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Abstract Let G be a graph and H be a set of connected graphs. A spanning subgraph H of G is called an
H–factor if each component of H is isomorphic to a member ofH. In this paper, we first present a lower bound
on the size (resp. the spectral radius) of G to guarantee that G has a {P2, Cn : n ≥ 3}–factor (or a perfect
k–matching for even k) and construct extremal graphs to show all this bounds are best possible. We then provide
a lower bound on the signless laplacian spectral radius of G to ensure that G has a {K1, j : 1 ≤ j ≤ k}–factor,
where k ≥ 2 is an integer. Moreover, we also provide some Laplacian eigenvalue (resp. toughness) conditions
for the existence of {P2, Cn : n ≥ 3}–factor, P≥3–factor and {K1, j : 1 ≤ j ≤ k}–factor in G, respectively. Some
of our results extend or improve the related existing results.

Keywords Component factor · (Signless Laplacian) Spectral radius · Laplacian eigenvalue · Toughness · Perfect
k–matching

1 Introduction

All graphs considered in this paper are undirected, connected and simple. Let G = (V (G), E(G)) be a graph of
order n and size m. For a subset S ⊆ V (G), we use G[S] and G − S to denote the subgraphs of G induced by
S and V (G)\S, respectively. We denote by G1 ∪ G2 the disjoint union of G1 and G2. The join G1 ∨ G2 is the
graph obtained from G1 ∪ G2 by adding all possible edges between V (G1) and V (G2). As usual, the star and
the cycle of order n are denoted by K1,n−1 and Cn , respectively. Let G1 and G2 be two vertex–disjoint graphs.
Other undefined notations can be found in [4].

The Laplacian and the signless Laplacian matrices of a graph G are defined as L(G) = D(G) − A(G) and
Q(G) = D(G) + A(G), where A(G) and D(G) are the adjacency matrix and the diagonal degree matrix of G,
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respectively. The largest eigenvalues of A(G) and Q(G) are called the spectral radius and the signless Laplacian
spectral radius of G, denoted by ρ(G) and q(G), respectively. Let μi (G) (or μi for short) be the i-th smallest
Laplacian eigenvalues of G. In particular, the second smallest Laplacian eigenvalue μ2(G) is also known as the
algebraic connectivity of G [8].

For a set of connected graphsH, a spanning subgraph H of G is called anH–factor if each component of H
is isomorphic to a member ofH. In particular, anH–factor is a P≥�–factor ifH = {P�, P�+1, . . .}, where P� is a
path with � vertices. Up to now, there have been lots of research work to seek the conditions for the existence of
H–factor in a graph, such as {P2, Cn : n ≥ 3}–factor [9,17], {K1, j : 1 ≤ j ≤ k}–factor [1], P≥3–factor [13], etc.
We won’t list them all here, but we’ll focus primarily on those related to the spectral conditions for the existence
of H–factor in a graph. Zhang [20] characterize the extremal graphs with maximum spectral radius among all
connected graphs of given order with prescribed minimum degree and without a P≥2–factor or a P≥3–factor,
which generalizes the result in Li and Miao [14]. In [16], Miao and Li give some sufficient conditions (size, the
spectral radius, or the distance spectral radius) to ensure that a graph contains a {K1, j : 1 ≤ j ≤ k}–factor,
where k ≥ 2 be an integer. We refer the readers to [18] for more details on graph factors.

Motivated by [17], it is natural and interesting to ask whether or not there is a spectral condition to guarantee
the existence of {P2, Cn : n ≥ 3}–factor in a graph? Note that every even cycle can be decomposed into a
combination of P2. Then the above problem has another statement as follows: whether or not there is a spectral
condition to guarantee the existence of {P2, C2i+1 : i ≥ 1}–factor in a graph?

Inspired by the ideas from Miao and Li [16] and using the typical spectral techniques, we provide some
sufficient conditions to ensure a graph G contains a {P2, C2i+1 : i ≥ 1}–factor in terms of the size and the
spectral radius of G, respectively.

Theorem 1.1 Let G be a graph of order n. Then we have

(i) for n ∈ {3, 4, 10} or n ≥ 12, if |E(G)| >
(n−2

2

) + 2, then G has a {P2, C2i+1 : i ≥ 1}–factor;
(ii) for n ∈ {5, 7, 9, 11}, if |E(G)| >

(3n−1)(n−1)
8 , then G has a {P2, C2i+1 : i ≥ 1}–factor;

(iii) for n ∈ {6, 8}, if |E(G)| >
3n(n−2)

8 , then G has a {P2, C2i+1 : i ≥ 1}–factor.
Theorem 1.2 Let G be a graph of order n. Then we have

(i) for n ∈ {3, 4, 8} or n ≥ 10, if ρ(G) > θ(n), then G has a {P2, C2i+1 : i ≥ 1}–factor, where θ(n) is the
largest root of x3 − (n − 4)x2 − (n − 1)x + 2(n − 4) = 0;

(ii) for n ∈ {5, 7, 9}, if ρ(G) > n−3+√
5n2−6n+5
4 , then G has a {P2, C2i+1 : i ≥ 1}–factor;

(iii) for n = 6, if ρ(G) > 1+√
33

2 , then G has a {P2, C2i+1 : i ≥ 1}–factor.
Recently, Miao and Li [16] provided a sufficient condition to ensure a graph G has a {K1, j : 1 ≤ j ≤ k}–

factor in terms of ρ(G). As a continuance of their work, we further deduce a sharp lower bound on q(G) to
ensure that G has a {K1, j : 1 ≤ j ≤ k}–factor.
Theorem 1.3 Let k ≥ 2 be an integer and G be a graph of order n ≥ 2k + 12. If

q(G) ≥ q(K1 ∨ (Kn−k−2 ∪ (k + 1)K1)),

then G has a {K1, j : 1 ≤ j ≤ k}–factor unless K1 ∨ (Kn−k−2 ∪ (k + 1)K1).

For a graph G of order n, the Laplacian eigenratio of G is defined as μ2(G)
μn(G)

, and it has attracted great concern
about the relations between the Laplacian eigenratio and other graph properties [10,11]. For example, it is known
that for a graph G of order n, if n is even and μ2(G)

μn(G)
≥ 1

2 , then G has a perfect matching [5]. Furthermore, we also
present the following Laplacian eigenratio conditions for the existence of {P2,C2i+1 : i ≥ 1}–factor, P≥3–factor
and {K1, j : 1 ≤ j ≤ k}–factor in a graph, respectively.
Theorem 1.4 Let G be a graph of order n. If μ2(G)

μn(G)
≥ 1

2 , then G has a {P2, C2i+1 : i ≥ 1}–factor.

Theorem 1.5 Let G be a graph of order n. If μ2(G)
μn(G)

≥ 1
3 , then G has a P≥3–factor.

Theorem 1.6 Let k ≥ 2 be an integer and G be a graph of order n. If μ2(G)
μn(G)

≥ 1
k+1 , then G has a {K1, j : 1 ≤

j ≤ k}–factor.
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For S ⊆ V (G), let c(G− S) and i(G− S) denote the numbers of connected components and isolated vertices
in G − S, respectively. Recall that the toughness t (G) of a connected graph G is defined as

t (G) = min

{ |S|
c(G − S)

: S ⊆ V (G), c(G − S) ≥ 2

}
.

By convention, a complete graph has infinite toughness. This parameter was introduced by Chvátal [6] in
1973 and is closely related to many graph properties, including Hamiltonicity, pancyclicity and spanning trees,
see [3]. Very recently, Gu and Haemers [11] derived a lower bound of t (G) by building the relationship between
the toughness of G and its Laplacian eigenvalues as follows: t (G) ≥ μ2(G)

μn(G)−μ2(G)
for any connected graph G

of order n. This implies that t (G) ≥ μ2(G)
μn(G)−μ2(G)

≥ 1 when μ2(G)
μn(G)

≥ 1
2 . Thus, by Theorem 1.4, we have the

following result immediately.

Corollary 1.7 Let G be a graph of order n. If t (G) ≥ 1, then G has a {P2, C2i+1 : i ≥ 1}–factor.
Remark 1.1 Recall that Guan, Ma and Shi [12] showed that for a graph G, if t (G) ≥ 1, then G has a {P2,C2i+1 :
i ≥ 2}–factor. So Theorem 1.4 can be viewed as a generalization of their result.

Similarly, we have the following results for the existence of P≥3–factor and {K1, j : 1 ≤ j ≤ k}–factor in a
graph, respectively.

Corollary 1.8 Let G be a graph of order n. If t (G) ≥ 1
2 , then G has a P≥3–factor.

Remark 1.2 Recall that Zhou et al. [21] showed that for a graph G, if t (G) ≥ 2
3 , then G has a P≥3–factor. So

Corollary 1.8 can be viewed as a slight improvement of the result due to Zhou et.al.

Corollary 1.9 Let k ≥ 2 bean integer andG beagraphof order n. If t (G) ≥ 1
k , thenG has a {K1, j : 1 ≤ j ≤ k}–

factor.

A matching M in a graph is a set of pairwise non-adjacent edges. A perfect matching is a matching which
matches all vertices of a graph. Let f : E(G) → {0, 1, . . . , k} be an assignment such that the sum of weights
of edges incident with any vertex is at most k, i.e.,

∑
e∼v f (e) ≤ k for any vertex v ∈ V (G). A k--matching is a

subgraph induced by the edges with weight among 1, . . . , k such that
∑

e∼v f (e) ≤ k. The sum of all weights,
i.e.,

∑
e∈E(G) f (e), is called the size of a k-matching f . A k–matching is perfect if

∑
e∼v f (e) = k for every

vertex v ∈ V (G). Clearly, a k–matching is perfect if and only if its size is k|V (G)|/2. For k = 1, the perfect
1–matching is also known as the the perfect matching. For k = 2, Tutte [17] showed that a connected graph
G has a perfect 2–matching is equivalent to G has a {P2, C2i+1 : i ≥ 1}–factor. Moreover, for k ≥ 4 be an
even integer, it was shown by Lu and Wang [15] that a graph G contains a perfect k–matching if and only if G
contains a perfect 2–matching. Thus, by Theorems 1.1, 1.2 and 1.4 and Corollary 1.7, we then have the following
conditions for a graph G has a perfect k–matching.

Corollary 1.10 Let k ≥ 2 be an even integer and G be a graph of order n. Then we have

(i) for n ∈ {3, 4, 10} or n ≥ 12, if |E(G)| >
(n−2

2

) + 2, then G has a perfect k–matching;

(ii) for n ∈ {5, 7, 9, 11}, if |E(G)| >
(3n−1)(n−1)

8 , then G has a perfect k–matching;

(iii) for n ∈ {6, 8}, if |E(G)| >
3n(n−2)

8 , then G has a perfect k–matching.

Corollary 1.11 Let k ≥ 2 be an even integer and G be a graph of order n. Then we have

(i) for n ∈ {3, 4, 8} or n ≥ 10, if ρ(G) > θ(n), then G has a perfect k–matching, where θ(n) is the largest
root of x3 − (n − 4)x2 − (n − 1)x + 2(n − 4) = 0;

(ii) for n ∈ {5, 7, 9}, if ρ(G) > n−3+√
5n2−6n+5
4 , then G has a perfect k–matching;

(iii) for n = 6, if ρ(G) > 1+√
33

2 , then G has a perfect k–matching.

Corollary 1.12 Let k ≥ 2 be an even integer and G be a graph of order n. If μ2(G)
μn(G)

≥ 1
2 , then G has a perfect

k–matching.

Corollary 1.13 Let k ≥ 2 be an even integer and G be a graph of order n. If t (G) ≥ 1, then G has a perfect
k–matching.

The remainder of the paper is organized as follows. In Section 2, we present some preliminary results, which
will be used in the subsequent section. In Section 3, we will give the proofs of Theorems 1.1, 1.2 and 1.3,
respectively. In section 4, we present the proofs of Theorems 1.4, 1.5 and 1.6, respectively. In the last section we
construct extremal graph to show the bound obtained in Theorems 1.1 and 1.2 are best possible.
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2 Preliminary

In this section, we present some preliminary results and lemmas which are useful.
Let φM (x) := det (x I − M) be the characteristic polynomial of a square matrix M , where I is the identity

matrix, whose order is the same as that of M . Consider an n × n real symmetric matrix

M =

⎛

⎜⎜
⎝

M1,1 M1,2 · · · M1,m
M2,1 M2,2 · · · M2,m

...
...

. . .
...

Mm,1 Mm,2 · · · Mm,m

⎞

⎟⎟
⎠ ,

whose rows and columns are partitioned according to a partitioning X1, X2, . . . , Xm of {1, 2, . . . , n}. Thequotient
matrix B of the matrix M is the m ×m matrix whose entries are the average row sums of the blocks Mi, j of M .
The partition is equitable if each block Mi, j of M has constant row (and column) sum.

Lemma 2.1 ([19]) Let M be a square matrix with an equitable partition π and let Mπ be the corresponding
quotient matrix. Then every eigenvalue of Mπ is an eigenvalue of M. Furthermore, if M is nonnegative and Mπ

is irreducible, then the largest eigenvalues of M and Mπ are equal.

Lemma 2.2 ([17]) A graph G has a {P2, C2i+1 : i ≥ 1}–factor if and only if i(G− S) ≤ |S| for any S ⊆ V (G).

Lemma 2.3 ([1]) For any integer k ≥ 2, a graphG has a {K1, j : 1 ≤ j ≤ k}–factor if and only if i(G−S) ≤ k|S|
for any S ⊆ V (G).

In order to prove the main results for ρ(G) and q(G) simultaneously, we introduce the matrix Aa(G) =
aD(G) + A(G) and denote by ρa(G) the largest eigenvalue of Aa(G), where a ≥ 0. Clearly, A0(G) = A(G)

(resp. A1(G) = Q(G)) and ρ0(G) = ρ(G) (resp. ρ1(G) = q(G)).

Lemma 2.4 ([2]) If H is a spanning subgraph of a graph G, then ρa(H) ≤ ρa(G), with equality if and only if
G ∼= H; Moreover, if H is a proper subgraph of G, then ρa(H) < ρa(G).

Lemma 2.5 ([7]) Let G be a graph of order n with m edges. Then

q(G) ≤ 2m

n − 1
+ n − 2.

3 Proofs of Theorems 1.1, 1.2 and 1.3

We now give the proofs of Theorems 1.1, 1.2 and 1.3, respectively.

Proof of Theorem 1.1: Suppose to the contrary that G has no {P2, C2i+1 : i ≥ 1}–factor. Then Lemma 2.2
implies that there exists a non-empty subset S ⊆ V (G) satisfying i(G − S) � |S| + 1. We choose such a
connected graph G of order n so that its size is as large as possible. According to the choice of G, we see that
the induced subgraph G[S] and each connected component of G − S are complete graphs, respectively, and
G ∼= G[S] ∨ (G − S).

First, we claim that there is at most one non-trivial connected component in G − S. Otherwise, we can add
edges among all nontrivial connected components to get a bigger non-trivial connected component, which is a
contradiction to the choice of G. For convenience, let i(G − S) = i and |S| = s. We now consider the following
two possible cases.

Case 1 G − S has only one non-trivial connected component, say G1.
In this case, let |V (G1)| = n1 ≥ 2. We are to show i = s + 1. If i ≥ s + 2, let H1 be a new graph

obtained from G by joining each vertex of G1 with one vertex in I (G − S) by an edge, where I (G − S) is a
set of isolated vertices in G − S. Then we have |E (H1)| = |E(G)| + n1 > |E(G)| and i (H1 − S) ≥ s + 1,
a contradiction to the choice of G. Hence i ≤ s + 1. Recall that i ≥ s + 1. Therefore, we have i = s + 1 and
G = Ks ∨ (Kn−2s−1 ∪ (s + 1)K1).
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Bear in mind that n = s + s + 1 + n1 ≥ 2s + 3 ≥ 5 and |E(G)| = s(s + 1) + (n−s−1
2

)
. By a directed

calculation, we have
(
n − 2

2

)
+ 2 − |E(G)| = 1

2
(s − 1)(2n − 3s − 8)

≥ 1

2
(s − 1)(4s + 6 − 3s − 8)

= 1

2
(s − 1)(s − 2) ≥ 0.

Thus, |E(G)| ≤ (n−2
2

)+2 for n ≥ 5. By a direct calculation, we have
(n−2

2

)+2 <
(3n−1)(n−1)

8 for n ∈ {5, 7, 9, 11}
and

(n−2
2

) + 2 <
3n(n−2)

8 for n ∈ {6, 8}, a contradiction.
Case 2 G − S has no non-trivial connected component.

In this case, we are to prove i ≤ s + 2. If i ≥ s + 3, let H2 be a new graph obtained from G by adding an
edge in I (G − S). Clearly, i(H2 − S) ≥ s + 1, H2 − S has exactly one non-trivial connected component and
|E(G)| < |E(H2)|, contradicting to the choice of G. Bear in mind that i ≥ s+1, it suffices to consider i = s+1
(i.e., n = 2s + 1) and i = s + 2 (i.e., n = 2s + 2).

For i = s + 1, we have G ∼= Ks ∨ (s + 1)K1. Therefore, n = 2s + 1 and |E(G)| = s(s + 1) + (s
2

)
. By a

directed calculation, we have
(
n − 2

2

)
+ 2 − |E(G)| =

(
2s − 1

2

)
+ 2 − s(s + 1) −

(
s

2

)
= 1

2
(s − 1)(s − 6).

Thus, |E(G)| ≤ (n−2
2

) + 2 for s = 1 or s ≥ 6, which is a contradiction for n = 3 or n ≥ 13. For s ∈ {2, 3, 4, 5}
(or n ∈ {5, 7, 9, 11}), we have

|E(G)| = s(s + 1) +
(
s

2

)
= 3s2 + s

2
= 3(n − 1)2 + 2(n − 1)

8
= (3n − 1)(n − 1)

8
,

a contradiction.
For i = s + 2, we have G ∼= Ks ∨ (s + 2)K1. Therefore, n = 2s + 2 and |E(G)| = s(s + 2) + (s

2

)
. By a

directed calculation, we have
(
n − 2

2

)
+ 2 − |E(G)| =

(
2s

2

)
+ 2 − s(s + 2) −

(
s

2

)
= 1

2
(s − 1)(s − 4).

Thus, |E(G)| ≤ (n−2
2

) + 2 for s = 1 or s ≥ 4, which is a contradiction for n = 4 or n ≥ 10. For s ∈ {2, 3} (or
n ∈ {6, 8}), we have

|E(G)| = s(s + 2) +
(
s

2

)
= 3s2 + 3s

2
= 3

2
· n − 1

2
·
(
n − 1

2
+ 1

)
= 3n(n − 2)

8
,

a contradiction.
In view of Cases 1 and 2, the proof of Theorem 1.1 is completed. ��

Proof of Theorem 1.2: Suppose to the contrary that G has no {P2, C2i+1 : i ≥ 1}–factor. Then Lemma 2.1
implies that there exists a non-empty subset S ⊆ V (G) satisfying i(G − S) ≥ |S| + 1. We choose such a
connected graph G of order n so that its adjacency spectral radius is as large as possible. By Lemma 2.4 and the
choice of G, it follows that the induced subgraph G[S] and each connected component of G − S are complete
graphs, respectively, and G ∼= G[S] ∨ (G − S).

For convenience, let i(G − S) = i and |S| = s. We claim that there exists at most one non–trivial connected
component in G − S. Otherwise, we can add edges among all non–trivial connected components to get a non–
trivial connected component of larger size, which gives a contradiction (based on Lemma 2.4). Let φ(x) =
x3 − (n − 4)x2 − (n − 1)x + 2(n − 4) be a real function in x and θ(n) be the largest root of φ(x) = 0. We now
consider the following two possible cases.

Case 1 G − S has just one non–trivial connected component, say G1.

123



H. Chen et al.

In this case, let |V (G1)| = n1 ≥ 2. We are to show i = s + 1. If i ≥ s + 2, let H1 be a new graph
obtained from G by joining each vertex of G1 with one vertex in I (G − S) by an edge. Then i(H1 − S) ≥ s + 1
and G is a proper spanning subgraph of H1. By Lemma 2.4, we have ρ(G) < ρ(H1), a contradiction to the
choice of G. Therefore i ≤ s + 1. Recall that i ≥ s + 1. Hence i = s + 1 (n = 2s + 1 + n1 ≥ 2s + 3) and
G = Ks ∨(Kn−2s−1∪(s+1)K1). We now consider the partition V (G) = V (Ks)∪V ((s+1)K1)∪V (Kn−2s−1).
Then the corresponding quotient matrix of A(G) is

B1 =
⎛

⎝
s − 1 s + 1 n − 2s − 1
s 0 0
s 0 n − 2s − 2

⎞

⎠ ,

and the characteristic polynomial of B1 is

φB1(x) = x3 − (n − s − 3)x2 −
(
s2 + n − 2

)
x − s3 + ns2 − s3 − 3s2 + ns − s2 − 2s

= x3 − (n − s − 3)x2 −
(
s2 + n − 2

)
x − 2s3 + (n − 4)s2 + (n − 2)s.

Note that the partition V (G) = V (Ks) ∪ V ((s + 1)K1) ∪ V (Kn−2s−1) is equitable. Then Lemma 2.1 implies
that the largest root θ1 of φB1(x) = 0 is ρ(G). In order to prove θ(n) ≥ ρ(G), it suffices to show φ(θ1) < 0.
Note that

φ(θ1) = φ(θ1) − φB1(θ1)

= (s − 1)(−θ21 + (s + 1)θ1 + 2s2 + s − ns + 1 − n + 4s + 4 − n + s + 3)

= (s − 1)(−θ21 + (s + 1)θ1 + 2s2 − (n − 6)s − 2n + 8)

≤ (s − 1)(−θ21 + (s + 1)θ1 + 2 − s)

= (s − 1)(−θ1(θ1 − s − 1) + 2 − s)

and Ks+2 is a proper subgraph of Ks ∨(Kn−2s−1∪(s+1)K1). Then by Lemma 2.4, we have ρ(G) = θ1 > s+1.
It follows that

φ(θ1) = φ(θ1) − φB1(θ1)

≤ (s − 1)(−θ1(θ1 − s − 1) + 2 − s)

< (s − 1)(−θ1(s + 1 − s − 1) + 2 − s)

= (s − 1)(2 − s) ≤ 0.

Thus, φ(θ1) = φ(θ1) − φB1(θ1) < 0 for s ≥ 1, which implies that ρ(G) = θ1 < θ(n), a contradiction for

n /∈ {5, 6, 7, 9}. By a direct calculation, we have θ(5) ≈ 2.34 < 5−3+√
5×52−6×5+5

4 = 3, θ(6) ≈ 3.18 < 1+√
33

2 ,

θ(7) ≈ 4.11 < 7−3+√
5×72−6×7+5

4 = 1 + √
33, θ(9) ≈ 6.05 < 9−3+√

5×92−6×9+5
4 = 3+√

89
2 .

Case 2 G − S has no non–trivial connected component.
If i ≥ s + 3, let H2 be a graph obtained form G by adding an edge in I (G − S). Then i(H2 − S) ≥ s + 1

and H2 − S has one non–trivial connected component. From Case 1, we have ρ(G) ≤ θ(n), contradicting to the
choice of G. Thus, we only consider i = s + 1 (i.e., n = 2s + 1) and i = s + 2 (i.e., n = 2s + 2).

For i = s+1,wehaveG ∼= Ks∨(s+1)K1 andn = 2s+1.Onemayconsider the partitionV (Ks∨(s+1)K1) =
V (Ks) ∪ V ((s + 1)K1). Its corresponding quotient matrix of A(Ks ∨ (ks + 1)K1) is

B2 =
(
s − 1 s + 1
s 0

)
.

And the characteristic polynomial of B2 is

φB2(x) = x2 − (s − 1)x − s(s + 1).

Note that the partition V (Ks ∨ (s + 1)K1) = V (Ks) ∪ V ((s + 1)K1) is equitable. Then Lemma 2.1 implies that
ρ(Ks ∨ (s + 1)K1) is the largest root θ2 of φB2(x) = 0. As φB2(x) = 0 is a quadratic equation with respect to
x , by the root formula, we have

ρ (Ks ∨ (s + 1)K1) = θ2 = s − 1 + √
5s2 + 2s + 1

2
.
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If s = 1, then we have n = 3, φB2(x) = x2 − 2 and φ(x) = (x + 1)(x2 − 1). That is θ2 = √
2 = θ(3), a

contradiction to the condition. If s ∈ {2, 3, 4} (or n ∈ {5, 7, 9}), then θ2 = s−1+√
5s2+2s+1
2 = n−3+√

5n2−6n+5
4 , a

contradiction. Next, we consider s ≥ 5. Note that

φ(θ2) = φ(θ2) − θ2φB2(θ2) = −(s − 2)θ22 + (s2 − s)θ2 + 4s − 6

= −θ2[(s − 2)θ2 − s2 + s] + 4s − 6,

and

θ2 = s − 1 + √
5s2 + 2s + 1

2
= s − 1 + √

(2s + 1)2 + s2 − 2s

2
>

3s

2
.

We then have

φ(θ2) = φ(θ2) − θ2φB2(θ2)

= −θ2[(s − 2)θ2 − s2 + s] + 4s − 6

< −θ2[(s − 2) · 3s
2

− s2 + s] + 4s − 6

= −θ2(
s2

2
− 2s) + 4s − 6

< −3s3

4
+ 3s2 + 4s − 6.

Let f (s) = − 3s3
4 + 3s2 + 4s − 6. Note that f ′(s) = − 9

4 s
2 + 6s + 4 < 0 when s ≥ 5. Hence f (s) is a

monotonically decreasing functions with respect to s. Therefore,

φ(θ2) = φ(θ2) − θ2φB2(θ2) < −3s3

4
+ 3s2 + 4s − 6

≤ f (5) = −19

4
< 0.

Thus, φ(θ2) < 0 for s ≥ 5 and ρ(G) = θ2 < θ(n), a contradiction.
For i = s + 2. In this subcase one has G = Ks ∨ (s + 2)K1 and n = 2s + 2. We consider the partition

V (G) = V (Ks) ∪ V ((s + 2)K1). Then the corresponding quotient matrix of A(G) is

B3 =
(
s − 1 s + 2
s 0

)
,

and its characteristic polynomial is

φB3(x) = x2 − (s − 1)x − s(s + 2).

Note that the partition V (G) = V (Ks) ∪ V ((s + 2)K1) is equitable. Then Lemma 2.1 implies that the largest
root θ3 of φB3(x) = 0 is ρ(G). As φB3(x) = 0 is a quadratic equation with respect to x , we may easily obtain
that

θ3 = ρ(G) = s − 1 + √
5s2 + 6s + 1

2
.

If s = 1, then n = 4, we have φB3(x) = x2 − 3 and φ(x) = x(x2 − 3), which implies that θ3 = √
3 = θ(4), a

contradiction to the condition. If s = 2 (or n = 6), then θ3 = 1+√
33

2 , a contradiction. Next, we consider s ≥ 3.
Bear in mind that n = 2s + 2 and so

φ(x) = x3 − (2s − 2)x2 − (2s + 1)x − 4(s − 1).

In what follows, it suffices to prove φ(θ3) < 0. Note that

φ(θ3) = φ(θ3) − θ3φB3(θ3)

= −θ23 (s − 1) + θ3(s
2 − 1) + 4(s − 1)

= −(s − 1)(θ23 − (s + 1)θ3 − 4),
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and

θ3 = s − 1 + √
5s2 + 6s + 1

2
= s − 1 + √

(s + 5)2 + 4(s2 − s − 6)

2
> s + 2.

Then we have

φ(θ3) = φ(θ3) − θ3φB3(θ3)

= −(s − 1)(θ23 − (s + 1)θ3 − 4)

< −(s − 1)[(s + 2)2 − (s + 1)(s + 2) − 4]
= −(s − 1)(s − 2) < 0.

Thus, φ(θ3) < 0 for s ≥ 3 and ρ(G) = θ3 < θ(n), a contradiction.
In view of Cases 1 and 2, the proof of Theorem 1.2 is completed. ��

Proof of Theorem 1.3: Assume that G has no {K1, j : 1 ≤ j ≤ k}–factor. Then Lemma 2.3 implies that there
exists some nonempty subset S ⊆ V (G) such that i(G − S) ≥ k|S| + 1. Let |S| = s. Then G is a spanning
subgraph of G1 = Ks ∨ (Kn−(k+1)s−1 ∪ (ks + 1)K1). Hence Lemma 2.4 implies that

q(G) ≤ q(G1), (1)

with equality if and only if G ∼= G1.
If s = 1, then G1 ∼= K1 ∨ (Kn−k−2 ∪ (k + 1)K1). Combining this with (1), we conclude that

q(G) ≤ q(K1 ∨ (Kn−k−2 ∪ (k + 1)K1)),

where the equality holds if and only if G ∼= K1 ∨ (Kn−k−2 ∪ (k + 1)K1).
For s ≥ 2, note that Lemma 2.5 implies that

q(G1) ≤ 2m(G1)

n − 1
+ n − 2

= (n − ks − 1)(n − ks − 2) + 2s(ks + 1)

n − 1
+ n − 2

= (k2 + 2k)s2 − (2kn − 3k − 2)s + 2n2 − 6n + 4

n − 1
.

(2)

Let f (s) = (k2 + 2k)s2 − (2kn − 3k − 2)s + 2n2 − 6n + 4. Since n ≥ (k + 1)s + 1, then 2 ≤ s ≤ n−1
k+1 . By a

simple calculation, we have

f (2) − f

(
n − 1

k + 1

)
= (k2 + 2k)

(

22 −
(
n − 1

k + 1

)2
)

− (2kn − 3k − 2)

(
2 − n − 1

k + 1

)

= (n − 2k − 3)(−2k3 + (n − 8)k2 − 7k − 2)

(k + 1)2

≥ 9(k − 2)(4k + 1)

(k + 1)2
≥ 0,

(3)

where the inequality follows from the fact that n ≥ 2k + 12 and k ≥ 2. This implies that, for 2 ≤ s ≤ n−1
k+1 , the

maximum value of f (s) is attained at s = 2. This together with (2) and (3) imply that

q(G1) ≤ f (2)

n − 1
= 2n2 − (4k + 6)n + 4k2 + 14k + 8

n − 1

= 2(n − k − 2) − 2(n − 2k − 6)k − 4

n − 1

≤ 2(n − k − 2) − 12k − 4

n − 1
< 2(n − k − 2),

(4)
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where the penultimate inequality follows from n ≥ 2k + 12. Note that Kn−k−1 is a proper subgraph of K1 ∨
(Kn−k−2 ∪ (k + 1)K1). Then we have

q(K1 ∨ (Kn−k−2 ∪ (k + 1)K1)) > q(Kn−k−1) = 2(n − k − 2).

Combining this with (1) and (4), we have

q(G) ≤ q(G1) < q(K1 ∨ (Kn−k−2 ∪ (k + 1)K1)).

Concluding the above results, we obtain

q(G) ≤ q(K1 ∨ (Kn−k−2 ∪ (k + 1)K1)),

where the equality holds if and only if G ∼= K1 ∨ (Kn−k−2 ∪ (k + 1)K1). Let S = {u} denote the unique vertex
of degree n − 1 in K1 ∨ (Kn−k−2 ∪ (k + 1)K1). Then i(K1 ∨ (Kn−k−2 ∪ (k + 1)K1) − S) ≥ k + 1 > |S|
since u is adjacent to k + 1 pendant vertices. Thus by Lemma 2.3, we have K1 ∨ (Kn−k−2 ∪ (k + 1)K1) has no
{K1, j : 1 ≤ j ≤ k}–factor, and so the result follows. ��

4 Proofs of Theorems 1.4, 1.5 and 1.6

In this section, we will present the following Laplacian eigenvalue conditions for the existence of {P2, C2i+1 :
i ≥ 1}–factor, P≥3–factor and {K1, j : 1 ≤ j ≤ k}–factor, respectively. In order to prove our results, the following
lemma is needed.

Lemma 4.1 ([10]) Let G be a graph of order n. Suppose that S ⊆ V (G) such that G − S is disconnected. Let
X and Y be disjoint vertex subsets of G − S such that X ∪ Y = V (G) − S with |X | ≤ |Y |. Then

|X | ≤ μn − μ2

2μn
n,

and

|S| ≥ 2μ2

μn − μ2
|X |.

Now we are in a position to give the proofs of our results. Our strategy for proving the following results is
employed the similar argument as that was used in [10].

Proof of Theorem 1.4: Suppose to the contrary that G has no a {P2,C2i+1 : i ≥ 1}–factor. Then Lemma 2.2
implies that there exists a nonempty subset S ⊆ V (G) such that

i(G − S) ≥ |S| + 1 ≥ 2.

Let v1, v2, . . . , vc be the isolated vertices of G − S, where c = i(G − S). Defined X = ∪1≤i≤�c/2�vi and
Y = V (G) − S − X . Then c−1

2 ≤ |X | ≤ |Y |. By Lemma 4.1, we have

|S| ≥ 2μ2

μn − μ2
· c − 1

2
,

with equality holding only when |X | = |Y | = c−1
2 .

However, note that 2μ2 ≥ μn and X ≥ c
2 > c−1

2 when c is even. Then we have

|S| ≥ 2μ2

μn − μ2
· c
2

≥ c = i(G − S).

When c is odd, by the definitions of X and Y , we have |X | < |Y |. Thus the equality never hold. Then

|S| >
2μ2

μn − μ2
· c − 1

2
≥ c − 1 = i(G − S) − 1,

a contradiction. ��
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Let sun(G − S) denote the number of sun components in G − S. It is proved in [13] that every graph G
admits a P≥3–factor if and only if sun(G − X) ≤ 2|X | for every X ⊆ V (G). Then we have the following result.

Proof of Theorem 1.5: Suppose to the contrary that G has no a P≥3–factor. Then there exists a nonempty subset
S ⊆ V (G) such that

sun(G − S) ≥ 2|S| + 1 ≥ 3.

Let V1, V2, . . . , Vc be the sun components of G− S, where c = sun(G− S). Without loss of generality, suppose
that |V1| ≤ |V2| ≤ · · · ≤ |Vc|. Defined X = ∪1≤i≤�c/2�Vi and Y = V (G) − S − X . Then c−1

2 ≤ |X | ≤ |Y |. By
Lemma 4.1, we have

|S| ≥ 2μ2

μn − μ2
· c − 1

2
,

with equality holding only when |X | = |Y | = c−1
2 .

However, note that 3μ2 ≥ μn and X ≥ c
2 > c−1

2 when c is even. Then

|S| ≥ 2μ2

μn − μ2
· c
2

≥ c

2
= 1

2
· sun(G − S).

When c is odd, by the definitions of X and Y , we have |X | < |Y |. Thus the equality never hold. Then

|S| >
2μ2

μn − μ2
· c − 1

2
≥ c − 1

2
= 1

2
· (sun(G − S) − 1),

a contradiction. ��
Proof of Theorem 1.6: Suppose to the contrary that G has no a {K1, j : 1 ≤ j ≤ k}–factor. Then Lemma 2.3
implies that there exists a nonempty subset S ⊆ V (G) such that

i(G − S) ≥ k|S| + 1 ≥ 3.

Let v1, v2, . . . , vc be the isolated vertices of G − S, where c = i(G − S). Defined X = ∪1≤i≤�c/2�vi and
Y = V (G) − S − X . Then c−1

2 ≤ |X | ≤ |Y |. By Lemma 4.1, we have

|S| ≥ 2μ2

μn − μ2
· c − 1

2
,

with equality holding only when |X | = |Y | = c−1
2 .

However, note that (k + 1)μ2 ≥ μn and X ≥ c
2 > c−1

2 when c is even. Then we have

|S| ≥ 2μ2

μn − μ2
· c
2

≥ c

k
= 1

k
· i(G − S).

When c is odd, by the definitions of X and Y , we have |X | < |Y |. Thus the equality never hold. Then

|S| >
2μ2

μn − μ2
· c − 1

2
≥ c − 1

k
= 1

k
· (i(G − S) − 1),

a contradiction. ��
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5 Extremal graphs

In this section, we construct the extremal graphs to show that the bounds established in Theorems 1.1 and 1.2
are best possible, respectively.

Note that for a positive integer n, we have

(i) |E(K1 ∨ (Kn−3 ∪ 2K1))| = (n−2
2

) + 2 for n ∈ {3, 4, 10} or n ≥ 12;

(ii) |E
(
K n−1

2
∨ n+1

2 K1

)
| = 3(n−1)(n−1)

8 for n ∈ {5, 7, 9, 11};
(iii) |E

(
K n−2

2
∨ n+2

2 K1

)
| = 3n(n−2)

8 for n ∈ {6, 8}.
Clearly, the graphs K1∨(Kn−3∪2K1), K n−1

2
∨ n+1

2 K1 and K n−2
2

∨ n+2
2 K1 have no {P2, C2i+1 : i ≥ 1}–factor,

respectively. This shows that the bound in Theorem 1.1 is best possible.

Theorem 5.1 Let n be a positive integer and θ(n) be the largest root of x3−(n−4)x2−(n−1)x+2(n−4) = 0.
Then we have

(i) ρ(K1 ∨ (Kn−3 ∪ 2K1)) = θ(n) for n ∈ {3, 4, 8} or n ≥ 10;

(ii) ρ
(
K n−1

2
∨ n+1

2 K1

)
= n−3+√

5n2−6n+5
4 for n ∈ {5, 7, 9};

(iii) ρ(P2 ∨ 4K1) = 1+√
33

2 for n = 6.

Proof For n ∈ {3, 4, 8} or n ≥ 10, we consider the partition V (K1 ∨ (Kn−3 ∪ 2K1)) = V (K1) ∪ V (2K1) ∪
V (Kn−3). The quotient matrix of A(K1 ∨ (Kn−3 ∪ 2K1)) corresponding to the above partition is

B1 =
⎛

⎝
0 2 n − 3
1 0 0
1 0 n − 4

⎞

⎠ .

Then we have

φB1(x) = x3 − (n − 4)x2 − (n − 1)x + 2(n − 4).

Note that the partition is equitable. Then the spectral radius of graph K1 ∨ (Kn−3 ∪ 2K1) is the largest root of
x3 − (n − 4)x2 − (n − 1)x + 2(n − 4) = 0. It follows that ρ(K1 ∨ (Kn−3 ∪ 2K1)) = θ(n).

For n ∈ {5, 7, 9}, we consider the partition V (K n−1
2

∨ n+1
2 K1) = V (K n−1

2
) ∪ V ( n+1

2 K1). Then the corre-

sponding quotient matrix of A(K n−1
2

∨ n+1
2 K1) is

B2 =
( n−3

2
n+1
2

n−1
2 0

)
.

Hence we have

φB2(x) = x2 − n − 3

2
x − n2 − 1

4
.

Note that the spectral radius of graph K n−1
2

∨ n+1
2 K1 is the largest root of x2 − n−3

2 x − n2−1
4 = 0 since the above

partition is equitable. It follows that ρ
(
K n−1

2
∨ n+1

2 K1

)
= n−3+√

5n2−6n+5
4 .

For n = 6, consider the partition V (K2 ∨ 4K1) = V (K2) ∪ V (4K1). The quotient matrix of A(K2 ∨ 4K1)

corresponding to the above partition equals

B3 =
(
1 4
2 0

)
.

Hence we have φB3(x) = x2 − x − 8. Note that the spectral radius of graph K2 ∨ 4K1 is the largest root of

x2 − x − 8 = 0 since the above partition is equitable. It follows that ρ (K2 ∨ 4K1) = 1+√
33

2 . This completes
the proof. ��
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In view of Theorem 5.1, we know that the bound obtained in Theorem 1.2 is best possible.
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