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Abstract In this paper we consider particular graphs defined by Kα1 ∪ Kα2 ∪ · · · ∪ Kαk , where k is even, Kα is
a complete graph on α vertices,∪ stands for the disjoint union and an overline denotes the complementary graph.
These graphs do not contain the 4-vertex path as an induced subgraph, i.e., they belong to the class of cographs. In
addition, they are iteratively constructed from the generating sequence (α1, α2, . . . , αk). Our primary question
is which invariants or graph properties can be deduced from a given sequence. In this context, we compute
the Lapacian eigenvalues and the corresponding eigenspaces, and derive a lower and an upper bound for the
number of distinct Laplacian eigenvalues. We also determine the graphs under consideration with a fixed number
of vertices that either minimize or maximize the algebraic connectivity (that is the second smallest Laplacian
eigenvalue). The clique number is computed in terms of a generating sequence and a relationship between it and
the algebraic connectivity is established.
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1 Introduction

Throughout the paper, all graphs are assumed to be finite, undirected and without loops or multiple edges.
Cographs were introduced in 1960’s [18], and this class has been rediscovered independently by several authors
in many equivalent ways since then. They are intensively studied in the domain of structural considerations,
spectral properties and applications. A short background is given in the next section. A cograph is usually
defined as a P4-free graph, i.e., a graph that does not contain the 4-vertex path as an induced subgraph. It is also
known that the class of cographs is closed under taking disjoint unions or complementation, and therefore an
alternative definition says that an isolated vertex is a cograph, and if G and H are cographs, then their disjoint

Communicated by S Sivaramakrishnan.

S. Mandal (B)
School of Computing Science and Engineering, Vellore Institute of Technology, Bhopal 466114, India
E-mail: santanu.vumath@gmail.com

S. Mandal · R. Mehatari
Department of Mathematics, National Institute of Technology Rourkela, Rourkela 769008, India
E-mail: ranjitmehatari@gmail.com; mehatarir@nitrkl.ac.in

Z. Stanić
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union G ∪ H is a cograph and their join G ∪ H is also a cograph [9]; as usual, an overline designates the
complementary graph.

Particular cographs considered in this study are defined in the following way (and the fact that they are
cographs follows from the mentioned equivalent definitions). Let Kα denote the complete graph on α vertices.
For positive integers α1, α2, . . . , αk , C(α1, α2, . . . , αk) denotes the cograph defined recursively by

{
C(α1) = K α1 ,

C(α1, α2, . . . , αi ) = C(α1, α2, . . . , αi−1) ∪ Kαi , for 2 ≤ i ≤ k.

Simultaneously, (α1, α2, . . . , αk) is referred to as the generating sequence of the corresponding cograph. In
simple words, to construct C(α1, α2, . . . , αk), we begin with K α1 . In the next step, we take the disjoint union of
Kα2 and the graph obtained in the first step, and then take the complementary graph. Proceeding in this way, we
finally take the disjoint union of Kαk and the graph obtained in the (k − 1)th step, and finalize the construction
by another complementation. Equivalently,

C(α1, α2, . . . , αk) ∼= Kα1 ∪ Kα2 ∪ · · · ∪ Kαk .

A construction of the 10-vertex cograph C(4, 2, 3, 1) is illustrated in Fig. 1. Let C denote the class of cographs
constructed in above way. ForG ∈ C, we simply say thatG is a C-graph. In particular, Ceven denotes the C-graphs
that are generated by an even sequence. Accordingly, they are called Ceven-graphs. In the entire paper our focus
is on this particular class, so k is assumed to be even.

To explain our motivation, we recall that a threshold graph is a {P4, 2K2,C4}-free graph, i.e., a particular
cograph without an induced subgraph isomorphic to either two parallel edges or the 4-vertex cycle. It is known
that every threshold graph is generated by a finite binary sequence [2,6,7]. Moreover, the same holds for their
bipartite counterparts known as chain graphs [3,23], not defined here. In this context, an experienced reader will
surely recall the every n-vertex tree (even more, a labelled n-vertex tree) is generated by a unique sequence of
n − 2 numbers called the Prüfer sequence [27]. And, of course, there are other graphs that are, in a similar way,
uniquely generated by the corresponding finite sequences. This approach appears to be very convenient since the
entire graph is fully determined by a simple sequence; instead of ‘a sequence’, one may also say ‘a vector’ or ‘a
string’. Moreover, a generating sequence provides information about many structural and spectral parameters.

In contrast to the aforementioned graph classes, a representation of a C-graph by a finite sequence may or
may not be unique; in other words, it may occur that different sequences are associated with the same graph;
for example, C(1, 2, 2) and C(1, 1, 1, 2) are isomorphic. However, according to [22], if G ∈ Ceven , then there
is a unique even sequence (α1, α2, . . . , α2k) such that G ∼= C(α1, α2, . . . , α2k). In this paper, we investigate the
invariants that can be deduced from the generating sequence of a Ceven-graph. Here is the outline of the results
established in the forthcoming sections.

To give a clear insight into the class C and the subclass Ceven , we first give some data and comparisons with
certain related graph classes.

If A is the standard adjacency matrix of a graph G and D is the diagonal matrix of vertex degrees, then
L = D− A is the Laplacian matrix of G. Its eigenvalues, spectrum and eigenvectors are known as the Laplacian
eigenvalues, the Laplacian spectrum and the Laplacian eigenvectors of G. In particular, the second smallest
Laplacian eigenvalue a(G) is called the algebraic connectivity of G. In this paper, we establish a recurrence
formula that computes the Laplacian eigenvalues and the Laplacian eigenvectors of a C-graph in terms of its
generating sequence. We also give a lower bound and an upper bound for the number of distinct Laplacian
eigenvalues, and for each bound we construct Ceven-graphs that attain it.

Also, we consider Ceven-graphswith a fixed number of vertices that eithermaximize orminimize the algebraic
connectivity. It occurs that this invariant is maximized by the complete graph and minimized by the star. In the
next natural step, we determine the maximizers and the minimizers within the class of Ceven-graphs excluding
complete graphs and stars.

A clique in a graph is a set of vertices that are adjacent to each other. The size of a maximum clique of a
graph G is known as the clique number, denoted by ω(G). We give an explicit formula for the clique number
of G ∈ Ceven , and determine whether ω(G) is less than, equal to, or greater than a(G); it appears that the last
number αk of the corresponding generating sequence is sufficient to establish this comparison.

Concerning related works, cographs have received a great deal of attention in the last six decades. Some
notable results that are related to our results are obtained in [24] (whereMerris proved that the Laplacian spectrum
of every cograph consists entirely of integers), [20] (where Lazzarin et al. proved that no two non-isomorphic
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equivalent cographs share the same Laplacian spectrum), [1] (where Abrishami proved that for every non-
complete cograph the algebraic connectivity and the vertex connectivity are equal), and [4,5,8,13,14,16,25,28]
(where different authors have established many results concerning spectral properties of cographs and related
graphs). Many results concerning lower and upper bounds for the algebraic connectivity can be found in [29,
Sections 6.6–6.9]. Since, in case of cographs, this invariant coincides with the vertex connectivity, our results
also relate the results concerning the bounds for the latter invariant, and some of them can be found in [15,19,21].
In a classical paper [17] Karp proved the NP-completeness of 21 combinatorial problems, and one of them is
computing the maximal clique. Since then, this problem has been considered for many graph classes, and some
results can be found in [12,26] and references therein.

Section 2 contains data about C-graphs and some preliminary results concerning their Laplacian matrix. In
Section 3 we deal with the Laplacian eigenvalues and the corresponding eigenspaces. A range for the number of
distinct Laplacian eigenvalues is given in Section 4. The graphs G ∈ Ceven that maximize or minimize a(G) are
considered in Section 5. Section 6 is reserved for the clique number of a Ceven-graph.

2 On C-graphs

By employing a computer search based on generating sequences, we have found more than 1,000 C-graphs
with 12 vertices and more than 8,388,600 C-graphs with 25 vertices. However, computing the exact number
of C-graphs with a fixed number of vertices seems to be a difficult task, as we have found certain overlapping
between Ceven and Codd ; for example, C(1, 1, 1, 2) and C(1, 2, 2) represent the same C-graph.

Observe that C(n − 1, 1) is the complete graph Kn , whereas C(p − 1, 1, q) is the complete bipartite graph
Kp,q . The following cographs are also categorised as C-graphs.

• A split graph is a graph whose vertex set admits a partition into a clique and a co-clique. A complete split
graph, studied in [10], is a split graph in which every vertex of the co-clique is adjacent to every vertex in
the clique. We observe that every complete split graph is a C-graph represented by C(α1, α2). However, the
class of C-graphs does not include all split graphs.

• An antiregular graph is a connected graph whose degree sequence has only two repeated entries. Its repre-
sentation is either C(1, 1, . . . , 1) or C(1, 2, 1, 1, . . . , 1).

• A chordal graph is a graph without an induced subgraph isomorphic to the cycle Ci , i ≥ 4. Therefore,
a cograph is a chordal graph if and only if it is C4-free. Hence, the C-graph C(α1, α2, . . . , αk) is chordal
whenever α2i > 1 holds for at most one i , where 1 ≤ i ≤ k

2 . We note in passing that a chordal cograph is
also known as a quasi-threshold graph.

There is no inclusion between the class C and the class of threshold graphs. However, concerning binary
representations of threshold graphs given in [2,7], one may deduce that for a fixed number of vertices, the number
of C-graphs is never less than the number of threshold graphs. We shall skip the details and note that the same
holds in comparison to the classes of chain graphs and complete multipartite graphs.

We recall that the eigenvalues of the Laplacianmatrix are non-negative, zero is one of them and itsmultiplicity
is equal to the number of components of a graph [29, Subsection 1.2.2]. We proceed with a particular blocking of
the Laplacian matrix. Although our focus is on Ceven-graphs, the following setting remains valid for all C-graphs.
Evidently, a generating sequence (α1, α2, . . . , αk) of a C-graph provides a partition of its vertex set. Moreover,
vertices belonging to the same part share the same degree. In this context, we consider the corresponding equitable
partition π = {πα1 , πα2 , . . . , παk } such that |παi | = αi , for 1 ≤ i ≤ k. Let dαi denote the degree of a vertex in
παi . Then we deduce that

dαi =

⎧⎪⎨
⎪⎩

αi − 1 + ∑
j even, j≥i+1 α j if i is odd,∑i−1

j=1 α j + ∑
� even, �≥i+2 α� if i is even and i < k,∑i−1

j=1 α j , if i = k.
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Accordingly, the Laplacian matrix of C(α1, α2, . . . , αk) admits the following blocking

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(dα1 + 1)I − J −J O −J . . . O −J
−J dα2 I O −J . . . O −J
O O (dα3 + 1)I − J −J . . . O −J

−J −J −J dα4 I . . . O −J
. . .

O O O O . . . (dαk−1 + 1)I − J −J
−J −J −J −J . . . −J dαk I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1)

where I and J denote the identity matrix and the all-1 matrix, respectively.
Consequently the quotient matrix of L , that correspond to π , is the k × k matrix given by

QL =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

dα1 − (α1 − 1) −α2 0 −α4 . . . 0 −αk
−α1 dα2 0 −α4 . . . 0 −αk
0 0 dα3 − (α3 − 1) −α4 . . . 0 −αk

−α1 −α2 −α3 dα4 . . . 0 −αk
. . .

0 0 0 0 . . . αk −αk
−α1 −α2 −α3 −α4 . . . −αk−1 dαk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Every eigenvalue of QL is an eigenvalue of L . To see this it is sufficient to take an eigenvector x =
(x1, x2, . . . , xk)ᵀ associated with an eigenvalue λ of QL , and construct the vector (x1j

ᵀ
α1 , x2j

ᵀ
α2 , . . . , xkj

ᵀ
αk ),

where jαi is the all-1 column of size αi (1 ≤ i ≤ k). Then the transpose of the obtained vector corresponds to λ

in L .

3 Eigenvalues and eigenvectors

We compute the eigenvalues and the eigenvectors of the Laplacian matrix of a C-graph in terms of a generating
sequence.Assume that the eigenvalues of the quotientmatrix QL are arranged in non-decreasing order as follows:

0 = λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λk . (2)

Theorem 3.1 The eigenvalues of the quotient matrix QL of a Ceven-graph C(α1, α2, . . . , αk), where k ≥ 4, are
λ1 = 0, λk = n and

λi =
{

λi−1 + αk−2(i−2) for 2 ≤ i ≤ k
2 ,

λi+1 − α2i−(k−1) for k − 1 ≥ i ≥ k
2 + 1.

Proof The all-1 vector j is associated with λ1 = 0. We now construct the eigenvectors corresponding to the next
k
2 − 1 smallest eigenvalues as follows:

xi ( j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if 1 ≤ j ≤ k − 2i + 2,

−
∑k−2i+2

�=1 α�

αk−2i+3
if j = k − 2i + 3,

0 otherwise.

Indeed, for i = 2 we have

x2 =
[
1 1 1 · · · 1 −

∑k−2
�=1 α�

αk−1
0

]ᵀ
, along with QLx2 = αkx2,

which implies that αk is an eigenvalue of QL .
Similarly, for i = 3,

x3 =
[
1 1 1 · · · 1 −

∑k−4
�=1 α�

αk−3
0 0 0

]ᵀ
, and QLx3 = (αk + αk−2)x3,
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which implies that αk + αk−2 is an eigenvalue of QL . In general, for 2 ≤ i ≤ k
2 , we obtain

QLxi = (αk + αk−2 + · · · + αk−2(i−2))xi .

So, αk + αk−2 + · · · + αk−2(i−2) is an eigenvalue of QL . This establishes the recurrence relation λi = λi−1 +
αk−2(i−2).

For the remaining eigenvalues, we define vectors

x k
2+i ( j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if 1 ≤ j ≤ 2i − 1,

−
∑2i−1

�=1 α�

α2i
if j = 2i,

0 otherwise.

.

Now, for i = k
2 , we obtain

xk =
[
1 1 1 · · · 1 −

∑k−1
�=1 α�

αk

]ᵀ
, and QLxk =

( k∑
�=1

α�

)
xk = nxk,

Therefore, the largest eigenvalue of QL is n. In general, for 1 ≤ i ≤ k
2 , it holds

QLx k
2+i =

( k/2∑
�=1

α2� +
i∑

m=1

α2m−1

)
x k

2+i ,

which concludes the proof. ��
The following theorem gives the remaining eigenvalues of L .

Theorem 3.2 The remaining n − k eigenvalues of L are dα2i with multiplicity α2i − 1 and dα2i−1 + 1 with
multiplicity α2i−1 − 1, for i ≤ k

2 .

Proof For � > 1, let {E�
j } denote the set of orthogonal of � − 1 row-vectors in R

� defined by

E�
j = e1(�) + e2(�) + · · · + e j (�) − je j+1(�), for all j such that 1 ≤ j ≤ � − 1,

where e j (�) is the j th row-vector of the canonical basis of R
�.

Now, for every αi ≥ 2, we define

xαi
j = [0α1 0α2 · · · 0αi−1 Eαi

j 0αi+1 · · · 0αk ]ᵀ, 1 ≤ j ≤ αi − 1, 1 ≤ i ≤ k,

where the 0r denotes the all-0 row-vector in R
r .

Then, for αi ≥ 2 and 1 ≤ s 	= t ≤ αi − 1, we have(
xαi
s

)ᵀxαi
t = Eαi

s

(
Eαi
t

)ᵀ = 0.

Therefore, the set {xαi
1 , xαi

2 , . . . , xαi
α2i−1} is orthogonal for all αi ≥ 2. Observe that, in one hand, by (1) the

Laplacian L is a k × k block matrix whose non-diagonal blocks are constant matrices, while on the other hand,
the entry-sum of Eαi

j is 0 whenever αi ≥ 2, 1 ≤ j ≤ αi − 1. Thus if 1 ≤ i ≤ k, for each α2i ≥ 2, we obtain

Lxα2i
j = [0α1 0α2 · · · 0αi−1 dα2i E

αi
j 0αi+1 · · · 0αk ]ᵀ = dα2i x

α2i
j ,

for all 1 ≤ j ≤ α2i − 1.
Similarly, for α2i−1 ≥ 2, the vectors xα2i−1

j satisfy

Lxα2i−1
j = (dα2i−1 + 1)xα2i−1

j , for 1 ≤ j ≤ α2i − 1,

and this completes the proof. ��
We provide more details in a particular case k = 2. Despite it is simple, this case is illustrative since it

computes the eigenvectors according to the previous theorems. Also, it will be used in the sequel.
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Example 3.3 For k = 2, the corresponding Ceven-graph is the complete split graph C(α1, α2). The quotient
matrix QL is

QL =
[
dα1 − (α1 − 1) −α2

−α1 dα2

]
=

[
α2 −α2

−α1 α1

]

Its eigenvalues are λ1 = 0 an λ2 = α1 + α2. The remaining two eigenvalues of L are dα2 with multiplicity
(α2 − 1) and dα1 + 1 with multiplicity (α1 − 1). In the particular case α1 = α2 = 1 we deal with a 2-vertex
graph with Laplacian eigenvalues 0 and 2. For α1, α2 ≥ 2, let xi , 1 ≤ i ≤ (α2 − 1), and y j , 1 ≤ j ≤ (α1 − 1),
be the eigenvectors associated with dα2 and dα1 + 1, respectively. Then,

x1 = [0 0 · · · 0︸ ︷︷ ︸
α1

1 − 1 0 0 · · · 0]ᵀ,

x2 = [0 0 · · · 0︸ ︷︷ ︸
α1

1 1 − 2 0 0 · · · 0]ᵀ,

x3 = [0 0 · · · 0︸ ︷︷ ︸
α1

1 1 1 − 3 0 0 · · · 0]ᵀ,

...

xα2−1 = [0 0 · · · 0︸ ︷︷ ︸
α1

1 1 · · · 1︸ ︷︷ ︸
α2−1

− (α2 − 1)]ᵀ.

Similarly,

y1 = [1 − 1 0 0 · · · 0 0 0 · · · 0︸ ︷︷ ︸
α2

]ᵀ,

y2 = [1 1 − 2 0 0 · · · 0 0 0 · · · 0︸ ︷︷ ︸
α2

]ᵀ,

y3 = [1 1 1 − 3 0 0 · · · 0 0 0 · · · 0︸ ︷︷ ︸
α2

]ᵀ,

...

yα1−1 = [1 1 · · · 1︸ ︷︷ ︸
α1−1

− (α1 − 1) 0 0 · · · 0︸ ︷︷ ︸
α2

]ᵀ.

We now provide two straightforward consequences of the previous results. The first one follows directly.

Corollary 3.4 The matrix QL has simple eigenvalues.

Corollary 3.5 The algebraic connectivity of a Ceven-graph G ∼= C(α1, α2, . . . , αk) is

a(G) =

⎧⎪⎨
⎪⎩

α1 if k = 2 and α2 	= 1,
α1 + α2 if k = 2 and α2 = 1,
min{αk, n − αk} if k ≥ 4.

Proof If k = 2, then G is a complete split graph C(α1, α2) with Laplacian eigenvalues (α1 + α2)
α1 , α

α2−1
1 and

0, where exponents stand for the multiplicities. Clearly, the second smallest eigenvalue is α1 when α2 	= 1, and
α1 + α2 when α2 = 1.

If k ≥ 4, then, by Theorems 3.1 and 3.2 , the second smallest eigenvalue of G is either αk , or dα2i for
some α2i ≥ 2, or dα2i−1 + 1 for some α2i−1 ≥ 2. Here we observe that, dα2i > αk for all 1 ≤ i ≤ k − 1 and
dα2i−1 + 1 > αk for all 1 ≤ i ≤ k. Therefore, a(G) is either αk or dαk = n − αk with αk 	= 1. Now, dαk ≥ αk
gives αk ≥ n

2 > 1, so in this case n − αk occurs in the spectrum of L . Therefore a(G) = min{αk, n − αk}, as
desired. ��

We conclude the section with another example.
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Example 3.6 Let us consider the Ceven-graph C(8, 3, 4, 2, 1, 5, 6, 3, 7, 9) with 48 vertices. The quotient matrix
QL is the 10 × 10 matrix given by

QL =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

22 −3 0 −2 0 −5 0 −3 0 −9
−8 27 0 −2 0 −5 0 −3 0 −9
0 0 19 −2 0 −5 0 −3 0 −9

−8 −3 −4 32 0 −5 0 −3 0 −9
0 0 0 0 17 −5 0 −3 0 −9

−8 −3 −4 −2 −1 30 0 −3 0 −9
0 0 0 0 0 0 12 −3 0 −9

−8 −3 −4 −2 −1 −5 −6 38 0 −9
0 0 0 0 0 0 0 0 9 −9

−8 −3 −4 −2 −1 −5 −6 −3 −7 39

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

By Theorem 3.1, the eigenvalues of QL are 48, 41, 35, 34, 30, 19, 17, 12, 9, 0, while the corresponding eigen-
vectors are the following ones (a subscript denotes the eigenvalue):

x48 = [1 1 1 1 1 1 1 1 1 − 13

3
]ᵀ, x0 = [1 1 1 1 1 1 1 1 1 1]ᵀ,

x41 = [1 1 1 1 1 1 1 − 29

3
0 0]ᵀ, x9 = [1 1 1 1 1 1 1 1 − 32

7
0]ᵀ,

x35 = [1 1 1 1 1,−18

5
0 0 0 0]ᵀ, x12 = [1 1 1 1 1 1 − 23

6
0 0 0]ᵀ,

x34 = [1 1 1 − 15

2
0 0 0 0 0 0]ᵀ, x17 = [1 1 1 1 − 17 0 0 0 0 0]ᵀ,

x30 = [1 − 8

3
0 0 0 0 0 0 0 0]ᵀ, x19 = [1 1 − 11

4
0 0 0 0 0 0 0]ᵀ.

Using Theorem 3.2, we compute the remaining eigenvalues and their multiplicities: 272, 32, 304, 382, 398,
307, 233, 185, 166. The corresponding eigenvectors are computed as in Example 3.3.

4 Number of distinct eigenvalues

This section is devoted to the number of distinct eigenvalues, denoted by s(G), of the Laplacian matrix of a
Ceven-graph G. We start with the following theorem.

Theorem 4.1 For a Ceven-graph C(α1, α2, . . . , αk),

k ≤ s(G) ≤ 2k − 1. (3)

Proof ByCorollary 3.4, the quotient matrix QL has exactly k distinct eigenvalues. Thus, it follows that s(G) ≥ k.
Theorem 3.2 says that dα2i and dα2i−1 + 1 are the eigenvalues for all 1 ≤ i ≤ k

2 ; this gives at most k distinct
eigenvalues in the spectrum of L . In addition, QL has k distinct eigenvalues. Together, we have at most 2k distinct
eigenvalues. However, we observe that ( k2 + 1)th eigenvalue of QL is always equal to dα1 + 1. Thus we obtain
s(G) ≤ 2k − 1, and this proves the right-hand side of (3). ��

In the next two remarks, we will see that the obtained bounds for s(G) are sharp.

Remark 4.2 We observe that the lower bound of (3) is attained in each of the following cases:

1. Let G ∼= C(α1, 1, 1, . . . , 1). Here, QL has k distinct eigenvalues and dα1 + 1 is an additional eigenvalue of
L . However, dα1 + 1 belongs to the spectrum of QL , as mentioned in the previous proof. Therefore, G has
exactly k distinct eigenvalues.

2. Let G ∼= C(1, 1, . . . , 1, p, 1), with 2 ≤ p ≤ k
2 − 2. Then, by Theorem 3.2, dαk−1 + 1 is an eigenvalue of L ,

but it equals the (p + 2)th eigenvalue of QL . As before, G has exactly k distinct eigenvalues.
3. Let G ∼= C(α1, α2, α3, α4). First, note that the eigenvalues of QL are 0, α4, α1 + α2 + α4 = dα1 + 1 and

n. Thus if G has exactly 4 distinct eigenvalues, then any eigenvalue of L obtained by Theorem 3.2 must be
equal to either α4 or α1 + α2 + α4. In this case, G is one of the following (in all cases, α ≥ 1):
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Table 1 Distinct eigenvalues of some Ceven-graphs

k G s(G) distinct eigenvalues

2 C(21, 3) 3 0, 21, 24
4 C(5, 1, 6, 12) 4 0, 12, 18, 24
4 C(6, 6, 6, 6) 5 0, 6, 12, 18, 24
4 C(10, 1, 10, 3) 6 0, 3, 13, 14, 21, 24
6 C(4, 4, 4, 4, 4, 4) 7 0, 4, 8, 12, 16, 20, 24
4 C(4, 7, 5, 8) 7 0, 8, 12, 13, 16, 19, 24
8 C(17, 1, 1, 1, 1, 1, 1, 1) 8 0, 1, 2, 3, 16, 21, 22, 23, 24
8 C(3, 3, 3, 3, 3, 3, 3, 3) 9 0, 3, 6, 9, 12, 15, 18, 21, 24
6 C(2, 3, 4, 4, 5, 6) 10 0, 6, 10, 11, 12, 14, 15, 18, 19, 24
6 C(5, 2, 3, 4, 2, 8) 11 0, 8, 10, 12, 15, 16, 17, 18, 19, 22, 24

(a) G ∼= C(α, 1, 1, 1)
(b) G ∼= C(α, 1, 1 + α, 1)
(c) G ∼= C(α, 1, 1, 2 + α)

(d) G ∼= C(α, 1, 1 + α, 1 + α)

(e) G ∼= C(α, 1, 1 + α, 2 + 2α)

This item also characterizes all Ceven-graphs with exactly four distinct eigenvalues.

Remark 4.3 Here are some Ceven-graphs attaining the upper bound of (3):

1. Let G (� Kn) be the complete split graph C(α1, α2). The eigenvalues of L are

(α1 + α2)
α1 , α

α2−1
1 , 0,

and so the upper bound of (3) is attained. Observe also that this item characterizes all Ceven-graphs with
exactly three distinct eigenvalues.

2. Let G ∼= C(p, q, p + 1, q + 1), where p 	= q and q > 1. The eigenvalues of L are

2p + 2q + 2, (p + 2q + 1)p, q + 1, 0, (p + q + 1)q−1, (2p + q + 1)q , (p + q + 2)p,

along with the desired conclusion.
3. Similarly, for G ∼= C(i, j, r, i + 1, j + 1, r + 1), where j > 1, i 	= r and r + i 	= j , by Theorems 3.1 and 3.2

, the eigenvalues of L are 2i + 2 j + 2r + 3, 2i + j + 2r + 2, r + i + 2, r + 1, 0, (2i + r + 2) j−1, (i + j +
2r + 1)i , (2i + 2 j + r + 2)r , (2i + j + r + 2)i , (2r + i + 2)r−1, ( j + r + 2) j . Hence, s(G) = 2k − 1 = 11.

Next we consider a particular case based on a constant sequence.

Theorem 4.4 Let G ∼= C(p, p, . . . , p︸ ︷︷ ︸
k

) be a Ceven-graph, where p 	= 1. Then s(G) = k + 1.

Proof Let λ1, λ2, . . . , λk be the eigenvalues of QL , arranged as in (2). By Theorem 3.2, G has k
2 eigenvalues

of the form dα2i and
k
2 eigenvalues of the form dα2i−1 + 1. We note the following overlapping between the

eigenvalues:

dα2 = dα3 + 1,

dα4 = dα1 + 1 = λ k
2+1,

dαk−i = λk−( i
2+1), for i ∈ {0, 2, 4, . . . , k − 4},

dαk− j + 1 = λk−(
3− j
2 +6), for j ∈ {1, 3, 5, . . . , k − 5}.

Therefore, the eigenvalues of QL contribute k to s(G), and the eigenvalues of the form dα2i ( 	= dα2 ) and
dα2i−1 + 1 do not contribute anything extra to s(G); however, dα2 contributes one. Hence, s(G) = k + 1. ��

The following table contains a list of some Ceven-graphs with 24 vertices along with their distinct eigenvalues.

123



S. Mandal et al.

5 Connectivity

The algebraic connectivity a(Kn) of a complete graph Kn is n, and we know from [11,29] that this graph
maximizes the algebraic connectivity in the set of all graphs with n vertices. The vertex connectivity κ = κ(G)

is maximized by the same graph [11] and it equals n − 1. The classical result of Fiedler [11] states that

a(G) ≤ κ(G) ≤ δ(G),

holds for every connected non-complete graph, where δ denotes the minimum vertex degree. Moreover, we have
pointed out in the first section that, in case of cographs, the first equality is attained. We easily obtain cographs
that minimize the algebraic connectivity.

Lemma 5.1 For any connected cograph G, a(G) is an integer and a(G) ≥ 1. If G is a star K1,n−1, n ≥ 3, then
a(G) = 1.

Proof First, a(G) is an integer since the Laplacian eigenvalues of G are integral. Since G is connected, it holds
a(G) ≥ 1. For a star with at least three vertices, we have a(K1,n−1) = κ(K1,n−1) = 1, which concludes the
proof. ��

In what follows we determine connected non-complete Ceven-graphs with a fixed number of vertices that
maximize the algebraic connectivity, and we also determine connected Ceven-graphs with a fixed number of
vertices that are not stars and minimize the algebraic connectivity.

Theorem 5.2 Among all connected non-complete Ceven-graphs with n vertices, the graph C(n−2, 2)maximizes
the algebraic connectivity.

Proof Let G ∼= C(α1, α2, . . . , αk) be a connected non-complete Ceven-graph. First note that for k = 2, the
algebraic connectivity is maximized by C(n − 2, 2), along with a(C(n − 2, 2)) = n − 2, see Example 3.3. For
k ≥ 4, Corollary 3.5 gives a(G) = min{αk, n − αk} < n − 2, since αi ≥ 1 for all i . ��
Theorem 5.3 Among all connected Ceven-graphs that are non-isomorphic to the star and have n vertices, the
graph C(α1, α2, . . . , αk−2, αk−1, 1), k ≥ 4, minimizes the algebraic connectivity.

Proof Let G ∼= C(α1, α2, . . . , αk) be the graph under consideration, and set first k ≥ 4. By Corollary 3.5, we
have a(G) = min{αk, n − αk}, and the desired result follows. It remains to show that a(G) > 1 holds for k = 2.
Applying Corollary 3.5, under the restrictions given in the formulation of this statement, we obtain the required
inequality. ��

Observe that the complete split graph G that is not a star minimizes the algebraic connectivity if and only if
G ∼= C(2, n − 2), which is a direct consequence of Corollary 3.5.

6 Clique number

In this section we compute the clique number of a Ceven-graph and establish a relationship with the algebraic
connectivity.

Theorem 6.1 Let G = C(α1, α2, . . . , αk) be a Ceven-graph. Then its clique number is

ω(G) = max
1≤i≤ k

2

{
α2i−1 + k

2
− i + 1

}
.

Proof Consider the equitable partition π of G (defined in Section 2). The vertices of πi form a clique if i is
odd, whereas if i is even then they form a co-clique (that is an edgeless graph). Further, every vertex of π2i−1,
1 ≤ i ≤ k

2 , is adjacent to every vertex of π2 j whenever j ≥ i . Therefore, a clique in G is formed by taking
α2i−1 vertices of π2i−1 together with one vertex from each of π2 j , where j ≥ i . Clearly, such a clique counts
α2i−1 + k

2 − i + 1 vertices. The maximum clique is obtained by taking the maximum over i (1 ≤ i ≤ k
2 ), which

brings us to the desired result. ��
The following corollaries are immediate applications of Theorem 6.1.

Corollary 6.2 For the complete split graph C(α1, α2), we have ω(C(α1, α2)) = α1 + 1.
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Table 2 A comparison between the clique number and the algebraic connectivity of some random Ceven-graphs

No. (n, k) G ω(G) a(G) comparison

1 (57, 2) C(24, 33) 25 24 ω(G) > a(G)

2 (4, 4) C(1, 1, 1, 1) 3 1 ω(G) > a(G)

3 (14, 6) C(5, 1, 1, 1, 1, 5) 8 5 ω(G) > a(G)

4 (231, 6) C(32, 59, 26, 19, 66, 29) 65 29 ω(G) > a(G)

5 (35, 4) C(6, 13, 8, 8) 9 8 ω(G) > a(G)

6 (28, 4) C(8, 3, 2, 15) 10 13 ω(G) < a(G)

7 (43, 4) C(14, 9, 4, 16) 16 16 ω(G) = a(G)

8 (125, 6) C(20, 11, 15, 19, 29, 31) 30 31 ω(G) < a(G)

9 (191, 6) C(41, 29, 45, 35, 21, 20) 47 20 ω(G) > a(G)

10 (221, 6) C(35, 20, 31, 40, 45, 50) 46 50 ω(G) < a(G)

Corollary 6.3 For the antiregular graph C(1, 1, . . . , 1), we have ω(C(1, 1, . . . , 1)) = k
2 + 1.

We also emphasize the following result.

Corollary 6.4 For k ≥ 4 and a Ceven-graph G ∼= C(α1, α2, . . . , αk) with n vertices, we have ω(G) ≤ n − αk ,
with equality if and only if k = 4 and α j = 1 for 2 ≤ j ≤ 4.

Proof For 1 ≤ i ≤ k

2
, we have

n − αk =
k−1∑
j=1

α j ≥ α2i−1 + k − 2 ≥ α2i−1 + k

2
− i + 1, (4)

where the first inequality follows from α j ≥ 1 for every j , and the second one follows from k ≥ 4. Together
with Theorem 6.1, this gives ω(G) ≤ n − αk .

If the equality holds, then we have equalities in (4). The former one yields α j = 1 for j 	= 2i − 1. The latter
one gives k−2 = k

2 − i +1, that is k−6+2i = 0, which yields k = 4 and i = 1. Therefore, G ∼= C(α1, 1, 1, 1).
The opposite implication follows directly. ��

In case of a complete split graph, the clique number and the algebraic connectivity are computed easily, by
employing Corollaries 3.5 and 6.2 . The next result relates these invariants for the remaining Ceven-graphs.
Theorem 6.5 Let G ∼= C(α1, α2, . . . , αk) for k ≥ 4. Then

ω(G)

⎧⎪⎨
⎪⎩

< a(G) if ω(G) < αk,

= a(G) if ω(G) = αk,

> a(G) if ω(G) > αk .

Proof Assume that αk < n − αk . In this case, by Corollary 3.5, we have a(G) = αk , which establishes the
desired result.

For αk ≥ n − αk , we have

ω(G) < n − αk = a(G) ≤ αk,

where the first inequality follows from Corollary 6.4, and the remaining two follow from Corollary 3.5. The last
chain of inequalities gives the desired result. ��

We proceed with particular cases that illustrate the result of the previous theorem.

Corollary 6.6 For each of the following Ceven-graphs G, the inequality ω(G) > a(G) holds:

1. G ∼= C(α1, α2), with α2 ≥ 2.
2. G ∼= C(p, p, . . . , p︸ ︷︷ ︸

k

), with k ≥ 4.

3. G ∼= C(α, β, α, β, . . . , α, β︸ ︷︷ ︸
k≥4

), with α > β.
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Corollary 6.7 For G ∼= C(α, α + 1, . . . , α + k − 1), with k ≥ 4, we have ω(G) = a(G).

Corollary 6.8 For G ∼= C(α, α2, . . . , αk), with k ≥ 4 and α > 1, we have ω(G) < a(G).

We conclude this section with a review of Ceven graphs illustrating how the clique number and the algebraic
connectivity may differ from one another. They are given in Table 2.
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