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Abstract By combining the shrinking projection method with the parallel splitting-up technique and the inertial
term, we introduce a new inertial parallel iterative method for finding common solutions of a finite system
of generalized mixed equilibrium problems and common fixed points of a finite family of Bregman totally
quasi-asymptotically nonexpansive mappings. After that, we prove a strong convergence result for the proposed
iteration in reflexive Banach spaces. By this theorem, we obtain some convergence results for generalized mixed
equilibrium problems in reflexive Banach spaces. In addition, we give a numerical example to illustrate the
proposed iterations. The obtained results are improvements and extensions to some known results in this area.

Keywords Bregman totally quasi-asymptotically nonexpansivemapping ·Parallel iterativemethod ·Generalized
mixed equilibrium problem · Reflexive Banach space

1 Introduction

The equilibrium problem (E P)was introduced byMuu andOettli [1] in 1992. Later, some sufficient condition for
the existence of a the solution for (E P)was studied by Blum and Oettli [2], Noor and Oettli [3]. The equilibrium
problem consists of finding u ∈ U such that

f (u, v) ≥ 0,∀v ∈ U,

where U is a nonempty, closed, convex subset of a Banach space W , and f : U × U −→ R is a bifunctional
mapping satisfying f (u, u) = 0 for all u ∈ U . The set

E P( f ) = {
u ∈ U : f (u, v) ≥ 0,∀v ∈ U

}

denotes the set of solutions of (E P). The equilibrium problem had a great influence in the development of some
branches of pure and applied sciences. The equilibrium problem theory provides a natural and novel approach
for some problems arising in nonlinear analysis, physics and engineering, image reconstruction, economics,
finance, game theory and optimization. In 2008, Peng and Yao [4] extended the equilibrium problem (E P) to
the generalized mixed equilibrium problem (G M E P). Assume that 〈u∗, v〉 is the value of the function of u∗ at

Communicated by NM Bujurke.

N. T. Hieu (B)
Faculty of Mathematics - Informatics Teacher Education, Dong Thap University, Cao Lanh City, Dong Thap Province, Vietnam
E-mail: ngtrunghieu@dthu.edu.vn

N. Van Dung
E-mail: nvdung@dthu.edu.vn

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13226-024-00616-1&domain=pdf


N. T. Hieu, N. V. Dung

v ∈ W , A : U −→ R is a real valued function and B : U −→ W ∗ is a nonlinear mapping. Then the generalized
mixed equilibrium problem (G M E P) is to find u ∈ U such that

f (u, v) + 〈B(u), v − u〉 + A(v) − A(u) ≥ 0,∀v ∈ U.

The symbol G M E P( f, A, B) = {
u ∈ U : f (u, v) + 〈B(u), v − u〉 + A(v) − A(u) ≥ 0,∀v ∈ U

}
denotes

the set of solutions of (G M E P). In particular, if B ≡ 0, then (G M E P) is reduced into the mixed equilibrium
problem (M E P) which is to find u ∈ U such that

f (u, v) + A(v) ≥ A(u),∀v ∈ U.

If A ≡ 0, then (G M E P) is reduced into the generalized equilibrium problem (G E P) which is to find u ∈ U
such that

f (u, v) + 〈B(u), v − u〉 ≥ 0,∀v ∈ U.

If f ≡ 0, then (G M E P) is reduced into the mixed variational inequality (MV I ) of Browder type which is to
find u ∈ U such that

〈B(u), v − u〉 + A(v) ≥ A(u),∀v ∈ U.

If B ≡ 0 and A ≡ 0, then (G M E P) is reduced into the equilibrium problem (E P).
In recent times, the authors have studied many iterative methods for solving the equilibrium problem and its

generalizations in the setting of Hilbert spaces and Banach spaces. Furthermore, some authors proposed certain
iterative methods for finding common solutions of the equilibrium problem or its generalizations and fixed point
problem for nonexpansivemappings or generalized nonexpansivemappings in Hilbert spaces and Banach spaces.
In 2007, using the hybrid projection method, Tada and Takahashi [5] proposed the following hybrid iterative
method for finding common elements of an equilibrium problem and fixed point problem for a nonexpansive
mapping S in Hilbert space W .

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z1 ∈ U

un ∈ U such that f (un, v) + 1

rn
〈v − un, un − zn〉 ≥ 0,∀v ∈ U

vn = bnzn + (1 − bn)Sun

Cn = {
u ∈ W : ‖vn − u‖ ≤ ‖zn − u‖}

Qn = {
u ∈ W : 〈zn − u, zn − z1〉 ≤ 0

}

zn+1 = PCn∩Qn (z1),∀n ≥ 1,

(1)

where {bn} ⊂ [0, 1] and {rn} ⊂ (0,∞). In addition, under the suitable conditions, the authors proved that the
sequence {zn} strongly converges to p = PF(S)∩E P( f )(z1), where F(S) denotes the set of fixed points of the
mapping S. In 2016, Alizadeh and Moradlou [6] generalized the main results in [5] by proposing the following
hybrid iterative method for solving an equilibrium problem and fixed point problem for a generalized hybrid
mapping S in Hilbert space W .

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z1 ∈ U

yn = anzn + (1 − an)Szn

un ∈ U such that f (un, v) + 1

rn
〈v − un, un − zn〉 ≥ 0,∀v ∈ U

vn = bn yn + (1 − bn)Sun

Cn = {
u ∈ U : ‖vn − u‖ ≤ ‖zn − u‖}

Qn = {
u ∈ U : 〈zn − u, zn − z1〉 ≤ 0

}

zn+1 = PCn∩Qn (z1),∀n ≥ 1,

(2)

where {an}, {bn} ⊂ [0, 1] and {rn} ⊂ (0,∞). Furthermore, the authors proved that the sequence {zn} strongly
converges to p = PF(S)∩E P( f )(z1). Note that if an = 1 for all n ∈ N, then the iteration (2) becomes the iteration
(1).

An interesting work naturally raised is to extend and improve the convergence results of the iterative methods
for equilibrium problems and fixed point problems from a Hilbert space to a Banach space. The fact that some
characteristic properties and results in Hilbert spaces are not available in more general Banach spaces. To
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overcome these difficulties, the authors combined the normalized duality mapping, the Lyapunov functional and
the generalized projection to construct some iterative methods for equilibrium problems and fixed point problems
in smooth Banach spaces [7,8]. In another approach, some authors used the Bregman distance and the Bregman
projection in reflexive Banach spaces instead of the norm and the metric projection in Hilbert spaces. By these
ways, some authors introduced many iterative methods for finding common elements of the solutions set of
the equilibrium problems and the fixed point set of mappings with respect to the Bregman distance in reflexive
Banach spaces [9,10] and the references therein.

In 2014, Chang et al. [11] introduced the notion of a Bregman totally quasi-asymptotically nonexpansive
mapping as a generalization of a Bregman strongly nonexpansive mapping. After that, some convergence results
for the equilibrium problems and the fixed point problem for Bregman totally quasi-asymptotically nonexpansive
mappings in reflexive Banach spaces were established [12,13].

In 2014, Anh and Chung [14] introduced a parallel splitting-up technique to construct two parallel hybrid
methods for finding a common fixed point of a finite family of relatively nonexpansive mappings. By this idea,
some authors proposed many parallel iterative methods for finite system of equilibrium problems and a finite
family of generalized nonexpansive mappings [15,16]. In 2017, Tuyen [17] proposed some parallel iterative
methods for solving a system of generalized mixed equilibrium problems.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

z1 ∈ W, U1 = W

u(k)
n = Res fk ,Ak ,Bk (zn)

kn = argmax{Dg(u
(k)
n , zn) : k = 1, 2, . . . , M}, un = u(kn)

n

Un+1 = {
u ∈ Un : Dg(u, un) ≤ Dg(u, zn)

}

un+1 = Pg
Un+1

(z1),∀n ≥ 1.

(3)

Recently, there were many methods for constructing new iteration processes which generalize some previous
ones. In 2008, Mainge [18] proposed the inertial Mann iteration by combining theMann iteration process and the
inertial extrapolation. In 2018, Chidume et al. [19] introduced an inertial algorithm for approximating a common
fixed point for a countable family of relatively nonexpansive mappings in uniformly convex and uniformly
smooth Banach spaces.

Motivated by the mentioned works, we introduce a new inertial parallel iterative method for finding common
solutions of a finite system of generalizedmixed equilibrium problems and common fixed points of a finite family
ofBregman totally quasi-asymptotically nonexpansivemappings.After that, we prove a strong convergence result
for the proposed iteration in reflexive Banach spaces. By this theorem, we obtain some convergence results for
generalized mixed equilibrium problems in reflexive Banach spaces. In addition, we give a numerical example
to illustrate the obtained results.

2 Preliminaries

Assume that W is a real reflexive Banach space, U is a nonempty, closed and convex subset of W , W ∗ is the dual
space of W . Throughout this paper, we suppose that g : W −→ (−∞,+∞] is a proper, lower semi-continuous
and convex function. The set domg = {u ∈ W : g(u) < +∞} denotes the domain of g. For any u ∈ int(domg)

and v ∈ W , we denote by g′(u, v) the right-hand derivative of g at u in the direction v, that is

g′(u, v) = lim
λ↓0

g(u + λv) − g(u)

λ
. (4)

The function g is called Gâteaux differentiable at u if the limit (4) exists for any v. In this case, the gradient
of g at u is the function ∇g(u), which is defined by 〈∇g(u), v〉 = g′(u, v) for all v ∈ W . The function g is
called Gâteaux differentiable on int(domg) if it is Gâteaux differentiable at each u ∈ int(domg). The function
g is called Fréchet differentiable at u if the limt (4) is attained uniformly in ‖v‖ = 1. The function g is called
uniformly Fréchet differentiable on a subset U of W if the limit (4) is attained uniformly for u ∈ U and ‖v‖ = 1.

Proposition 1 [20, Proposition 1] Let W be a real reflexive Banach space, and g : W −→ (−∞,+∞] be
uniformly Fréchet differentiable and bounded on bounded subsets of W . Then ∇g is uniformly continuous on
bounded subsets of W from the strong topology of W to the strong topology of W ∗.
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Let u ∈ int(domg), the subdifferential g at u ∈ W is defined by

∂g(u) = {u∗ ∈ W ∗ : g(u) + 〈u∗, v − u〉 ≤ g(v),∀v ∈ W },
and the Fenchel conjugate of g is the function g∗ : W ∗ −→ (−∞,+∞] defined by

g∗(u∗) = sup{〈u∗, u〉 − g(u) : u ∈ W },∀u∗ ∈ W ∗.

Definition 1 [11, Definition 2.2] Suppose that W is a real reflexive Banach and g : W −→ (−∞,+∞] is a
function. Then g is called Legendre if the following two conditions are satisfied.

1. Int(domg) �= ∅, g is Gâteaux differentiable on int(domg) and dom(∇g) = int(domg).

2. Int(domg∗) �= ∅, g∗ is Gâteaux differentiable on int(domg∗) and dom(∇g∗) = int(domg∗).

Remark 1 [21] Let W be a real reflexive Banach space and g : W −→ (−∞,+∞] be a Legendre function.
Then

1. g is a Legendre function if and only if g∗ is a Legendre function.
2. (∂ f )−1 = ∂g∗.
3. ∇g = (∇g∗)−1, ran(∇g) = dom(∇g∗) = int(domg∗) and ran(∇g∗) = dom(∇g) = int(domg), where

ran(∇g) denotes the range of ∇g.
4. g and g∗ are strictly convex on the interior of their respective domains.

Definition 2 [22, p. 234] Assmue that W is a real reflexive Banach space and g : W −→ (−∞,+∞] is a
Gâteaux differentiable function. Then the function Dg : domg×int(domg) −→ [0,+∞), defined by Dg(u, v) =
g(u) − g(v) − 〈∇g(v), u − v〉 is called the Bregman distance with respect to g.

Notice that the Bregman distance is not a distance in the usual sense of the term. In general, Dg(u, u) = 0,
but Dg(u, v) = 0 may not imply u = v; Dg is not symmetric and does not satisfy the triangle inequality. By the
definition of the Bregman distance, we have Dg(u, v) + Dg(v,w) − Dg(u, w) = 〈∇g(w) − ∇g(v), u − v〉 for
all u ∈ domg and v,w ∈ int(domg). Note that from [23, p.7], for all u ∈ W , we have

Dg

(
u,∇g∗(

m∑

n=1

λn∇g(un)
)) ≤

m∑

n=1

λn Dg(u, un), (5)

where {un}m
n=1 ⊂ W and {λn}m

n=1 ⊂ [0, 1] with
m∑

n=1
λn = 1.

Definition 3 [24, p. 69] Let W be a real reflexive Banach space, g : W −→ (−∞,+∞] is a convex andGâteaux
differentiable function, and U be a nonempty, closed and convex subset of int(domg). The Bregman projection
of u ∈ int(domg) onto U is the unique vector Pg

U (u) ∈ U such that Dg
(
Pg

U (u), u
) = inf

{
Dg(v, u) : v ∈ U

}
.

Remark 2 [12, Remark 2.2] Let W be a smooth, strictly convex Banach space and g(u) = ‖u‖2 for all u ∈ W .
Then ∇g(u) = 2Ju for all u ∈ W and J is the normalized duality mapping which is defined by J (u) =
{u∗ ∈ W ∗ : 〈u, u∗〉 = ‖u‖2 = ‖u‖∗} for all u ∈ W . Therefore, Bregman distance Dg(u, v) is reduced into
φ(u, v), where φ(u, v) is a Lyapunov function which is defined by φ(u, v) = ‖u‖2 −2〈u, Jv〉+‖v‖2. Thus, the
Bregman projection Pg

U (u) is reduced into the generalized projection �U (u) in smooth Banach which is defined
by φ

(
�U (u), u

) = min
{
φ(v, u) : v ∈ U }.

If W is a Hilbert space and g(u) = ‖u‖2 for all u ∈ W , then U (u, v) = ‖u − v‖2 for all u, v ∈ W , and J
is the identity mapping. Therefore, the Bregman projection Pg

U (u) is reduced into the metric projection from W
onto U .

Definition 4 [25, p. 1] Let W be a real reflexive Banach space, g : W −→ (−∞,+∞] be a convex and Gâteaux
differentiable function. Then

1. g is called totally convex at u ∈ int(domg) if any t > 0, we have

vg(u, t) := inf
{

Dg(v, u) : v ∈ domg, ‖v − u‖ = t
}

> 0.

2. g is called totally convex if g is totally convex at every point u ∈ int(domg).
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3. g is called totally convex on bounded subsets of W if any nonempty bounded subset B of W and t > 0, we
have vg(B, t) := inf

{
vg(u, t) : u ∈ B ∩ domg

}
> 0.

Proposition 2 [24, Lemma 2.1.2] Let W be a real reflexive Banach space, g : W −→ (−∞,+∞] be a
convex and Gâteaux differentiable function. Then g is totally convex on bounded subsets of W if and only if any
sequence {un} ⊂ int(domg) and {vn} ⊂ domg such that {un} is bounded and lim

n→∞ Dg(vn, un) = 0, we have

lim
n→∞ ‖vn − un‖ = 0.

Proposition 3 [26, Proposition 2.3] Let W be a real Banach space, g : W −→ R be Legendre such that ∇g∗
is bounded on bounded subsets of int(domg∗), u ∈ W and {un} ⊂ W satisfying {Dg(u, un)} is bounded. Then
the sequence {un} is bounded.

Proposition 4 [27, Corollary 4.4] Let W be a real reflexive Banach space, g : W −→ (−∞,+∞] be Gâteaux
differentiable and totally convex on int(domg), U be a nonempty, closed and convex subset of int(domg) and
u ∈ int(domg). Then the following statements are equivalent.

1. w = Pg
U (u).

2. w is the unique vector such that 〈∇g(u) − ∇g(w),w − v〉 ≥ 0 for all v ∈ U.
3. w is the unique vector such that Dg(v,w) + Dg(w, u) ≤ Dg(v, u) for all v ∈ U.

Definition 5 [28] Let W be a Banach space and denote by S1 = {u ∈ W : ‖u‖ < 1} and Bε = {u ∈ W : ‖u‖ ≤
ε} for some ε > 0. Then g : W −→ R is called uniformly convex on bounded subsets of W if ρε(t) > 0 for all
t, ε > 0, where the function ρε : [0,∞) −→ [0,∞) is defined by

ρε(t) = inf
u,v∈Bε,‖u−v‖=t,η∈(0,1)

ηg(u) + (1 − η)g(v) − g(ηu + (1 − η)v)

η(1 − η)
.

Note that the notion of an uniformly smooth on bounded subset for a mapping, we can find in [28]. Furthermore
if g is uniformly convex, then the function ρε is nondecreasing mapping. In addition, ρε(t) = 0 if and only if
t = 0 ([28, p. 203]).

Remark 3 [29, p. 6] The function g is totally convex on bounded subsets of W if and only if g is uniformly
convex on bounded subsets of W .

Definition 6 [30, Definition 1.3.7] Let W be a Banach space and g : W −→ (−∞,+∞] be a function. Then g

is called strongly coercive if lim‖u‖→+∞
g(u)

‖u‖ = +∞.

By using [29, Lemma 2.2], we get the following lemma. The proof of this lemma is easy and is omitted.

Lemma 1 Let W be a real reflexive Banach space, g : W −→ R be a Legendre, strongly coercive function
which is uniformly Fréchet differentiable and bounded on bounded subsets of W . Then

Dg

(
u,∇g∗(

m∑

n=1

an∇g(un)
)) ≤

m∑

n=1

an Dg(u, un) − ai a jρ
∗
ε

(‖∇g(ui ) − ∇g(u j )‖
)
,

where i, j ∈ {1, 2, . . . , m}, ∇g(un) ∈ B∗
ε = {u ∈ X∗ : ‖u‖ ≤ ε} and an ∈ [0, 1] such that

m∑

n=1
an = 1, and the

ρ∗
ε is defined as in Definition 5.

Let us denote by F(S) = {u ∈ W : Su = u} the set of fixed points of the mapping S : W −→ W.

Definition 7 Let W be a real reflexive Banach space, g : W −→ R be a Gâteaux differentiable function and
S : W −→ W be a mapping. Then

1. ([31], Definition 2) S is called a Bregman quasi-nonexpansive mapping if F(S) �= ∅ and for all u ∈ W and
p ∈ F(S), we have Dg(p, Su) ≤ Dg(p, u).

2. ([32], Definition 2.10) S is called a Bregman quasi-asymptotically nonexpansive mapping if F(S) �= ∅ and
there exists a real sequence {kn} ⊂ [1,∞) with lim

n→∞ kn = 1 such that Dg(p, Snu) ≤ kn Dg(p, u) for all

u ∈ W and p ∈ F(S).
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3. ([11], Definition 2.10) S is called aBregman totally quasi-asymptotically nonexpansive mapping if F(S) �= ∅
and there exist nonnegative real sequences {ηn}, {μn} with lim

n→∞ ηn = lim
n→∞ μn = 0 and a strictly increasing

continuous function ξ : [0,∞) −→ [0,∞) with ξ(0) = 0 such that

Dg(u, Sn x) ≤ Dg(u, x) + ηnξ(Dg(u, x)) + μn

for all u ∈ W and p ∈ F(S).

4. ([31],Definition 2) S is called aBregman firmly nonexpansive mapping if for all u, v ∈ W,wehave 〈∇g(Su)−
∇g(Sv), Su − Sv〉 ≤ 〈∇g(u) − ∇g(v), Su − Sv〉.

5. S is called closed if any sequence {un} in W such that lim
n→∞ un = u ∈ W and lim

n→∞ Sun = v ∈ W , we have

Su = v.
6. ([33], p.3877) S is called uniformly asymptotically regular on W if for any bounded subset U of W , we have

lim
n→∞ sup

u∈U
‖Sn+1u − Snu‖ = 0.

Remark 4 1. Every Bregman quasi-asymptotically nonexpansive mapping is a Bregman totally quasi-
asymptotically nonexpansive mapping with ξ(t) = t for all t ≥ 0, ηn = kn − 1 with kn ≥ 1 satisfying
lim

n→∞ kn = 1, and μn = 0, but the converse is not true.

2. Every Bregman firmly nonexpansive mapping is a Bregman quasi-nonexpansive mapping.

Lemma 2 [11, Lemma 2.16] Suppose that W is a real reflexive Banach space, g : W −→ (−∞,+∞] is a
Legendre function which is totally convex on bounded subsets of W , and U is a nonempty, closed and convex
subset of int(domg). Let S : U −→ U be a closed and Bregman totally quasi-asymptotically nonexpansive
mapping. Then F(S) is a closed and convex subset of U.

For solving the problem (G M E P), let us assume that f, A, B satisfy the following conditions.

(C1) f (u, u) = 0 for all u ∈ U .
(C2) f is monotone, that is, f (u, v) + f (v, u) ≤ 0 for all u, v ∈ U .
(C3) For all u, v, w ∈ U , we have lim sup

t↓0
f (tw + (1 − t)u, v) ≤ f (u, v).

(C4) For each u ∈ U , v �−→ f (u, v) is convex and lower semi-continuous.
(C5) A : U −→ R is a lower semi-continuous and convex function.
(C6) B : U −→ W ∗ is a continuous monotone mapping.

In order to find the solution of the problem (G M E P), Darvish [9] introduced the notion of mixed resolvent of
f . Later, this notion was studied in [17].

Definition 8 [9, Definition 2.4] Let W be a real reflexive Banach space, U be a nonempty, closed and convex
subset of W , g : W −→ (−∞,+∞] be a Gâteaux differentiable function. Assume that f : U × U −→ R,
A : U −→ R and B : U −→ W ∗ satisfy the conditions (C1) - (C6). The mixed resolvent of f is the operator
Resg

f,A,B : W −→ 2U defined by

Resg
f,A,B(u) =

{
w ∈ U : f (w, v) + A(v) + 〈B(u), v − w〉
+〈∇g(w) − ∇g(u), v − w〉 ≥ A(w) for all v ∈ U

}
.

After that by using a similar idea of [10, Lemma 1], the author of [9] proved that if g : W −→ (−∞,+∞] is
strongly coercive and Gâteaux differentiable, then dom

(
Resg

f,A,B

) = W.We find that the formula of the function

Resg
f,A,B contains the term B(u) for all u ∈ W . Since domB = U ⊂ W , the value B(u) does not exist for

all u ∈ W \ U . Motivated by this confusion, we revise the formula of the function Resg
f,A,B by replacing the

term B(u), u ∈ W by B(w), w ∈ U . Then the formula of the mixed resolvent Resg
f,A,B becomes the following

formula.

Resg
f,A,B(u) =

{
w ∈ U : f (w, v) + A(v) + 〈B(w), v − w〉

+〈∇g(w) − ∇g(u), v − w〉 ≥ A(w) for all v ∈ U
}
. (6)

Note that the idea of the formula (6) was pointed out in [12, Lemm 2.5].Next,byusingtheideaof[10, Lemma1],
we will prove that dom

(
Resg

f,A,B

) = W under some suitable conditions, where the function Resg
f,A,B is defined

by (6). The proof of following lemma is easy by using [2, Theorem 1 & p.130-131] and is omitted.
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Lemma 3 Let W be a real reflexive Banach space, U be a nonempty, closed and convex subset of W , g :
W −→ (−∞,+∞] be a strongly coercive and Gâteaux differentiable function. Assume that f : U ×U −→ R,
A : U −→ R and B : U −→ W ∗ satisfy the conditions (C1) - (C6). Then dom

(
Resg

f,A,B

) = W.

The following lemma presents some properties of the mixed resolvent Resg
f,A,B which is defined by (6). The

proof of this lemma is similar to the proof [9, Lemma 2.8]. Furthermore, these results have been studied in [12,
Lemm 2.5].

Lemma 4 [9, Lemma 2.8] Let W be a real reflexive Banach space, U be a nonempty, closed and convex subset
of W , g : W −→ (−∞,+∞] be a Legendre function. Assume that f : U × U −→ R, A : U −→ R and
B : U −→ W ∗ satisfy the conditions (C1) - (C6). Then

1. Resg
f,A,B is a single-valued.

2. Resg
f,A,B is a Bregman firmly nonexpansive mapping.

3. F
(
Resg

f,A,B

) = G M E P( f, A, B) with F
(
Resg

f,A,B

) = {u ∈ U : Resg
f,A,B(u) = u}.

4. G M E P( f, A, B) is a closed and convex subset of W .
5. For all p ∈ F

(
Resg

f,A,B

)
and u ∈ W , we have

Dg
(

p,Resg
f,A,B(u)

) + Dg
(
Resg

f,A,B(u), u
) ≤ Dg(p, u).

3 Main results

Let Si : W −→ W be Bregman totally quasi-asymptotically nonexpansive mappings with nonnegative real
sequences {η(i)

n } and {μ(i)
n } satisfying lim

n→∞ η
(i)
n = lim

n→∞ μ
(i)
n = 0 and strictly increasing continuous functions

ξ (i) : [0,∞) −→ [0,∞) with ξ (i)(0) = 0 for each i ∈ I := {1, 2, ..., N } with N ∈ N. Put

ηn = max{η(i)
n : i ∈ I }, μn = max{μ(i)

n : i ∈ I }, and ξ(t) = max{ξ (i)(t) : i ∈ I }
for all t ≥ 0. Then lim

n→∞ ηn = lim
n→∞ μn = 0, ξ(0) = 0, and we have

Dg(p, Sn
i u) ≤ Dg(p, u) + ηnξ(Dg(p, u)) + μn

for all u ∈ W , p ∈ ⋂

i∈I
F(Si ) and for all i ∈ I .

Theorem 5 Suppose that W is a real reflexive Banach space, and U is a nonempty, closed and convex subset
of W . Let g : W −→ R be Legendre, strongly coercive on W , and g be bounded, totally convex, uniformly Fréchet
differentiable on bounded subsets of W . For each k ∈ K := {1, 2, . . . , M} with M ∈ N, fk : U × U −→ R,
Ak : U −→ R and Bk : U −→ W ∗ satisfy the conditions (C1) - (C6). For each i ∈ I , Si : W −→ W is a closed,
uniformly asymptotically regular and Bregman totally quasi-asymptotically nonexpansive mapping with non-
negative real sequences {η(i)

n } and {μ(i)
n } satisfying lim

n→∞ η
(i)
n = lim

n→∞ μ
(i)
n = 0 and strictly increasing continuous

function ξ (i) : [0,∞) −→ [0,∞) with ξ (i)(0) = 0 such that F =
( ⋂

i∈I
F(Si )

) ⋂ ( ⋂

k∈K
G M E P( fk, Ak, Bk)

)

is nonempty and bounded. Let {zn} be a sequence generated by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z1, z2 ∈ U, U1 = U2 = U

xn = zn + cn(zn − zn−1) for all n ≥ 2

y(i)
n = ∇g∗

(
an∇g(xn) + (1 − an)∇g(Sn

i (xn))
)

for all i ∈ I

in = argmax{Dg(xn, y(i)
n ) : i ∈ I }, yn = y(in)

n

u(k)
n = Resg

fk ,Ak ,Bk
(xn) for all k ∈ K

kn = argmax{Dg(xn, u(k)
n ) : k ∈ K }, un = u(kn)

n
( j)
n = ∇g∗

(
bn∇g(yn) + (1 − bn)∇g(Sn

j (un))
)

for all j ∈ I

jn = argmax{Dg(xn, v
( j)
n ) : j ∈ I }, vn = v

( jn)
n

Un+1 = {
u ∈ Un : Dg(u, vn) ≤ Dg(u, xn) + γn

}

zn+1 = Pg
Un+1

(z1),

(7)
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where γn = ηn sup
{
ξ
(
Dg(u, xn)

) : u ∈ F} + μn, and {an}, {bn}, {cn} ⊂ [0, 1] such that lim
n→∞ an = 1 and

lim inf
n→∞ bn(1 − bn) > 0, and the function Resg

fk ,Ak ,Bk
is defined as in (6). Then the sequence {zn} strongly con-

verges to p = Pg
F (z1).

Proof The proof of Theorem 5 is divided into following six steps.
Step 1. We claim that Pg

F (z1) is well-defined. Indeed, we conclude from Lemma 2 and Lemma 4 that F(Si )

and G M E P( fk, Ak, Bk) are closed and convex sets for all i ∈ I and k ∈ K . This proves that

F =
(⋂

i∈I

F(Si )
)⋂ ( ⋂

k∈K

G M E P( fk, Ak, Bk)

)

is a closed and convex subset of U . Since F is a nonempty set, we find that F is a nonempty, closed and convex
subset of U . This fact ensures that Pg

F (z1) is well-defined.
Step 2. We claim that Pg

Un+1
(z1) is well-defined. Indeed, we first show that Un is closed and convex for all

n ≥ 2 by mathematical induction. Obviously, we have U2 = U is closed and convex. Now, we assume that Um
is closed and convex for some m ≥ 2. It follows from the definition of Um+1, we get that

Um+1 = {
u ∈ Um : 〈∇g(xm), u − xm〉 − 〈∇g(vm), u − vm〉

≤ g(vm) − g(xm) + γm
}
. (8)

Then by directly checking, we conclude that Um+1 is convex. Furthermore, it follows from (8) and the continuity
of ∇g(.) that Um+1 is closed. Therefore, Um+1 is closed and convex, and hence Un is closed and convex for all
n ≥ 2. Combining this with U1 = U2 is closed and convex, we get that Un is closed and convex for all n ∈ N.

Next, we claim that F ⊂ Un for all n ≥ 2 by mathematical induction. Obviously, we obtain F ⊂ U = U2.
Suppose that F ⊂ Um for some m ≥ 2. Now, we prove that F ⊂ Um+1. Assume that u ∈ F . It follows from
F ⊂ Um that u ∈ Um . By using (5) and the fact that Sim is a Bregman totally quasi-asymptotically nonexpansive
mapping, we get

Dg(u, ym) = Dg(u, y(im )
m )

= Dg

(
u,∇g∗(am∇g(xm) + (1 − am)∇g(Sm

im
xm)

))

≤ am Dg(u, xm) + (1 − am)Dg(u, Sm
im

xm)

≤ am Dg(u, xm) + (1 − am)[Dg(u, xm) + ηnξ(Dg(u, xm)) + μm]
≤ Dg(u, xm) + γm . (9)

FromLemma4,we find that Resg
fkm ,Akm ,Bkm

is a Bregmanfirmly nonexpansivemapping and hence it is a Bregman

quasi-nonexpansive mapping for each km ∈ K . Then, by Remark 4(2), we conclude that Resg
fkm ,Akm ,Bkm

is a
Bregman quasi nonexpansive mapping. Therefore, we have

Dg(u, um) = Dg(u, u(km )
m ) = Dg

(
u,Resg

fkm ,Akm ,Bkm
(xm)

) ≤ Dg(u, xm). (10)

It follows from the strictly increasing property of ξ and (10) that

ξ
(
Dg(u, um)

) ≤ ξ
(
Dg(u, xm)

)
. (11)

By combining (9), (10) and (11), we find that

Dg(u, vm) = Dg(u, v
( jm )
m )

= Dg

(
u,∇g∗(bm∇g(ym) + (1 − bm)∇g(Sm

jm (um))
))

≤ bm Dg(u, ym) + (1 − bm)Dg(u, Sm
jm (um))

≤ bm Dg(u, ym) + (1 − bm)[Dg(u, um) + ηmξ(Dg(u, um)) + μm]
≤ bm[Dg(u, xm) + γm] + (1 − bm)[Dg(u, xm) + ηmξ(Dg(u, xm)) + μm]
≤ Dg(u, xm) + γm . (12)
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This leads to u ∈ Um+1 and hence F ⊂ Um+1. This implies that F ⊂ Un for all n ≥ 2. It follows from U1 = U2
that F ⊂ Un for all n ∈ N. Since F is nonempty, we obtain Un is nonempty.

By the above, we obtain that Un is nonempty, closed and convex. Therefore, we conclude that Pg
Un+1

(z1) is
well-defined.

Step 3. We claim that {zn} is bounded and the limit lim
n→∞ Dg(zn, z1) exists. Indeed, we conclude from

zn = Pg
Un

(z1) and Proposition 4 that

Dg(y, zn) + Dg(zn, z1) ≤ Dg(y, z1) (13)

for all y ∈ Un . Let u ∈ F . It follows from F ⊂ Un that u ∈ Un . By choosing y = u in (13), we get

Dg(u, zn) + Dg(zn, z1) ≤ Dg(u, z1). (14)

This proves that Dg(zn, z1) ≤ Dg(u, z1) − Dg(u, zn) ≤ Dg(u, z1). It means that {Dg(un, u1)} is bounded. By
[34, Lemma 1], we conclude that {un} is bounded.

Next, from the definition of Un , we get zn+1 = Pg
Un+1

(z1) ∈ Un+1 ⊂ Un . By choosing y = zn+1 in
(13), we obtain Dg(zn+1, zn) + Dg(zn, z1) ≤ Dg(zn+1, z1). This leads to Dg(zn, z1) ≤ Dg(zn+1, z1) −
Dg(zn+1, zn) ≤ Dg(zn+1, z1). Therefore, {Dg(zn, z1)} is a nondecreasing sequence. By using the bounded-
ness of the sequence {Dg(zn, z1)}, we find that the limit lim

n→∞ Dg(zn, z1) exists.

Step 4. We claim that lim
n→∞ zn = p ∈ U . Indeed, for all m > n, it follows from the definition of zm that zm =

Pg
Um

(z1) ∈ Um ⊂ Un . Therefore, by taking y = zm in (13), we obtain Dg(zm, zn) + Dg(zn, z1) ≤ Dg(zm, z1).
This leads to

0 ≤ Dg(zm, zn) ≤ Dg(zm, z1) − Dg(zn, z1). (15)

Taking the limit (15) as m, n → ∞, and using the existence of the limit lim
n→∞ Dg(zn, z1), we have

lim
m,n→∞ Dg(zm, zn) = 0. (16)

Then, it follows from (16), the boundedness of {zn} and Proposition 2 that

lim
m,n→∞ ‖zm − zn‖ = 0. (17)

This proves that {zn} is a Cauchy sequence in U . Since W is a Banach space and U is a closed subset of W , there
exists p ∈ U such that lim

n→∞ zn = p.

Step 5. We claim that p ∈ F . First, we will prove that p ∈ ⋂

i∈I
F(Si ). Indeed, by choosing m = n + 1 in

(16) and (17), we get
lim

n→∞ Dg(zn+1, zn) = lim
n→∞ ‖zn+1 − zn‖ = 0. (18)

It follows from zn+1 = Pg
Un+1

(z1) ∈ Un+1 ⊂ Un and the definition of Un that

Dg(zn+1, vn) ≤ Dg(zn+1, xn) + γn . (19)

Furthermore, we have ‖xn − zn‖ = cn‖zn − zn−1‖. By combining this with (18) and the boundedness of {cn},
we find that lim

n→∞ ‖xn − zn‖ = 0. Since lim
n→∞ zn = p, we get that lim

n→∞ xn = p. Therefore, from (18) and

lim
n→∞ ‖xn − zn‖ = 0, we get lim

n→∞ ‖zn+1 − xn‖ = 0. By using the definition of Dg , we find that

|Dg(zn+1, xn)| = |g(zn+1) − g(xn) − 〈∇g(xn), zn+1 − xn〉|
≤ |g(zn+1) − g(xn)| + ‖zn+1 − xn‖.‖∇g(xn)‖. (20)

Furthermore, by [24, Proposition 1.1.10 & Proposition 1.1.11], we find that ∇g is bounded on bounded subsets
of W . Then, by combining this with the boundedness of {xn}, lim

n→∞ ‖zn+1 − xn‖ = 0 and (20), we obtain

lim
n→∞ Dg(zn+1, xn) = 0. (21)
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Let u ∈ F . By using the definition of Dg , we get

|Dg(u, xn)| = |g(u) − g(xn) − 〈∇g(xn), u − xn〉|
≤ |g(u) − g(xn)| + ‖u − xn‖.‖∇g(xn)‖
≤ |g(u)| + |g(xn)| + (‖u‖ + ‖xn‖).‖∇g(xn)‖. (22)

It follows from (22), the boundedness of F and {xn}, the uniform continuity of g and the boundedness on
bounded subsets of ∇g that |Dg(u, xn)| < ∞. This proves that the sequence {Dg(u, xn)} is bounded. By using
lim

n→∞ ηn = lim
n→∞ μn = 0, we find that

lim
n→∞ γn = lim

n→∞
(
ηn sup

{
ξ
(
Dg(u, xn)

) : u ∈ F} + μn

)
= 0.

By combining (19), (21) and lim
n→∞ γn = 0, we find that lim

n→∞ Dg(zn+1, vn) = 0. Furthermore, by (12) and the

boundedness of {Dg(u, xn)}, we obtain that {Dg(u, v
( j)
n )} is bounded. Now, by [28, Proposition 3.6.4], we find

that g∗ is bounded on bounded subsets of W ∗. This implies that ∇g∗ is bounded on bounded subsets of W ∗. By
combining this with the boundedness of {Dg(u, v

( j)
n )} and using Proposition 3, we find that {v( j)

n } is bounded.
This implies that {vn} is bounded. By combining this with lim

n→∞ Dg(zn+1, vn) = 0 and using Proposition 2, we

find that
lim

n→∞ ‖zn+1 − vn‖ = 0. (23)

By combining (23) and lim
n→∞ ‖zn+1 − xn‖ = 0, we get lim

n→∞ ‖xn − vn‖ = 0. Then, by using the same proof as

in that of (21), we find that lim
n→∞ Dg(xn, vn) = 0. By the definition vn , we get that

lim
n→∞ Dg(xn, v

( j)
n ) = 0. (24)

Next, by using the same proofs as in that of (23), we find that

lim
n→∞ ‖xn − v

( j)
n ‖ = 0. (25)

Since g is uniformly continuous and ∇g is uniformly continuous on bounded sets, from (25), we find that

lim
n→∞ ‖g(xn) − g(v

( j)
n )‖ = lim

n→∞ ‖∇g(xn) − ∇g(v
( j)
n )‖ = 0. (26)

Next, by using the same proofs as in that of (9) and (10), we conclude that

Dg(u, yn) ≤ Dg(u, xn) + γn (27)

and
Dg(u, un) ≤ Dg(u, xn). (28)

Then, from (27), (28) and using the boundedness of {Dg(u, xn)}, {γn}, we find that {Dg(u, yn)} and {Dg(u, un)}
are bounded. Note that ∇g∗ is bounded on bounded subsets of W ∗. By combining this with the boundedness of
{Dg(u, yn)}, {Dg(u, un)} and using Proposition 3, we find that {yn} and un} are bounded. Furthermore, for each
j ∈ I, we have

Dg(u, Sn
j (un)) ≤ Dg(u, un) + ηnξ

(
Dg(u, un)

) + μn . (29)

By (29) and the boundedness of {Dg(u, un)}, we obtain that {Dg(u, Sn
j (un))} is bounded. By Proposition 3, we

find that {Sn
j (un)} is bounded.

Since {yn} and {Sn
j (un)} are bounded and ∇g is bounded on bounded subsets, we find that {∇g(yn)} and

{∇g(Sn
j (un))} are bounded. Put

ε = max{sup
n∈N

‖∇g(yn)‖, sup
n∈N

‖∇g(Sn
j (un))‖}.

This leads to ∇g(yn),∇g(Sn
j (un)) ∈ B∗

ε . Therefore, by using Lemma 1, we find that

Dg(u, v
( j)
n )

123



An inertial parallel iterative method for solving generalized mixed equilibrium problems

= Dg

(
u,∇g∗(bn∇g(yn) + (1 − bn)∇g(Sn

j (un))
))

≤ bn Dg(u, yn) + (1 − bn)Dg(u, Sn
j (un)) − bn(1 − bn)ρ∗

ε

(‖∇g(yn) − ∇g(Sn
j (un))‖)

≤ bn Dg(u, yn) + (1 − bn)[Dg(u, un) + ηnξ(Dg(u, un)) + μn]
−bn(1 − bn)ρ∗

ε

(‖∇g(yn) − ∇g(Sn
j (un))‖). (30)

It follows from (28), (30) and the strictly increasing property of ξ , we find that

Dg(u, v
( j)
n ) ≤ bn Dg(u, yn) + (1 − bn)[Dg(u, xn) + ηnξ(Dg(u, xn)) + μn]

−bn(1 − bn)ρ∗
ε

(‖∇g(yn) − ∇g(Sn
j (un))‖). (31)

By combining (27) and (31), we find that

Dg(u, v
( j)
n ) ≤ bn[Dg(u, xn) + γn] + (1 − bn)[Dg(u, xn) + ηnξ(Dg(u, xn)) + μn]

−bn(1 − bn)ρ∗
ε

(‖∇g(yn) − ∇g(Sn
j (un))‖)

≤ Dg(u, xn) + γn − bn(1 − bn)ρ∗
ε

(‖∇g(yn) − ∇g(Sn
j (un))‖).

This leads to
bn(1 − bn)ρ∗

ε

(‖∇g(yn) − ∇g(Sn
j (un))‖) ≤ Dg(u, xn) − Dg(u, v

( j)
n ) + γn . (32)

Moreover, by using the property of the function Dg , we obtain

|Dg(u, xn) − Dg(u, v
( j)
n )|

= | − Dg(xn, v
( j)
n ) + 〈∇g(v

( j)
n ) − ∇g(xn), u − xn〉|

≤ |Dg(xn, v
( j)
n )| + ‖∇g(v

( j)
n ) − ∇g(xn)‖.‖u − xn‖. (33)

It follows from (24), (26) and (33) that lim
n→∞ |Dg(u, xn) − Dg(u, v

( j)
n )| = 0. By combining this with (32),

lim
n→∞ γn = 0 and lim inf

n→∞ bn(1 − bn) > 0, we conclude that

lim
n→∞ ρ∗

ε

(‖∇g(yn) − ∇g(Sn
j (un))‖

) = 0. (34)

Suppose that lim
n→∞ ‖∇g(yn) − ∇g(Sn

j (un))‖ > 0. Then, there exist r > 0 and a subsequence {k(n)} of n

such that ‖∇g(yk(n)) − ∇g(Sk(n)
j (uk(n)))‖ ≥ r. It follows from the nondecreasing property of ρ∗

ε that

ρ∗
ε (‖∇g(yk(n)) − ∇g(Sk(n)

j (uk(n)))‖) ≥ ρ∗
ε (r) (35)

for all n ∈ N. By taking the limit as n → ∞ in (35) and using (34), we obtain that 0 ≥ ρ∗
ε (r). This contradicts

the fact that ρ∗
ε (r) > 0. Therefore,

lim
n→∞ ‖∇g(yn) − ∇g(Sn

j (un))‖ = 0. (36)

Note that ∇g∗ is uniformly continuous on bounded subsets. By combining this with ∇g = (∇g∗)−1 and (36),
we conclude that

lim
n→∞ ‖yn − Sn

j (un)‖ = 0. (37)

Now, by the definition of yn and ∇g = (∇g∗)−1, we get

∇g(yn) = ∇g
(
∇g∗(an∇g(xn) + (1 − an)∇g(Sn

i (xn))
)) = an∇g(xn) + (1 − an)∇g(Sn

in
(xn)).

This leads to
‖∇g(yn) − ∇g(xn)‖ = (1 − an)‖∇g(Sn

in
(xn)) − ∇g(xn)‖. (38)

It follows from (37), (38), lim
n→∞ an = 1 and the boundedness of {xn} that

lim
n→∞ ‖∇g(yn) − ∇g(xn)| = 0. (39)
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Then, by using the uniform continuous on bounded subsets of ∇g∗ , ∇g = (∇g∗)−1 and (39), we obtain

lim
n→∞ ‖yn − xn| = 0. (40)

It follows from (37) and (40) that
lim

n→∞ ‖Sn
j (un) − xn‖ = 0. (41)

By combining (41) and lim
n→∞ xn = p, we have lim

n→∞ Sn
j (un) = p. Moreover, we have

‖Sn+1
j (un) − p‖ ≤ ‖Sn+1

j (un) − Sn
j (un)‖ + ‖Sn

j (un) − p‖. (42)

Then, we conclude from (42), lim
n→∞ Sn

j (un) = p and the asymptotically regular property of S j that

lim
n→∞ Sn+1

j (un) = p for all j ∈ I . This proves that lim
n→∞ S(Sn

j (un)) = p. Since S j is closed, we find that

S j (p) = p for all j ∈ I and p ∈ ⋂

i∈I
F(Si ).

Next, we prove that p ∈ ⋂

k∈K
G M E P( fk, Ak, Bk). Indeed, for each k ∈ K , we have u(k)

n = Resg
fk ,Ak ,Bk

(yn).

It follows from (6) that

fk(u
(k)
n , v) + Ak(v) + 〈Bk(u

(k)
n ), v − u(k)

n 〉 + 〈∇g(u(k)
n ) − ∇g(yn), v − u(k)

n 〉 ≥ Ak(u
(k)
n ) for all v ∈ U.

By using the condition (C2), we get

〈Bk(u
(k)
n ), v − u(k)

n 〉 + 〈∇g(u(k)
n ) − ∇g(yn), v − u(k)

n 〉 + Ak(v) − Ak(u
(k)
n )

≥ − fk(u
(k)
n , v) ≥ fk(v, u(k)

n ). (43)

Since g is uniformly continuous and ∇g is uniformly continuous on bounded sets, by (41), we obtain

lim
n→∞ ‖g(xn) − g(Sn

j (un))‖ = lim
n→∞ ‖∇g(xn) − ∇g(Sn

j (un))‖ = 0. (44)

Let u ∈ F . By using the property of the Bregman distance, we have

|Dg(u, xn) − Dg(u, Sn
j (un))|

= | − Dg(xn, Sn
j (un)) + 〈∇g(Sn

j (un)) − ∇g(xn), u − xn〉|
≤ |Dg(xn, Sn

j (un))| + ‖∇g(Sn
j (un)) − ∇g(xn)‖.‖u − xn‖

≤ |g(xn) − g(Sn
j (un))| + ‖∇g(Sn

j (un))‖.‖xn − Sn
j (un)‖

+‖∇g(Sn
j (un)) − ∇g(xn)‖.‖u − xn‖. (45)

It follows from (41), (44) and (45) that

lim
n→∞ |Dg(u, xn) − Dg(u, Sn

j (un))| = 0. (46)

Furthermore, by un = Resg
fkn ,Akn ,Bkn

(xn), Lemma 4 and (29), we find that

Dg(xn, un) ≤ Dg(u, xn) − Dg(u, un)

≤ Dg(u, xn) − Dg(u, Sn
j (un)) + ηnξ

(
Dg(u, un)

) + μn . (47)

Then, by (28) and the strictly increasing property of ξ , the inequality (47) becomes

Dg(xn, un) ≤ Dg(u, xn) − Dg(u, Sn
j (un)) + ηnξ

(
Dg(u, xn)

) + μn

≤ Dg(u, xn) − Dg(u, Sn
j (un)) + γn . (48)

It follows from (46), (48) and lim
n→∞ γn = 0 that lim

n→∞ Dg(xn, un) = 0. By the definition un , we get that

lim
n→∞ Dg(xn, u(k)

n ) = 0. (49)
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Then, by using the same proof as in that of (23), we find that lim
n→∞ ‖xn − u(k)

n ‖ = 0. By combining this with

lim
n→∞ xn = p, we get that

lim
n→∞ u(k)

n = p. (50)

Moreover, it follows from (40) and lim
n→∞ ‖xn − u(k)

n ‖ = 0 that lim
n→∞ ‖u(k)

n − yn‖ = 0. Since ∇g is uniformly

continuous on bounded subsets, we obtain lim
n→∞ ‖∇g(u(k)

n ) − ∇g(yn)‖ = 0. This implies that

lim
n→∞ |〈∇g(u(k)

n ) − ∇g(yn), v − u(k)
n 〉| = 0. (51)

Since Ak is lower semi-continuous and (50), we find that

lim inf
n→∞ Ak(u

(k)
n ) ≥ Ak(p). (52)

By the condition (C4), we get that fk is lower semi-continuous in the second variable for each k ∈ K . It follows
from (50) that

lim inf
n→∞ fk(v, u(k)

n ) ≥ fk(v, p). (53)

We also have

|〈Bk(u
(k)
n ), v − u(k)

n 〉 − 〈Bk(p), v − p〉|
= |〈Bk(u

(k)
n ) − Bk(p), v〉 − 〈Bk(u

(k)
n ), u(k)

n 〉 + 〈Bk(p), p〉|
≤ |〈Bk(u

(k)
n ) − Bk(p), v〉| + |〈Bk(u

(k)
n ), u(k)

n − p〉| + |〈Bk(u
(k)
n ) − Bk(p), p〉|

≤ |〈Bk(u
(k)
n ) − Bk(p), v〉| + ‖Bk(u

(k)
n )‖.‖u(k)

n − p‖ + |〈Bk(u
(k)
n ) − Bk(p), p〉|. (54)

It follows from (50), (54), the continuity of Bk and Bk(u
(k)
n ) ∈ W ∗ that

lim
n→∞〈Bk(u

(k)
n ), v − u(k)

n 〉 = 〈Bk(p), v − p〉. (55)

Then, by (43), (51), (52), (53) and (55), we find that

〈Bk(p), v − p〉 + Ak(v) − Ak(p) ≥ fk(v, p) (56)

for all v ∈ U . For all t ∈ (0, 1], put vt = tv + (1 − t)p. Due to y, p ∈ U and U is convex, we have vt ∈ U .
Then, by replacing y by vt in (56), we conclude that

fk(vt , p) + 〈Bk(p), p − vt 〉 + Ak(p) − Ak(vt ) ≤ 0. (57)

By using the condition (C1), the convexity in the second variable of fk and the convexity of Ak and (57), we
conclude that

0 = fk(vt , vt ) = fk(vt , vt ) + 〈Bk(p), vt − vt 〉 + Ak(vt ) − Ak(vt )

≤ t fk(vt , y) + (1 − t) fk(vt , p) + t〈Bk(p), y − vt 〉 + (1 − t)〈Bk(p), p − vt 〉
+t Ak(y) + (1 − t)Ak(p) − Ak(vt )

= t
[

fk(vt , v) + 〈Bk(p), v − vt 〉 + Ak(v) − Ak(vt )
]

+(1 − t)
[

fk(vt , p) + 〈Bk(p), p − vt 〉 + Ak(p) − Ak(vt )
]

≤ t
[

fk(vt , y) + 〈Bk(p), v − vt 〉 + Ak(v) − Ak(vt )
]
. (58)

It follows from (58) and t > 0 that

fk(vt , v) + 〈Bk(p), v − vt 〉 + Ak(v) − Ak(vt ) ≥ 0. (59)

Therefore, by the condition (C3), we have

lim sup
t↓0

fk(vt , v) = lim sup
t↓0

fk(tv + (1 − t)p, v) ≤ fk(p, v). (60)
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Since Ak is lower semi-continuous, we get that −Ak is upper semi-continuous. From lim
t→0

vt = lim
t→0

(tv + (1 −
t)p) = p, we find that

lim sup
t→0

[−Ak(vt )] ≤ −Ak(p). (61)

By (59), (60), (61) and lim
t→0

vt = p, we find that

fk(p, v) + 〈Bk(p), v − p〉 + Ak(v) − Ak(p) ≥ 0.

This implies that p ∈ ⋂

k∈K
G M E P( fk, Ak, Bk). By the above, we conclude that

p ∈ F =
(⋂

i∈I

F(Si )
)⋂ ( ⋂

k∈K

G M E P( fk, Ak, Bk)

)
.

Step 6.We claim that p = Pg
F (z1). Indeed, we put z = Pg

F (z1).Wewill show that z = p. From zn = Pg
Un

(z1)
and Definition 3, we find that

Dg(zn, z1) ≤ Dg(v, z1) (62)

for all v ∈ Un . It follows from z = Pg
F (z1) ∈ F and F ⊂ Un that z ∈ Un . Therefore, by taking v = z in (62),

we obtain
Dg(zn, z1) ≤ Dg(z, z1). (63)

Furthermore, we have

|Dg(zn, z1) − Dg(p, z1)| = |g(zn) − g(p) + 〈∇g(z1), p − zn〉|
≤ |g(zn) − g(p)| + ‖∇g(z1)‖.‖p − zn‖. (64)

Taking the limit as n −→ ∞ in (64) and using lim
n→∞ un = p, the uniform continuity of g and the boundedness on

bounded subsets of∇g that lim
n→∞ Dg(zn, z1) = Dg(p, z1).Then, it follows from (63) that Dg(p, z1) ≤ Dg(z, z1).

By the definition of z and p ∈ F , we find that p = z = Pg
F (z1). ��

In Theorem 5, by choosing an = 1, we obtain the following result. Note that iteration (65) is an improvements
to iteration (1) which was presented in [5].

Corollary 1 Suppose that W is a real reflexive Banach space, and U is a nonempty, closed and convex subset
of W . Let g : W −→ R be Legendre, strongly coercive on W , and g be bounded, totally convex, uniformly Fréchet
differentiable on bounded subsets of W . For each k ∈ K := {1, 2, . . . , M} with M ∈ N, fk : U × U −→ R,
Ak : U −→ R and Bk : U −→ W ∗ satisfy the conditions (C1) - (C6). For each i ∈ I , Si : W −→ W is a closed,
uniformly asymptotically regular and Bregman totally quasi-asymptotically nonexpansive mapping with non-
negative real sequences {η(i)

n } and {μ(i)
n } satisfying lim

n→∞ η
(i)
n = lim

n→∞ μ
(i)
n = 0 and strictly increasing continuous

function ξ (i) : [0,∞) −→ [0,∞) with ξ (i)(0) = 0 such that F =
( ⋂

i∈I
F(Si )

) ⋂ ( ⋂

k∈K
G M E P( fk, Ak, Bk)

)

is nonempty and bounded. Let {zn} be a sequence generated by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z1, z2 ∈ U, U1 = U2 = U

xn = zn + cn(zn − zn−1) for all n ≥ 2

u(k)
n = Resg

fk ,Ak ,Bk
(xn) for all k ∈ K

kn = argmax{Dg(xn, u(k)
n ) : k ∈ K }, un = u(kn)

n

v
( j)
n = ∇g∗

(
bn∇g(xn) + (1 − bn)∇g(Sn

j (un))
)

for all j ∈ I

jn = argmax{Dg(xn, v
( j)
n ) : j ∈ I }, vn = v

( jn)
n

Un+1 = {
u ∈ Un : Dg(u, vn) ≤ Dg(u, xn) + γn

}

zn+1 = Pg
Un+1

(z1),

(65)

where γn = ηn sup
{
ξ
(
Dg(u, xn)

) : u ∈ F} + μn, and {bn}, {cn} ⊂ [0, 1] such that lim inf
n→∞ bn(1 − bn) > 0, and

the function Resg
fk ,Ak ,Bk

is defined as in (6). Then the sequence {zn} strongly converges to p = Pg
F (z1).
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Remark 5 In Theorem 5 and Corollary 1, by choosing Si = S for all i ∈ I , fk = f , Ak = A and Bk = B for
all k ∈ K , we get two convergence results for a generalized mixed equilibrium problem and a Bregman totally
quasi-asymptotically nonexpansive mapping in reflexive Banach spaces.

In Theorem 5, when Si is an identity mapping for all i ∈ I , we obtain the following corollary. Note that
the iteration process (66) is an improvement of the the iteration process (3) in the sense of adding the inertial
extrapolation. Therefore, Corollary 2 is a generalization of the main result in [17].

Corollary 2 Suppose that W is a real reflexive Banach space, and U is a nonempty, closed and convex subset
of W . Let g : W −→ R be Legendre, strongly coercive on W , and g be bounded, totally convex, uniformly Fréchet
differentiable on bounded subsets of W . For each k ∈ K := {1, 2, . . . , M} with M ∈ N, fk : U × U −→ R,
Ak : U −→ R and Bk : U −→ W ∗ satisfy the conditions (C1) - (C6) such that F1 = ⋂

k∈K
G M E P( fk, Ak, Bk)

is nonempty and bounded. Let {zn} be a sequence generated by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z1, z2 ∈ U, U1 = U2 = U

xn = zn + cn(zn − zn−1) for all n ≥ 2

u(k)
n = Resg

fk ,Ak ,Bk
(xn)

kn = argmax{Dg(u
(k)
n , xn) : k ∈ K }, un = u(kn)

n

vn = ∇g∗
(

bn∇g(xn) + (1 − bn)∇g(un))
)

Un+1 = {
u ∈ Un : Dg(u, vn) ≤ Dg(u, xn) + γn

}

zn+1 = Pg
Un+1

(z1),

(66)

where γn = ηn sup
{
ξ
(
Dg(u, xn)

) : u ∈ F} + μn, and {bn}, {cn} ⊂ [0, 1] such that lim inf
n→∞ bn(1 − bn) > 0, and

the function Resg
fk ,Ak ,Bk

is defined as in (6). Then the sequence {zn} strongly converges to p = Pg
F1

(z1).

Remark 6 1. Note that everyBregman quasi-asymptotically nonexpansivemapping is a Bregman totally quasi-
asymptotically nonexpansive mapping with ξ(t) = t for all t ≥ 0, ηn = kn − 1 with kn ≥ 1 satisfying
lim

n→∞ kn = 1, and μn = 0 for all n ∈ N. Therefore, the conclusions of Theorem 5, Corollary 1 and

Corollary 2 hold when Si is a Bregman quasi-asymptotically nonexpansive mapping for all i ∈ I and
γn = (kn − 1) sup

{
Dg(u, xn) : u ∈ F}

for all n ∈ N.
2. The conclusions of Theorem 5, Corollary 1 and Corollary 2 are satisfied when (G M E P) is replaced by

(M E P), (G E P), (MV I ) and (E P).

Finally, we give a numerical example to illustrate for the convergence of iteration (66) and iteration (3).

Example 1 Let W = R, U = [0, 1], g(u) = u4, Si (u) = u

2i
for all u ∈ W and i = 1, 2. Let Bk(u) = ku,

Ak(u) = ku2 and fk(u, v) = k(−2u2 + uv + v2) for all u, v ∈ U and k = 1, 2. Then

1. By directly calculating, we have ∇g(u) = 4u3 for all u ∈ W , g∗(w) = 3
3

√(w

4

)4
and ∇g∗(w) = 3

√
w

4
for

all w ∈ W .
2. For all u, v ∈ W , we have Dg(u, v) = g(u) − g(v) − 〈∇g(v), u − v〉 = u4 + 3v4 − 4uv3.

3. For each i = 1, 2, we obtain F(Si ) = {0}. Therefore, for all p ∈ F(Si ) and u ∈ U , we find that Dg(p, Sn
i u) =

3(Sn
i u)4 = 3

(
u
2ni

)4 ≤ 3(u)4 = Dg(0, u) = Dg(p, u). This proves that Si is a Bregman totally quasi-

asymptotically nonexpansive mapping with η
(i)
n = μ

(i)
n = 0 for all n ∈ N.

4. By directly checking, we find that fk, Ak, Bk satisfies the conditions (C1) - (C6).
5. Now, we will find the formula of Resg

fk ,Ak ,Bk
as in (6). Indeed, w = Resg

fk ,Ak ,Bk
(u) for all u ∈ W if and only

if
fk(w, v) + Ak(v) + 〈Bk(w), v − w〉 + 〈∇g(w) − ∇g(u), v − w〉 ≥ Ak(w) (67)

for all v ∈ U . By substituting fk, Ak, Bk into (67) and by directly calculating, we find that kv2 + (kw +
2w3 − 2u3)v + 2u3w − 2w4 − 2kw2 ≥ 0. Put

h(v) = kv2 + (kw + 2w3 − 2u3)v + 2u3w − 2w4 − 2kw2.
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Then, we have � = (3kw + 2w3 − 2u3)2. We consider the following two cases.
Case 1. � > 0. Then the quadratic equation h(v) = 0 have two solutions as follows.

v1 = w and v2 = 2u3 − 2w3 − 2kw

k
.

In oder to h(v) ≥ 0 for all v ∈ �, we have the following cases.

Case 1.1. v1 = 1 and v2 > v1. Then w = v1 = 1, and v2 = 2u3 − 2k − 2

k
> 1 and hence u >

3

√
3k + 2

2
.

Case 1.2. v1 = 0 and v2 < v1. Then w = v1 = 0, and v2 = 2u3

k
< 0 and hence u < 0.

Case 2. � ≤ 0. Then 3kw + 2w3 = 2u3 and h(v) ≥ 0 for all v ∈ U . Note that 3kw + 2w3 = 2u3 if and

only if w =
(

3
√√

4u6 + 2k3 + 2u3
)2 − 3

√
2k

3
√
4

3
√√

4u6 + 2k3 + 2u3
. Since w ∈ U , we have 0 ≤ 3kw + 2w3 = 2u3 ≤ 3k + 2 and

hence 0 ≤ u ≤ 3

√
3k + 2

2
. Therefore,

Resg
fk ,Ak ,Bk

(u) = w =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if u < 0(
3
√√

4u6 + 2k3 + 2u3
)2 − 3

√
2k

3
√
4

3
√√

4u6 + 2k3 + 2u3
if 0 ≤ u ≤ 3

√
3k + 2

2

1 if u >
3

√
3k + 2

2
.

By the above, all assumptions in Theorem 5 are satisfied with the given functions fk, Ak, Bk, Si . Therefore,

by Theorem 5, the sequence {zn}which is defined by (7) converges to 0 ∈
( 2⋂

i=1
F(Si )

)⋂ ( 2⋂

k=1
G M E P( fk, Ak,

Bk)
)
.

Next, we compare the rate of convergence of the iteration process (3) and the iteration process (66) to 0 which
is a solution of a finite system of (G M E P). Numerical results of the mentioned iteration processes with the

initial point z1 = 1, z2 = 0.8, bn = 1

10000n
and the different choices of cn are presented in the following table.

Table 1 shows that for given mappings, the iteration process (66) has a better convergence rate and requires
a small number of iterations than the iteration process (3).

4 Conclusions

In this paper, a new inertial parallel iterative method was proposed for finding common solutions of a finite
system of generalized mixed equilibrium problems and common fixed points of a finite family of Bregman totally
quasi-asymptotically nonexpansive mappings. A strong convergence result for the proposed iteration in reflexive
Banach spaces was established and proved. From this theorem, some convergence results for generalized mixed
equilibrium problems in reflexive Banach spaces were given. In addition, a numerical example was provided to
demonstrate the proposed iterations. On comparing our results with the main result of [5,6,17], we find that

1. Theorem 5 is a generalization of [6, Theorem 3.1] from an equilibrium problem and a generalized hybrid
mapping in Hilbert spaces to a finite system of generalized mixed equilibrium problems and a finite family
of Bregman totally quasi-asymptotically nonexpansive mappings in reflexive Banach spaces.

2. Corollary 1 is an improvement of [5, Theorem 3.1] from an equilibrium problem and a nonexpansivemapping
in Hilbert spaces to a generalized mixed equilibrium problem and a Bregman totally quasi-asymptotically
nonexpansive mapping in reflexive Banach spaces.

3. Corollary 2 is an extension of [17, Theorem 3.6] in the sense of adding the inertial extrapolation to the
iteration process (3). Furthermore, Example 1 was given to prove the efficiency of iteration (66) which has
a better convergence rate and requires a small number of iterations than the iteration process (3) which was
presented in [17].
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Table 1 Number of iterations of the processes (3) and (66)

n Iteration (3) Iteration (66)

cn = 1

n
cn = 1

2
cn = 9n + 2

10n + 2

1 1.000000 1.000000 1.000000 1.000000
2 0.767589 0.800000 0.800000 0.800000
3 0.579151 0.525025 0.525025 0.463658
4 0.434901 0.325035 0.290662 0.119140
5 0.326252 0.206283 0.130114 0.119140
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

21 0.003270 0.001056 0.000008 0.000001
22 0.002452 0.000778 0.000004 0.
23 0.001839 0.000574 0.000001 0.
24 0.001379 0.000424 0. 0.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

43 0.000005 0.000001 0. 0.
44 0.000004 0.000001 0. 0.
45 0.000003 0. 0. 0.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

49 0.000001 0. 0. 0.
50 0. 0. 0. 0.

Acknowledgements The authors sincerely thank some anonymous referees for their remarkable comments that helped us to improve
the paper. This research is supported by the project B2021.SPD.02.

References

1. Muu, L.D., Oettli, W.: Convergence of an adaptive penalty scheme for finding constrained equilibria. Nonlinear Anal. 18,
1159–1166 (1992)

2. Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123–145 (1994)
3. Noor, M.A., Oettli, W.: On general non linear complementarity problems and quasi-equilibria. Le Matematiche (Catania) 49,

313–331 (1994)
4. Peng, J.W., Yao, J.C.: A new hybrid-extragradient method for generalized mixed euqilibrium problems, fixed point problems

and variational inequality problems. Taiwanese J. Math. 12, 1401–1432 (2008)
5. Tada, A., Takahashi, W.: Weak and strong convergence theorems for a nonexpansive mapping and an equilibrium problem. J.

Optim. Theory Appl. 133, 359–370 (2007)
6. Alizadeh, S., Moradlou, F.: A strong convergence theorem for equilibrium problems and generalized hybrid mappings.Mediterr.

J. Math. 13(1), 379–390 (2016)
7. Qin, X., Cho, S.Y., , Kang, S.M.: Strong convergence of shrinking projection methods for quasi φ-nonexpansive mappings and

equilibrium problems. J. Comput. Appl. Math. 234, 750–760 (2010)
8. Takahashi, W., Zembayashi, K.: Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive

mappings in banach spaces. Nonlinear Anal. 70, 45–57 (2009)
9. Darvish, V.: Strong convergence theorem for generalized mixed equilibrium problems and bregman nonexpansive mapping in

banach spaces. Math. Morav. 20(1), 69–87 (2016)
10. Reich, S., Sabach, S.: Two strong convergence theorems for bregman strongly nonexpansive operators in reflexive banach

spaces. Nonlinear Anal. 73, 122–135 (2010)
11. Chang, S.S., Wang, L., Wang, X.R., Chan, C.K.: Strong convergence theorems for bregman totally quasi-asymptotically non-

expansive mappings in reflexive banach spaces. Appl. Math. Comput. 228, 38–48 (2014)
12. Ni, R., Wen, C.: Hybrid projection methods for bregman totally quasi-d-asymptotically nonexpansive mappings. Bull. Malays.

Math. Sci. Soc. 41, 807–836 (2018)
13. Zhu, S., Huang, J.H.: Strong convergence theorems for equilibrium problem and bregman totally quasi-asymptotically nonex-

pansive mapping in banach spaces. Acta Math. Sci. Ser. A Chin. Ed. 36B(5), 1433–1444 (2016)
14. Anh, P.K., Chung, C.V.: Parallel hybrid methods for a finite family of relatively nonexpansive mappings. Numer. Funct. Anal.

Optim. 35, 649–664 (2014)
15. Anh, P.K., Hieu, D.V.: Parallel and sequential hybrid methods for a finite family of asymptotically quasi φ-nonexpansive
16. Hieu, D.V., Muu, L.D., Anh, P.K.: Parallel hybrid extragradient methods for pseudomonotone equilibrium problems and non-

expansive mappings. Numer. Algor. 73(1), 197–217 (2016)
17. Tuyen, T.M.: Parallel iterative methods for solving systems of generalized mixed equilibrium problems in reflexive banach

spaces. Optimization 66(4), 623–629 (2017)
18. Mainge, P.E.: Convergence theorems for inertial km-type algorithm. J. Comput. Appl. Math. 219, 223–236 (2008)

123



N. T. Hieu, N. V. Dung

19. Chidume, C.E., Ikechukwu, S.I., Adamu, A.: Inertial algorithm for approximating a common fixed point for a countable family
of relatively nonexpansive maps. Fixed Point Theory Appl. 2018(9), 1–9 (2018)

20. Reich, S., Sabach, S.: A strong convergence theorem for a proximal-type algorithm in reflexive banach spaces. J. Nonlinear
Convex Anal. 10, 471–485 (2009)

21. Bauschke, H.H., M., B.J., Combettes, P.L.: Essential smoothness, essential strict convexity, and legendre functions in banach
spaces. Commun. Contemtr. Math. 3, 615–647 (2001)

22. Censor, Y., Lent, A.: An iterative row-action method for interval convex programming. J. Optim. Theory Appl. 34, 321–353
(1981)

23. Kumam, W., Witthayarat, U., Kumam, P., Suantai, S., Wattanawitoon, K.: Convergence theorem for equilibrium problem and
bregman strongly nonexpansive mappings in banach spaces. Optimization 65(2), 265–280 (2016)

24. Butnariu, D., N., I.A.: Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization, Applied
Optimization, Vol.40. Kluwer Academicr, Dordrecht (2000)

25. Resmerita, X.: On total convexity, bregman projections and stability in banach spaces. J. Nonlinear Convex Anal. 11, 1–16
(2004)

26. Sabach, S.: Products of finitely many resolvents of maximal monotone mappings in reflexive banach spaces. SIAM J. Optim.
21, 1289–1308 (2011)

27. Butnariu, D., Resmerita, W.: Bregman distances, totally convex functions and a method for solving operator equations in banach
spaces. Abstr. Appl. Anal. 2006, 1–39 (2006)

28. Zalinescu, C.: Convex analysis in general vector spaces. World Scientific (2002)
29. Naraghirad, X., Yao, J.C.: Bregman weak relatively nonexpansive mappings in banach spaces. Fixed Point Theory Appl.

2013(141), 1–43 (2013)
30. Hiriart-Urruty, J.B., Lemaréchal, C.: Grundlehren der Mathematischen Wissenschaften, In: Convex Analysis and Minimization

Algorithms II, 306. Springer (1993)
31. Borwein, M.J., Reich, S., Sabach, S.: A characterization of bregman firmly nonexpansive operatorsusing a new monotonicity

concept. J. Nonlinear Convex Anal. 12(1), 161–184 (2011)
32. Zhao, Y.H., Chang, S.S., Zhu, J.H.: Strong convergence theorems for bregman quasi-asymptotically nonexpansive mappings

and equilibrium problem in reflexive banach spaces. Math. Inequal. Appl. 16(4), 1171–1181 (2013)
33. Qin, X., Cho, S.Y., , Kang, S.M.: On hybrid projection methods for asymptotically quasi-φ-nonexpansive mappings. Appl.

Math. Comput. 215, 3874–3883 (2010)
34. Reich, S., Sabach, S.: Two strong convergence theorems for a proximal method in reflexive banach spaces. Numer. Funct. Anal.

Optim. 31, 22–44 (2010)

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement
with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed
by the terms of such publishing agreement and applicable law.

123


	An inertial parallel iterative method for solving generalized mixed equilibrium problems and common fixed point problem in reflexive Banach spaces
	Abstract
	1 Introduction
	2 Preliminaries
	3 Main results
	4 Conclusions
	Acknowledgements
	References


