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Abstract By the Majorana representation, for any d > 1 there is a one-one correspondence between a quantum
state of dimension d and d − 1 qubits represented as d − 1 points in the Bloch sphere. Using the theory of
symmetry class of tensors, we present a simple scheme for constructing d − 1 points on the Bloch sphere and
the corresponding d − 1 qubits representing a d-dimensional quantum state. Additionally, we demonstrate how
the inner product of two d-dimensional quantum states can be expressed as a permanent of a matrix related to
their (d − 1)-qubit state representations. Extension of the result to mixed states is also considered.
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1 Introduction

Quantum states, represented by unit vectors a ∈ C
d , form a fundamental aspect of d-dimensional systems. These

vectors are identified up to a phase factor, i.e., a and eita are identified for any t ∈ [0, 2π). In the case of d = 2,
quantum states are commonly referred to as qubits. For qubits, there exists a one-to-one correspondence between
the state a = (a0, a1)t with |a0|2 + |a1|2 = 1 and a point (cx , cy, cz) on the Bloch sphere:

B = {(cx , cy, cz) : cx , cy, cz ∈ R
3, c2x + c2y + c2z = 1}

where aa∗ corresponds to (cx , cy, cz) by 1
2

(
1 + cz cx − icy
cx + icy 1 − cz

)
. The correspondence is established using

(cx , cy, cz) = (�(ā0a1),�(ā0a1), |a0|2 − |a1|2)/2, ensuring that c2x + c2y + c2z = 1.

In [3], Majorana proposed a geometric method to represent a quantum state a ∈ C
d for d > 1 using d − 1

qubits. Consequently, a quantum state in Cd is associated with d − 1 points on the Bloch sphere. The Majorana
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representation provides a visual tool to understand the properties and transformations of quantum states. The
direct visualization of qubit rotations are useful in the study of different topics of quantum information science
such as quantum computation and communication; e.g., see [6] and its references.

In this note, we establish a connection between the Majorana representation and symmetry class of tensors
in V

⊗(d−1) for V = C
2 associated with the principal character ξ . Using this connection, we provide an easy

scheme to determine v1, . . . , vd−1 ∈ C
2 associated with a given vector (a0, . . . , ad−1) ∈ C

d . Additionally, we
present a simple formula for the inner product of a and b in C

d in terms of their (d − 1)-qubit presentations.
Numerical examples are given to illustrate the result. Extension of the result to mixed states is also considered.

2 Results

2.1 Preliminary

Let us present the following standard set up of a symmetry class of tensors in the (d − 1)-fold tensor space
V

⊗(d−1). In our study we focus on V = C
2 and the principal character ξ on the symmetric group Sd−1 of degree

d − 1 such that ξ(σ ) = 1 for all σ ∈ Sd−1. Define the symmetrizer on the tensor space V⊗(d−1) by

T (v1 ⊗ · · · ⊗ vd−1) = 1

(d − 1)!
∑

σ∈Sd−1

ξ(σ )vσ−1(v1)
⊗ · · · ⊗ vσ−1(d−1).

Then V(d−1)
ξ = T (V⊗(d−1)) is a subspace of V⊗(d−1) known as the symmetry class of tensors over V associated

with ξ on Sd−1. The elements in V(d−1)
ξ of the form T (v1 ⊗ · · · ⊗ vm) are called decomposable tensors and are

denoted by v• = v1 • · · · • vm . One may see [2,4] for some general background. In fact, researchers have used
decomposable tensors to model boson states; see [1].

Let {e0, e1} be the standard orthonormal basis of V = C
2 using the standard inner product 〈u, v〉 = u∗v,

where X∗ denotes the conjugate transpose of X if X is a complex vector or matrix. Then V(d−1)
ξ is the subspace

of V⊗(d−1) spanned by the orthogonal basis

S = {ei1 • · · · • eid−1 : 0 ≤ i1 ≤ · · · ≤ id−1 ≤ 1}
using the induced inner product on decomposable tensor u1 • · · · • ud−1 and v1 • · · · • vd−1 so that

〈u1 • · · · • ud−1, v1 • · · · • vd−1〉 = 1

(d − 1)!per(〈ui , v j 〉),

where

per(X) =
∑
σ∈Sk

k∏
j=1

x jσ( j) for X = (xi j ) ∈ Mk

is the permanent of X ∈ Mk ; see e.g., [5] for basic properties of the permanent. If j1 = · · · = j� = 0 and
j�+1 = · · · = jd−1 = 1, then

〈e j1 • · · · • e jd−1 , e j1 • · · · • e jd−1〉 = per (J� ⊕ Jd−1−�) /(d − 1)! =
(
d − 1

�

)−1

,

where Jr ∈ Mr has all entries equal to 1. Thus, after normalization S becomes an orthonormal basis
{ f •

0 , . . . , f •
d−1}. Let

C j = [e0 · · · e0︸ ︷︷ ︸
d−1− j

e1 · · · e1︸ ︷︷ ︸
j

] ∈ M2,d−1, j = 0, . . . , d − 1. (1)

Suppose v1, . . . , vd−1 ∈ C
2. Then the decomposable tensor

v• = v1 • · · · • vd−1 = a0 f
•
0 + · · · + ad−1 f

•
d−1 (2)
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with

a j = 〈 f •
j , v

•〉 = 1

(d − 1)!

√(
d − 1

j

)
per(C∗

j [v1 · · · vd−1]), j = 0, . . . , d − 1. (3)

Moreover,

(a) γ (v1 • · · · • vd−1) = μ1v1 • · · · • μd−1vd−1 if μ1, . . . , μd−1, γ ∈ C satisfy μ1 · · · μd−1 = γ ,
(b) v1 • · · · • vd−1 = vσ(1) • · · · • vσ(d−1) if σ ∈ Sd−1 is a permutation of (1, . . . , d − 1).

We will also use the following fact about the zeros of a complex polynomial. Let Ek(μ1, . . . , μd−1) be the
kth elementary symmetric function for μ1, . . . , μd−1, i.e.,

Ek(μ1, . . . , μd−1) =
∑

1≤ j1<···< jk≤d−1

μ j1 · · · μ jk , k = 1, . . . , d − 1.

Let

g(z) = c0z
d−1 + c1zd−2 + · · · + cd−1 = c0

(
zd−1 + c1

c0
zd−2 + · · · + cd−1

c0

)

= c0(z − μ1) · · · (z − μd−1),

where c0 �= 0. Then
c j
c0

= (−1) j E j (μ1, . . . , μd−1), j = 1, . . . , d − 1.

2.2 Main result and examples

Theorem 2.1 LetV = C
2 and { f •

0 , . . . , f •
d−1}be the standardorthonormal basis forV(d−1)

ξ . If (a0, . . . , ad−1)
t ∈

C
d is nonzero and r ≥ 0 is the smallest integer such that ar �= 0, then for γr = ar

√(d−1
r

)
1

γr
(a0 f

•
0 + · · · + ad−1 f

•
d−1) = v1 • · · · • vd−1

so that

a0 f
•
0 + · · · + ad−1 f

•
d−1 = v1 • · · · • vd−2 • (γrvd−1)

with v1 = · · · = vr = (0, 1)t , and v j = (1, μ j )
t for j = r + 1, . . . , d − 1, where μr+1, . . . , μd−1 are the zeros

of the Majorana polynomial

g(z) =
d−1∑
j=0

(−1) j a j

√(
d − 1

j

)
zd−1− j .

If b0 f •
0 + · · · + bd−1 f •

d−1 = u1 • · · · • ud−1 and c0 f •
0 + · · · + cd−1 f •

d−1 = w1 • · · · • wd−1, then

d−1∑
j=0

b̄ j c j = 〈u1 • · · · • ud−1, w1 • · · · • wd−1〉 = per(〈ui , w j 〉)/(d − 1)!.

By Theorem 2.1, every vector f • ∈ V
(d−1)
ξ admits a representation of the form u1 • · · · • ud−1. In particular,

if (a0, . . . , ad−1)
t ∈ C

d is a quantum state, a unit vector, then

a0 f
•
0 + · · · + ad−1 f

•
d−1 = 1

γ

(
v1

‖v1‖ • · · · • vd−1

‖vd−1‖
)

,

where v1, . . . , vd−1 are defined as in Theorem 2.1 and

γ = ‖
(

v1

‖v1‖ • · · · • vd−1

‖vd−1‖
)

‖ =
d−1∏
j=1

‖v j‖
{

1

(d − 1)!per(〈vi , v j 〉)
}1/2

.
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Proof of Theorem 2.1 If r = d − 1, then clearly 1
γr

(ar f •
d−1) = 1

ar
(ar f •

d−1) = e1 • · · · • e1.
Suppose r < d − 1. Construct the vectors v1, . . . , vd−1 as described. We will show that

1

ar
√(d−1

r

) (a0 f
•
0 + · · · ad−1 f

•
d−1) = v1 • · · · • vd−1.

Let 1k ∈ C
k has all entries equal to 1, C j be defined as in (1), and Q ∈ M2,d−1 have columns v1, . . . , vd−1.

Then

C∗
j Q =

(
0d−1− j,r−1 1d−1− j1td−r
1 j1tr−1 1 j (μr , . . . , μd−1)

)
.

By a direct computation, say, using the Laplace expansion formula for permanent and induction, we have the
following. For j = 0, . . . , r − 1, we have per(C∗

j Q) = 0 and hence

〈 f •
j , v1 • · · · • vd−1〉 =

√(
d − 1

j

)
per(C∗

j Q)/(d − 1)! = 0.

For j = r, . . . , d − 1, we have per(C∗
j Q) = j !(d − 1 − j)!E j−r (μr+1, . . . , μd−1), and hence

〈 f •
j , v1 • · · · • vd−1〉 =

√(
d − 1

j

)
per(C∗

j Q)/(d − 1)!

= E j−r (μr+1, . . . , μd−1)/

√(
d − 1

j

)
.

Since μr , . . . , μd−1 are the zeros of g(x),

E j−r (μr+1, . . . , μd−1)/

√(
d − 1

j

)
= a j

ar
√(d−1

r

) = a j

γr
.

Hence,

1

γr
(a0 f

•
0 + · · · + ad−1 f

•
d−1) = v1 • · · · • vd−1.

The last statement is clear. ��
The following numerical examples illustrate Theorem 2.1.

Example 2.2 Suppose d = 5 and a = (a0, a1, a2, a3, a4)t ∈ C
5 be a nonzero vector. Let r ≥ 0 be the smallest

integer such that ar �= 0. Then for γr = ar
√(4

r

)
,

1

γr
(a0 f

•
0 + a1 f

•
1 + a2 f

•
2 + a3 f

•
3 + a4 f

•
4 ) = v1 • v2 • v3 • v4,

with v1 = · · · = vr = (0, 1)t and v j = (1, μ j )
t for j = r + 1, . . . , 4, where μr+1, . . . , μ4 are the zeros of the

Majorana polynomial

g(z) =
√(

4

0

)
a0z

4 −
√(

4

1

)
a2z

3 +
√(

4

2

)
a2z

2 −
√(

4

3

)
a3z +

√(
4

4

)
a4.

(i) Let a = (1, 3, 13/
√
6, 6, 4)t ∈ C

5. Then g(z) = z4 − 6z3 + 13z2 − 12z + 4 = (z − 1)2(z − 2)2 so that a
corresponds to u1 • u2 • u3 • u4 with u1 = u2 = (1, 1)t and u3 = u4 = (1, 2)t .

(ii) Let b = (0, 1/2,
√
6, 11/2, 6)t . Then g(z) = z3−6z2+11z−6 = (z−1)(z−2)(z−3) so that b corresponds

to v1 • · · · • v4 with v1 = (0, 1)t and v2 = (1, 1)t , v3 = (1, 2)t and v4 = (1, 3)t .
(iii) Let c = (0, 0, 1/

√
6, 1, 1)t . Then g(z) = z2 − 2z + 1 = (z − 1)2 so that c corresponds to w1 • · · · • w4 with

w1 = w2 = (0, 1)t , and w3 = w4 = (1, 1)t .

We have 〈a,b〉 = per([u1u2u3u4]∗[v1v2v3v4])/4! = 143/2,
〈a, c〉 = per([u1u2u3u4]∗[w1w2w3w4])/4! = 12 + 1/6, and
〈b, c〉 = per([v1v2v3v4]∗[w1w2w3w4])/4! = 25/2.
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2.3 Mixed states

Recall that a general quantum state is called a mixed state and is represented by a density matrix ρ, which is a
positive semi-definite matrix with trace 1. If ρ is rank one, then ρ is pure state. If a corresponds to u1•· · ·•ud−1 ∈
V
d−1
ξ , then by (3) the corresponding density matrix ρ = aa∗ ∈ Md has (r, s) entry equal to

ar ās =
√(

d − 1

r

)(
d − 1

s

)
per(C∗

r [u1 · · · ud−1])per([u1 · · · ud−1]∗Cs])
(d − 1)!(d − 1)! , 0 ≤ r, s ≤ d − 1,

where C j is defined as in (1).
There has been interest in finding theMajorana representation for mixed states; e.g., see [6]. A general mixed

state can be written as ρ = ∑r
j=1 p jρ j ∈ Md , where (p1, . . . , pr ) is a probability vector and ρ1, . . . , ρr are

pure states. We can apply Theorem 2.1 to each ρ j , and express it in terms of d − 1 qubit states. Then the mixed
state ρ can be associated with a collection of r sets of qubit states each has d − 1 elements and a probability
vector (p1, . . . , pr ).

Alternatively, by purification one may express ρ as the partial trace of a pure stat |ψ〉〈ψ | with |ψ〉 ∈ C
d2 ,

which admits a Majorana representation of d2 − 1 qubits.
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