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Abstract We study the injectivity of the spherical mean operator associated to the Gelfand pairs (U, N ), where
N is a Heisenberg type group and U the subgroup of the group of orthogonal transformations of N that act
trivially on its centre. We prove that when the dimension of the centre of N is 3, these spherical mean operator
is injective on L p(N ) for the optimal range 1 ≤ p ≤ 3.
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1 Introduction and preliminaries

Finding out if a function can be reconstructed from its averages on spheres with a definite radius r > 0 is one
of the challenges in integral geometry. By the average of the function f over the sphere of radius r centered at
the point x , we mean the integral of f with respect to the normalised surface measure on the sphere {y ∈ R

n :
|y − x | = r} in Rn . This can be written as the convolution with the normalized surface measure νr on the sphere
{x ∈ R

n : |x | = r} as
f ∗ νr (x) =

∫

|x |=r

f (x − y)dνr (y).

The function can be recovered from its spherical averages only if this spherical mean operator is injective. That
is,

f ∗ νr (x) = 0, ∀x �⇒ f ≡ 0.

But this operator is not injective in general. For λ > 0, consider the function

ϕλ(x) = c
Jn
2−1(λ|x |)

(λ|x |) n
2−1

, x ∈ R
n,

where Jα denotes the Bessel function of order α and c is a constant to normalize ϕλ in such a way that ϕλ(0) = 1.
Then it is well known that

ϕλ ∗ νr (x) = ϕλ(r)ϕλ(x), x ∈ R
n .
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Hence, if we choose r > 0 to be a zero of the function s → Jn
2−1(λs), then ϕλ ∗ νr vanishes identically(see

[1]). Since ϕλ ∈ L p(Rn) when p > 2n
n−1 , the operator f 
→ f ∗ νr is fails to be injective in L p(Rn) for

2n
n−1 < p ≤ ∞. When 1 ≤ p ≤ 2n

n−1 , these operators are injective. That is, for a continuous function f ∈ L p(Rn)

with 1 ≤ p ≤ 2n
n−1 , if f ∗ νr is identically zero for a fixed radius r > 0, then f vanishes identically (see [2]).

Let Hn denote the Heisenberg group C
n × R with the group law

(z, t)(w, s) = (z + w, t + s + 1

2
Im(z · w)).

The Lie algebra of this Lie group is hn = C
n × R with the Lie bracket

[(z, t), (w, s)] = (0, Im(z · w)).

This makes hn a step two nilpotent Lie algebra and therefore Hn a two-step nilpotent Lie group. The spherical
means of a function f on Hn can also be written in terms of the convolution as

f ∗ μr (z, t) =
∫

|w|=r

f (z − w, t − 1

2
Im(z · w)) dμr (w). (1)

where μr is the normalized surface measure on the sphere {(z, 0) ∈ Hn : |z| = r} of radius r in Hn . Unlike
the Euclidean case, the spherical mean operators are injective on L p(Hn) for all p such that 1 ≤ p < ∞. This
was proved by Thangavelu [2] using the spectral decomposition of the sublaplacian on the Heisenberg group
provided by Strichartz in [3].

Notice that the unitary groupU (n) acts on theHeisenberg Hn byσ(z, t) = (σ z, t).Hence the sphericalmeans
in (1) can be seen as the averages of the function f overU (n)-orbits. Since the sub-algebra of theU (n) invariant
functions in L1(Hn) is commutative, the pair (Hn,U (n)) forms a Gelfand pair. Also, the spectral decomposition
studied by Strichartz [3], coincides with the expansion in terms of the spherical functions associated with this
Gelfand pair. This point of view led to a general result in [4].

The Heisenberg type groups, or H -type groups, were introduced by A. Kaplan in 1980 [5] as a class of two
step nilpotent groups that includes the Heisenberg groups. Let n be a real two-step nilpotent Lie algebra endowed
with an inner product 〈, 〉. Let z be the center of n and v be its orthogonal complement. For a unit vector v ∈ v,
let fv be the kernel of the adjoint map adv : v → z defined by

adv(v
′) = [v, v′] v′ ∈ v.

Then the Lie algebra n is said to be Heisenberg type or H -type if the adjoint map restricted to the orthogonal
complement of its kernel is a surjective isometry. That is, if adv : vv → z is a surjective isometry where

v = vv ⊕ fv.

A connected and simply connected Lie group N is said to be a Heisenberg type group or H -type group if its Lie
algebra is of H -type.

If n is an H -type Lie algebra, for non-zero z ∈ z we can define a skew-symmetric linear operator Jz : v → v
by

〈Jz(v), v′〉 = 〈z, [v, v′]〉 for all v, v′ ∈ v.

It can be proved that n is a H -type algebra if and only if J 2z = −|z|2 I , for every nonzero z ∈ n [5]. For |z| = 1,
Jz defines a complex structure on v and hence dim v has to be even, say dim v = 2n. We will identify v with
C
n and z with R

m . Since we can identify the connected and simply connected Lie group N with its nilpotent
Lie algebra n via the exponential map, we will write (z, t) for points in N , where z ∈ C

n (identified with v) and
t ∈ R

m (identified with z). The Haar measure on N is given by the Lebesgue measure on n and will be denoted
by dzdt . The group law is then given by

(z, t)(w, s) = (z + w, t + s + 1

2
[z, w]),

123



Gelfand pairs and spherical means...

where [ , ] denotes the Lie bracket. For any fixed a ∈ z \ {0} we can choose a basis with some properties ( see
[6, p. 294]) so that

〈a, [z, w]〉 = |a| Im(z · w̄).

Let f, g be functions on N with g(z, t) = exp(−i〈a, t〉)ϕ(z), then,

f ∗ g(z, t) =
∫

N

f ((z, t)(w, s)−1)g(w, s) dwds

=
∫

Cn

∫

Rm

f (z − w, t − s − 1

2
[z, w])g(w, s) dwds

=
∫

Cn

∫

Rm

f (z − w, t − s − 1

2
[z, w]) exp(−i〈a, s〉)ϕ(w) dwds

=
∫

Cn

∫

Rm

f (z − w, s) exp(−i〈a, t − s − 1

2
[z, w]〉)ϕ(w) dwds

= exp(−i〈a, t〉)
∫

Cn

f a(z − w)ϕ(w) exp

(
i |a|
2

Im(z · w̄)

)
dw

= exp (−i〈a, t〉) f a ×|a| ϕ(z).

where f a is the Fourier transform of f in the central variable t and ×λ denote the twisted convolution on Cn of
order λ, defined by,

F ×λ G(z) =
∫

Cn

F(z − w)G(w) exp

(
iλ

2
Im(z · w)

)
dw.

The irreducible unitary representations of N that are not one dimensional are parameterized by a ∈ z \ {0}.
For each a ∈ z\{0}, we can define the Hilbert space

Fa(v) =
{
F : v ≡ C

n → C : F is holomorphic,
∫
v

|F(w)|2e−|a||w|2
2 dv(w) < ∞

}
.

These Hilbert spaces support the irreducible representation πa of N , known as the Bargmann representation,
defined by,

πa(v, t)F(w) = exp(i〈a, t〉 − 1

4
|a|(|v|2 + 2〈w, v〉 − i〈b, [w, v]〉))F(w + v)

for v ∈ v, t ∈ z, where b = a
|a| . Moreover, any infinite dimensional unitary representation π of N such that

π |z = ei<a,t> Id is equivalent to πa [7, p. 420].
Let A(N ) be the group of orthogonal transformations of N = v ⊕ z, which are automorphisms of N . Let U

be the subgroup of A(N ) that act trivially on z. That is,

U = {k ∈ A(N ) : k(z) = z, for all z ∈ z}.
For z ∈ z, the map Jz : v → v extends to N as an automorphism by defining

Jz(z) = z and Jz(z
′) = −z′ if z′ ⊥ z.

We denote by Pin(m) the subgroup of A(N ) generated by {Jz : z ∈ z}. Then U and Pin(m) commute and their
intersection contains at most four elements [8]. Also A(N ) = U · Pin(m) unless m ≡ 1 (mod 4) and in that
case A(N )/ (U · Pin(m)) has two elements [7].

We recall that for any Lie group N and any compact subgroup K of its automorphism group, the pair (K , N )

is said to be a Gelfand pair if the set L1
K (N ) of integrable K -invariant functions on N forms a commutative

algebra under convolution. For the particular case of Heisenberg type groups we have the following classification
theorem[9, p. 266].
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Theorem 1.1 The groups N of H-type for which L1
A(N )(N ) is commutative, that is (A(N),N) is a Gelfand pair,

are those for which

dim(z) = m =

⎧⎪⎨
⎪⎩
1, 2 or 3

5, 6 or 7 and v is irreducible

7, v is isotypic and dim(v) = 16.

Here irreducibility of v means irreducible under the action of the associated Clifford algebra. See [9] for more
details. From the proof of the above theorem we obtain the following corollary[9, p. 268],

Corollary 1.1 Let U be the subgroup of A(N ) that act trivially on the center z. Then (U, N ) is a Gelfand pair
if and only if dim z = 1, 2, or 3.

We consider the above cases in some detail. First we notice that when m = 1, N is the Heisenberg group
C
k ⊕ R and U = U (k) is the unitary group. The U -averages give rise to the spherical means on N and the

injectivity result follow from [2, Theorem 5.1]. See also [4, Theorem 5.2].
When m = 2, N ∼= H

k ⊕ R
2 (See [9, p. 268] ) where H is the space of quaternions and U = Sp(k),

the compact symplectic group. In this case U acts transitively on the spheres centered at origin in H
k(∼= C

2k).
Therefore the averages over U -orbits coincide with the following spherical means

f ∗ μr (z, t) =
∫

|w|=r

f (z − w, t − 1

2
[z, w]) dμr (w)

defined in [10] in terms of the normalised surface measure μr on the sphere {(z, 0) ∈ N : |z| = r} for a
continuous function f on N . This is one of the three spherical mean operators which were shown to be injective
on L p(N ) for 1 ≤ p ≤ 2m/(m − 1), where m = dim z (See [10, Theorem 1.1]).

When m = 3, v ∼= H
k ⊕ H

l and U = Sp(k) × Sp(l) (see [9, p. 268]). The orbit of U in v is the product of
spheres in Hk and H

l . So the U - averages give rise to new type of spherical means, not considered in [10].
We consider the above case m = 3 and prove injectivity result for averages over U -orbit. Fix r2, r2 > 0. Let

Skr1 and Slr2 be the spheres of radii r1 and r2 centered at the origin in H
k and Hl , respectively. Let μk

r1 and μl
r2 be

the normalized surface measures on Skr1 and Slr2 respectively and let νr1,r2 = μk
r1 × μl

r2 realised as a measure
on N = H

k ⊕ H
l ⊕ R

3. Then the U -spherical means can be defined as

f ∗ νr1,r2(z, w, t) =
∫

Skr1×Slr2

f (z − u, w − v, t − 1

2
[(z, w), (u, v)]) dμk

r1(u)dμl
r2(v)

Our result is the following:

Theorem 1.2 If f ∈ L p(N ) for 1 ≤ p ≤ 3 and f ∗ νr1,r2 ≡ 0 then f ≡ 0.

For the proof of the above, we closely follow the arguments in [2] and [10]. First we compute the spherical
functions for the Gelfand pair (Sp(k) × Sp(l), N ) (see 2). Then we obtain an expansion of L2-functions in term
of the spherical functions and establish the Abel summability of this expansion in L p (see Theorem 3.4). Then
the proof of the injectivity will follow as in [10].

2 Spherical functions for the case m = 3

Let (K , N ) be a Gelfand pair and π be an irreducible unitary representation of N on a Hilbert spaceHπ . Define,

Kπ = {k ∈ K : π ◦ k unitarily equivalent to π.}
Let H = ⊕αPα be the decomposition into the Kπ -irreducible subspaces. The following theorem was proved in
[11, p. 415].
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Theorem 2.1 If φ is a bounded K -spherical function on N, then there exist a unique (up to unitary equivalence)
irreducible representation π and a subspace Pα in the decomposition of the representation space H = ⊕αPα

into Kπ -irreducible subspaces, such that,

φ(x) = φπ,v(x) =
∫
K
〈π(k · x)v, v〉 dk,

for any unit vector v ∈ Pα and x ∈ N. In particular, if K = Kπ and {v1, v2, . . . , vl} is any orthonormal basis
for Pα , then

φπ,α(x) = 1

l

l∑
j=1

〈π(x)v j , v j 〉.

When v = H
k ⊕H

l , the action of U = Sp(k) × Sp(l) on the space P(v) of holomorphic polynomials on v,
decomposes as

P(v) =
∞⊕

p=0,q=0

P p(Hk) ⊗ Pq(Hl)

where P p(Hk) = P p(C2k) is the space of homogeneous polynomials of degree p and Pq(Hl) = Pq(C2l) is
the space of homogeneous polynomial of degree l [9, p. 268].

TheU action on n is via the Sp(k) action on P p(Hk) and the Sp(l) action on Pq(Hl) and so is trivial on the
centre z. Hence for every k ∈ U , (πa ◦ k)|z = πa |z. That is,

Uπa = {k ∈ U : πa ◦ k ≡ πa} = U.

Hence, by Theorem 2.1 every spherical function is of the form φπa ,v , for some a ∈ z \ {0} and a unit vector
v = (p, q) ∈ P p(Hk) ⊗ Pq(Hl). Hence the spherical functions are parameterised by (p, q) as

eap,q(z, w, t) = φπa ,v(z, w, t)

where (z, w) ∈ H
k × H

l = C
2k × C

2l .
To obtain the explicit expression for eap,q , consider an orthonormal basis {uα(ξ) = ξα, ξ ∈ C

2k : α ∈
N
2k, |α| = p} for P p(C2k) and an orthonormal basis {vβ(η) = ηβ, η ∈ C

2l : η ∈ N
2l , |β| = q} for Pq(C2l).

Then {uα ⊗ vβ : α ∈ N
2k, β ∈ N

2l , |α| = p, |β| = q} is an orthonormal basis for P p(Ck) ⊗ Pq(Cl). Let
dp = dimP p(C2k) and dp = dimPq(C2l), then

eap,q(z, w, t) = 1

dpdq

∑
|α|=p
|β|=q

< πa(z, w, t)uα ⊗ vβ, uα ⊗ vβ >

= ei<a,t>

⎛
⎝ 1

dp

∑
|α|=p

〈πa(z, 0, 0)uα, uα〉
⎞
⎠

×
⎛
⎝ 1

dq

∑
|β|=q

〈
πa(0, w, 0)vβ, vβ

〉
⎞
⎠

Since the action ofπa(z, 0, 0)onP(C2k) is sameas the action of the representationπ|a|(z, 0)of theHeisenberg
group H2k = C

2k × R on P(C2k), we have

1

dp

∑
|α|=p

〈πa(z, 0, 0)uα, uα〉 = 1

dp

∑
|α|=p

〈π|a|(z, 0)uα, uα〉.
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Then by [11, Proposition 6.2],

1

dp

∑
|α|=p

〈πa(z, 0, 0)uα, uα〉 = L2k−1
p

( |a|
2

|z|2
)
e− |a|

4 |z|2 ,

where Lδ
r is the r -th Laguerre polynomial of type δ > −1. Similarly,

1

dq

∑
|β|=q

〈πa(0, w, 0)vβ, vβ〉 = L2l−1
q

( |a|
2

|w|2
)
e− |a|

4 |w|2 .

Therefore, we have,

eap,q(z, w, t) = ei〈a,t〉L2k−1
p

(
1

2
|a||z|2

)
L2l−1
q

(
1

2
|a||w|2

)
e− 1

4 |a|(|z|2+|w|2)

= ei〈a,t〉ϕa
p,q(z, w)

where,

ϕa
p,q(z, w) = L2k−1

p

(
1

2
|a||z|2

)
L2l−1
q

(
1

2
|a||w|2

)
e− 1

4 |a|(|z|2+|w|2)

Therefore,

eap,q(z, w, t) = ei〈a,t〉ϕ|a|,2k
p (z)ϕ|a|,2l

q (w) (2)

where ϕ
λ,n
j (z) = Ln−1

j

( 1
2λ|z|2) e− 1

4λ|z|2 , λ > 0 is the scaled Laguerre function on Cn .

3 Spectral decomposition and Abel summability

An important step in obtaining the injectivity results for spherical means in [10] is the spectral decomposition.
For f ∈ L2(N ) in the H -type group N ∼= C

n × R
m ,

f (z, t) = 1

(2π)n+m

∞∑
r=0

∫

Rn

f ∗ ear (z, t) |a|n da

and the fact that the eigenfunctions ear satisfy

ear ∗ μk(z, t) = cr e
a
r (k, 0)e

a
r (z, t) for (z, t) ∈ N

where μk is the surface measure on the sphere of radius k and cr an appropriate constant. Whenm = 3, elements
in N can be written as (z, w, t) with z ∈ H

k ≡ C
2k, w ∈ H

l ≡ C
2l , 2k + 2l = n and the above decomposition

becomes

f (z, w, t) = 1

(2π)2k+2l+3

∫

R3\{0}

∞∑
r=0

f ∗ ear (z, w, t)|a|2k+2l da. (3)

In order to obtain a similar expansion for f ∈ L2(N ) in terms of the U -spherical functions, we first prove the
following Lemma.

Lemma 3.1
∑

p+q=k

L2k−1
p

(
1

2
|a||z|2

)
L2l−1
q

(
1

2
|a||w|2

)
e− 1

4 |a|(|z|2+|w|2)

= Ln−1
j

(
1

2
|a|

(
|z|2 + |w|2

))
e− 1

4 |a|(|z|2+|w|2) j = 0, 1, 2, . . .

where n = 2k + 2l.

123



Gelfand pairs and spherical means...

Proof We use the generating function of the Laguerre polynomials of type α > −1,

∞∑
k=0

Lα
k (x)rk = (1 − r)−α−1e− r

1−r x |r | < 1.

Hence for x ≥ 0,

∞∑
k=0

Lα
k (x)e− x

2 rk = (1 − r)−α−1e
− 1

2

(
1+r
1−r

)
x |r | < 1,

since 2k + 2l = 2n, for x, y ≥ 0,
⎛
⎝ ∞∑

p=0

L2k−1
p (x)e− x

2 r p

⎞
⎠

⎛
⎝ ∞∑

q=0

L2l−1
q (y)e− y

2 rq

⎞
⎠ = (1 − r)−2k−2l e

− 1
2

(
1+r
1−r

)
(x+y)

= (1 − r)−ne
− 1

2

(
1+r
1−r

)
(x+y)

=
∞∑
j=0

Ln−1
j (x + y)e− x+y

2 r j

Since the power series expansion is unique, by comparing the coefficients we get,
∑

p+q= j

L2k−1
p (x)L2l−1

q (y)e− x+y
2 = Ln−1

j (x + y)e− x+y
2 .

The lemma will follow by taking x = 1
2 |a||z|2 and y = 1

2 |a||w|2. ��
Since

ear (z, w, t) = ei〈a,t〉Ln−1
r

(
1

2
|a|(|z|2 + |w|2)

)
e− 1

4 |a|(|z|2+|w|2)

using the Lemma 3.1 we can write,

ear (z, w, t) =
∑

p+q=r

eap,q(z, w, t) for r = 0, 1, 2, . . . (4)

Hence from (3) we get the following

Proposition 3.1 If f ∈ L2(N ) we have

f (z, w, t) =
∫

R3\{0}

∑
p,q

f ∗ eap,q(z, w, t)|a|n da

where the above expansion converges in L2(N ).

When f is a Schwartz class function on N ,

f ∗ eap,q(z, w, t) = ei〈a,t〉 f a ×|a| ϕ|a|
p,q(z, w).

The functions ϕ
|a|
p,q satisfy the orthogonality relation

ϕ|a|
p,q ×|a| ϕ|a|

r,s (z, w) =
∫

C2k×C2l

ϕ|a|
p,q(z − u, w − v)ϕ|a|

r,s (u, v)e
i |a|
2 Im(z·u+w·v) du dv

=
∫

C2k×C2l

(
ϕ|a|,2k
p (z − u)ϕ|a|,2l

q (w − v)ϕ|a|,2k
r (u)ϕ|a|,2l

s (v)
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e
i |a|
2 Im(z·u+w·v)

)
du dv

= ϕ|a|,2k
p ×|a| ϕ|a|,2k

r (z) ϕ|a|,2l
q ×|a| ϕ|a|,2l

s (w)

= (2π)n

|a|n δp,r δq,s ϕ|a|
p,q(z, w)

which follows from the the orthogonality property of the Lagurre functions

ϕ
λ,d
i ×λ ϕ

λ,d
j = (2π)d

λd
δi jϕ

λ,d
i

As a consequence of the above orthogonality property of ϕ
|a|
p,q , we see that the operator

Pp,q : f 
→
∫

R3\{0}
f ∗ eap,q(z, w, t)|a|n da

are projection operators.
Our aim is to write the spectral projection operator Pp,q as a convolution operator and prove its L p bound-

edness. To write this operator as a convolution operator, we define the kernel,

Pp,q(z, w, t) =
∫

R3\{0}
eap,q(z, w, t) |a|n da

=
∫

R3\{0}
e−i〈a,t〉 ϕ|a|

p,q(z, w)|a|n da.

Since ϕ
|a|
p,q(z, w) = L2k−1

p

( |a||z|2
2

)
L2l−1
q

( |a||w|2
2

)
e− |a|

4

(|z|2+|w|2), the kernel Pp,q(z, w, t) is a linear combina-

tion of functions of the form

Pi, j
p,q(z, w, t) = |z|2i |w|2 j

∫

R3\{0}
e−i〈a,t〉 e− |a|

4 (|z|2+|w|2) |a|n+i+ j da,

i = 1, 2, . . . , p and j = 1, 2, . . . , q. A simple change of variables shows that

Pi. j
p,q(sz, sw, , s2t) = s−(2n+6)P j

p,q(z, w, t),

which is the required homogeneity for singular integral operators on N = C
n ⊕ R

3

Since Pi, j
p,q(z, w, t) is radial in z and w, we can write

Pi, j
p,q(z, w, t) = c|z|2i |w|2 j

∫ ∞

0

J 1
2
(λ|t |)

(λ|t |) 1
2

e− λ
4

(|z|2+|w|2)λn+i+ j+2 dλ,

where c is a constant. We prove that Pp,q(z, w, t) is a Calderón-Zygmund kernel by showing that each

P j
p,q(z, w, t) is. Since P j

p,q(z, w, t) is homogeneous of degree −Q = −2n − 6 and belongs to C∞(N \ {0}), by
the Lemma 2.2 in [10], the required cancellation condition will be obtained from the following lemma.

Lemma 3.2 For i = 1, 2, . . . , p and j = 1, 2, . . . , q,

∫

C2k

∫

C2l

Pi, j
p,q(z, w, 1) dzdw = 0.
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Proof We start with the integral

I (τ ) =
∫ ∞

0

J 1
2
(λ)

λ
1
2

e−τλ λ2 dλ, τ > 0. (5)

Then for any t ∈ R
3 such that |t | = 1, it is easy to see that (up to a constant)

I (τ ) =
∫

R3

e−i〈x,t〉 e−τ |x | dx .

The above equals the Poisson kernel,

c
τ

(1 + τ 2)2

for some constant c.
Now,

∫ ∞

0

J 1
2
(λ)

λ
1
2

e−τλ λn+i+ j+2 dλ = dn+i+ j

dτ n+i+ j (I (τ ))

= I (n+i+ j)(τ ).

Hence, to prove the lemma, we need to show that

∫

C2k

∫

C2l

|z|2i |w|2 j I (n+i+ j)
( |z|2 + |w|2

2

)
dz dw = 0, j = 0, 1, 2, . . . , k.

Since the integrand is radial in z and w, this reduces to showing that

∞∫

0

∞∫

0

I (n+i+ j)
(
r2 + s2

4

)
r4k+2i−1s4l+2 j−1 dr ds = 0.

By taking r = ρ cos θ, s = ρ sin θ , ρ > 0 and 0 ≤ θ ≤ π
2 , we obtain,

∞∫

0

∞∫

0

I (n+i+ j)
(
r2 + s2

4

)
r4k+2i−1s4l+2 j−1 dr ds

=
⎛
⎜⎝

π
2∫

0

cos4k+2i−1(θ) sin4l+2 j−1(θ) dθ

⎞
⎟⎠

×
⎛
⎝

∞∫

0

I (n+i+ j)
(

ρ2

4

)
ρ4k+4l+2i+2 j−2dρ

⎞
⎠

= 24k+4l+2i+2 j−2

⎛
⎜⎝

π
2∫

0

cos4k+2i−1(θ) sin4l+2 j−1(θ) dθ

⎞
⎟⎠

×
⎛
⎝

∞∫

0

I (n+i+ j) (ρ) ρn+i+ j−1dρ

⎞
⎠
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Now, writing

�(ρ) = 1

(1 + ρ2)2
,

we get,

I (n+i+ j)(ρ) = ρ�(n+i+ j)(ρ) + (n + i + j)�(n+i+ j−1)(ρ).

Hence

∞∫

0

I (n+i+ j)(ρ) ρn+i+ j−1 dρ =
∫ ∞

0
�(n+i+ j)(ρ) ρn+i+ j dρ

+ (n + i + j)
∫ ∞

0
�(n+i+ j−1)(ρ) ρn+i+ j−1 dρ

= lim
ρ→∞ ρn+i+ j�(n+ j−1)(ρ)

which is easily verified to be zero. This proves the lemma. ��
Since the kernel is radial in t , it follows from the Lemma 3.2, that

∫

Ck

∫

Cl

∫

S2

Pi, j
p,q(z, w, t) dz dw dσ(t) = 0, j = 0, 1, 2, . . . , p + q.

where σ is the normalised surface measure on the unit sphere inR3. We need the following well-known theorem.

Theorem 3.1 Let N be a connected, simply connected H-type group. Let K ∈ C∞(G \ {0}) be a kernel which
is homogeneous of degree −Q. Assume that K satisfies the cancellation condition

∫

a<|(z,t)|<b

K (z, t) dzdt = 0,∀ 0 < a < b < ∞.

Then the singular integral operator

f 
→ f ∗ K

is bounded on L2(N ).

Proof This is a special case of Theorem 1 in [12, p. 494]. ��
The next theorem says that for the above operators, the L2-boundedness imply the L p-boundedness.

Theorem 3.2 Let N be an H-type group and K ∈ C∞(N \{0}) be a kernel that satisfy the cancellation condition
and is homogeneous of degree −Q. If the operator f 
→ f ∗ K is bounded on L2(N ), then it is bounded on
L p(N ) for 1 < p < ∞.

Proof Follows from Theorem 5.1 of [13]. ��
From Theorem 3.1 and Theorem 3.2, we obtain the following result.

Theorem 3.3 For each (p.q) the spectral projection operator

Pp,q : f 
→
∫

R3\{0}
f ∗ eap,q(z, w, t)|a|n da

is a bounded operator on Lr (N ) for 1 < r < ∞.

Next we show the Abel summability of the spectral decomposition for f ∈ L p(N )
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Theorem 3.4 For 2 ≤ p < ∞ we have the Abel summability

lim
s→1

∞∑
d=0

sd
∑

p+q=d

∫

R3\{0}
f ∗ eap,q(z, w, t)|a|n da = f (z, w, t)

Proof From Theorem 3.2 in [10] we have, for 2 ≤ p < ∞ and f ∈ L p(N ),

lim
s→1

∞∑
d=0

sd
∫

Rm

f ∗ eak (z, t) |a|n da = f (z, t)

in the L p norm. Then the result follows from (4). ��

4 Spherical means and injectivity

Recall that U = Sp(k) × Sp(l). An orbit of U is of the form Sr × Ss , where Sr is the sphere of radius r in C
2k

and Ss is the sphere of radius s in C2l . Let μr,s be the normalized surface measure on the product of Sr and Ss .
If f is of the form f (z, w, t) = ei<a,t>g(z)h(w), for (z, w, t) ∈ N then

f ∗ μr,s(z, w, t) =
∫

Ck

∫

Cl

f
(
(z, w, t)(ξ, η, 0)−1

)
dμr,s(ξ, η)

=
∫

Ck

∫

Cl

f

(
z − ξ,w − η, t − 1

2
[z, ξ ] − 1

2
[w, η]

)
dμr,s(ξ, η)

= c
∫

Ck

∫

Cl

g(z − ξ)h(w − η)ei〈a,t− 1
2 [z,ξ ]− 1

2 [w,η]〉 dμr (ξ) dμs(η)

= c ei〈a,t〉
∫

Ck

g(z − ξ)e−i〈a, 12 [z,ξ ]〉 dμr (ξ)

×
∫

Cl

h(w − η)e−i〈a, 12 [w,η]〉 dμs(η)

= c ei〈a,t〉 (
g ×|a| μr

)
(z)

(
h ×|a| μs

)
(w)

Since (see [2, Proposition 5.1])

ϕ
|a|
k ×|a| μr (z) = k!(n − 1)!

(k + n − 1)!ϕ
|a|
k (r)ϕ|a|

k (z)

we obtain,

eap,q ∗ μr,s(z, w, t) = eap,q(r, s, 0)e
a
p,q(z, w, t) (6)

We need the following result.

Theorem 4.1 Let f ∈ L p(Rm) and support of f̂ (distributional Fourier transform of f ) is contained in a C1-
manifold of dimension d, 0 < d < m. Then f vanishes identically provided 1 ≤ p ≤ 2m

d . If d = 0, f vanishes
identically provided 1 ≤ p < ∞.

Proof When the support is a sphere, this follows from [2] (see Lemma 2.2 and Theorem 2.2 there). For the
general case see [14] (Theorem 1). ��
Theorem 4.2 Let f ∈ L p(N ), 1 ≤ p ≤ 3. If f ∗ μr,s = 0 then f ≡ 0.
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Proof Let f ∈ L p(N ), 1 ≤ p ≤ 3 and assume that f ∗ μr,s vanishes identically. Convolving f with a smooth
approximate identity, we may assume that f ∈ L p for 2 ≤ p ≤ 3. From (6), the spectral decomposition of
f ∗ μr,s is given by

f ∗ μr,s(z, w, t) =
∞∑

p,q=0

∫

R3\{0}
c eap,q(r, s, 0) f ∗ eap,q(z, w, t) |a|n da.

If f ∗ μr,s(z, w, t) = 0 for all (z, w, t), by Theorem 3.4,

lim
u→1−

∞∑
d=0

ud
∑

p+q=d

∫

R3−{0}
eap,q(r, s, 0) f ∗ eap,q(z, w, t) |a|n da = 0

where the convergence is in L p(N ). Applying the (p, q)-th spectral projection operatorPp,q and using Theorem
3.3 we obtain that, for all (z, w, t) ∈ N and for all p, q = 1, 2, . . .,

∫

R3\{0}
ϕ|a|
p (r)ϕ|a|

q (s) f a ×|a| ϕ|a|
p,q(z, w) e−i〈a,t〉|a|n da = 0.

Arguing as in [2, p.276] (also see [4, pp.257-258]), we obtain that, for almost all (z, w) ∈ C
k × C

l , the support
of f a ×|a| ϕ

|a|
p,q(z, w)|a|n , the distributional Fourier transform of Pp,q f (z, w, ·), is contained in the zero set of

a 
→ L2k−1
p ( 12 |a|r2)L2l−1

p ( 12 |a|s2), which is a finite union of spheres in R
m . But this implies, by Theorem 4.1,

that Pp,q f (z, w, t) is zero as Pp,q f ∈ L p for 1 ≤ p ≤ 3. This completes the proof. ��
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