 0 1
< - 211€e Loo(1)> X <o < 35 (71)
4ClOgNM2||eV’N||Loc([), 3 <a <.

Using Lemma 4.1, we have

1@y < CLaNT" @l gmx

Ly (72)
w 272

1@z, iy < CLN "l . (73)
w 272

From Lemmas 4.3 and 4.5, it follows that

1@z, == 1) TEa
= (v = 1) (TEN — ey TEP Y112

<Ny (TE™Y = LnT B2 oy HITEPY = LN TEY N2
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(o] Approximate solution [o] Approximate solution
— Exact solution — [ xact solution
1.5
X 9
()]
0.5
0 0.5 1 1.5 2 0 0.5 1 1.5 2
t
Fig. 10 The exact and approximate solutions of Example 3 fory = 0.5, 6 =land N =5
4 O 05 4 O =05
s 0.5 7=0.5
B ; = :
3 O -09 3 o 7,;0:9
~7=0.9 1=0.9 =
n —~
S < .
< 2 g 2
7 B
1 L
. 0/ .
1.5 2 0 0.5 1 1.5 2
t t

Fig. 11 The exact and approximate solutions of Example 3 for y =0.5,0.7,0.9,6 =land N =5

< CI|ITE"N — LNTE"N || 100 (1y<CCo.g N~ T EV"N|| 004 <C2.2CCoy N1 EV*N|| oo (ry,

(74)
where C3 2, C and Co,4 are constants, independent of N. As in Theorem 4.1, it follows that
y+1
v.N LT 1
a <|CD|H’"*AI 7l(1)+4MN2 a<5> |U|H’"fi 1(1)>’0§0[< 2>
w 2 2 w 272 (75)

”JS(Z)”L‘ZU—a,—a([) = N T y+l1 1
v
by |<I>|Hm,1\{ (D +4Mlog N <5) |'U|Hm[\1 )3 <a<l,
2072 22

w 272 w
where

al™N = C22CCoN~IAVY, BN = CynCCo NIBY,
where ¢ satisfies (55). The proof is completed by (68)-(75).

5 Numerical examples

At present, we solve several nonlinear FDIDESs by proposed method and show the efficiently of the method. For
this, consider the following relations for the exact and approximate solutions X*(-) and X (-) and the exact and
approximate derivatives of fractional order § D} X*(-) and § D} X (-)

{ EVN (1) = |§ DX (1) = G D X* (), k=1,2,... N, a6

EN@t) = X)) — X )], k=1,2,...,N.
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= = 3
= >
z 3
W W o4
o ~
- -3.5 2
2 o)
o o)
4t = o
N=4
==
45 -6 -
0 0.5 1 1.5 2 0 0.5 1.5 2

t
Fig. 12 The error of Example 3 fory = 0.8, =1and N =4,6,8

€ Zt/
Z|_|J g
5 S
= S
s g
-4 -
-4.5

0 0.5 1 1.5 2
t

t
Fig. 13 The error of Example 3 for y = 0.5,0.7,0.9,§ = land N =5
-2
-2.5
z -3 z
L &
\_/o g
o 3.5 o
(@] (@]
- o
-4
$5=0.5
6=1
6=1.5
-4.5

0 0.5 1 1.5 2
t
Fig. 14 The error of Example 3 for y =0.5,6 =0.5,1,1.5and N =5

Example 1 Consider the following nonlinear FDDIE

SDYX (1) = X2(t —0.25) + [y X(0)X (0 — 0.25)d6 + TG
0<r<l1
X(@)=v(@), —025<t<0,

4815 — 301* + 5¢3
27V — (t —0.25)% — + ,
240
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where ¥ (t) = 12,1 < 0. Function X (1) = 2 is the exact solution. In the following, we show the corresponding
system of (24) for this example

2- 4
DT (a7 0625\ 2 [+ LT 405
) Y 2 rG—y) 2 2

3T D = B D T+ 1)3}
240

2 2
oy i =1,2,..,1;

TR VT Ly
T <—> Zk:()zj:oijj(ﬁl(zi_“’_a,rk))w(%ﬂl(zi_a’_a,rk)—}—O.SlZS)

b= 1\ 2 e 1\ (e g5\
N 2/ —0,—a i i .
- Y viL2(z; —1.625 (T
(3) [Zromtia ”m—w( 2 ) ( : )
3D R @ T D R+ )
240
Zi_c‘{’_a_kl 1 v N N 2 —o,—a —o,—o
HW—=)\3 Y okmo im0 L @1z T w) L (912 T, ) — 1.625)
o i=l+1,.., N,
I o R
vizr(y)(’ 5 ) Yo X0 ®,L; (ﬁl(z;“’*“,fk))w,;“’o, i=0,1,..,N,

(78)
where (2, 7) = %t + % The approximate and exact solutions for y = 0.5,§ = 0.25and N = 5 are given
in Fig. 1. Also, the exact and approximate solutions with y = 0.5,0.7,0.9, § = 0.25 and N = 5 are showed in
Figure 2. The error for approximate solutions with y = 0.8, = 0.25 and N = 3, 5, 7 is illustrate in Fig. 3. The
error for approximate solutions with y = 0.9, 0.99, 0.999, § = 0.25 and N = 5 is provided in Fig. 4.

Example 2 Consider the following nonlinear FDIDE

t2y+3

M; —(r =82 —

CDYX(t) = X2(t - "' X2(0)do

Xt)y=v@), —5§<t=<0.

0<r<l, (79)

where ¥ (t) = t11Y —§ <t < 0. The exact solution is X (1) = 117 In Fig. 5, the approximate solutions with
y =0.5,8 = 0.25 and N = 5 are showed. In Fig. 6, the approximate solutions for y = 0.5, 0.7,0.9, § = 0.25
and N = 5 are displayed. In Fig. 7, the error of approximate solutions for y = 0.8, § = 0.25and N = 4,6, 8
are demonstrated. As we see in Figure 8, the error of approximate solutions are presented for y = 0.5, 0.7, 0.9,
6 = 0.25 and N = 5. And finally, the error of approximate solutions are displayed in Fig. 9 for y = 0.5,
§=02,04,06and N =5.

Example 3 Consider the following nonlinear FDIDE

Fey+1D, + 12 (t — )% — 2r+l

C Y _ B t - 7
§DIX(@0) = =X(OX (= 8) + [y X(O)d6 + 1 2y +1

Xt)=9(@), —86=r=0,

0<tr<?2

(80)
where ¥ (1) = 127, =8 <t < 0. X(t) = %" is the exact solution. The approximate and exact solutions for
y = 0.5,6 = 1and N = 5 are given in Fig. 10. For y = 0.5,0.7,0.9, § = 1 and N = 5, the exact and
approximate solutions are demonstrated in Fig. 11. The error with y = 0.8, N = 4,6, 8 and § = 1 is presented
in Fig. 12. The error of approximate solutions for y = 0.5,0.7,0.9,6 = 1 and N = 5 is showed in Fig. 13.
Aslo, The error with y = 0.5, N = 5and § = 0.5, 1, 1.5 is showed in Fig. 14.
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6 Conclusions and suggestions

In this article, we showed that Jacobi-Gauss collocation method can be implemented for solving the nonlinear
fractional delay integro-differential equation with a high accuracy. By this method, a system of algebraic equations
can be obtained for approximating the solution. Also, we gained the error bounds for approximations in two
spaces LS; 5 (1) and ch,)a, 5 (1), and illustrated the capability of presented method in numerical simulations.

We will extended the presented method and its convergence analysis for other types of fractional delay
problems including nonlinear fractional delay singular integro-differential equations and fractional delay partial
differential equations.
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