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Abstract Let R be a prime ring with char(R) is not equal to 2 and (w1, ..., w,) be a noncentral multilinear
polynomial over the extended centroid C of R. If Fj, F> and F3 are generalized derivations on R such that
F1(F3(£%) = F>(&§)F3(&) forall € = (w1, ..., wn), @1, ..., w, € R, then we describe all possible forms of
generalized derivations Fp, F> and F3.
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Utumi quotient ring
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1 Introduction

Let R be an associative ring. A mapping ¢ : R — R is said to be a derivation on R if

C(uy +uz) = C(uy) + §(u2), S(uiuz) = C(uiuz + u1(uz),

for all uy, u» € R. The commutator of u1 and u; is denoted by [u1, us] = uuy — upu; for uy, up € R, which
is called the Lie commutator of # and u;. For fix a € R, define a mapping g, : R — R by g,(u) = [a, u] for
all u € R. We can easily prove that g, is a derivation on R and usually it is called an inner derivation on R. A
mapping ¢ : R — R is said to be a generalized derivation if there exists a derivation g on R such that

C(uy +uz) = ¢(ur) + ¢ (u2), §(uiuz) = ¢(uur +u1g(u2),

forall uy, up € R (for more details see [4]). Let 51, 57 be fixed elements in R and ¢, s,) : R — R be a mapping
defined by (s, .5,) () = s1u+us; forall u € R. Here, we can easily prove that £, s,) is a generalized derivation
on R and it is called a generalized inner derivation on R.
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A mapping ¢ : R — R is called homomorphism and anti-homomorphism if

C(ur +uz) = ¢(ur) + ¢ (u2), C(uiuz) = (1) (uz)

and

C(ur +uz) = ¢(ur) + ¢(u2), C(uiuz) = &(u2)¢(uy),

for all u1, uy € R respectively. A mapping ¢ : R — R is called Jordan homomorphism if

Cur 4+ u2) = ¢(ur) + ¢ (u2), CW?®) = ¢(u)?,

forall u, uy, up € R. We notice that every homomorphism and anti-homomorphism is a Jordan homomorphism
but the converse is not true in general. The following example justify our observation.

Example 1.1 Suppose that * is an involution on aring R and S = R @ R is a ring with the properties #t1zt = 0,
for all 1,1, € R, where z € Z(R). We define a function ¢ : § — S such that £(t1, 1) = (zt1,15), for all
11, t» € R.Itis clear that ¢ is a Jordan homomorphism on § but not a homomorphism on S.

In 1956, Herstein [20] proved that every Jordan homomorphism from a ring R onto a prime ring R’ with
char(R) # 2,3 is either a homomorphism or anti-homomorphism. Further, in 1957 Smiley [28] extended
the Herstein’s result [20] and proved that the statement of the Herstein’s result is still true without taking the
characteristic is not equal to 3.

In the literature, several mathematicians describe the structure of prime ring R with the additive mappings
which acts as a homomorphism or anti-homomorphism or Jordan homomorphism on Lie ideals, Jordan ideals
or some appropriate subsets of R. In this line of investigation, Bell and Kappe [6] proved the first result in the
context of derivation. More precisely, they proved that there is no nonzero derivation on prime ring R which acts
as a homomorphism or anti-homomorphism on nonzero right ideal of R. Further, above [6] result was extended
by Wang and You [33] to Lie ideal case under suitable restriction.

Recently, generalized derivation which behaves as a Jordan homomorphism, Lie homomorphism, homomor-
phism, anti-homomorphism were discuss in [11,12,16-18,29-31], where further references can be found.

On the other hand, Posner [27] gave a remarkable results concerning centralizing mapping on prime ring
R. More specifically, Posner [27] proved that if d is a nonzero centralizing derivation on prime ring R, then R
must be commutative. Further, Posner’s [27] result was extended by Bresar [5]. Later on many mathematicians
studied the structure of prime rings as well as structure of additive mappings which behaves as a commuting or
centralizing mappings. In this line of investigation, the readers are refer to ( [1,2,29,32], where further references
can be found).

Carini et al. in [8] considered a noncommutative prime ring R of characteristic different from 2 with Utumi
quotient ring U and extended centroid C, 7 (w1, . . . , ,) a multilinear polynomial over C which is not an identity
for R, F and G two nonzero generalized derivations of R. If F(§)G(§) = Oforallé € n(R) = {n (w1, ..., wy) |
w; € R}, then they gave the complete possible forms of F' and G.

Throughout the following U denotes the Utumi quotient ring of prime ring R, C denotes the center of U
which is called the extended centroid of R and (w1, . . ., wy) is noncentral multilinear polynomial over C. More
details about U and C readers can found in [3] and [9].

Motivated by above cited results, our result is the following.

2 Results

Theorem 2.1 Suppose that R is a prime ring of characteristic not equal to 2 and G, F, H are three generalized
derivations on R. If

G(H(E%) = F(£)H (§)

forallé¢ =n(wy,...,wn), W1, ...,w, € R, then one of the following holds:

(i) H=0;
(ii) there exist o € C, w1 € U such that G(r) = F(r) = wir and H(r) = or forallr € R;
(iii) there exist wi, wo, w3 € U, 0 € C suchthat H(r) = rwi, F(r) = war and G(r) = or + war + rws with
wiw3 = —owq;
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(iv) there exist wi, wy, w3 € U such that H(r) = wir, F(r) = rwy and G(r) = war for all r € R with
w3w] = ww; =a € C;

(v) (w1, ..., wn)?% is central valued on R and one of the following holds:
(a) there exist 0 # o € C, wy, wy € U such that H(r) = or, F(r) = wir and G(r) = [wa, r] + rwy for
allr € R;

(b) there existwi, wy, w3, ws € U, o € C suchthat G(r) = wi3r+rwyg and either H(r) = rwy, F(r) = war
with w3wy + wiwg = wawy or H(r) = wyr, F(r) =rwy forallr € R with waw) + wiws = waw) =
aeC;

(c) there exist wi, wy, w3, wqg € U such that G(r) = w3r + rwg, H(r) = wir +rwy, F = 0 with
w3(wi + wa) + (w1 + w2)wy = 0.

(vi) there exist wi, wa, w3, wa € U such that G(r) = w3r +rwyg, H(r) = wir + rwo, F = 0 and R satisfies
S4;
(vii) G =0and F =0,
(viii) there exist o1, 07,03 € C, wi, wy, w3, wq € U such that G(r) = w3r +rwyg, H(r) = wir +rwy, F =0
with wg + 03wy = 01, w3 — o3w] = 03 and wiw + oyw; = —(worw4 + crwy) € C.

In particular for G = I, the identity mapping and F = H in the Theorem 2.1, we get the following result.

Corollary 2.2 Suppose that R is a prime ring of characteristic not equal to 2 and H is a generalized derivation
on R.IFH(E?) = HE) forall§ = n(wy,...,wn), ®1, ..., 0, € R, then either H = 0 or H(t) = t for all
teR

Corollary 2.3 ( [8], Main theorem) By taking G = 0 in Theorem 2.1, we get the Carini, De Filippis and Gsudo
result.

In particular for H = I, the identity mapping in Theorem 2.1, we get the following.

Corollary 2.4 Suppose that R is a prime ring of characteristic not equal to2 and G, F are generalized derivations
on R. IfG(éz) = F(&)¢ forall¢ = n(wy,...,wn), ®1,...,w, € R, then one of the following holds:

(i) G=0and F =0;
(ii) there exists wi € U with F(t) = G(t) = wit forallt € R;
(iii) there exist wy, wy € U with F(t) = wit, G(t) = [wa, t]+twy forallt € R and 7w (w, ...,a)n)2 is central
valued on R;
(iv) there exist wy, wy € U with G(t) = w1t + twy, F = 0 and R satisfies sa.

Since difference of two generalized derivations is a generalized derivation on ring R. By substituting G = 0 and
F = F — I, where [ is the identity mapping on R in Theorem 2.1, we have the following.

Corollary 2.5 Suppose that R is a prime ring of characteristic not equal to 2 and H # 0, F are generalized
derivations on R. If

F@E)H(E) —EH(E) =0,

forallé¢ =n(wy,...,wn), W1, ...,w, € R, then one of the following holds:

(i) F = I, the identity mapping;
(ii) there exist wy, wy € U with F(t) = t(w; 4+ 1), H(t) = wat forallt € R with wiw, = 0;
(iii) thereexistwi, wy € Uwith F(t) = (w1+1)t, H(t) = twa forallt € Rwithwiw; = 0andrn(wy, ..., wp)?
is central valued on R.

3 Preliminaries

Let & and § be two derivations on R. We denote by 7" (w1, ..., w,)the polynomials obtained from 7 (wy, . .., wy,)
replacing each coefficients o, with /(o). Then we have

h(n(w1,...,wn)):nh(wl,...,a)n)—i—Zn(a)],...,h(a)i),...,wn)
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and

hs(n(an?’wﬂ)) = nha(a)lr""wl’l)+Znh(w19""S(wi)v"'3w}’l)
+ > w2 @), o)+ Y (@1 k@), . )
i i

+ > (@1 h@), L 8(@)). L o). (1)
i#]

The following results are frequently used to prove our theorem. Let R be a prime ring and [ be a two sided ideal
of R.

Remark 3.1 By ([9]), R, I and U satisfy the same generalized polynomial identities with coefficients in U'.

Remark 3.2 By ([24]), R, I and U satisfy the same differential identities.

4 G, F and H are inner maps

This section deals the case when G, F and H all are generalized inner derivations. Suppose G (x) = psx + xps,
F(x) = p1x + xpy and H(x) = p3x + xpg for all x € R, where p1, p2, p3, pa, p5, pe € U. From the

hypothesis G (H (7 (£)?)) = F((£))H (7 (£)) we get the expression ps <p3X2 +X2p4) + (p3X2+X2p4)p6 =

(p1X+Xp2) (p3X+Xp4) thatis a1X2+a2X2a3+a4X2a5—a6Xa4X—Xa7X—a6X2a3—XagXa3+X2a9 =0

forall X = m(wy, ..., w,), wherea; = psp3, ax = ps, a3 = p4, a4 = p3, as = pe, g = p1,a7 = p2p3, dg =
P2, 49 = D4P6.

Proposition 4.1 Suppose R is a prime ring with characteristic is not equal to 2. If H, G, F are three generalized
inner derivations on R such that

G(HE™) = FEH®),
forallé =n(wy,...,wn), 01, ...,w, € R. Then one of the following holds:

(i) H=0;,
(ii) there existo € C, wy € U with G(r) = F(r) = wir and H(r) = or forallr € R;
(iii) there exist wi, wy, w3 € U, 0 € C with H(r) = rwy, F(r) = war and G(r) = or + wor + rws with
wiw3 = —owp,
(iv) there exist wi, wy, w3 € U with H(r) = wyr, F(r) = rwy and G(r) = wsr for all r € R with
w3w] = ww; =«a € C;

(v) n(wy, ..., wy)? is central valued on R and one of the following holds:
(a) there exist 0 # o € C, wy,wy € U with H(r) = or, F(r) = wir and G(r) = [wa, r] + rwy for all
r € R;

(b) there existwi, wy, w3, ws € U, o € C suchthat G(r) = wi3r+rwg and either H(r) = rwy, F(r) = war
with wiw] + wiwg = wowy or H(r) = wir, F(r) = rwy with waw; + wiwg = wow =« € C;
(c) there exist wi, wy, w3, ws € U such that G(r) = w3r +rwyg, H(r) = wir + rwy, F = 0 with
w3 (w1 + w2) + (w1 + w2)wy = 0.
(vi) there exist wi, wa, w3, wg € U such that G(r) = w3r +rwyg, H(r) = wir + rwa, F = 0 and R satisfies
sS4
(vii) G =0and F = 0,
(viii) there exist o1, 02,03 € C, wi, wa, w3, wg € U such that G(r) = w3r +rwy, Hr) = wir +rwy, F =0
with wg + o3wy = o1, w3 — o3w] = 03 and wiw| + ojw; = —(wrwyq + crwy) € C.

We need the following results to prove the above proposition.

Lemmad4.2 [15, Lemma 1] Let m > 2 and K be an infinite field. Let Ay, Az, ..., A, are non scalar matrices
in My, (K) then there exists an invertible matrix N € M, (K) such that all matrices NAIN~Y, NA,N~L, ..,
N A, N~Y have all nonzero entries.
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Proposition 4.3 Let R = M,,(K) be the ring of all m x m matrices over the field K with characteristic not
equal to2 and m > 2. Let q1, q2, 43, 44, 45, 46, 47, 48, 99 € R such that g1 X*> + q2 X>q3 + qa X>qs5 — g6 X qa X —
Xq71X — q6X%q3 — XqsXq3 + X?qo =0 forall X = nt(wy, ..., w,) € f(R), then one of the following holds:

(i) qa, q3 are central;
(ii) qa, qg are central;
(iii) qe, q3 are central;
(iv) qe, qg are central.

Proof We shall prove this by contradiction. Suppose that g4 ¢ Z(R) and g ¢ Z(R). By the hypothesis, R
satisfies the generalized polynomial identity

@1 X? + @ X’q3 +qaXqs — qe XX — Xq1X — g6 X°q3
—XqsXq3 + X%qo =0, 2)

for all X € w(R™). We have the following cases.

Case-I: If K is infinite, then by Lemma 4.2 there exists a K -automorphism ¢ of M,, (K) such that qz" = ¢(qa),
45 = $(qe) have all nonzero entries. Clearly g4, q¢, 91 = ¢(q1), ¢5 = ¢(q2), 5 = #(g3), 45 = $(g5),
q7 = ¢(q7), g5 = $(gs) and g = $(g9) must satisfy the relation (2). Now we can replace q1, 92, 43, 44, 45, g6
97, 98- 99 With g1, 45, 45, q4. 45, 44 45 q. g4 respectively.

Let e;; be the matrix such that (i, j)-entry is 1 and remaining other entries are zero. It is given X =

m(wi, ..., wy) is not central, by [24] (see also [25]), there exist wy, ..., w, € M, (K) and y € K\{0} such that
X =n(wi,...,w,) = yes, with s £ t. Moreover, since the set {X = 7(w1,...,w,) : @1, ..., w0, € My (K)}
is invariant under the action of all K-automorphisms of M,,(K), then i # j there exist w1, ..., w, € My (K)
such that X = 7 (wy, ..., w,) = ¢;;. Hence by (2) we have

—qeeijqaeij — eijqieij — eijqgeijqs = 0. 3)

Left multiplying above relation by e;;, we obtain e;jgseijqaei; = 0. It implies that ge;q4;jei; = 0. This implies
that either ge;; = 0 or g4;; = 0, a contradiction and thus we get either g4 is central or g 1s central.

In the same fashion, we can show that either g3 is central or gg is central. Combining these two results, we
get our conclusions.

Case-II: Let K be a finite. Suppose F is an infinite extension of K. Suppose that R = M,,(F) = R ®x F.
Note that 7 (wy, ..., @,) is central valued on R if and only if it is central valued on R. Suppose Q(wy, ..., wy)
is the generalized polynomial such that

Q1 ..., o) = (1 X* + 2 X?q3 + qaX?q5 — g6 XqaX — Xq7X
—q6X%q3 — Xq3Xq3 + X*qo

is a GPI for R.
Since Q(wy, ..., wy,) is amultihomogeneous of multidegree (2, . . ., 2) in the indeterminates wy, . . ., w,. By
complete linearization of Q(wy, . . ., w,) we get a multilinear generalized polynomial @ (wy, . . ., Wy, X1, . .., Xy)

in 2n indeterminates, moreover

O, ..., W0, @1, ...,0;) =2"Qwy, ..., w,).
Itis c_lear that the multilinear polynomial ® (w1, ..., o, X1, ..., X,) is a generalized polyrgmial identity for R
and R. By assumption char(R) # 2 we obtain Q(wy, ..., ;) = 0 for all w{,...,w, € R and then we get a
contradiction from Case-I. Thus we get g4 € C orgs € C.
Similarly, we can prove that either g3 is central or gg is central. O

Lemma 4.4 Let R be a prime ring of characteristic not equal to 2. If q1, q2, 43, q4, 45, 46, 97, 48, 99 € R such
that 1 X* + q2X*q3 + q4X*qs — q6XqsX — Xq7X — q6X>q3 — XqsXq3 + X°qo = 0 for all X = (),
& =(w1,...,w,) € R". Then one of the following holds:

(i) qa, q3 are central;
(ii) qa, qg are central;
(iii) qe, q3 are central;
(iv) qe, qg are central.
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Proof First, we will show that one of g4 or g¢ is central. On contrary suppose that both g4 and gg both are not
central. By hypothesis, we have

h(wy,...,w,) = qin(wy, ... ,a)n)2 + qpr(w, ..., a)n)2Q3
+qam (@1, ..., 0)2q5 — e (@1, . . ., ©)GAT(D1, - . ., D)
— (@1, ..., 0@ (@1, ..., 0p) — g6 (@1, . .., Wp)*q3
—T (@1, ... OGSO, - ., 00)G3 + (@1, - .., @) g0,
for all w1,...,w, € R. By Remark 3.1, R and U satisfy same generalized polynomial identity (GPI). Then
U satisfies h(wy, ..., w,) = 0. Let h(wy, ..., ®,) be a trivial GPI for U, T be the free product of U and
C{wy, ..., w,},thefree C-algebrain non commuting indeterminates wy, . .., o, thatisT = UxcC{wy, ..., w,}.

Then, h(wy, ...,w,) =0in T = U *x¢c Clw, ..., w,}. The term

—q6T (@1, .. ., Op)GAT (01, ..., Wp) — (DL, ..., Wp)GIT (D1, .. ., W)
(w1, ..., 0p)g8T(@1, ..., ©n)q3
appears nontrivially in h(wy, ..., ®;,). Since g¢ ¢ C, then we get
gem(wi, ..., wp)qaw (1, ..., wy) = 07,

gives a contradiction since neither g¢ € C nor g4 € C. Thus we get either g4 € C or g¢ € C.
Let g4 € C. Suppose that g3 ¢ C and gg ¢ C. Since g4 € C, U satisfies

Q1, ..., wy) = (q1 — qoqa)T(@1, ..., wx)> + @r(wi, ..., wn)%q3
—7'[((1)1, RN wn)q777(wla cees U)n) - CI67T(601, cee wn)2q3
—7 (@1, -+ O)GET(@L, - -+ 0p)G3 + (@1, - -, @) (@9 + qags).

This is again a trivial GPI. Then Q(wy, ..., ®,;) = Or and the term

n’(a)l, ...,a)n)qgn'(a)l, ...,a)n)q3

appears nontrivially in Q(wy, ..., ®,). This gives that either g3 is central or gg is central, a contradiction. Thus
we conclude that either g4 € C,q3 € Corgs € C,qg € C.

In the same fashion, we can prove that either gs € C, g3 € C orgg € C,qg € C.

Suppose h(wy, ..., w,) is a non trivial GPI for U. If C is infinite field, we have h(wy, ..., w,) = 0 for all
o1, ..., wop € U®c C, where C denotes the algebraic closure of C. By [13, Theorems 2.5 and 3.5], U ®c¢ C and
U both are centrally closed and prime, then we replace R by U or U ®¢ C according to C finite or infinite. Then
h(wi,...,w,) =0forall wy,...,w, € R and R is centrally closed over C. By Martindale’s theorem [26], R is
then a primitive ring with nonzero socle soc(R) and with C as its associated division ring. Then, by Jacobson’s
theorem [21, p.75], R is isomorphic to a dense ring of linear transformations of a vector space V over C.

If the dimension of V is finite, that is, dim¢c V = m. Then R = M,,(C) (by density of R). By our hypothesis
w(wi, ..., w,) is not central valued on R it implies that R must be noncommutative. Then we can assume that
m > 2. By Proposition 4.3, it implies that either g4 € C, g3 € Corgs € C,q3 € Corge € C,q3 € C or
ge € C,q3 € C.

Next we suppose that V is infinite dimensional over C. By Martindale’s theorem [26, Theorem 3], for any
€2 = ¢ € soc(R) we have eRe = M, (C) with t = dim¢ Ve. We shall prove this case by contradiction. Suppose
that none of g4, g¢, g3, gg are not in the center C. Then there exist uy, uy, u3, us € soc(R) with [gs4, u1] # 0,
[q3, u3] # 0, [gs, ua] # 0 and [gg, uo] # 0. By Litoff’s Theorem [14], there exists an element e € soc(R) with
e =eand qaut, U144, qelt2, U2qe, q3U3, U3q3, qsi4, Uaqy € eRe. Since R satisfies generalized identity

e{qln(ea)le, e, ewne)2 + ¢ (ewse, . .., ew,,e)2q3
2
+qam(ewse, ..., ew,e)°qs — qet(ewie, ..., ew,e)qam(ewie, ..., ewye)
—m(ewie, ..., ewze)qim(ewie, ..., ewye) — gsm(ewie, .. ., ew,le)2q3
—n(ewie, ..., ew,e)qsm(ewte, ..., ew,e)q3 + m(ewre, ..., ea)ne)2q9}e,
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the subring e Re satisfies

eqien(wi, ..., a)n)2 + eqren(wy, ..., a)n)zque
+eqaen(wy, ..., a)n)zeqse —eqeen(wy, ..., wp)eqaent (W], ..., wy)
—n(wi, ...,wyeqren(wy, ..., w,) — eqeen(wy, ..., a)n)zeq3e
—n(wy,...,wp)eqgen (Wi, ..., w,)eqze + w(wi, ..., a)n)zque.

Then either egse or egge and either egze or egge are central elements of e Re (by the above finite dimensional
case). Then we get either qau1 = eqaeu; = ujeqae = u1qa Or qeUs = eqeeur = ureqee = Urqe and either
q3uz = eqieus = uzeqie = uiq3 Or gl = eqgels = useqge = u4qg, a contradiction. O

Lemma 4.5 [12, Lemma 2.9] Let R be a prime ring of characteristic not equal to 2, q1, q2, q3,q4 € U and

p(wi, ..., w,) be any polynomial over C which is not identity for R. If g1 p(&§) + p({)q2 + q3p(E)gs = O for
all & € R" then one of the following conditions holds:

(i) 92,94 € C and q1 + q2 + q3g4 = 0,
(ii)) q1,q3 € C and q1 + q2 + q3g4 = 0,
(iii) q1 + q2 + q3q4 = 0 and p(wy, ..., wy,) is central valued on R.

Lemma 4.6 Let R be a prime ring of characteristic is not equal to 2 and q1, g2, q3,qs € R. If qimw(£)> —
T(E)qam (&) + g3 (£)?qs = 0 for all E = (w1, ..., w,) € R", then one of the following holds:

(i) ga € Candq1 +q3qgs = q» = a € C;
(ii) q1,93 € Cand q1 + q3q4 = @2 = o € C;
(iii) 7w(wy, ..., wy)? is central valued on R and q1+q3gs =gy =a € C.

Proof By using similar argument as we have used in Lemma 4.4, we get g» € C. Then our hypothesis gives that

(@1 — )7 (&) + q37(§)°qs = 0
forall ¢ = (wy,...,w,) € R". From Lemma 4.5, we have one of the following.

e g4 € C and q1 — g2 + g3q4 = 0, which implies that g1 + g3g4 = g2 = o € C. In this case, we get gz, g4 € C
and g1 + g3q4 = q» = «a € C for some o € C, which is conclusion (i);
e qi—q2€C,q3 € Candq) —q2 + g3qa = 0. Thus we get g1, g2, g3 € C and q1 + q3q4 = g2 = « € C for
some @ € C, which is conclusion (ii);
o T(wi,..., wy)? is central valued on R and q1 + q3g4 = g2 = a € C for some o € C, which is conclusion
(iii).
O

Lemma 4.7 Let R be a prime ring of characteristic not equal to 2 and q1, q2, 93, q4, 45, 96, 47, 98 € R. If

@17(€)? + @ (§)%q3 + qam (§)%qs + w(E) g6 — w(E)qrw(§) — w(§)*qs = O forall § = (wy, ..., w,) € R",
then q7 € C.

Proof By using similar argument as we have used in Lemma 4.4, we get our conclusion. O
The following lemma is a particular case of Lemma 3 of [2].

Lemma 4.8 Let R be a noncommutative prime ring of characteristic different from 2 and q1, q2,q3 € U. If
w(&)qim(§) + n(§)2q2 — q371(5)2 =0forall§ = (wy,...,w,) € R", then one of the following holds:

(i) g g3 €Candqs —qp =q1 = € C,
(ii) (w1, ..., w,)?* is central valued on R and g3 — g>» = q1 = n € C.

Lemma 4.9 [19, Proposition 2.13] Let R be a prime ring of characteristic is not equal to 2. Suppose there exist
a,b,c,q,u,v € R such that ax + bxc + gxu + xv = 0, for all x € S = [R, R]. Then one of the following
holds:

1. R satisfies s4;

2. ¢c,q€eZ(R)yanda + bc = —(v+uq) € Z(R);
3. c,u,ve Z(R)and a + bc + qu + v =0,

4. a,b,q € Z(R)anda + bc + qu +v =0;
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5. bue Z(R)anda + qu = —(v + bc) € Z(R);
6. there exist A, 4, n € Z(R) suchthatu +nc =1 b —ng = pwanda + rqg = —(v + uc) € Z(R).

Now we are ready to prove Proposition 4.1.

Proof of Proposition 4.1: By the hypothesis, we have

pS(p?ajT(a)], "-7('()}1)2 +7T((,l)], ~"aa)n)2p4) + <p377:(a)]a '-'7wn)2
+r(wr, ..., wn)2p4)p6 = (pm(an, e @)
tr (@1 o)) (P @1, o) + @1 o)), @)
That is
Psp3 (@1, .., 00)? + psT(@1, - .., @)’ pa+ p3T(ron, ..., @) pe
+r(wi, ..., a)n)ZP4P6 =pir(wi, ..., wp) p3n(w1, ..., ©y)
(@1, ..., ) p2p3T (@1, .. ) + PLI(@L, ..., 1) Pa
+T[(Cl)], LR ] wn)p27f(wly AL ] wn)p4,
forall wy, ---, w, € R. By Lemma 4.4 we get one of the following:
1. p3, p4 are central;
2. p3, p2 are central,
3. pi1, psa are central;

4. p1, py are central.

Case-I: If p3, ps € C, then H(t) = (p3 + pa)t = At forallt € R. If A = 0, then we have conclusion (i).
Suppose that A # 0. Then equation (4) reduces to

(ps — pTE? + (&) ps — m(E)pam (§) =0
forall ¢ = (wq,...,w,) € R". Then by Lemma 4.8, we have one of the following:

e po € C,ps—p1 € Cand ps — p1 + ps = p2 =« € C, which gives ps + ps = p1 + p2. In this case we
get G(t) = (ps + pe)t and F (1) = (p1 + p2)t = (ps5 + pe)t for all t € R, which is conclusion (ii);

e ps—p1+ps=pr=a € Candn(w,..., a),,)2 is central valued on R which gives ps + pg = p1 + p2
and po € C. In this case, we get G(t) = pst + tpe = pst +t(p1 + p2 — ps) = [ps,t] + t(p1 + p2),
F(@t)=(p1+ ptforallt € Rand n(wy, ..., wy)? is central valued on R, which is conclusion ((v)(a)).

Case-II: If p3, po» € C, then H(t) = t(p3 + p4) and F(t) = (p1 + p2)t for all t € R. Then (4) reduces to

(ps — p1 = P (p3 + pa) + 7 (E)*(p3 + pa)ps = 0,
forall ¢ = (wyq,...,w,) € R". From Lemma 4.5, we have one of the following:

o (p3+ pa)pe € C, p3+ ps € Cand (p3 + pa)pe + (ps — p1 — p2)(p3 + pa) = 0. In this case, we have
H(t) = (p3 + pot, F(t) = (p1 + p2)t forallt € R. If p3 + ps = 0, then we get conclusion (i). If
p3 + pa # 0, then pe € C and ps + ps = p1 + p2. Thus we get G(t) = (ps + pe)t = (p1 + p2)t for all
t € R, which is conclusion (ii);

e ps—p1—p2 € Cand (p3+ pa)pe + (ps — p1 — p2)(p3 + pa) = (p3 + pa)(ps + ps — p1 — p2) = 0.
Thus we get ps = A + p1 + p» for some A € C. In this case, we get H(t) = t(p3 + pa), F () = (p1+ p2)t
and G (1) = pst +1pe = At + (p1 + p2)t + tpe forall 1 € R with (p3 + p4) pe = —(p3 + pa)A, which is
conclusion (iii);

e (w1, ..., wy)? is central valued on R and F(t) = (p + p2)t, H(t) = t(p3 + ps) and G(1) = pst + tpe
with ps(p3 + pa) + (p3 + p4) pe — (p1 + p2)(p3 + pa) = 0, which is conclusion ((v)(b)).

Case-III: If py, ps € C, then H(t) = (p3 + p4)t and F(t) = t(p1 + p2) forall t € R. Then (4) reduces to

ps(p3 + p)m(E)? — w(E)(p1 + p2)(p3 + pa)w(E) + (p3 + pa)w(E)*pe =0,

forall§ = (wq, ..., w,) € R". By Lemma 4.6, we have one of the following:
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e po € Cand ps(p3 + pa) + (p3 + pa)ps = (p1 + p2)(p3 + ps) = a € C for some « € C. In this case we
have H (1) = (p3+ pa)t, F(t) = 1(p1+ p2) and G(1) = (ps+ pe)t forallt € R with (ps + pe)(p3+ psa) =
(p1 + p2)(p3 + ps4) = a € C, which is conclusion (iv);

e p3+ ps € C, ps(ps + pg) € C and ps(p3 + p4) + (p3 + pa)ps = (p1 + p2)(p3 + ps) = o € C for
some o € C.If p3 + ps = 0, then we get conclusion (i). Suppose p3 + ps # O thatis H # 0. Then
(ps + pe)(p3 + p1) = (p1 + p2)(p3 + pa) = a € C, which implies that ps + pg = p1 + p2, which gives
our conclusion (ii);

e (w1, ...,wy,)" is central valued on R and ps(p3 + pa) + (p3 + pa)pe = (p1+ p2)(p3 + pa) = a € C for
some @ € C, which is conclusion ((v)(b)).

Case-IV: If p1, p» € C, then F(t) = (p1 + p2)t = at. Then (4) reduces to

pspam(E)? + ps(E)? pa + p3m(§)? pe + w(E) pape
—n(&)aps (&) — (&) aps = 0.

From Lemma 4.7, we get apsz € C.
If @ # 0, then p3 € C. Thus we have p3 € C, p1, p2 € C, which is a Case-11.
If « =0, then F = 0. Thus we get

psp3(E)? 4 ps(E) pa + p3m(€) pe + m(E) papes = O, (5)

forall € = (w1, ..., ws) € R™. If w(&)? is central valued on R, then ps(p3 + p4) + (p3 + pa) pe = 0, which is
conclusion ((v)(c)).

Now assume that 7 (& )2 for all & = (w1,...,wy) € R" is not central valued on R. Then R must be
noncommutative. Suppose R is asubset of R generated by Ry, where R, = {7 (wy, ..., a)n)2 | wi,...,w, € R}
Clearly R; is an additive subgroup of R and R, # {0}, since 7 (w1, . .., w,)? is noncentral valued on R. From
equation (5) we get

Ps5p3S + psspa + p3spe + spape = 0, (6)

for all s € Ry. By [10], we get one of the following

o Ry C Z(R);
e R satisfies 54 and char (R) = 2, except when R; contains a noncentral Lie ideal L of R.

Since 7 (wy, ..., a),,)2 is not central valued on R, the first case can not possible. Since char (R) # 2, second
case also can not occur except Ry contains a noncentral Lie ideal of R. Thus there exists Lie ideal L C Rj,
where L ;(_ Z(R). By [7, Lemma 1], there exists a noncentral two sided ideal I of R such that [/, R] € L. Then
(6) gives that

P5p3S + psspa + p3spe + spape = 0,
for all s € [R, R]. From Lemma 4.9, we get one of the following:

e R satisfies s4. In this case, we get F = 0, G(¢t) = pst + tpe, H(t) = p3t + tpa for all t € R, which is
conclusion (vi);

e p4, p3 € C and psp3 + psps = —(paps + psp3) € C. In this case, we get p1, ps € C, which is Case-III.

® D4, pe, pape € C and psp3 + psps + p3pe + pape = 0. In this case, we get p; € C, ps € C, which is
Case-IIL.

e psp3, ps, p3 € C and psp3 + pspa + p3ps + pape = 0. In this case, we get po» € C, p3 € C, which is
Case-I1.

e ps, pe € Cand (ps+ pe)p3 = —(ps+ pe)pa € C. If ps + peg = 0, then G = 0. In this case, we get G = 0
and F = 0, which is conclusion (vii). If p5 + pg # 0, then p3, ps € C. Thus we get p1, pa € C, which is
Case-III.

e i, A, n € C such that ps + nps = A, ps —np3 = w and psp3 + Ap3 = —(pape + ups) € C. We get
G(t) = pst +tpe, H(t) = p3t + tpa, F = 0, which is conclusion (viii).
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5 Proof of the Theorem 2.1

In this section, throughout we shall use the following well known results.
Remark 5.1 By (Proposition 2.5.1 [3]), we can uniquely extend every derivation d to a derivation of U.

Remark 5.2 (Kharchenko [22, Theorem 2]) Suppose that R is a prime ring, § # 0 a derivation on R. If ] is a
nonzero ideal of R satisfies the differential identity

w(wi, ..., wn, 6(w1),...,8(wy)) =0
for any wy, ..., w, € I, then either I satisfies the GPI
T(wi,...,0p, 1, ..., 1) =0
or § is U-inner i.e., for some g € U, §(t) = [q, t] and I satisfies the GPI
T(wy,...,wn g, 01],...,[q, wy]) =0.

Proof of theorem 2.1: If H = 0 then we are done. We assume H # 0. Then by [23, Theorem 3] there exist
q,b,a € U and derivations d, §, 6 on U with G(t) = gt +d(t), F(t) = bt + 6(¢) and H(t) = at + 6(¢t) for all
t € U. Then by our hypothesis we have

(qa+d@) (o1, ....00>+q0 (1, ..., 00°) +ad@ (1, ..., w7

+dO(n (w1, ..., 00)°) = b (w1, ..., oar (o1, ..., o)
+bw(wi,...,w)0@ (w1, ...,w,) + 80T (w1, ...,wp))an (w1, ..., wy)
+5(m(wy, ..., wp))0 @ (w1, ..., w,)), @)

which can be written as

(ga +d(a)) n(wy, ..., a),,)2 +q0(m(wi, ..., o)) (01, ..., wp)
+gn(wi, ..., 0)0@(W1,...,0)) +ad(@ (w1, ..., on))T (W], ..., 0

+ar(wi,...,op)d@(W]1, ..., 0y)) +dO(T (W01, ..., 0))T (W1, ..., W)

+0(T(wi, ..., op))d(@(01, ..., 0n)) +d(@(W1,...,0,))0 (@ (W1, ...,w))

4+ (wy,...,wy)d0@ (w1, ...,w,)) =br(w,...,wp)ax(wy, ..., w,)

+bw(wi, ..., w0 @ (w1, ...,wy)) + 8 (w1, ...,w,))ax(wy, ..., w,)

+o(m(wy, ..., wp))0 @ (w1, ..., wy)). 8)

If d, § and 0 all are inner derivations then from Proposition 4.1, the result follows. Suppose all §, d and 0 are not
inner derivations together. Now we need to study the following. Case 1: Let d(¢) = [c, ] for all € R, where
c € U i.e.d is inner. O

Subcase 1a: Let § be inner, say §(x) = [p, x] and 6 be an outer derivation. Putting these values in (8) we
get

(ga + [c,a]) 7 (wy, ..., a)n)2 +q0(m (w1, ...,0p))T (W1, ..., ®n)

+gn(wy, ..., w)0@ (w1, ...,0n)) +alc, T(w1,...,op) T (W1, ..., w0,
+an(wi,...,wp)lc, T(w1,...,00)] + [c, 0@ (w1, ...,0x)]7 (01, ..., ®,)
+0(m (w1, ..., o)c, m(w1, ..., 00)] + [c, T (w1, ..., 0)]0 (@ (01, ..., ®n))
+7(wi,...,op)lc, 0(m(wy,...,0p)] =ba(wy, ..., x)ax(wy, ..., w,)

+br (w1, ...,0p)0 @ (01, ...,0n) + [p, T(01,...,0p)]an (w1, ..., w,)

+[p, r(w1, ..., wy)]0 (@ (01, ..., wy)).

Since 6 is an outer derivation on U, by replacing the value of 0 (7 (w1, . . ., ®,)) from (1) and by applying Remark
5.2) U satisfies

(ga+[c,a) (i, ..., 00" +qrl (w1, ..., 007 (01, ..., o)
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g ) T(@1, iy 0T, 0n) + g (@1 )T (@1 )
i
+gm(wr, ...,a)n)Zn(a)l,...,m, .., wp) Fale, m(wr, ..., )T (01, ..., ©y)
i

+an(wy, ..., onle, T (@1, ..., o)+ [c, 7 (w1, ..., o) (@1, ..., ©y)

+c, Zn(cm,...,r}i,...,a),,)]ir(w], e, W) +n9(w1,...,wn)[c,7r(a)1, o, o))
+) T@1 i o) T (1 )]
—i—[c,n(wl,...,a)n)]ne(wl, cea,wp) F [c,rr(a)l,...,a)n)]er(a)l,...,ni,...,w”)]

1
+7T((1)],...,C()n)[C,JTe((,()],...,Ll)n)]+7T(a)],...,C()n)[C, Zn(wlv-"’nia'~'awn)]
i

=br(wi, ..., 00)arx (@1, ..., 00 +br (w1, ..., o007 (01, ..., o))

+br(wy, ...,wn)Zn(wl,...,ni,...,a)n) +[p, (w1, ..., op)]an (w1, ..., o)
i
Hp. (@i o) @1, ) + [P T (@1 0] Y T(@1 i o),
i
for all w;, n; € U. In particular U satisfies the blended component
qZTr(a)l,...,n,',...,a)n)n(wl, ce,p)
i
+qn(wi, ...,wn)Zn(wl,...,ni, cee, W)
i
+) @1 i o)le T (1 )]
i
+[c, Zn(a)l,...,ni,...,wn)]n(a)l, cee, Wp)
i
+[c,7r(a)1,...,a)n)]Zn(a)l,...,ni,...,a)n)
i
+r(wi, ..., w)lc, er(wl,..., Niy.ourp)]
i
=b7r(a)1,...,wn)2n(w1,...,ni,...,a)n)
i
+[p,n(w1,...,a),,)]Zn(wl,...,ni,...,wn),
i

for all w;, n; € U, where ; = 6(w;). By replacing ny = wj and n; = 0fori =2,3,--- ,n we get
2gX% +2X[c, X1+ 2[c, X1X = bX? + [p, X1X,
where X = 7w (wy, ..., ®,). We can write it again as
(2q +20)X? — X*2¢ = {(b+ p)X — Xp}X.

Now result follows from Proposition 4.1 by taking G(¢t) = (2q + 2¢)t — t(2¢), F(t) = (b + p)t — tp and
H(t) =t forallt € R.

Subcase 1b: Let § be outer and 6 be inner say 6(¢) = [s, t] for all + € R for some s € U. Substituting these
values in (7) we get

(qa + [c, a]) (w1, . . ., a)n)2 +yqls, n(wy, - .., wn)z] +alc, m(wy, ... ,a)n)z]
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+e, [s, T(w1, ..., 00)2]] = b (w1, . .., wp)aw (w1, .. ., o)
+bmw(wi,...,o)s, T(w1, ..., 0]+ (@ (w1, ...,wy))arx(wy, ..., w,)
+5(m(wy, ..., o)), T(w1, ..., wy)].

Since § is an outer derivation, by Remark 5.2, we replace § (7 (wy, ..., ®,)) from (1) in above expression, we
get

(ga+1lc,a) w(@i,...,0)* +qls, w(@1, ..., o) +ale, w(o1, ..., )%
+He, [s, w(@1, ..., 01 = br(wy, . .., w)arw (w1, ..., o)
+brt (1, ..., wp)ls, T(@1, ..., o)+ 7 (01, ..., 0p)an (w1, ..., w,)

Y A(@1 01 0T (@1 o) F T @1 o)l @ )]
i

+Z7T(C01,...,Ui,...,a)n)[s,n(w[,...,a)n)],
i

for all w;, 0; € U. In particular U satisfies the blended component

Zn(w1,...,oi,...,a)n)an(a)l,...,wn)—l—ZT[(a)],...,ai,...,wn)[s,n(w1,...,wn)].
i i

Foroy = wjando; =0fori =2,3,---,n, we get X%s=X(a+s5)X,where X = w(w1,...,w,). By taking
G(t)=ts,F(t)=t(a+s)and H(t) =t forallt € R, where s € U in Proposition 4.1, the result follows.
Subcase 1c: Suppose § and 6 both are outer derivations. Now two cases arise
Subcase 1c(i): The set {3, 6} is linearly C-independent. The equation (8) is written as

(ga+lc,al) w(w1, ..., o))" + g0 (@1, ..., 0))T(@1, ..., wp)
+qn(wy, ..., 00 (01, ..., 0,)) +alc, T(wy, ..., o)) (01, ..., ©p)
+an(wy,...,on)lc, 7(w1,...,0n)] + [c, 0@ (01, ...,op) T (01, ..., wy)
+0(m(wi, ..., op)c, T(w1,...,0x)] + [c, T(w1, ..., 0,)]0 (@ (01, ..., w,))
+r(wi,...,on)lc, 0(@(w1,...,00))] =ba(w1,...,wp)ax(wy, ..., w,)
+br(wy, ..., wp)0 (@ (01, ..., wp)) + 8@ (01, ...,wp))aw (w1, ..., w,)
+o(r(wy, ..., w0p)0 (@ (W1, ..., wy)).

Since § and 6 are outer derivations, by Remarks 5.2, we can replace (7 (wi, ..., ®,)) and 0 (7 (w1, ..., wy))
from (1), where 8 (w;) = o;, 6(w;) = n; in above expression, then U satisfies

D@1y ey Oiy ey W) Y T(D1, ey Niy e v ey ).
i ;

Foroy =n =wiando; = n; =0,i > 2 we have X? =0, where X = (w1, ..., w,) acontradiction.

Subcase 1c(ii): Suppose the set {8, 6} is linearly C-dependent modulo inner derivation on U. Then there are
AM,u € Cand p’' € Uwith A'8(t) + pn'0(t) = [p’,t] forall t € R. In a case either ' = 0 or ' = 0, we have a
contradiction. Hence both A’ and 1’ can not be zero. So we can write §(¢) = A0(t) + [p, t] where A = —)\./_lﬂ
and p = "' p’. Substituting this value in (8)

/

(ga + [c,a]) m(wy, ..., a)n)2 +q0(m (w1, ...,0p))T (W1, ..., ®y)
+qn(wy, ..., o0p)0(@ (01, ..., 0)) +alc, T(w1, ..., o)) (01, ..., ©p)
tan(wy,...,op)lc, T(w1,...,0p)]+ [c,0(@ (01, ..., 007 (01, ..., ®y)
+O0(m(wy, ..., wp)[c, T(w1,...,0)]+ [c, T(w1, ..., w)]0 @ (W1, ..., wy))
+r(wi,...,on)lc, 0(@(w1,...,00))] =ba(w1,...,wp)ax(wy, ..., w,)
+br(wy, ..., wp)0 @ (01, ..., wn) +A0(T (W1, ...,wp))ax(wy, ..., W)
+p, r(w1,...,op)]an(wy, ..., 0,) + A0 (T (W1, ..., 0,))0 (@ (W1, ..., wy))
+[p, t(w1, ..., w0y)]0(@ (01, ..., wy)).
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Since 6 is an outer derivation, by application of Remark 5.2, we can replace 0 (7 (wy, . .., ®,)) from (1), where
0(w;) = n; in above expression and then U satisfies

an(wl,...,m,...,a)n)rr(a)],...,a)n)
i
+gm(wr, ...,a)n)Zn(a)l,...,m, e, W)
i
+[C,Zn(w1,..., Ni, ...,a)n)]n(a)l,...,wn)
i
+Z7t(a)1, ...,ni,...,wn)[c,n(a)l,...,wn)]
i
~|—[c,7‘[(w1,...,a)n)]Zn(w],...,ni,...,a)n)
i
+n(w1,...,w,,)[c,Zn(a)l,...,m,...,a),,)]
i
=bn(wl,...,wn)Zn(wl,...,ni,...,wn)
i

—I—AZJT((m,...,m,...,wn)an(wl,...,w,,)

i
+An9(w1,...,wn)2n(w1,...,n,-,...,a)n)

i

—i—)LZn(a)l,...,r)i,...,wn)ne(wl,...,xn)

i
+A2n(w1,...,ni,...,wn)Zn(a)l,...,r;i,...,a)n)

i i

+[P,7T(w1,---,wn)]zﬂ(w1,.--,m,---,wn),
;

for all w;j, n; € U. For w; = 0 in above expression we get Aw(ny, w2, ..., a),,)2 = 0. Since L # 0 we get
T, wa, ..., a)n)2 = 0, a contradiction.
Case 2: Let §(t) = [p, t] forall r € R for some p € U i.e. § be an inner derivation.
Subcase 2a: Suppose d(¢) = [c, t], where ¢ € U and @ is an outer. This case is same as Subcase la.
Subcase 2b: Suppose 6(t) = [s, t] forallt € R, s € U and d is an outer. Then expression (7) becomes

(qa +d@) w(@1, ..., on)° + q[s, (e, ..., a)n)z]
tad(m(wy, ..., wp))7 (w1, ..., wy,)

Fan (1. ... . o)d@ (1, ... o) + [d(s), (w1, ...,a)n)z]

s d@r, o o) |+ [s r@1 L endn, o)
=br(@1, . 0an (@1, o) + b1, o) @)

+[p, @1, ..., a),,)]an(a)l, o)+ [p, 7@, ... ,a)n)][s, (@1, ... ,a)n)].

Since d is an outer, By Remark 5.2 we can replace the value of d (7 (w1, . .., w,)) from (1), where d(w;) = v;
in above expression and then U satisfies

ad (@i, Viyeo, 0)T(W], - .., @)
i

+am (@i, . ) Y (@], ey Viy ey p)
i
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+|:S7 Zn(a)l""vUiv*”aw)’l)n(wla""wn)]
1
+[s,7r(a)1,...,a)n)Zn(a)1, ...,v,-,...,a),,)],
1

for all w;, v; € U. Substituting vi = w; and v; = 0 fori > 2 in above we get 2aX?% +2[s, X?] = 0. Then result
follows from Proposition 4.1 by taking G(¢) = [2s, t], F(t) = —2at and H(t) =t forall t € R.

Subcase 2¢: Suppose d and 6 both are outer derivation. Then following two cases arise.

Subcase 2c¢(i): The set {d, 8} is linearly C-independent. Substituting the value of §(¢) = [p, ¢] in (8) and by
using Remark 5.2 we can replace d(w (w1, ..., wp)), 0 (7 (w1, ..., w,)) and dO (7 (w1, ..., w,)) from (1) where
d(w;) = vi, 8(w;) = n; and dO(w;) = w;, U satisfies the blended component

Zn(a)l, e Wiy oT(O1, ., @) F (01, .., ) Zn(a)l, .oy Wi, ..., wy). By replacing w; =

1 1

wi and w; =0fori =2,3,---,n,we get2n(wy, ..., a)n)2 = 0, which leads to a contradiction.

Subcase 2c¢(ii): The set {d, 0} is linearly C-dependent. Then there are A', u’ € C and p’ € U with \'d(¢) +
w'o() = [p',t] forall t € R. If either A’ = 0 or 1/ = 0, we get a contradiction. So consider 0 # A’ and
0 n'.Nowwe writed(t) = =X~ 0/0@)+ [N 1p/,t] = 20(t) +[p,t], where A = —A"'p/and p = 2" p/.
Substituting the values of §(¢) = [c, t] and d(t) = A0(t) + [p, t] in expression (8) we get

(ga +r0(a) + [p,a) w(@1, ..., 0)* + g0 (T (@1, ..., o)) 7T( @1, ..., ©p)
tgr(wi, ..., 0)0 (@ (@1, ..., o) +ar0(f(@1, ..., 00) (@1, ..., wn)

—|—a[p, T(wi, ..., wn)]n(a)l, o) an(wy, ..., o)A0 (T (w1, ..., @)
+ar (@1, o) por@1 x|+ A2 @ @1 o) T @1, )

+[p, 0wy, ... wn))]n(wl, o) +OG(@1. . )M (T (@1, . )

+0 (7 (wy, ... ,a)n))[p, T(wi,...,wn) | + A0 (w1, ..., w,))0(@ (w1, ..., w,))

+[p, T, ... ,a)n)]é(n'(a)l, o) + (@1, .. o)A@, . . o))

+n(a)1,...,wn)[p,e(n(wl,...,w,,)) = br(r, ..., w)an (@1, . ... wp)

+br(wy,...,w)0@ (01, ...,0,)) + |c, 1(01, ..., wn)]an(a)l, e, W)

+[c, T(wi, ..., w,,)]@(n(a)l, L, ).

Since 0 is an outer derivation, by using Remark 5.2 and then U satisfies

XZn(a)l,...,wi,...,wn)n(a)l,...,wn)
i
+An(w1,...,wn)Zn(wl,...,wl-,...,a)n):O,
i

for all w;, w; € U, where 92(50,-) = w;. By replacing w; = w; and w; = 0 fori = 2,3,---,n, we get
2Aan(wi, ..., a)n)2 = 0 which is a contradiction.
Case 3: Suppose 6 is an inner derivation, say 0(¢) = [s, t] forall# € R for some s € U. Then (8) gives that
(ga +d@) (o1, ..., o,)° +q[s,ﬂ(w1,...,wn)]n(wl,-..,wn)
+qn (w1, ...,wn)[s,N(wl,...,wn)] +ad(n(wy, ..., o)) (@1, ..., wp)
an (o1, ..., o)d@E@i, ..., o) +d<[s,n(a)1,...,a),,)])ﬁ(a)],...,wn)
+[S, 7T(C()1, AIR ] C()n)]d(ﬂ(a)l, sy a)n)) +d(7T(CL)1, AR ] a)l’l))[s7 7T(CL)1, AR ] wn)]

+7(wi, ..., co,,)d([s, T(wy, ..., a),,)]) =br(wi,...,wypar(wy, ..., wy,)
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+bm(wq, ...,wn)[s, n(wi, ..., wn)] +é(m(wi,...,wp))an(wy, ..., wy)
+8(7t(a)1,...,a)n))[s,n'(a)l,...,a)n)], )

for all wy, ..., w, € U. Then we have the following subcases.

Subcase 3a: Let d(¢) = [c, t] for all t € R, where ¢ € U and 8 be an outer derivation. This case is same as
the Subcase 1b.

Subcase 3b: Let d be an outer derivation and § be an inner derivation, say §(t) = [p, t] for all t € R for
some p € U. This case is same as the Subcase 2b.

Subcase 3c: Suppose d and § both are outer derivations. Then two cases arise.

Subcase 3c(i): Let the set {d, §} be linearly C-independent. Since d and § are outer derivation, we replace
d(m(wi, ..., w,)) with and § (7 (w1, ..., w,)) from (1) where d(w;) = v; and §(w;) = o; in the expression (9)
and then U satisfies the blended component

Zn(a)l,...,Ui,...,wn)an(wl,...,wn)
i

+Zn(a)1,...,oi,...,a),,)[s,n(a)l,...,wn)].
i

By replacing 01 = wj and o; =0 fori =2,3,---, n, we have
XaX + X[s, X] =0,
where X = m(wi,...,w,). Now result follows from Proposition 4.1 by taking G(¢) = 0, F(¢) = t and
H(t) = at + [s,t] forall tr € R.
Subcase 3c(ii): Suppose the set {d, 8} is linearly C-dependent. Then there are scalars ', u’ € C and p’ € U
with A'd(t) + w'8(x) = [p/, t]. In a case either A’ = 0 or ./ = 0, we get a contradiction. Therefore we assume
0% 2 and 0 # /. We can write §(1) = —p/~'\d (1) + [/~ p’, ] = pnd(t) + [p, t] where u = —p/~'A" and

p = —u/~!p’. Substituting these values in expression (9) and then applying Remark 5.2 U satisfies the blended
component

an(a)],...,v,-,...,a)n)n(a)l,...,wn)
i
+an(a)1,...,a),,)Zn(a)1, ce Vi, )
i
+[S,Zn(a)1,...,vi,...,wn)]n(a)l,...,wn)
i
+[s,7t(a)1, ...,a)n)]er(a)l,...,vi,...,a)n)
i
+Zn(a)1,...,vi,...,wn)[s,n(m,...,wn)]
i
+m (w1, ...,wn)[s,Zn(a)],...,vi, ...,a)n)]
i
:,uZn(wl,...,v,-, oop)an(wy, ..., w,)
i

+M2ﬂ(w1, --~,Vi,~--7wn)|:5,77(w17~~,0)n)]s
i

for all w;, v; € U, where v; = d(w;). By replacing vi = wy and v; = 0,i = 2,3, --- , n the above expression
becomes

2aX? +2[s, X1X +2X[s, X] = pXaX + uX[s, X1,
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where X = (w1, ..., w,). Last expression again can be written as (2a +29) X2+ Xz(us —2s) =uX@+s)X.
Now result follows from Proposition 4.1 by considering G(t) = 2a + 2s)t + t(us — 2s), F(t) = tu(a + )
and H(t) =t forallz € R.

Case 4: We consider all derivations d, § and 6 are outer derivations. Two cases arise.

Subcase 4a: The set {d, §, 0} is linearly C-independent. In this case by application of Remark 5.2 and using
similar argument in equation (8) as we have used above, U satisfies the blended component

Zn(a)l,...,ti,...,w,,)n(m,...,a)n)
i
(@1, 00) Y (@1t ) =0,
i

for all w;,#; € U, where t; = dOf(w;). By replacing t; = w;, t; = 0 fori = 2,3,---,n, we get
27 (i, ..., wy)? = 0 which is a contradiction.

Subcase 4b: The set {d, §, 0} is linearly dependent modulo inner derivation. So there are scalars A, u’, v € C
and p’ € U suchthat A'd(¢t)+u'8(t)+v'0(t) = [p/, t]forallt € R.Ifanytwoof)’, u', v’ are zero simultaneously
then we get a contradiction. Thus it implies that either one of A/, u’, v’ is zero or none of 1/, i/, v’ are zero.

Firstly,if .’ = 0,/ # Oand v’ # 0 then we write §(¢) = v0(t)+[p, t]wherev = —u/'~"W and p = /'~ p/.
Substituting these values in expression (8) we get

(qa+d@)m(@r.....00)° + 0T (1, ..., 0)T (@1, ... ©p)
+qr(wy, ..., 00 (w1, ..., 0p) +ad(w(wr, ..., o)) (W01, ..., @)
+a7T(Cl)], M} wl’l)d(n(a)la M} wl’l)) +d9(7[(6()1, LR} U)n))n(a)la M} wn)
+Ho(w (w1, ..., 0o))d(T (w1, ..., 0p) +d(@ (W1, ..., 0))0 (@ (01, ..., w0))
+r(wy,...,w)d0@(wy,...,wy) =br(wy,...,oyax(w, ..., wy,)
+br(wy,...,wp)0 (@ (01, ...,0n) + V(T (W1, ...,wy))arx(wy, ..., w,)
+p, t(wy,...,o)]ax (w1, ..., w,) +v0(T (w1, ..., w,))0@ (01, ..., w,))
+[p7 n(wla L) a)n)]e(n(a)la LRI ) wl’l))'
If d and 6 are linearly C-dependent modulo inner derivation on U. By using similar argument as we have

used in Subcase 2c(ii), the result follows.
If d and @ are linearly C-independent modulo inner derivation on U, then by using Remark 5.2, U satisfies

n(wl,...,a)n)Zn(wl,...,w,-,...,wn)+2n(a)1,...,wi,...,w,l)n(wl,...,a)n),
i i

for all w;, w; € U, where df(w;) = w;. By replacing w; = w; and w; = 0 fori = 2,3,---,n we get
2n(wy, ..., w,,)2 = 0, which leads to a contradiction.

Secondly, if 0 # A/, 0 # u/ and v’ # 0 then we write d(t) = A@(t)+[p, t]forallt € R, where A = —A'~1v/
and p = A~ p/. Substituting these values in expression (8) we get

(ga +d(a)) n(wy, ..., a),,)2 + q0(m (w1, ...on)T (W01, ..., W)

+gn(wi, ..., 00 @ (W1, ...,0)) +arb (@ (wy,...,on)7T(01, ..., 0n)
+alp, w(wy, ..., o) lw (w1, ..., 0p) +axw (w1, ..., o)A (T (01, ..., ©p))
+a7T(C()1, AIEEE ] wn)[p» 7T(C()], IR ] wn)] +)\,€2(7T(C()1, IR ] (,!)n))n'(a)l, AIE ] wl’l)

+(p,0(m(wy,...,o) T (01, ..., 0p) +0(@ (01, ..., 00)AO (T (W1, ..., w®y))
+O(m (w1, ..., o)) [p, T(w1,...,0)] + A0 (T (w1, ...,w,))0 (T (W1, ..., X))
+p, (w1, ..., 00 (01, ..., o) + 7 (01, ..., a),,))»92(n(a)1, e, )
+r(wi,...,on)[p, 0(@(W1,...,00)] =br(wy,...,wpax(wy, ..., w,)
+br(wy, ..., wp)0 (@ (01, ..., wn)) + 6@ (01, ...,wp))aw (w1, ..., wy,)
+o(r(wy, ..., )0 (@ (W1, ..., wy)).

If 6 and § are linearly C-dependent modulo inner derivation on U. By using similar argument as we have used
in Subcase 1¢(i), the result follows
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If d and § are linearly C-independent modulo inner derivation on U. Then by using Remark 5.2, U satisfies

AY (01, Wiy ooy @) (W], - o W)
i
FAT (w1, s wp) Y (@1, e Wiy ey @),
i
for all w;, w; € U, where Gz(wi) = w;. By replacing w; = wj) and w; = O fori = 2,3,---,n, we get
247 (w1, ..., wy)* = 0 which is a contradiction.

Thirdly, if A" # 0, 4’ # 0 and v' = 0 then we write §(¢) = ud(t) +[p, t]forallt € R, where p = —p/~'\/
and p = u/~!p’. Substituting these values in expression (8) we get

(qa+d@) (i, ...,o0%+ g1, ..., o))T (@1, ..., o)
+gn(wi, ..., 0)0@ (W1, ..., 0)) +ad(@ (w1, ..., on))T (W], ..., w0
tan(wi,...,wp)d(@ (w1, ..., w0p)) +dO(@ (w1, ..., o))" (01, ..., ©y)
+O(T(wi, ..., 0p))d(@(01, ..., 0n)) +d(@(W1,...,0,))0(@(W1,...,wn))
+r(wi, ..., wp)d0(T (01, ...,0,)) =br(wy,...,wy)ax(wy, ..., w,)
+br(wi, ..., 0n)0 @ (01, ..., 0p)) + pd(@ (w1, ..., op))ax (w1, ..., o)
+[p, w(w1,...,o))]an (w1, ..., o) + pd(@ (w1, ..., 0,))0 @ (W01, ..., 0))
+p,m(wi, ..., 00 (01, ..., wn)).
If 6 and d are linearly C-dependent modulo inner derivation on U. By using similar argument as we have used

in Subcase 2c(ii), the result follows.
If d and 6 are linearly C-independent modulo inner derivation on U. Then by using Remark 5.2, U satisfies

Zn(a)l,...,wi,...,wn)n(wl,...,a)n)
1
A1y @) D@1, o Wiy, ),
i
where df (w;) = w;. By replacing w; = wj andw; = 0fori =2,3,--- ,n we get2n(wi, ..., wp)? =0, which

is a contradiction.
Finally, consider 0 # A/,0 % 1’ and v" # 0 then we write 8 (1) = Ad(t) +u0(t) +[p, t] where A = —p/ =11/,
w=—u " and p = '~ p’. Substituting the value of §(¢) in expression (8) we get

(ga +d(@) (@1, ..., 0.)* +q0@ (w1, ..., o)) 7T (@1, ..., O
+gn(wi, ..., w)0@(W1,...,00) +ad(@ (w1, ..., 0))T (W1, ..., w0)
tar(wy, ..., o)d(@(W1, ..., 0p) +dO (T (01, ..., 00))7T (W01, ..., W)
+0(m(wy, ..., wp))d(w(w1,...,0,)) +d(@(w1,...,w,))0 @ (W01, ...,w))

+m(wi,...,w)d0(m (w1, ...,w,)) =br(wy,...,wy)ax(wy, ..., wy,)
+bmw(wy, ..., w0 (w1, ..., @) +Ad (@ (w1, ..., wp)an(wr, ..., w,)
+ud(m(wy, ..., op))ar(wy, ..., op) + [p, (01, ..., o) lar (w1, ..., ©p)

+rd(w(wi, ..., 0p)0(@ (01, ..., 0n) + b (@(w1, ..., w,))0@ (01, ..., wy))
+[p, t(wi1, ..., 0)]0(@ (01, ..., wy)).

If d and 6 are linearly C-independent then it is similar to the Subcase 2c(i) and hence we get a contradiction.
If d and 6 are linearly C-dependent then it is similar to the Subcase 2c(ii) and hence we get a contradiction.
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