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Abstract In this paper, we consider the solution of the initial and boundary value problem for the time-space
fractional diffusion equation in the sense of Caputo based on the Chebyshev collocation method. Firstly, the
problem is converted to an initial value problem for a fractional integral-differential equation which absorbs the
boundary conditions. Then the shifted Chebyshev polynomials and collocation method for the space variable
are used. The coefficient functions of the Chebyshev expansion are solved through the Picard iterative process
and the matrix Mittag-Leffler functions for the time variable. We also present a numerical method to cope with
the improper convolution integral on the time variable. Finally, a numerical example is verified via the proposed
method. The results demonstrate the effectiveness and great potential of the Chebyshev polynomials and the
matrix Mittag-Leffler functions for the solution of the fractional differential equation.

Keywords Fractional calculus · Fractional diffusion equation · Chebyshev polynomials · Mittag-Leffler
function · Collocation method

Mathematics Subject Classification 34A08 · 26A33 · 35R11 · 41A50

1 Introduction

Fractional calculus attracts much interest due to its ability to describe hereditary properties andmemory phenom-
ena in science and engineering fields such as in the areas of engineering vibrations [1], viscoelastic mechanics
and rheology [2–4], control theory [5], anomalous diffusion [2,6,7], etc. Initial and boundary value problems
for the fractional diffusion equation are an important research subject. The stability and existence of a solution
of fractional differential equation were shown in [6,8,9].

It iswell known that it is difficult to obtain an exact analytical solutionwithin the scope of elementary functions
for such a fractional differential equation. The finite difference method was used in [10–13] because it is easy
to be understood and put into practice. In [12], Meerschaert and Tadjeran studied the approximate solution of
fractional partial differential equation by the finite difference method and discussed the convergence under given
conditions. Rawashdeh [14] used collocation method in polynomial spline space to study the numerical solution
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of a fractional integro-differential equation. Jafari and Daftardar-Gejji [15] used Adomian’s decomposition to
solve fractional diffusion and wave equations. In [16], the boundedness theorem of general fractional integrals
was proved. In [17], the discrete scheme was used to solve the time fractional diffusion equation in the sense of
Caputo. Garrappa [18] gave a survey for numerical methods of the fractional differential equations including the
multi-step methods, and designed a set ofMatlab programs for problems of fractional order. Deng and Hesthaven
[19] used local discontinuous Galerkin method to solve the spatial fractional diffusion equation. Chen and Li
[20] used the compact difference scheme to solve the time fractional diffusion-wave equation.

The Chebyshev polynomials, applied in approximation theory and spectral methods of differential equation,
play an increasingly important role in analytical and numerical analyses. Khader [21] proposed the shifted
Chebyshev collocation method to solve the space fractional diffusion equation. Sweilam et al. [22,23] used the
second and third kind shifted Chebyshev polynomials to solve the space fractional diffusion equation.

In the present paper, we consider using the shifted Chebyshev polynomials of the first kind and the Picard
iterative process to approximate the solution for the initial andboundary value problemof the time-space fractional
diffusion equation. In the next section, we introduce some basic concepts used in this article. In Section 3, we
describe the presented method by using the shifted Chebyshev polynomials and collocation method for the space
variable combined with the Picard iterative process and matrix Mittag-Leffler function for the time variable. The
method is verified by a numerical example. Conclusions are presented in Section 4.

2 Basic concepts

Definition 1 The Riemann-Liouville fractional integral of order α is defined as the convolution,

Jα
x f (x) = xα−1

�(α)
∗ f (x) =

∫ x

0

(x − ξ)α−1

�(α)
f (ξ)dξ, x > 0, (1)

if α > 0, and J 0x f (x) = f (x) if α = 0, where �(·) is Euler’s Gamma function. The fractional integral has the
properties

Jα
x Jλ

x f (x) = Jα+λ
x f (x), α, λ ≥ 0, (2)

Jα
x x

η = �(η + 1)

�(η + α + 1)
xα+η, α ≥ 0, η > −1. (3)

Definition 2 Let m − 1 < α ≤ m and m ∈ N+. Then the α-order Caputo fractional derivative is defined as the
composition of the fractional integral and integer-order derivative

Dα
x f (x) = Jm−α

x f (m)(x), x > 0. (4)

The fractional integral and the Caputo fractional derivative satisfy linear law, e.g.

Dα
x (λ f (x) + μg(x)) = λDα

x f (x) + μDα
x g(x), (5)

where λ and μ are constants. The Caputo fractional derivative of a monomial is [7]

Dα
x x

n =
{
0, n < �α�

�(n+1)
�(n+1−α)

xn−α, n ≥ �α� , (6)

where n is a nonnegative integer and �α� is the smallest integer not less than α. The α-order integral of α-order
Caputo fractional derivative of function f (x) has the following relation with the initial values [24],

Jα
x D

α
x f (x) = f (x) −

m−1∑
k=0

f (k)(0)
xk

k! , m − 1 < α ≤ m. (7)

More definitions and properties of fractional derivative were introduced in [7].
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Definition 3 The Mittag-Leffler function with two parameters is defined as [25]:

Eα,β(z) =
∞∑
k=0

zk

�(αk + β)
, α > 0, β > 0, z ∈ C. (8)

The definition can be generalized to the case of matrix variable, i.e. the matrix Mittag-Leffler function

Eα,β(A) =
∞∑
k=0

Ak

�(αk + β)
, α > 0, β > 0, (9)

where A is an nth-order matrix and A0 = I , the nth-order unit matrix.

Definition 4 The Chebyshev polynomials of the first kind are defined by the formulae [26]

Tn(z) = cos (n arccos z) , −1 ≤ z ≤ 1, n = 0, 1, . . . . (10)

The zeros of Tn(z) have the exact expression zi = cos
( 2i+1

2n π
)
, i = 0, 1, . . . , n−1, and the explicit expressions

of Tn(z) have the forms

T0(z) = 1, Tn(z) = n

[ n
2

]∑
i=0

(−1)i2n−2i−1 (n − i − 1)!
(i)!(n − 2i)! z

n−2i , n = 1, 2, . . . , (11)

where
[ n
2

]
is the integral part of n

2 .

The shifted Chebyshev polynomials are defined by

T ∗
n (x) = Tn(2x − 1), 0 ≤ x ≤ 1,

which have the zeros xi = 1
2 + 1

2 cos
( 2i+1

2n π
)
, i = 0, 1, . . . , n − 1, and the explicit expressions

T ∗
0 (x) = 1, T ∗

n (x) = n
n∑

i=0

(−1)i22n−2i (2n − i − 1)!
(i)!(2n − 2i)! x

n−i , n = 1, 2, . . . . (12)

Suppose y(x) is L2 integrable on the interval [0, 1] with respect to the weight function ρ(x) = 1√
x−x2

, then
it has series expansion in the shifted Chebyshev polynomials

y(x) =
∞∑
i=0

ci T
∗
i (x), (13)

where the coefficient ci are given as the follows:

c0 = 1

π

∫ 1

0

1√
x − x2

y(x)T ∗
0 (x)dx, ci = 2

π

∫ 1

0

1√
x − x2

y(x)T ∗
i (x)dx, i ≥ 1. (14)

When the series in (13) is approximated by its truncation

ym(x) =
m∑
i=0

ci T
∗
i (x), (15)

the error is no more than the sum of the absolute values of the coefficients after the first (m + 1)-terms in (13)
[21]. For more results on convergence, see [26].
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3 The solution of the time-space fractional diffusion equation

We consider the time-space fractional diffusion equation

Dβ
t u(x, t) = cDα

x u(x, t) + s(x, t), 0 < x < 1, t > 0, (16)

where 0 < β ≤ 1, 1 < α ≤ 2, c is a constant and s(x, t) is a source term, subject to the following initial and the
Dirichlet boundary conditions:

u(x, 0) = u0(x), 0 < x < 1, (17)

u(0, t) = b0, u(1, t) = b1, t > 0. (18)

The solving process is divided into the following three steps.

3.1 The integration with respect to the space variable merging the boundary conditions

We use Jα
x,η f (x) to represent the value of the fractional integral J

α
x f (x) at x = η,

Jα
x,η f (x) =

∫ η

0

(η − ξ)α−1

�(α)
f (ξ)dξ. (19)

Applying the integral operator Jα
x (·) to both sides of equation (16) leads to

cJα
x D

α
x u(x, t) = Jα

x D
β
t u(x, t) − Jα

x s(x, t). (20)

According to equation (7), the composition of the left hand side of (20) involves the boundary values at x = 0

Jα
x D

α
x u(x, t) = u(x, t) − b0 − u′

x (0, t)x, (21)

where u′
x (0, t) is to be determined.

Substituting (21) into (20) yields

cu(x, t) − cb0 − cu′
x (0, t)x = Jα

x D
β
t u(x, t) − Jα

x s(x, t). (22)

Collocating equation (22) at x = 1 and using the boundary value at x = 1 we have

cu′
x (0, t) = cb1 − cb0 − Jα

x,1D
β
t u(x, t) + Jα

x,1s(x, t). (23)

Substituting (23) into (22) we obtain

cu(x, t)=cb0(1 − x) + cb1x − x Jα
x,1D

β
t u(x, t) + x Jα

x,1s(x, t) + Jα
x D

β
t u(x, t) − Jα

x s(x, t). (24)

So the initial and boundary value problem, (16)–(18), is converted to the initial value problem of equation (24)
with the initial value (17).

3.2 The shifted Chebyshev polynomial expansion and collocation method

We use the truncation of the shifted Chebyshev polynomial expansion with respect to the space variable x to
approximate the solution u(x, t) as

u(x, t)
.=

m∑
i=0

ai (t)T
∗
i (x). (25)

So equation (24) can be written in the following form

c
m∑
i=0

ai (t)T ∗
i (x) = cb0(1 − x) + cb1x − x Jα

x,1D
β
t

m∑
i=0

ai (t)T ∗
i (x)

+Jα
x D

β
t

m∑
i=0

ai (t)T ∗
i (x) + x Jα

x,1s(x, t) − Jα
x s(x, t),

(26)
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Rearranging equation (26) leads to

m∑
i=0

Dβ
t ai (t)

[
x Jα

x,1T
∗
i (x) − Jα

x T
∗
i (x)

]

= −c
m∑
i=0

ai (t)T ∗
i (x) + cb0(1 − x) + cb1x + x Jα

x,1s(x, t) − Jα
x s(x, t).

(27)

In order to solve the m + 1 functions ai (t), i = 0, 1, . . . ,m, we collocate equation (27) at the m + 1 zeros
xp of the shifted Chebyshev polynomial T ∗

m+1(x) to get m + 1 fractional differential equations as follows,

m∑
i=0

Dβ
t ai (t)

[
xp J

α
x,1T

∗
i (x) − Jα

x,xp T
∗
i (x)

]

= −c
m∑
i=0

ai (t)T
∗
i (xp) + cb0(1 − xp) + cb1xp + xp J

α
x,1s(x, t) − Jα

x,xp s(x, t),

p = 0, 1, . . . ,m, (28)

where the zeros have the precise expressions xp = 1
2 + 1

2 cos
(
2p+1
2m+2π

)
, p = 0, 1, . . . ,m.

In matrix notation, the equation system has the form

ADβ
t a(t) = Ba(t) + c(t), (29)

where a(t) = (a0(t), a1(t), . . . , am(t))T ,

c(t) =
⎛
⎜⎝

cb0(1 − x0) + cb1x0 + x0 Jα
x,1s(x, t) − Jα

x,x0s(x, t)
...

cb0(1 − xm) + cb1xm + xm Jα
x,1s(x, t) − Jα

x,xm s(x, t)

⎞
⎟⎠ ,

A =
⎛
⎜⎝

x0 Jα
x,1T

∗
0 (x) − Jα

x,x0T
∗
0 (x) · · · x0 Jα

x,1T
∗
m(x) − Jα

x,x0T
∗
m(x)

...
. . .

...

xm Jα
x,1T

∗
0 (x) − Jα

x,xm T
∗
0 (x) · · · xm Jα

x,1T
∗
m(x) − Jα

x,xm T
∗
m(x)

⎞
⎟⎠ ,

B =
⎛
⎜⎝

−cT ∗
0 (x0) · · · −cT ∗

m(x0)
...

. . .
...

−cT ∗
0 (xm) · · · −cT ∗

m(xm)

⎞
⎟⎠ .

Premultiplication by A−1 on both sides of equation (29) leads to

Dβ
t a(t) = A−1Ba(t) + A−1c(t). (30)

The initial values ai (0) are the coefficients of the shifted Chebyshev polynomial expansion of u(x, 0),

u(x, 0) = u0(x) =
m∑
i=0

ai (0)T
∗
i (x), (31)

where

a0(0) = 1
π

∫ 1
0

1√
x−x2

u0(x)T ∗
0 (x)dx,

ai (0) = 2
π

∫ 1
0

1√
x−x2

u0(x)T ∗
i (x)dx, i = 1, 2, . . . ,m.

(32)
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3.3 Solution for a(t) by the Picard iterative process

Nowwe derive the series solution of the initial value problem, (30) and (32), by using the Picard iterative process.
Operating the fractional integral Jβ

t (·) on both sides of equation (30) yields

a(t) = a(0) + A−1BJβ
t a(t) + Jβ

t A−1c(t). (33)

Denote the kth approximate solution of the Picard iteration by ϕk(t), then the iterative scheme starting from
the 0th approximate solution is

ϕ0(t) = a(0), (34)

ϕk(t) = a(0) + A−1BJβ
t ϕk−1(t) + Jβ

t A−1c(t), k ≥ 1. (35)

The expression of the kth approximate solution is derived as follows,

ϕ1(t) = a(0) + A−1Btβ

�(β + 1)
a(0) + Jβ

t A−1c(t),

ϕ2(t) = a(0) + A−1Btβ

�(β + 1)
a(0) +

(
A−1B

)2
t2β

�(2β + 1)
a(0) + Jβ

t A−1c(t) + A−1BJ 2βt A−1c(t),

· · ·
ϕk(t) =

k∑
j=0

(
A−1B

) j
t jβ

�( jβ + 1)
a(0) +

k−1∑
j=0

(
A−1B

) j
J ( j+1)β
t A−1c(t). (36)

Denoting the fractional integrals as convolutions and taking the limit k → ∞ for ϕk(t) we get the series
form of the solution,

a(t) =
∞∑
j=0

(
A−1B

) j
t jβ

�( jβ + 1)
a(0)+

∞∑
j=0

(
A−1B

) j
t jβ+β−1

�( jβ + β)
∗ A−1c(t). (37)

In matrix Mittag-Leffler functions, equation (37) can be written as follows,

a(t) = at(t) + as(t) = Eβ,1(A
−1Btβ)a(0) + tβ−1Eβ,β(A−1Btβ) ∗ A−1c(t), (38)

where

at(t) = Eβ,1(A
−1Btβ)a(0), (39)

as(t) = tβ−1Eβ,β(A−1Btβ) ∗ A−1c(t) =
∫ t

0
τβ−1Eβ,β(A−1Bτβ)A−1c(t − τ)dτ , (40)

are the transient component caused by the initial condition u(x, 0) and the steady-state component caused by the
boundary condition and the source term, respectively. After finding out a(t), we can write out the approximate
solution of the original initial and boundary problem by equation (25).

We note that the convolution in equation (40) is an improper integral. By using the relation

d

dt

(
tβEβ,β+1(A

−1Btβ)
)

= tβ−1Eβ,β(A−1Btβ), (41)

which can be verified by termwise derivation, the singularity in the convolution in equation (40) can be removed
through integration by parts

as(t) =
∫ t

0
τβ−1Eβ,β(A−1Bτβ)A−1c(t − τ)dτ

= tβEβ,β+1(A
−1Btβ)A−1c(0) +

∫ t

0
τβEβ,β+1(A

−1Bτβ)A−1c′(t − τ)dτ

= tβEβ,β+1(A
−1Btβ)A−1c(0) + tβEβ,β+1(A

−1Btβ) ∗ A−1c′(t). (42)
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Here we suppose that c′(t) is continuous on the interested interval [0, T ].
If it is difficult to compute analytically the convolution integrals in (40) or (42), we can use a numerical

integral method to cope with the definite integral in (42). For example, by introducing tn = nh, n = 0, 1, . . . , N ,
then for 1 ≤ n ≤ N we have from the composite trapezoidal integration,

as(tn) = tβn Eβ,β+1(A−1Btβn )A−1c(0) + ∫ tn
0 τβEβ,β+1(A−1Bτβ)A−1c′(tn − τ)dτ

.= tβn Eβ,β+1(A−1Btβn )A−1c(0) +
n∑
j=0

ωn, j t
β
j Eβ,β+1(A−1Btβj )A

−1c′(tn − t j )

= tβn Eβ,β+1(A−1Btβn )A−1c(0) +
n∑
j=0

ωn, j ( jh)βEβ,β+1(A−1B( jh)β)A−1c′((n − j)h),

(43)

where ωn,0 = ωn,n = h
2 , ωn, j = h, j = 1, 2, . . . , n − 1. We note that for a second-order continuously

differentiable function, the truncation error of the composite trapezoidal integration is proportional to tnh2.

Example Consider the initial and boundary value problem of the fractional diffusion equation

D
1
2
t u(x, t) = D

3
2
x u(x, t) + s(x, t), 0 < x < 1, t > 0, (44)

u(x, 0) = x2(1 − x), (45)

u(0, t) = u(1, t) = 0, (46)

where the source function is s(x, t) = 4
3

√
x
π

(
2 (1 − x) (t x)

3
2 + 3

(
1 + t2

)
(2x − 1)

)
. The problem has the exact

solution uexa(x, t) = x2(1 − x)(1 + t2).

The problem is solved by applying the suggested method with m = 3, i.e.

u(x, t) =
3∑

i=0

ai (t)T
∗
i (x). (47)

The coefficients are derived as in equation (38),

a(t) = E 1
2 ,1(A

−1Bt
1
2 )a(0) + t−

1
2 E 1

2 , 12
(A−1Bt

1
2 ) ∗ A−1c(t), (48)

where

A =
⎛
⎜⎝
0.0139042 0.0188288 0.00530401 −0.00519951
0.0876465 0.0892460 −0.0468704 −0.0947289
0.103192 0.0507067 −0.110300 −0.0170167
0.0230453 −0.000310640 −0.0155545 0.00714167

⎞
⎟⎠ ,

B =
⎛
⎜⎝

−1.00000 −0.923880 −0.707107 −0.382683
−1.00000 −0.382683 0.707107 0.923880
−1.00000 0.382683 0.707107 −0.923880
−1.00000 0.923880 −0.707107 0.382683

⎞
⎟⎠ ,

c(t) =

⎛
⎜⎜⎜⎝

0.0352182 + 0.00193840t
3
2 + 0.0352182t2

0.147524 + 0.0212986t
3
2 + 0.147524t2

0.0658641 + 0.0232590t
3
2 + 0.0658641t2

0.00139345 + 0.00327922t
3
2 + 0.00139345t2

⎞
⎟⎟⎟⎠ ,

a(0) = (0.0625, 0.03125,−0.0625,−0.03125)T .

Approximating the convolution integral in equation (48) by using the composite trapezoidal integration rule as
in equation (43), we have at tn = nh, n ≥ 1,
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a(tn)
.= â(tn) = E 1

2 ,1(A
−1Bt

1
2
n )a(0) + t

1
2
n E 1

2 , 32
(A−1Bt

1
2
n )A−1c(0)

+
n∑
j=0

ωn, j ( jh)
1
2 E 1

2 , 32
(A−1B( jh)

1
2 )A−1c′((n − j)h), (49)

where ωn,0 = ωn,n = h
2 , ωn, j = h, j = 1, 2, . . . , n − 1. Using this result of numerical integration, the

approximate solution of the original problem at t = tn is denoted by uChe(x, tn) =
3∑

i=0
âi (tn)T ∗

i (x).

In Figure 1, the approximate solutions uChe(x, 1) at t = 1 are plotted together with the exact solution
uexa(x, 1), where the convolution integration was computed by using the different time step-sizes h = 0.1, 0.05,

Fig. 1 At t = 1, the exact solution uexa(x, 1) (solid line) and the approximate solutions uChe(x, 1) (dash line) computed by using
the different time step-sizes h

Fig. 2 The absolute errors of the approximate solutions uChe(x, 1) computed by using the different time step-sizes h = 0.1 (solid
line), h = 0.05 (dash line), h = 0.025 (dot line) and h = 0.0125 (dot-dash line)
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0.025 and 0.0125. The corresponding absolute errors |uexa(x, 1) − uChe(x, 1)| for the four approximations are
plotted in Figure 2. Corresponding to the four decreasing values of the step-size h, the maxima of the absolute
errors are calculated to be 0.0105972, 0.00448355, 0.00182718 and 0.000718710. An obvious convergence is
displayed.

4 Conclusions

We considered the solution of the initial and boundary value problem for the time-space fractional diffusion
equation in the sense of Caputo based on the Chebyshev collocation method. First we converted the problem
to an initial value problem of fractional integral-differential equation merging the boundary conditions. Then
the solution was expanded by using the shifted Chebyshev polynomials with respect to the space variable and
the collocation method led to a fractional ordinary differential equation system about the coefficient functions
of the time variable. Further, the coefficient functions of the time variable were obtained in terms of the matrix
Mittag-Leffler functions by using the Picard iterative process.We also presented a numerical method to cope with
the improper convolution integral on the time variable in the steady-state component of the coefficient functions.

We verified the proposedmethodwith a numerical examplewith exact solution. For the approximate solutions
obtained by using the proposed method, the absolute errors become smaller with the decreasing of the step-size
h of the time variable. This conclusion demonstrates the effectiveness and great potential of the Chebyshev
collocation method for the solution of the fractional differential equation. All plots were generated by using
Wolfram Mathematica 12.
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