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Abstract By combining the shrinking projection method with the parallel splitting-up technique and the inertial
term, we introduce a new inertial parallel iterative method for finding common solutions of a finite system
of generalized mixed equilibrium problems and common fixed points of a finite family of Bregman totally
quasi-asymptotically nonexpansive mappings. After that, we prove a strong convergence result for the proposed
iteration in reflexive Banach spaces. By this theorem, we obtain some convergence results for generalized mixed
equilibrium problems in reflexive Banach spaces. In addition, we give a numerical example to illustrate the
proposed iterations. The obtained results are improvements and extensions to some known results in this area.

Keywords Bregman totally quasi-asymptotically nonexpansive mapping - Parallel iterative method - Generalized
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1 Introduction

The equilibrium problem (E P) was introduced by Muu and Oettli [1] in 1992. Later, some sufficient condition for
the existence of a the solution for (E P) was studied by Blum and Oettli [2], Noor and Oettli [3]. The equilibrium
problem consists of finding u € U such that

fu,v)>0,Yv e U,

where U is a nonempty, closed, convex subset of a Banach space W, and f : U x U — R is a bifunctional
mapping satisfying f(u, u) = 0 forall u € U. The set

EP(f)={ueU: f(u,v) =0,Yv e U}

denotes the set of solutions of (E P). The equilibrium problem had a great influence in the development of some
branches of pure and applied sciences. The equilibrium problem theory provides a natural and novel approach
for some problems arising in nonlinear analysis, physics and engineering, image reconstruction, economics,
finance, game theory and optimization. In 2008, Peng and Yao [4] extended the equilibrium problem (E P) to
the generalized mixed equilibrium problem (G M E P). Assume that (¢*, v) is the value of the function of u* at
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veW,A: U — Risareal valued function and B : U —> W* is a nonlinear mapping. Then the generalized
mixed equilibrium problem (GM E P) is to find u € U such that

f(u,v)+ (B(u),v—u)+ A(w) — A(u) > 0,Vv e U.

The symbol GMEP(f, A, B) = {u € U : f(u,v) + (Bu),v —u) + A(v) — A(u) > 0,Vv € U} denotes
the set of solutions of (GM E P). In particular, if B = 0, then (GM E P) is reduced into the mixed equilibrium
problem (M E P) which is to find # € U such that

fu,v) + A(w) > A(u), Vv e U.

If A =0, then (GME P) is reduced into the generalized equilibrium problem (GE P) which is to find u € U
such that
fu,v) +(B(u),v—u)>0,YveU.

If f =0, then (GME P) is reduced into the mixed variational inequality (M V I) of Browder type which is to
find u € U such that
(B(u),v—u)+ Aw) > A(u),Yv € U.

If B=0and A =0, then (GM E P) is reduced into the equilibrium problem (E P).

In recent times, the authors have studied many iterative methods for solving the equilibrium problem and its
generalizations in the setting of Hilbert spaces and Banach spaces. Furthermore, some authors proposed certain
iterative methods for finding common solutions of the equilibrium problem or its generalizations and fixed point
problem for nonexpansive mappings or generalized nonexpansive mappings in Hilbert spaces and Banach spaces.
In 2007, using the hybrid projection method, Tada and Takahashi [5] proposed the following hybrid iterative
method for finding common elements of an equilibrium problem and fixed point problem for a nonexpansive
mapping S in Hilbert space W.

z71€U

1
uy € U such that f(u,, v) + —(v —uy,uy, —z) >0,V € U
I'n

Vp =bpzy + (1 —by)Su, (1)
Co={ueW:lv,—ull <llza —ul}

QnZ{MEWI(Zn—M,Zn_m)fO}

Zn+1 = Pc,ng,(21),Vn > 1,

where {b,} C [0, 1] and {r,,} C (0, 00). In addition, under the suitable conditions, the authors proved that the
sequence {z,} strongly converges to p = Prs)nep(f)(z1), where F(S) denotes the set of fixed points of the
mapping S. In 2016, Alizadeh and Moradlou [6] generalized the main results in [5] by proposing the following
hybrid iterative method for solving an equilibrium problem and fixed point problem for a generalized hybrid
mapping S in Hilbert space W.

z1€U
Yn = anpiny + (1 —an)Szn

1
u, € U such that f(u,, v) + —(v —uy, up — zp) > 0,Yv e U

'n

2

Up = bnyn + (1 —b,)Su, 2)
Co={uecU:|v,—ull < llza —ull}
an{ueU:(zn—u,zn—m) 50}
Zn+1 = Pc,np, (21),Vn > 1,

where {a,}, {b,} C [0, 1] and {r,} C (0, co0). Furthermore, the authors proved that the sequence {z,} strongly
converges to p = Pr(s)nep(r)(z1). Note thatif a, = 1foralln € N, then the iteration (2) becomes the iteration
(1).

An interesting work naturally raised is to extend and improve the convergence results of the iterative methods
for equilibrium problems and fixed point problems from a Hilbert space to a Banach space. The fact that some
characteristic properties and results in Hilbert spaces are not available in more general Banach spaces. To
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overcome these difficulties, the authors combined the normalized duality mapping, the Lyapunov functional and
the generalized projection to construct some iterative methods for equilibrium problems and fixed point problems
in smooth Banach spaces [7,8]. In another approach, some authors used the Bregman distance and the Bregman
projection in reflexive Banach spaces instead of the norm and the metric projection in Hilbert spaces. By these
ways, some authors introduced many iterative methods for finding common elements of the solutions set of
the equilibrium problems and the fixed point set of mappings with respect to the Bregman distance in reflexive
Banach spaces [9, 10] and the references therein.

In 2014, Chang et al. [11] introduced the notion of a Bregman totally quasi-asymptotically nonexpansive
mapping as a generalization of a Bregman strongly nonexpansive mapping. After that, some convergence results
for the equilibrium problems and the fixed point problem for Bregman totally quasi-asymptotically nonexpansive
mappings in reflexive Banach spaces were established [12,13].

In 2014, Anh and Chung [14] introduced a parallel splitting-up technique to construct two parallel hybrid
methods for finding a common fixed point of a finite family of relatively nonexpansive mappings. By this idea,
some authors proposed many parallel iterative methods for finite system of equilibrium problems and a finite
family of generalized nonexpansive mappings [15,16]. In 2017, Tuyen [17] proposed some parallel iterative
methods for solving a system of generalized mixed equilibrium problems.

ZlGW,U1=W

k
ul(l ) = Resfk,Ak,Bk (Zn)

ky = argmax (D (u, 2,) k= 1,2,.... M}, 11, = ul™ 3)
Upy1 = {u €Uy : Dg(u,up) < Dg(u,Zn)}
Upt] = Pf},l“(m),vn > 1.

Recently, there were many methods for constructing new iteration processes which generalize some previous
ones. In 2008, Mainge [ 18] proposed the inertial Mann iteration by combining the Mann iteration process and the
inertial extrapolation. In 2018, Chidume et al. [19] introduced an inertial algorithm for approximating a common
fixed point for a countable family of relatively nonexpansive mappings in uniformly convex and uniformly
smooth Banach spaces.

Motivated by the mentioned works, we introduce a new inertial parallel iterative method for finding common
solutions of a finite system of generalized mixed equilibrium problems and common fixed points of a finite family
of Bregman totally quasi-asymptotically nonexpansive mappings. After that, we prove a strong convergence result
for the proposed iteration in reflexive Banach spaces. By this theorem, we obtain some convergence results for
generalized mixed equilibrium problems in reflexive Banach spaces. In addition, we give a numerical example
to illustrate the obtained results.

2 Preliminaries

Assume that W is a real reflexive Banach space, U is a nonempty, closed and convex subset of W, W* is the dual
space of W. Throughout this paper, we suppose that g : W — (—o00, 4-00] is a proper, lower semi-continuous
and convex function. The set domg = {u € W : g(u) < +o00} denotes the domain of g. For any u € int(domg)
and v € W, we denote by g'(u, v) the right-hand derivative of g at u in the direction v, that is

g(u+ Av) — g(u)
- :

, .
§/(u, v) = lim )
The function g is called Gdteaux differentiable at u if the limit (4) exists for any v. In this case, the gradient
of g at u is the function Vg(u), which is defined by (Vg(u), v) = g’(u, v) for all v € W. The function g is
called Gateaux differentiable on int(domg) if it is Gateaux differentiable at each u € int(domg). The function
g is called Fréchet differentiable at u if the limt (4) is attained uniformly in ||v|| = 1. The function g is called
uniformly Fréchet differentiable on a subset U of W if the limit (4) is attained uniformly foru € U and ||v|| = 1.

Proposition 1 [20, Proposition 1] Let W be a real reflexive Banach space, and g : W — (—00, +00] be
uniformly Fréchet differentiable and bounded on bounded subsets of W. Then V g is uniformly continuous on
bounded subsets of W from the strong topology of W to the strong topology of W*.
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Let u € int(domg), the subdifferential g at u € W is defined by
dg(u) = {u™ € W*: g(u) + (u*, v —u) < g(v),Yv € W},
and the Fenchel conjugate of g is the function g* : W* — (—o00, +00] defined by
g w®) = sup{(u*,u) — gu) :u € W},Vu* € W*.

Definition 1 [11, Definition 2.2] Suppose that W is a real reflexive Banach and g : W — (—o00, 4-00] is a
function. Then g is called Legendre if the following two conditions are satisfied.

1. Int(domg) # ¥, g is Gateaux differentiable on int(domg) and dom(Vg) = int(domg).
2. Int(domg*) # @, g* is Giteaux differentiable on int(domg™*) and dom(Vg*) = int(domg*).

Remark 1 [21] Let W be a real reflexive Banach space and g : W — (—00, +0o0] be a Legendre function.
Then

1. gis a Legendre function if and only if g* is a Legendre function.

2. )" =ag*.

3. Vg = (Vg") ™!, ran(Vg) = dom(Vg*) = int(domg*) and ran(Vg*) = dom(Vg) = int(domg), where
ran(Vg) denotes the range of Vg.

4. g and g* are strictly convex on the interior of their respective domains.

Definition 2 [22, p. 234] Assmue that W is a real reflexive Banach space and g : W — (—o00, +00] is a
Gateaux differentiable function. Then the function D, : domg xint(domg) — [0, +00), defined by D (u, v) =
g(w) — g(w) — (Vg(v), u — v) is called the Bregman distance with respect to g.

Notice that the Bregman distance is not a distance in the usual sense of the term. In general, Dg(u, u) = 0,
but Dg(u, v) = 0 may notimply u = v; D, is not symmetric and does not satisfy the triangle inequality. By the
definition of the Bregman distance, we have Dg(u, v) + Dg(v, w) — Dg(u, w) = (Vg(w) — Vg(v), u — v) for
all u € domg and v, w € int(domg). Note that from [23, p.7], for all u € W, we have

D (I/t, Vg*(ZMVg(u,J)) = ZAan(us Up), &)
n=1 n=1

m
where {u,}_, C W and {1,}"_, C [0, 1] with ) A, = L.
n=1
Definition 3 [24, p. 69] Let W be areal reflexive Banach space, g : W — (—00, 4-00] is a convex and Gateaux
differentiable function, and U be a nonempty, closed and convex subset of int(domg). The Bregman projection
of u € int(domg) onto U is the unique vector Pf(u) € U such that Dg(Pf (), u) = inf { Dy (v, u) : v € U}.

Remark 2 [12, Remark 2.2] Let W be a smooth, strictly convex Banach space and g(u) = |lu ||2 forallu e W.
Then Vg(u) = 2Ju for all u € W and J is the normalized duality mapping which is defined by J(u) =
(u* € W* : (u,u*) = |[ul|®> = ||lul|*} for all u € W. Therefore, Bregman distance Dy (u, v) is reduced into
¢ (u, v), where ¢ (u, v) is a Lyapunov function which is defined by ¢ (i, v) = ||u||*> —2(u, Jv) + ||v||*>. Thus, the
Bregman projection Pf’; (u) is reduced into the generalized projection Iy (1) in smooth Banach which is defined
by ¢(My(u), u) = min {¢(v,u) : v e U}

If W is a Hilbert space and g(u) = |lu||?> for all u € W, then U (u, v) = |lu — v||*> forall u, v € W, and J
is the identity mapping. Therefore, the Bregman projection Plz’; (u) is reduced into the metric projection from W
onto U.

Definition 4 [25, p. 1] Let W be a real reflexive Banach space, g : W — (—00, +00] be a convex and Gateaux
differentiable function. Then

1. g is called fotally convex at u € int(domg) if any # > 0, we have
vg(u, t) :=inf {Dg(v, u) :v € domg, |[v —ul| = t} > 0.

2. g is called rotally convex if g is totally convex at every point u € int(domg).
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3. g is called fotally convex on bounded subsets of W if any nonempty bounded subset B of W and ¢ > 0, we
have vg (B, t) := inf {vg(u, t):ue BN domg} > 0.

Proposition 2 [24, Lemma 2.1.2] Let W be a real reflexive Banach space, g : W —> (—00, 400] be a

convex and Gdteaux differentiable function. Then g is totally convex on bounded subsets of W if and only if any

sequence {u,} C int(domg) and {v,} C domg such that {u,} is bounded and lim Dg(v,, u,) = 0, we have
n—od

lim ||v, —uy,l| =0.
n—o0

Proposition 3 [26, Proposition 2.3] Let W be a real Banach space, g : W —> R be Legendre such that Vg*
is bounded on bounded subsets of int(domg*), u € W and {u,} C W satisfying {Dg(u, u,)} is bounded. Then
the sequence {u,} is bounded.

Proposition 4 [27, Corollary 4.4] Let W be a real reflexive Banach space, g : W —> (—o00, +00] be Gdteaux
differentiable and totally convex on int(domg), U be a nonempty, closed and convex subset of int(domg) and
u € int(domg). Then the following statements are equivalent.

L w=P§u).
2. w is the unique vector such that (Vg(u) — Vg(w), w —v) >0 forallv € U.
3. w is the unique vector such that Dg(v, w) + Dg(w, u) < Dg(v, u) forallv € U.

Definition 5 [28] Let W be a Banach space and denote by S; = {u € W : |Ju|| < 1} and B, = {u € W : |lu|| <
¢} for some ¢ > 0. Then g : W — R is called uniformly convex on bounded subsets of W if p.(t) > 0 for all
t, ¢ > 0, where the function p; : [0, c0) —> [0, 00) is defined by

ngw) + {1 —mng) —ghu+ (1 —nv)

1) = 1
pe(t) u,ve B, |lu—vl|=t,ne(0,1) n(l —n)

Note that the notion of an uniformly smooth on bounded subset for a mapping, we can find in [28]. Furthermore
if g is uniformly convex, then the function p, is nondecreasing mapping. In addition, p. () = 0 if and only if
t =0([28, p. 203]).

Remark 3 [29, p. 6] The function g is totally convex on bounded subsets of W if and only if g is uniformly
convex on bounded subsets of W.

Definition 6 [30, Definition 1.3.7] Let W be a Banach space and g : W — (—o00, +00] be a function. Then g
u
is called strongly coercive if ~ lim & = +o00.
el —>+o0 [lu|

By using [29, Lemma 2.2], we get the following lemma. The proof of this lemma is easy and is omitted.

Lemma 1 Let W be a real reflexive Banach space, g : W — R be a Legendre, strongly coercive function
which is uniformly Fréchet differentiable and bounded on bounded subsets of W. Then

D, (u Vg*(zanvg(un))) <Y anDg(u, up) — aia;pf (IVei) — Veu)l),
n=1 n=1

m
where i, j € {1,2,...,m}, Vg(u,) € Bf = {u € X* : |u|| < e} anday, € [0, 1] such that Y a, =1, and the
n=1

py is defined as in Definition 5.
Let us denote by F(S) = {u € W : Su = u} the set of fixed points of the mapping S : W — W.

Definition 7 Let W be a real reflexive Banach space, g : W — R be a Giteaux differentiable function and
S : W — W be a mapping. Then

1. ([31], Definition 2) S is called a Bregman quasi-nonexpansive mapping if F(S) # ¢ and for all u € W and
p € F(S), we have Dy(p, Su) < Do(p, u).

2. ([32], Definition 2.10) S is called a Bregman quasi-asymptotically nonexpansive mapping if F(S) # ¢ and
there exists a real sequence {k,} C [I, oco) with nll)rrgo ky, =1 such that Dy (p, $"u) < k,Dg(p, u) for all

u e Wand p € F(S).
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3. ([11], Definition 2.10) S is called a Bregman totally quasi-asymptotically nonexpansive mapping if F (S) # ¢
and there exist nonnegative real sequences {1,}, {i,} with lim n, = lim u, = 0 and a strictly increasing
n—oQ n— oo

continuous function & : [0, c0) —> [0, o0) with £(0) = 0 such that
Dg(u, 8"x) < Dg(u, x) + 1,E(Dg (u, X)) + ity

forallu € W and p € F(S).

4. ([31], Definition 2) S is called a Bregman firmly nonexpansive mapping if forallu, v € W, we have (Vg(Su)—
Vg(Sv), Su — Sv) < (Vg(u) — Vg), Su — Sv).

5. Sis called closed if any sequence {u,} in W such that nli)ngo u, =u € W and nll)ngo Su, = v € W, we have

Su =v.

6. ([33], p.3877) S is called uniformly asymptotically regular on W if for any bounded subset U of W, we have
lim sup || S" ! u — S"u| = 0.
n—o00 uel

Remark 4 1. Every Bregman quasi-asymptotically nonexpansive mapping is a Bregman totally quasi-
asymptotically nonexpansive mapping with £() = ¢ for all t > 0, n, = k, — 1 with k, > 1 satisfying

lim k, = 1, and w,, = 0, but the converse is not true.
n—oo

2. Every Bregman firmly nonexpansive mapping is a Bregman quasi-nonexpansive mapping.

Lemma 2 [11, Lemma 2.16] Suppose that W is a real reflexive Banach space, g : W — (—00, +o0] is a
Legendre function which is totally convex on bounded subsets of W, and U is a nonempty, closed and convex
subset of int(domg). Let S : U —> U be a closed and Bregman totally quasi-asymptotically nonexpansive
mapping. Then F(S) is a closed and convex subset of U.

For solving the problem (GM E P), let us assume that f, A, B satisfy the following conditions.

(Cl) f(u,u)=0forallu € U.

(C2) f is monotone, thatis, f(u,v) + f(v,u) <Oforallu,v € U.

(C3) Forall u, v, w € U, we have limsup f(tw + (1 — Hu, v) < f(u, v).
t10

(C4) Foreachu € U, v — f(u, v) is convex and lower semi-continuous.

(C5) A:U — Ris alower semi-continuous and convex function.

(C6) B:U —> W*is acontinuous monotone mapping.

In order to find the solution of the problem (GM E P), Darvish [9] introduced the notion of mixed resolvent of
f. Later, this notion was studied in [17].

Definition 8 [9, Definition 2.4] Let W be a real reflexive Banach space, U be a nonempty, closed and convex
subset of W, g : W — (—o0, +00] be a Gateaux differentiable function. Assume that f : U x U — R,
A:U — Rand B : U — W* satisfy the conditions (Cy) - (Cg). The mixed resolvent of f is the operator

Resfc’A)B : W — 2U defined by

Res?A’B(u) = {u) eU: f(w,v)+AWw)+ (B(u),v — w)
+(Vg(w) — Vgu),v—w) > A(w) forall v € U}.
After that by using a similar idea of [10, Lemma 1], the author of [9] proved thatif g : W — (—o0, +00] is
strongly coercive and Gateaux differentiable, then dom (Res‘? A B) = W. We find that the formula of the function
Res‘? A.B contains the term B(u) for all u € W. Since domB = U C W, the value B(u) does not exist for

all u € W\ U. Motivated by this confusion, we revise the formula of the function Res‘? A.p DY replacing the

term B(u), u € W by B(w), w € U. Then the formula of the mixed resolvent Res‘? ALB becomes the following
formula.

Resfy 4 p(u) = {w eU: f(w,v)+A@W) + (B(w), v — w)
+(Vg(w) — Vgu),v—w) > A(w) forallv € U}. ©)

Note that the idea of the formula (6) was pointed out in [12, Lemm 2.5].Next,byusingtheideaof[ 10, Lemmal],
we will prove that dom (Resé’} A B) = W under some suitable conditions, where the function Resgf 4_p is defined
by (6). The proof of following lemma is easy by using [2, Theorem 1 & p.130-131] and is omitted.
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Lemma 3 Let W be a real reflexive Banach space, U be a nonempty, closed and convex subset of W, g :
W — (—o00, +00] be a strongly coercive and Gateaux differentiable function. Assume that f : U x U — R,
A:U — Rand B : U — W* satisfy the conditions (C1) - (Ce). Then dom(Res‘; ap) =W

The following lemma presents some properties of the mixed resolvent Res® a.p Which is defined by (6). The
proof of this lemma is similar to the proof [9, Lemma 2.8]. Furthermore, these results have been studied in [12,
Lemm 2.5].

Lemma 4 [9, Lemma 2.8] Let W be a real reflexive Banach space, U be a nonempty, closed and convex subset
of W, g: W — (—00, +00] be a Legendre function. Assume that f : U x U — R, A: U — R and
: U —> W* satisfy the conditions (Cy) - (Cg). Then

Res‘g}’ A.p 18 a single-valued.

Res‘? A.p s a Bregman firmly nonexpansive mapping.

F(Res% 4 ) = GMEP(f, A, B) with F (Res'; , ) = {u € U : Res¥; , p(u) = u).

GMEP(f, A, B) is a closed and convex subset of W.

Forall p € F(Res?A’B) andu € W, we have

Dy (p. Resi-,A’B(u)) + Dg(Res?A’B(u), u) < Dg(p, u).

R N

3 Main results

Let S; : W — W be Bregman totally quasi-asymptotically nonexpansive mappings with nonnegative real
se @) (@) s f . i) _ (i) _ . . . . .
quences {1, '} and {u,’} satisfying hm N hm Mn’ = 0 and strictly increasing continuous functions

£® : 10, 00) —> [0, 00) with £@(0) = Oforeachz € 1 ={1,2,..., N} with N € N. Put
e =max{n? :i € I}, u, = max{u :i € I}, and &(r) = max{£D (1) : i € I}
forallz > 0. Then lim 5, = lim w, =0, £(0) = 0, and we have
n—>oo n—oo

Dg(p, Sj'u) < Dg(p, u) + 1,E(Dg(p, u)) + fin
forallu e W, p e () F(S;) and foralli € 1.
iel

Theorem 5 Suppose that W is a real reflexive Banach space, and U is a nonempty, closed and convex subset
of W.Letg : W —> R be Legendre, strongly coercive on W, and g be bounded, totally convex, uniformly Fréchet
differentiable on bounded subsets of W. For eachk € K :={1,2,...,M}with M €N, f : U xU — R,
A : U — Rand By : U —> W* satisfy the conditions (Cy) - (C¢). Foreachi € I, S; : W — W isa closed,
uniformly asymptotically regular and Bregman totally quasi-asymptotically nonexpansive mapping with non-

negative real sequences {n(l)} and {,u(l)} satlsfylng 11m n(l) = 11m u(l) = 0 and strictly increasing continuous

function £V : [0, 00) —> [0, 00) with £V (0) = 0 such that F = (ﬂ F(Si)) m( ( GMEP(f, Ax, Bk)>
is nonempty and bounded. Let {z,,} be a sequence generated by o ke
21, 2€U,U1=U=U
Xn =2Zn +¢n(2n — 2n—1) foralln > 2
(l) = Vg* (aan(xn) + (1 - an)Vg(Sl-"(xn)))for alli €1

in = argmax{Dg(x,, y,(,l)) el y, = y,g"’)

uglk) Resfk Av.Be (xp) forallk € K )
ky = argmax{ Dy (x,, uﬁ,k)) ke K}, u, = u,(,k")

§ = Vg (b V@) + (1 = b Ve(S}@)) forall j € 1

Jjn = argmax{Dy (x,, vy j ey, v, = oW
Uny1 = {u € Un : Dg(u,y) < Dg(u, Xp) + ¥}
ntl = (z1),

rl+1
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where y, = 1, sup {E(Dg(u,x,,)) Tu € f} + wn, and {a,}, {b,}, {c,} C [0, 1] such that lim a, =1 and
n—o0

liminf b, (1 — b,) > 0, and the function Res‘fp A, B, s defined as in (6). Then the sequence {z,} strongly con-

n—00 ks Ak Dk

verges to p = P}g_-(zl).

Proof The proof of Theorem 5 is divided into following six steps.

Step 1. We claim that PJi,g_-(zl) is well-defined. Indeed, we conclude from Lemma 2 and Lemma 4 that F(S;)
and GM E P( fi, Ak, By) are closed and convex sets for all i € I and k € K. This proves that

F = (m F(g,-)) ﬂ ( m GMEP(fi, Ay, Bk))

iel keK

is a closed and convex subset of U. Since F is a nonempty set, we find that F is a nonempty, closed and convex
subset of U. This fact ensures that P;_-(zl) is well-defined.

Step 2. We claim that Plé}n+1 (z1) is well-defined. Indeed, we first show that U, is closed and convex for all

n > 2 by mathematical induction. Obviously, we have U, = U is closed and convex. Now, we assume that U,,
is closed and convex for some m > 2. It follows from the definition of U,, 11, we get that

Un+1 = {M € Up : (Vg(xm), ut — xpm) — (Vg(Um), u — Upy)
< gWm) — gxm) +Vm}- 3
Then by directly checking, we conclude that U, is convex. Furthermore, it follows from (8) and the continuity
of Vg(.) that Uy, 4 is closed. Therefore, U, 1 is closed and convex, and hence U, is closed and convex for all
n > 2. Combining this with U; = U; is closed and convex, we get that U, is closed and convex for all n € N.
Next, we claim that 7 C U, for all n > 2 by mathematical induction. Obviously, we obtain 7 C U = U,.
Suppose that 7 C U, for some m > 2. Now, we prove that 7 C Up,+1. Assume that u € F. It follows from

F C Uy thatu € U,,. By using (5) and the fact that S; , is a Bregman totally quasi-asymptotically nonexpansive
mapping, we get

Dy (u,5,,) = Dg(u, yim)
— D, (u Vg™ (amVem) + (1 — am)Vg(S{me)))
< amDg(u, xm) + (1 — am) Dg(u, S;" x)
< amDg(u, xp) + (1 — am)[Dg (U, xm) + 11§ (Dg(u, X)) + ]
< Dy(u, Xm) + V- (&)

From Lemma 4, we find that Res?k Ar Bi is a Bregman firmly nonexpansive mapping and hence itis a Bregman

quasi-nonexpansive mapping for each k,, € K. Then, by Remark 4(2), we conclude that Resfck Ac. By isa
Bregman quasi nonexpansive mapping. Therefore, we have

Dy(u,n) = Dg(u, up™) = Dg(u,Resf 5 (vm)) < Dy, xpn). (10)

It follows from the strictly increasing property of £ and (10) that
&(Dg(u, wn)) < &(Dglu, xm)). (11
By combining (9), (10) and (11), we find that

Dg(u,vy) = Dg(u, v,(,{'"))
= Dy (1, V" (b V8 @y) + (1 = by) Ve (SE @n))
= meg(uv V) + (1 — bm)Dg(u’ S;r:n (@m))
= meg(us Ym) + (1 — bm)[Dg(u7 Um) + nm%_(Dg(us Um)) + tm]

= bm[Dg(uv Xm) + Yml + 1 — bm)[Dg(uv Xm) + & (Dg(, Xp)) + ]
< Dg(u, Xm) + Vm-
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This leads tou € U,+1 and hence 7 C Uy, 41. This implies that 7 C U, for all n > 2. It follows from U; = U,
that 7 C U, for all n € N. Since F is nonempty, we obtain U,, is nonempty.

By the above, we obtain that U, is nonempty, closed and convex. Therefore, we conclude that Plg/n+1 (z1) is
well-defined.

Step 3. We claim that {z,,} is bounded and the limit nll)n;o Dy (zy, z1) exists. Indeed, we conclude from

In = Plé}n (z1) and Proposition 4 that

Dy (v, zn) + Dg(zn, 21) < Dg(y, 21) (13)
forall y € U,. Letu € F. It follows from F C U, thatu € U,. By choosing y = u in (13), we get

Dg(u, zp) + Dg(zn, z1) < Dg(u, z1). (14)

This proves that Dg(z,, z1) < Dg(u,z1) — Dg(u, z4) < Dg(u, z1). It means that {Dg(u,, u1)} is bounded. By
[34, Lemma 1], we conclude that {u,} is bounded.
Next, from the definition of U,, we get z,+1 = Pﬁnﬂ(z]) € Uy+1 C U,. By choosing y = 7,41 in

(13), we obtain Dg(zn+1,2n) + Dg(2n,21) =< Dg(zn41,21). This leads to Dg(zn,21) < Dg(znt1,21) —
D¢ (zn41,2n) < Dg(zn+1, 21). Therefore, {Dg(zy, z1)} is a nondecreasing sequence. By using the bounded-
ness of the sequence {Dg(z,,, z1)}, we find that the limit lim Dg(z,, z1) exists.

n—o0

Step 4. We claim that lim z, = p € U.Indeed, for all m > n, it follows from the definition of z,, that z,, =
n—oo

Pl‘g}m (z1) € Uy C Uy. Therefore, by taking y = z,, in (13), we obtain Dg (2, 2n) + Dg(2n, 21) < Dg(zm, 21)-
This leads to

0= Dg(Zm’ Zn) < Dg(Zma Zl)_Dg(Zn’ Z1). (15)

Taking the limit (15) as m, n — oo, and using the existence of the limit lim Dg(z,, z1), we have
n—0oo

lim  Dg(zm, zn) = 0. (16)

m,n— 0o

Then, it follows from (16), the boundedness of {z, } and Proposition 2 that

lim ||zm — zull = 0. 17)
o0

m,n—

This proves that {z,,} is a Cauchy sequence in U. Since W is a Banach space and U is a closed subset of W, there
exists p € U such that lim z, = p.
n—oQ

Step 5. We claim that p € F. First, we will prove that p € () F(S;). Indeed, by choosingm = n + 1 in
iel
(16) and (17), we get
lim Dg(zp41,20) = lim ||z,41 — 2all = 0. (18)
n— 00 n—oo

It follows from z,+1 = Pf/nﬂ (z1) € Up4+1 C U, and the definition of U,, that

Dg(Zn+l9in) =< Dg(Zn+lv Xn) + V- (19)

Furthermore, we have ||x, — z,|| = ¢nllzn — Zn—1]]. By combining this with (18) and the boundedness of {c,},
we find that lim ||x, — z,|| = 0. Since lim z, = p, we get that lim x, = p. Therefore, from (18) and
n— o0 n—oQ n— o0

lim |[x, — z,ll =0, we get lim ||z,41 — x| = 0. By using the definition of D, we find that
n—o0 n— o0

[Dg(zn+1, Xn)| = 1€(@n+1) — &(xn) — (Vg(Xn)s Zu+1 — Xn)l
< 1g@n+1) — gl + llzn+1 — Xu I-IVE G I (20)

Furthermore, by [24, Proposition 1.1.10 & Proposition 1.1.11], we find that Vg is bounded on bounded subsets
of W. Then, by combining this with the boundedness of {x,}, lim |[z,+1 — x,| = 0 and (20), we obtain
n—>0oo

lim Dg(zp41,x,) =0. (21)
n—oo
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Letu € F. By using the definition of D, we get

|Dg(u, xn)| = |g(u) — g(xn) — (Vg (xp), U — xn)|
< 1g@) — g(xp)| + llu — xp|l.IIVE(xp) |l
< 1g@)| + 1g(xn)| + (lull + lIxa 1D-N1VECen) |l (22)
It follows from (22), the boundedness of F and {x,}, the uniform continuity of g and the boundedness on

bounded subsets of Vg that |Dg(u, x,,)| < 0o. This proves that the sequence {Dg(u, x,)} is bounded. By using
lim n, = lim w, =0, we find that
n—o0 n—o00

lim y, = lim
n—oo n—o0

(n,, sup {£(Dg(u, x)) s u € F}+ un) =0.
By combining (19), (21) and lim y, = 0, we find that lim D, (z,+1,v,) = 0. Furthermore, by (12) and the
n—0oo n—o0

boundedness of { Dy (u, x,,)}, we obtain that { Dg (u, v,(,j))} is bounded. Now, by [28, Proposition 3.6.4], we find
that g* is bounded on bounded subsets of W*. This implies that Vg* is bounded on bounded subsets of W*. By

combining this with the boundedness of { D, (u, v,(,j ))} and using Proposition 3, we find that {v,(,j ) } is bounded.
This implies that {v,} is bounded. By combining this with lim Dg(z,+41,V,) = 0 and using Proposition 2, we
n—>oo

find that
lim ||zp41 — Unll = O. (23)
n—0o0
By combining (23) and lim ||z,4+1 — x| = 0, we get lim |x, — v, || = 0. Then, by using the same proof as
n—o0 n— oo
in that of (21), we find that lim D, (x,, v,) = 0. By the definition v,,, we get that
n—oo
lim Dy (x,, vi) = 0. (24)
n— o0

Next, by using the same proofs as in that of (23), we find that
lim fx, — o[ = 0. 25)
n—oo
Since g is uniformly continuous and Vg is uniformly continuous on bounded sets, from (25), we find that
lim [Ig(r) — gl = lim [[Vg(xa) — Vg )| = 0. (26)
n—oo n—o0
Next, by using the same proofs as in that of (9) and (10), we conclude that

Dg(”»?n) S Dg(uvxn)‘i‘yn (27)

and
Dg(u,up) < Dg(u, xp). (28)

Then, from (27), (28) and using the boundedness of { D, (u, x,,)}, {v,}, we find that { D¢ (u, ¥,,)} and {Dg (u, u,,)}
are bounded. Note that Vg* is bounded on bounded subsets of W*. By combining this with the boundedness of
{Dg(u,y,)}, {Dg(u, u,)} and using Proposition 3, we find that {y,,} and u, } are bounded. Furthermore, for each
j € I, we have
Dg(u’ S;l (n)) < Dy (u, un) + UnS(Dg(M, ﬁn)) + tn- (29)

By (29) and the boundedness of { D, (u, u,)}, we obtain that { Dy (u, S;? (un))} is bounded. By Proposition 3, we
find that { S;? (up,)} is bounded.

Since {y,} and {S;’ (up)} are bounded and Vg is bounded on bounded subsets, we find that {Vg(y,)} and
{Vg(S;‘ (up))} are bounded. Put

& = max{sup |[Vg(@,) . sup [[VE (ST @n)}.
neN neN

This leads to Vg(¥,,), Vg(S;? (ttn)) € B}. Therefore, by using Lemma 1, we find that

Do(u, vi)
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= Dy (1, V&* (0aV5 () + (1 = b Va(S} @)

< by Dg(u, 5,) + (1 = by) D (u, 87 (@)) — ba(1 = by) pi (IVE(F,) — V(S @n))l)
= ang(u, ?n) +1 - bn)[Dg(u: un) + nng(Dg(u: Un)) + nl
—bu(1 = bp)p: (I1VE(T,) — V(ST @a))l)- (30)

It follows from (28), (30) and the strictly increasing property of &, we find that
Dy(u, v) < byDg(u. 5,) + (1 — by)[Dg i, x0) + 1 (Dg (i, X)) + pin]
—bu(1 = b) P (IIVE(T,) — Ve(ST @a))ll). (31)
By combining (27) and (31), we find that
Dy, vy) < bl Dy (. Xn) + vl + (1 = bu)[ Dy, xn) + & (Dg (1, X)) + f]
—bn(1 = bp)pZ (IIVE(F,) — V(ST @)l
< Dg(u, xn) + vn — bu(1 = b) X (IIVE(T,) — V(ST @a))ll)-

This leads to )
bu(1 = b)p? (IV8(F,) — Ve (S @) < Dy, xn) — Dyt v3) + ¥ (32)

Moreover, by using the property of the function D,, we obtain
Dy (ut, xn) — Dy (ut, v
= | = Dy(rn, v3) + (Vg (i) — V), u — x4)]|
< 1Dy Cons v+ Vg (0y”) = Vg @) l-llu — x4 . (33)
It follows from (24), (26) and (33) that lim |Dg(u, x,) — Dg(u, v\’)| = 0. By combining this with (32),
n—oo

lim y, = 0and liminf b,(1 — b,) > 0, we conclude that
n—oo n—oo

Jim P (IVe(,) — V(S @n)ll) = 0. (34)

Suppose that lim [|[Vg(,) — Vg(S;l (un))ll > 0. Then, there exist r > 0 and a subsequence {k(n)} of n
n—0o0
such that [|[Vg(Yi)) — Vg(Sf(")(ﬁk(n))) | > r. It follows from the nondecreasing property of p} that

PEUIVE i) — VE(SS™ @) = p(r) (35)

for all n € N. By taking the limit as n — oo in (35) and using (34), we obtain that 0 > p;(r). This contradicts
the fact that p}(r) > 0. Therefore,

lim | Vg(,) = Ve(S] @) = 0. (36)

Note that Vg* is uniformly continuous on bounded subsets. By combining this with Vg = (Vg*)~! and (36),
we conclude that
lim [y, — S} @)l = 0. (37)
n—oo

Now, by the definition of ¥, and Vg = (Vg*)~!, we get
Ve, = Vg(Vg*(aan(xn) + - an)Vg(Si"(xn)))> = ay,Vg(xn) + (1 — an)Vg(SE (xn)).

This leads to
IVe(@,) — Vgl = (1 —an)IVe(S] (xn)) — Vg (xa)ll- (38)

It follows from (37), (38), lim a, = 1 and the boundedness of {x, } that
n— oo

Tim [[Vg(3,) - Vg)| = 0. (39)
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Then, by using the uniform continuous on bounded subsets of Vg* , Vg = (Vg*)~! and (39), we obtain

lim |y, —x,| =0. (40)
n—oo
It follows from (37) and (40) that
lim ||S;?(ﬁn) — x,]| = 0. 41)
n—oQ

By combining (41) and lim x, = p, we have lim S"(u,) = p. Moreover, we have
n—oo n—oo J

1T+ ) = pll < 18T @) — 7G|+ 1187 Gan) = plI. 42)

Then, we conclude from (42), lim S;’(ﬁn) = p and the asymptotically regular property of S; that
n— 00
lim S’;H(ﬁn) = p for all j € I. This proves that lim S(S’l?(ﬁn)) = p. Since §; is closed, we find that
n—oo n—oQo K
Sij(p)y=pforall j € I and p € () F(S)).
iel

Next, we prove that p € (| GM E P(f, A, Bi). Indeed, foreach k € K, we have u,gk) = Res‘j[k’Ak’Bk -
keK

It follows from (6) that
Fe@® vy + Ap () + (Br@®), v — u®y + (Veu®) — Ve3,), v —u®) > Ap@®) forall v e U.
By using the condition (C»), we get

(B, v — ulPy + (Vg @®) — VgF,), v — ulP) + Apv) — Ar@)

= —fiuy? v) = fiw, ). 43)
Since g is uniformly continuous and Vg is uniformly continuous on bounded sets, by (41), we obtain
lim [|g(x,) — g(S} @)l = lim [[Vg(xn) — Vg(Sj@n))ll = 0. (44)
n—od n— o0

Let u € F. By using the property of the Bregman distance, we have

|Dg(u, xn) — Dg(u, S (it))]
= | = Dg(xn, S} Wn)) + (Vg(S; @n)) — Vg(xn), u — xn)|
< IDg(xn, S7@n))| + V(S @n)) — Vg (xn) [l llu — xull
< |8 Cxn) — g(SG@)| + IV (S @)l llxn — S5 Gan)l

HIVE (S @n)) — Vg xn)ll.llu — xnll. (45)
It follows from (41), (44) and (45) that
lim [Dg(u, x,) — Dg(u, S;l(ﬁn))| =0. (46)
n— oo

Furthermore, by u,, = Resi-k A By (x;,), Lemma 4 and (29), we find that

Dg(xna Up) < Dg(“a Xn) — Dg(”’ﬁn)
=< Dg(l"s Xp) — Dg(uv S;'l (un)) + ﬂnE(Dg(M, ﬁn)) + Un- 47)

Then, by (28) and the strictly increasing property of &, the inequality (47) becomes

Dg(xn’ uy) < Dg(u, Xn) — Dg(ua S?(ﬁn)) + nnE(Dg(ua xn)) + Un
< Dg(u, x5) — Dg(u, S} (tn)) + ¥a- (48)

It follows from (46), (48) and lim y, = 0 that lim Dg(x,, u,) = 0. By the definition u,, we get that
n— 00 n— 00

: k
1im Dy (o, 1) = 0.
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Then, by using the same proof as in that of (23), we find that lim |/x, — uflk) || = 0. By combining this with
n— o0

lim x, = p, we get that
n—00

lim u® = p. (50)
n—oo
Moreover, it follows from (40) and lim |x, — ug,k) | = O that lim ||u,(,k) — 3,1l = 0. Since Vg is uniformly
n—oo n—0oo

continuous on bounded subsets, we obtain lim ||Vg(u§,k)) — Vg(,)|l = 0. This implies that
n— oo
Jim (Ve @) = Vg (3,). v —u)| = 0. 51

Since Ay is lower semi-continuous and (50), we find that

lim inf Az (u®) > Ap(p). (52)
n—00

By the condition (Cy4), we get that f; is lower semi-continuous in the second variable for each k € K. It follows
from (50) that
liminf fi (v, 4) = fi(v, p)- (53)
n—oo

We also have

Br®), v —u) — (Be(p), v — p)
Br(u) — Bi(p), v) — (B ), u®y + (Bi(p), p)|

I
1€
1€
1€

< (Be@®) — Br(p), v)| + (B @®), u® — p)| + 1(Br®) — Be(p), p)l
< (B @) — Br(p), v)| + 1 Br @) ) 1u® — pll + (B P) — Bi(p), p)l. (54)

It follows from (50), (54), the continuity of By and B (u(") € W* that
lim (B (), v —ul) = (Be(p). v — p). (55)
n—0oo

Then, by (43), (51), (52), (53) and (55), we find that

(Be(p), v — p) + Ax(v) — Ak(p) = fi(v, p) (56)

forallv € U.Forallt € (0, 1], putv, =tv+ (1 —¢t)p. Dueto y, p € U and U is convex, we have v; € U.
Then, by replacing y by v, in (56), we conclude that

Je(r, p) + (Bk(p), p — vi) + Ar(p) — Ar(vy) = 0. (57)

By using the condition (C1), the convexity in the second variable of f; and the convexity of A; and (57), we
conclude that

0= fi(v,v) = fi(ur, v) + (Br(p), v — vy) + A (vy) — A (vy)
< tfi(ve, y) + (A = 1) fi(ve, p) + t(Bi(p), y — vr) + (1 = t)(Bk(p), p — vr)
+1 Ak (y) + (1 = 1) Ar(p) — Ak (vr)
= t[ fuwi, v) + (Be(p). v — v) 4+ Ac(v) — Ar(vy)]
+(1 = [ fivr, p) + (Br(p), p — vi) + Ak (p) — A (vr)]

< t[fer, y) + (Be(p), v — v;) + A (v) — Ar(vy)]. (58)
It follows from (58) and ¢ > O that
S, v) + (Br(p), v — v) + Ap(v) — Ar(v;) > 0. (59

Therefore, by the condition (C3), we have

lim sup fi(v;, v) = limsup fr(tv + (1 —t)p,v) < fi(p,v). (60)
110 110
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Since Ay is lower semi-continuous, we get that — Ay is upper semi-continuous. From liné v = lir% (tv+ (1 —
t—

t—
t)p) = p, we find that
lim sup[—Ax (v)] < —Ar(p). (61)

t—0

By (59), (60), (61) and lin%) vy = p, we find that
t—

Jie(p,v) + (Br(p), v — p) + Ar(v) — Ax(p) = 0.

This implies that p € (| GME P(f%, Ak, Bx). By the above, we conclude that
keK

peF= (ﬂ Fs) () GMEPfi Ax, Bk)).

iel keK

Step 6. We claim that p = P%(z1). Indeed, we put z = P%(z1). We will show that z = p. Fromz,, = Pgn (z1)
and Definition 3, we find that
D¢ (zn, 21) < Dg(v, 21) (62)

for all v € U,. It follows from z = Pg_.(zl) € F and F C U, that z € U,,. Therefore, by taking v = z in (62),
we obtain
Dy (zn,21) < Dg(z, 21). (63)

Furthermore, we have

[Dg(zn, 21) — Dg(p, z2)| = 18(z0) — &(p) + (Vg(z1), p — zn)l
< 18n) — 8@+ VgD IIp — zull. (64)

Taking the limit as n —> 0o in (64) and using lim u, = p, the uniform continuity of g and the boundedness on
n— o0
bounded subsets of Vg that lim Dy (z,, z1) = Dg(p, z1). Then, itfollows from (63) that D¢ (p, z1) < Dy(z, 21).
n— o0

By the definition of z and p € F, we find that p = z = P£(z)). O

In Theorem 5, by choosing a,, = 1, we obtain the following result. Note that iteration (65) is an improvements
to iteration (1) which was presented in [5].

Corollary 1 Suppose that W is a real reflexive Banach space, and U is a nonempty, closed and convex subset
of W. Let g : W — R be Legendre, strongly coercive on W, and g be bounded, totally convex, uniformly Fréchet
diﬁ‘erentiable on bounded subsets of W. For eachk € K .= {1,2,..., M} withM € N, f : U x U — R,

: U —> Rand By, : U —> W* satisfy the conditions (Cy) - (Cg). Foreachi € I, S; : W —> W isaclosed,
umformly asymptotically regular and Bregman totally quasi- asymptotlcally nonexpansive mapping with non-

() _

negative real sequences {17,, )} and { ,u,(i )} satisfying hm Nn = 0 and strictly increasing continuous

function £ : [0, 00) —> [0, 00) with £D(0) = 0 such thatf (m F(S,~)> m( N GMEP(fi, A, Bk)>
iel keK

is nonempty and bounded. Let {z,} be a sequence generated by

721,22€ U, U =U=U

Xn =2n +cn(2y — 2y—1) foralln > 2

u® = Res® & O jlior allk € K )

ky = argmax{Dg(x,, uf, )) ke K}, u, = u,(1 n)

o = Vg (buVgta) + (1= b V(S @) forall j 1

(n)

(65)

Jn = argmax{ Dy (x,, v : j € I}, Ty = vy
Upy1 = {u € Uy : Dg(u,vy) < Dg(u, x,) + yn}
Zl’l+1 = PgnJrl(Zl)’

where y,, = n,, sup {E(Dg(u, xn)) ‘U € .7-'} + wn, and {b,}, {c,} C [0, 1] such that lim inf b, (1 — b,)) > 0, and
n— 00

the function Resz}k, Ac. B is defined as in (6). Then the sequence {z,} strongly converges to p = Pﬁ-(z 1)
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Remark 5 In Theorem 5 and Corollary 1, by choosing S; = S foralli € I, fy = f, Ax = A and By = B for
all k € K, we get two convergence results for a generalized mixed equilibrium problem and a Bregman totally
quasi-asymptotically nonexpansive mapping in reflexive Banach spaces.

In Theorem 5, when S; is an identity mapping for all i € I, we obtain the following corollary. Note that
the iteration process (66) is an improvement of the the iteration process (3) in the sense of adding the inertial
extrapolation. Therefore, Corollary 2 is a generalization of the main result in [17].

Corollary 2 Suppose that W is a real reflexive Banach space, and U is a nonempty, closed and convex subset
of W. Let g : W — R be Legendre, strongly coercive on W, and g be bounded, totally convex, uniformly Fréchet
differentiable on bounded subsets of W. For eachk € K :={1,2,...,M}with M €N, f : U xU — R,
Ay : U —> Rand By : U —> W* satisfy the conditions (Cy) - (Ce) such that Fy = (| GME P(fx, Ak, B)

keK

is nonempty and bounded. Let {z,} be a sequence generated by
21,22€ U, U1 =U2=U
Xn = 2n + Cn(Zn - Zn—l)fOralll’l 2 2

(k) g
U, = Resfk,Ak’Bk (?2") .
kn = argmax{Dg (s, x,)  k € K}, iy = 1" (66)
v = Vg (ba V) + (1 = b)) V(@) )
Unt1 = {'4 eU,: Dg(ua vy) < Dg(”a Xn) + Vn}
1 = Py, (@),

where v, = n, sup {é(Dg(u, x,,)) ‘u € .7-'} + wn, and {b,}, {c,} C [0, 1] such that liminf b, (1 — b,)) > 0, and
n—oo

the function Resfck’ Av. By is defined as in (6). Then the sequence {z,} strongly converges to p = P;_-l (z1)-

Remark 6 1. Note thatevery Bregman quasi-asymptotically nonexpansive mapping is a Bregman totally quasi-
asymptotically nonexpansive mapping with £(z) = ¢ for all + > 0, n, = k, — 1 with k, > 1 satisfying

lim k, = 1, and u, = 0 for all n € N. Therefore, the conclusions of Theorem 5, Corollary 1 and
n—0o0

Corollary 2 hold when S; is a Bregman quasi-asymptotically nonexpansive mapping for all i € [ and
Yn = (ky — 1) sup{Dg(u,x,,) ‘u€e f} for all n € N.

2. The conclusions of Theorem 5, Corollary 1 and Corollary 2 are satisfied when (GM E P) is replaced by
(MEP),(GEP),(MVI)and (EP).

Finally, we give a numerical example to illustrate for the convergence of iteration (66) and iteration (3).

Example1 Let W = R, U = [0, 1], g(u) = u®, Si(u) = % forallu €¢ Wandi = 1,2. Let Bx(u) = ku,
Ar(u) = ku? and fi (u, v) = k(=2u* + uv + v?) forall u, v € U and k = 1, 2. Then

w\ 4 w
1. By directly calculating, we have Vg(u) = 4u> forallu € W, g*(w) = 3,3/ <Z> and Vg*(w) = \3/; for
allw e W.
2. Forallu,v e W, we have Dg(u,v) = g(u) — g(v) — (Vg(v),u —v) = u® 4 3v* — 4uv3.
3. Foreachi = 1, 2, we obtain F'(S;) = {0}. Therefore, forall p € F'(S;) andu € U, we find that D¢(p, S/'u) =

4

3(S;’u)4 = 3(2"7) < 3wt = Dgy(0,u) = Dg(p,u). This proves that S; is a Bregman totally quasi-
asymptotically nonexpansive mapping with n,(,i) = /L,(f) =0foralln e N.

4. By directly checking, we find that fi, Ak, By satisfies the conditions (Cp) - (Ce).

5. }flow, we will find the formula of Resl}k’ A By S in (6). Indeed, w = Res?k’ A By (u) forallu € W if and only
i

Je(w, v) + Ax(v) + (Br(w), v — w) + (Vg(w) — Vg(u), v — w) > Ag(w) (67)

for all v € U. By substituting fi, Ay, By into (67) and by directly calculating, we find that kv> + (kw +
2w3 — 2u3)v + 2ulw — 2w* — 2kw? > 0. Put

h(v) = kv? + (kw + 2w — 2u)v + 23w — 2w* — 2kw?.
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Then, we have A = 3kw + 2w? — 2u3)%. We consider the following two cases.
Case 1. A > 0. Then the quadratic equation 4 (v) = 0 have two solutions as follows.

2ud —2wd — 2kw

vi=w and vy =

k
In oder to h(v) > O for all v € 2, we have the following cases.
2u — 2k —2 5/3k +2
Case1.1.vi=1and vy > vi. Thenw =v; =1,and vy = —— > 1 and hence u > —
3
u
Case 1.2. vi =0and v < v;. Then w =v; =0, and v, = y < 0 and hence u < 0.

Case 2. A < 0. Then 3kw + 2w? = 2u> and h(v) > 0 for all v € U. Note that 3kw + 2w> = 243 if and
2
(\3/\/4146 128 + 2u3) — Y2k

VAV u® + 263 + 203

3k+2
’ T+ Therefore,

only if w = . Since w € U, we have 0 < 3kw + 2w? = 2u® < 3k + 2 and

hence 0 <u <

0 ifu<0
2
(\3/«/4u6+2k3+2u3) —\S/Ek 3k + 2
. 3 +
f0<u< ——
2
k+2

Rest o p () =w = VA4S + 263 + 2ud

3

1 ifu> ———.
2

By the above, all assumptions in Theorem 5 are satisfied with the given functions fj, Ak, Bk, S;. Therefore,

2 2
by Theorem 5, the sequence {z,,} which is defined by (7) converges to 0 € ( N F(Si)) N ( (\ GMEP(fi, Ax,
i=1 k=1

By )) .
Next, we compare the rate of convergence of the iteration process (3) and the iteration process (66) to 0 which
is a solution of a finite system of (GM E P). Numerical results of the mentioned iteration processes with the

1
initial pointz; = 1,z = 0.8, b, = 10000 and the different choices of ¢, are presented in the following table.
n
Table 1 shows that for given mappings, the iteration process (66) has a better convergence rate and requires

a small number of iterations than the iteration process (3).

4 Conclusions

In this paper, a new inertial parallel iterative method was proposed for finding common solutions of a finite
system of generalized mixed equilibrium problems and common fixed points of a finite family of Bregman totally
quasi-asymptotically nonexpansive mappings. A strong convergence result for the proposed iteration in reflexive
Banach spaces was established and proved. From this theorem, some convergence results for generalized mixed
equilibrium problems in reflexive Banach spaces were given. In addition, a numerical example was provided to
demonstrate the proposed iterations. On comparing our results with the main result of [5,6,17], we find that

1. Theorem 5 is a generalization of [6, Theorem 3.1] from an equilibrium problem and a generalized hybrid
mapping in Hilbert spaces to a finite system of generalized mixed equilibrium problems and a finite family
of Bregman totally quasi-asymptotically nonexpansive mappings in reflexive Banach spaces.

2. Corollary 1 is an improvement of [5, Theorem 3.1] from an equilibrium problem and a nonexpansive mapping
in Hilbert spaces to a generalized mixed equilibrium problem and a Bregman totally quasi-asymptotically
nonexpansive mapping in reflexive Banach spaces.

3. Corollary 2 is an extension of [17, Theorem 3.6] in the sense of adding the inertial extrapolation to the
iteration process (3). Furthermore, Example 1 was given to prove the efficiency of iteration (66) which has
a better convergence rate and requires a small number of iterations than the iteration process (3) which was
presented in [17].
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Table 1 Number of iterations of the processes (3) and (66)

n Iteration (3) Iteration (66)
T T N
‘= =35 = Ton +2
1 1.000000 1.000000 1.000000 1.000000
2 0.767589 0.800000 0.800000 0.800000
3 0579151 0525025 0.525025 0.463658
4 0.434901 0325035 0.290662 0.119140
5 0326252 0.206283 0.130114 0.119140
21 0.003270 0.001056 0.000008 0.000001
2 0.002452 0.000778 0.000004 0.
23 0.001839 0.000574 0.000001 0.
24 0.001379 0.000424 0. 0.
43 0.000005 0.000001 0 0
44 0.000004 0.000001 0 0
45 0.000003 0. 0 0
49 0.000001 0. 0. 0.
50 0. 0. 0. 0.
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