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Abstract The minimum principle establishes cases when the infimum of a family of functions is plurisubhar-
monic. In [18], the author has otained this principle on the space that is the special inductive limits of Banach
spaces. In this paper, we will establish the minimum principle on some classes of Hausdorff sequential complete
local convex spaces.
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1 Introduction

In this section, we will review some definitions and the motivation to obtain the main result of the paper. In this
paper by U we always mean the unit disk in C, U is the closure of U and S is the unit circle. And with X is any
set, we denote H(X) the set of all holomorphic mappings of a neighborhood of U into X , H(X) the set of all
mappings of unit disk continuous on U and holomorphic on U into X

Let W be an open set in a topological vector space Z . We denote PSH(W ) is the set of the plurisubharmonic
(psh) functions onW , that is u ∈ PSH(W ) if anh only if it is an upper semicontinuous (usc) functions and satisfy
the subaveraging inequality follow

u( f (0)) ≤ 1

2π

∫ 2π

0
u( f (eiθ ))dθ,∀ f ∈ H(W ). (1.1)

Let P : Z → Y be a projection from Z onto a subspace Y ⊂ Z and φ ∈ PSH(W ). Then the subenvelope of
φ is defined as follow

IPφ(z) = inf{φ(w) : w ∈ W, P(w) = z},∀z ∈ W0 = P(W ). (1.2)

From (1.1) we see that the supremum of any family of psh functions onW is also psh, provided it is usc. But
the minimum of two psh functions on W need not to be psh. So the subenvelope IPφ of φ is not psh in general.

In [10], C. Kiselman has been proved that under some conditions, the subenvelope is psh that he called “the
minimum principle”, as follow
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Theorem 1.1 Suppose that W is a pseudoconvex open set in C2 and φ is a psh function on W such that both W
and φ are S-invariant, i.e., if (z, w) ∈ W, then (z, eiαw) ∈ W and φ(z, eiαw) = φ(z, w) for every real number
α. Also suppose that for every (z, w) ∈ W the fiber {x |(z, x) ∈ W } are connected. If P(z, w) = z, then the
function IPφ(z) = inf(z,w)∈W φ(z, w) is subharmonic.

We can see in the Theorem 1.1 that all the sufficient conditions such as “pseudoconvex”, “S-invariant”, “psh”
and “connected fibers” are very close to the necessary. Indeed, first clearly φ must be psh. If W consists of two
disjoint components, then the function IPφ is the minimum of two psh functions and it is easy to make the
minimum not psh. In [18], the author has given two example to show that the remain conditions are important.
We cite here for convenient.

Example 1.2 Let W be the unit bidisk in C
2 and φ(z, w) = log |2zw − 1|. Then IPφ(z) = −∞ when |z| ≥ 1

2
and IPφ(0) = 0 when z = 0. This means that IPφ is not subharmonic.

Example 1.3 Let W = {(z, w) ∈ C
2 : |z| < 2,−|z|2 + 4 < |w|2} and φ(z, w) = |w|2. Then both W and φ are

S-invariant but W is not pseudoconvex. Now IPφ(0) = 4 and IPφ(z) = 3 when |z| = 1. Again we see that IPφ

is not subharmonic.

In [16] the author has been investigated the following situation: Let Y = C
n , let W0 be an open set in Y , and let

Z = H(Cn). We define W = { f ∈ Z : f (U ) ⊂ W0}. Let P f = f (0) be the canonical projection of Z onto Y .
It was proved in [16] that, under mild conditions on a function φ on W , its subenvelope is psh. Here, we can see
that the main results in [10] and [16] are very different each other because their conditions such as, by [16], Z
was infinitely dimensional, φ was not psh or even usc, and W was not psuedoconvex.

In [18], the author has been given the definition P-psh function. Let us call an absolutely measurable function
(see section 3) φ on W be P-psh if for every holomorphic mapping f ∈ H(Z) such that f (S) ⊂ W and P f
maps U into W0 = P(W ) we have

IPφ(P f (0)) ≤ 1

2π

∫ 2π

0
φ( f (eiθ ))dθ. (1.3)

Comparing the inequality (1.3) with the subaveraging inequality (1.1) we see that a bigger choice of values
of φ in the left side is compensated by also a bigger choice of mappings f in the right side. So the inequality
(1.3) does not follow immediately from the plurisubharmonicity of φ. It will if we need to verify (1.3) only for
f ∈ H(W ). In this case, the function φ is called a weakly P-psh function.

By considering the P-psh function φ on a open subset in Z that is the special inductive limits of Banach
spaces Zi , in [18], the author has been improved the Kiselman’s framework in [10] to be a new result that include
the results from [16]. In this paper, we use the same technics similar to [18] to prove the minimum principle on
the Hausdorff sequential complete local convex spaces.

2 Holomorphic U− actions on the local convex space

First we review some basic properties in functional analysis. Let X be a compact metric space and Z be Hausdorff
sequential complete local convex space. Let F : X → Z be continuous mapping. We denote the set A is the
closure of the convex hull of F(X) and pA is Minkowski functional of the set A. If we set ZA = span(A) then
(ZA, pA) is a Banach space. Moreover, if Z ′ is the topological dual space of Z and z∗ ∈ Z ′ then z∗ ∈ (ZA, pA)′.

Lemma 2.1 Let Z be a Hausdorff sequential complete local convex space. If f is a continuous mapping of U
n

into Z holomorphic in Un then it is holomorphic in Un as a mapping into (ZA, pA) with A = conv( f (U
n
)).

Proof Since f is continuous as a mapping from Un into (ZA, pA) so if g is a function is defined as follow

g(ζ ) = 1

(2π i)n

∫
S
...

∫
S

f (ξ1, . . . , ξn)∏n
j=1(ξ j − ζ j )

dξ1...dξn, ∀ζ = (ζ1, . . . , ζn) ∈ Un,

then gmapsUn holomorphically into (ZA, pA). Let z∗ ∈ Z ′. If h(ζ ) = z∗( f (ζ )),∀ζ ∈ Un then h is holomorphic
on Un . By Cauchy integral formula we have

h(ζ ) = 1

(2π i)n

∫
S
...

∫
S

h(ξ1, . . . , ξn)∏n
j=1(ξ j − ζ j )

dξ1...dxin .
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1288 H. N. Quy

From the definition of function g above we have z∗(g(ζ )) = h(ζ ). So z∗( f (ζ )) = z∗(g(ζ )),∀ζ ∈ Un, z∗ ∈ Z ′.
This imply that f = g on Un . ��

Suppose that E = {ζ1, . . . , ζn} ⊂ U and f is a continuous mapping ofU \ E into Z , holomorphic inU \ E .
We say that f has a pole of order at most m j at ζ j if

lim
ζ→ζ j

(ζ − ζ j )
m j+1 f (ζ ) = 0.

Corollary 2.2 Let Z be a Hausdorff sequential complete local convex space. If f is a continuous mapping of
U \ E into Z, holomorphic in U \ E with poles of order at most m j at ζ j , then there exist g ∈ H(ZA) such that

f (ζ ) = g(ζ )∏n
j=1(ζ − ζ j )

m j
.

Proof We set h(ζ ) = ∏n
j=1(ζ − ζ j )

m j+2 f (ζ ). Then for each ζ j ∈ E, j = 1, . . . , n we have

h(ζ j ) = lim
ζ→ζ j

h(ζ ) = 0

So h is a continuous mapping of U into Z , holomorphic in U . By Lemma 2.1 then h ∈ H(ZA).
On the other hand, it is easy to see that h′(ζ j ) = 0,∀1 ≤ j ≤ n. So by Taylor expansion formula of h at ζ j we
have

g(ζ ) := h(ζ )∏n
j=1(ζ − ζ j )2

∈ H(ZA)

Since g(ζ ) = ∏n
j=1(ζ − ζ j )

m j f (ζ ) ∈ H(ZA) and the corollary follows. ��
Let Z be a sequential complete local convex space. A continuous mapping A(ξ, z) ofU × Z into Z is called

a holomophic U -action if:

i. A is a holomorphhic mapping of U × Z into Z
ii. For every ξ ∈ U the mapping A(ξ, z) is linear in z
iii. A(1, z) = z
iv. A(0, A(ξ, z)) ≡ A(0, z).

It followsn that Pz = A(0, z) is a projection of Z onto Y = PZ and the orbit A(ξ, z) of a point z ∈ Z lies in
the fiber of P over Pz.
Given a holomorphic U -action A on Z . Let W ⊂ Z be open set and φ be function on W . The set W is called
S-invariant if A(ξ, z) ∈ W for every z ∈ W and ξ ∈ S. The function φ is called S-invariant if W is S-invariant
and φ(A(ξ, z)) = φ(z) for every z ∈ W and ξ ∈ S.

Lemma 2.3 Let Z be a Hausdorff sequential complete local convex space and A be a holomorphic U-action
on Z. Let Pz = A(0, z) be a projection in Z. Let E = {ζ1, . . . , ζn} ⊂ U and let f be a continuous mapping
of U \ E into Z, holomorphic in U\E, with poles of order at most m j at ζ j , 1 ≤ j ≤ n. We denote by B the
Blaschke product as follow

B(ζ ) =
n∏
j=1

(
ζ − ζ j

1 − ζ jζ

)n j

,

where n j ≥ m j , 1 ≤ j ≤ n. If themapping h = P f is in H(Z), then for everyη ∈ S themapping A(ηB(ζ ), f (ζ ))

is also in H(Z).

Proof By Corollary 2.2 the mapping g(ζ ) = Q(ζ ) f (ζ ), where Q(ζ ) = ∏n
j=1(ζ − ζ j )

m j , is in H(ZA). If we
set

F(ξ, ζ ) = A(ξ, f (ζ )) − h(ζ ) = A(ξ, g(ζ )) − Q(ζ )h(ζ )

Q(ζ )
,

then F(0, ζ ) ≡ 0.

123



The minimum principle on the sequential complete... 1289

Set G(ξ, ζ ) = A(ξ, g(ζ )) − Q(ζ )h(ζ ), we have G(0, ζ ) ≡ 0. But G is a continuous mapping of U
2
into Z ,

holomorphic in U 2. So by Lemma 2.1 we have G ∈ H(ZA).
By theTaylor expansion formula ofG at (0, 0)wecan see thatG(ξ, ζ ) = ξG1(ξ, ζ ), whereG1 is holomorphic

in U 2 and continuous on the boundary where ξ �= 0.
Since G(ηB(ζ ), ζ ) = ηB(ζ )G1(ηB(ζ ), ζ ), the mapping

A(ηB(ζ ), f (ζ )) = F(ηB(ζ ), ζ ) + h(ζ )

is holomorphihc inU . It is also continuous up to the boundary because |B(ζ )| ≡ 1 on S and |ζ j | < 1, 1 ≤ j ≤ n.
��

A function φ on an open set W in Z is called sequential usc (susc) if for every point z ∈ W and every
sequence of points z j ∈ W convergence to z we have

lim sup
j→∞

φ(z j ) ≤ φ(z).

Here we note that, if a function is usc then it is also sequential usc and if the space Z is metrizable then the both
notions coincide.

A function φ on an open set W in Z is called sequential psh (spsh) if it is sequential usc and satisfy the
subaveraging inequality.

3 Almost upper semicontinuous functions

Let U
N = {z = (z1, z2, ...) : z j ∈ C, |z j | ≤ 1} be the product of countably many closed unit disk equipped

with the product topology and, consequently, a compact topological space. This topology has a countable basis:
for every choice of naturals j1, . . . , jn , positive rationals r1, . . . , rn , and points ζ1, . . . , ζn in U with rational
coordinates we take the set

V = {z ∈ U
N : |z jk − ζk | < rk, k = 1, 2, . . . , n}.

The set U
N
carries a unique Radon measure τ with the following property: if { j1, . . . , jn} is any set of n

indices and φ is any continuous function on U
N
such that φ(z) = φ(z j1, . . . , z jn ), then

∫
U

N
φdτ = 1

(2π i)n

∫
U

...

∫
U

φ(z j1, . . . , z jn )dz j1 ∧ dz̄ j1 ...dz jn ∧ dz̄ jn .

This measure is translational invariant, i.e., if F ⊂ U
N
is a Borel set and x ∈ U

N
such that F + x ⊂ U

N
,

then τ(F) = τ(F + x).
Let Z be a sequential compete local convex space. The sequence E = (xn) in Z is called summable if every

continuous semi-norm p on Z , then
∑∞

n=1 p(xn) < ∞. The set

PE = {x ∈ Z : x =
∞∑
j=1

ζ j x j , |ζ j | ≤ 1,∀ j = 1, 2, ...}

is called a generalized polydisk. The mapping F : UN → PE defined as F(z) = ∑
z j x j is continuous and

therefore defines the measure τE on PE as the pushforward of the measure τ .
If PE is a generalized polydisk and

C = {x ∈ Z : x =
∞∑
j=1

ζ j x j , |ζ j | ≤ c j ≤ 1,∀ j = 1, 2, ...},
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1290 H. N. Quy

then C is the intersection of the decreasing sequence of closed sets

Ck = {x ∈ Z : x =
∞∑
j=1

ζ j x j , |ζ j | ≤ c j ,∀1 ≤ j ≤ k}.

Therefore τE (C) = ∏∞
j=1 c

2
j .

A function φ on a set W ⊂ Z is called absolutely measureable if it is measurable with respect to any regular
Borel measure with compact support on W . Given a summable sequence E = {x j }, an open set W ⊂ Z , and a
local bounded above absolutely measurable function φ on W , we define the function

φE (z) =
∫
PE

φ(z + y)dτE (y)

on the set WE = {z ∈ W : z + PE ⊂ W }.
The linear operator LE : 
1 → Z defined as

LE (ζ1, ζ2, ...) =
∞∑
j=1

ζ j x j

is continuous. We say that a function u on W is usc along E if for every z ∈ W the function u(z + LEζ ) is usc
at the origin of the space 
1.

Lemma 3.1 Let Z be a sequential complete local convex space and φ be a local bounded above absolutely
measurable on an open set W in Z. Let E = {x j } be a summable sequence in Z. Then the function φE is usc
along E on WE.

Proof Let us take a point z0 ∈ WE . We will assume that φE (z0) > −∞. If φE (z0) = −∞ then the proof is
similar.
Since the set K = z0 + PE is compact, we can find a continuous seminorm p and a constant c > 0 such that
φ(x) < c when p(x − y) < 1 for some y ∈ K . We also may assume that z ∈ WE when p(z − z0) < 1.
Since the mapping LE is continuous, there is δ1 > 0 such that p(LEζ ) < 1 when

∑ |ζ j | < δ1. For such ζ we
let

F = {y ∈ PE : y =
∞∑
j=1

ξ j x j , |ξ j | ≤ 1 − |ζ j |}.

By absolute continuity of the integral, for every ε > 0 there exist ε′ such that
∫
A

φ(z0 + y)dτE (y) > −ε

2

when τE (A) < ε′.
We have τE (F) = ∏∞

j=1(1 − |ζ j |)2. So there is 0 < δ < δ1 such that τE (PE\F) < ε
2c when

∑ |ζ j | < δ.
Let z1 = z0 + ∑

ζ j x j ,
∑ |ζ j | < δ, and let z = z1 − z0. Then F1 = F + z ⊂ PE . Hence

φE (z1) =
∫
PE

φ(z1 + y)dτE (y)

=
∫
F

φ(z1 + y)dτE (y) +
∫
PE\F

φ(z1 + y)dτE (y)

≤
∫
F+z

φ(z0 + y)dτE (y) + ε

2

≤
∫
PE

φ(z0 + y)dτE (y) + ε = φE (z0) + ε,

and this means that φE is usc along E . ��
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Let Z be a sequential complete local convex space andY be subspace in Z . A systemE of summable sequences
E ⊂ Y will be called basic in Y if for every summable sequence F = {xk} ⊂ Y there is a family E ∈ E and a
sequence of vectors yk ∈ 
1 convergence to 0 such that LE yk = xk . Here we note that, in a finite-dimensional
space a basic system may consist of only one sequence E that is the basis of the space. In an infinite-dimensional
space the system of all summable sequence is basic.

Lemma 3.2 Let Z be a Hausdorff sequential complete local convex space and Y be a subspace of Z and let E
be a basic system in Y . For every h ∈ H(Y ) there is E ∈ E and g ∈ H(
1) such that h = LE ◦ g.

Proof Since h ∈ H(Y ) there exist r > 1 such that h is a continuous mapping of Ur into Y , holomorphic in Ur .
Where Ur = {z ∈ C : |z| < r}. If hr (ζ ) = h(r−1ζ ) then hr ∈ H(Y ). By Lemma 2.1 then hr ∈ H(YA, pA),

where A = conv(hr (U )) = conv(h(Ur )) and pA is theMinkowski functional of A. And so h can be represented
by its Taylor series

h(ζ ) =
∞∑
k=0

akζ
k, where

∞∑
k=0

pA(ak)t
k < ∞,

for some 1 < t < r . This infer that the sequence F = {tkak} is summable. Thus we can find a sequence E ∈ E
and a sequence of vectors bk ∈ 
1 converging to 0 such that LEbk = tkak . We set

g(ζ ) =
∞∑
k=0

ckζ
k .

The series for g converges absolutely in Ut so g ∈ H(
1) and LEg(ζ ) = h(ζ ) when |ζ | < t . ��
Let E be a system of summable sequence in Z . A function φ defined on an open setW in Z is called almost upper
semicontinuous with respect to E (E-ausc) if it is locally bounded above, absolutely measurable and for every
sequence E ′{x j } of vectors in Z which is the union of a sequence E ∈ E and finitely many vectors z1, . . . , zn in
Z we have

lim sup
t→0+

φt E ′(x) ≤ φ(x),

where t E ′ = {t x j }. By Fatou lemma, an usc function is also E-ausc.
Lemma 3.3 Let Z be sequential complete local convex space and P be a projection of Z onto Y . Let E be a
basic system in Y . Let W be an open set in Z and let φ be an E-ausc function on W. If the function u = IPφ is
absolutely measurable on W0 = P(W ), then it is E-ausc.
Proof We fix a point w0 ∈ W0, E ∈ E , a finite set y1, . . . , yn in Y and ε > 0. We find z0 ∈ W such that
Pz0 = w0 and φ(z0) < u(z0) + ε. If E ′ = E ∪ F , then

lim sup
t→0+

∫
Pt E ′

u(w0 + y)dτt E (y) ≤ lim sup
t→0+

∫
Pt E ′

φ(z0 + y)dτt E (y)

≤ φ(z0) < u(z0) + ε.

��

4 The main results

Before starting and proving the main results we will give some notions.
Let A be a proper subset of Z . We say that a mapping F of Z \ A into another topological vector space Z ′ is

rational with poles in A if for every g ∈ H(Z) either g(U ) ⊂ A or the set Ag = g−1(A) ∩U is finite and F ◦ g
has poles of finite order at points of Ag . Also for a holomorphic mapping of h : U \ {0} → Z with a pole of
finite order at 0, the mapping F ◦h has a pole of finite order at 0 too. In the case of finite dimensional topological
vector space this definition produces standard rational mappings. Also linear mappings are rational.

Now we recall a basis result in functional analysis. If (Z , ξ) is a sequential complete local convex space then
there is the strongest local convex topology η on Z such that ξ and η have the same bounded sets in Z and (Z , η)
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1292 H. N. Quy

is the inductive limit of family Banach spaces (Zi , i ∈ I ) with some the directed set I . From this we give the
notion of weakly E-ausc function as follow.

Let Z be a sequential complete local convex space that is also the inductive limit of family Banach spaces
(Zi , i ∈ I ) with I is the directed set. Let P be a projection of Z onto Y . Let E be a basic system in Y . A function
φ on an open set W in Z is called weakly E-ausc if there is rational mappings Fi : Wi → Z with poles outside
of Wi ⊂ Zi , projections Pi on Zi and E-ausc functions φi on Wi such that:

i. P(Z) = Pi (Zi ) = Y, Pi (Wi ) = P(W ) = W0;
ii. Fi (Wi ) ⊂ W, P ◦ Fi (z) = Pi (z);
iii. φ(Fi (z)) ≤ φi (z);
iv. The function ui = IPi φi are absolutely measurable and from a decreasing net such that limi ui = IPφ.

The net {Zi ,Wi , Fi , Pi , φi } will be called an approximating net. We can see that a E-ausc function is also
weakly E-ausc.

The following theorem is the main of the paper.

Theorem 4.1 Let Z be a Hausdorff sequential complete local convex space with a holomorphic U-action A.
Let Pz = A(0, z) and let Y = P(Z). Let E be a basic system in Y . Let W be an S-invariant open set in Z and
let φ be an S-invariant absolutely measurable function on W. If φ is weakly E-ausc with an approximating net
{Zi ,Wi , Fi , Pi , φi } and the fibers Wiz = {w ∈ Wi : Pi (w) = z} are path connected, then the function u = IPφ

is sequential psh if and only if φ is P-psh.

Proof First, we will prove the necessity of the theorem. If h ∈ H(W0),W0 = P(W ), and f : S → W is a
continuous mapping such that P ◦ f = h on S, then for a psh function u we have

u(h(0)) ≤ 1

2π

∫ 2π

0
u(h(eiθ ))dθ ≤ 1

2π

∫ 2π

0
φ( f (eiθ ))dθ.

Thus φ is P-psh.

The proof of sufficiency is more complicated and will follow from a sequence of the following lemmas.

Lemma 4.2 In conditions of Theorem 4.1 the function u = IPφ is sequential usc.

Proof Let z0 be a point inW0 and let {zk} be a sequence of points inW0 converging to 0.Wehave H = {z0, z0+zk}
is a compact set in Y . Set G = conv(H) and YG = span(G) and pG is a Minkovsky functional of G. Then
(YG , pG) is the Banach space.

Switching if necessary to a subsequence, we can assume that the family F = {kzk} is summable in YG . So
we can find a sequence E ∈ E and a sequence of vectors xk ∈ 
1 converging to 0 such that LE xk = zk .

Fix some ε > 0 and find i ∈ I and a point w0 ∈ W0 such that Piw0 = z0 and φi (w0) < u(z0)+ ε. For every
k ≥ 1 we set wk = w0 + zk . Let us take s > 0 so small that wk + PsE ⊂ Wi for all k. Let

ψt (y) =
∫
PtE

φi (y + x)dτt E (x).

Since φi is E-ausc, for any ε > 0 we can find 0 < t < s such that ψt (w0) < φi (w0) + ε. Since the function ψt
is usc along t E and LtE (t−1xk) = zk , there is k0 such that ψt (wk) < φi (w0) + 2ε when k > k0.

For every eiθ ∈ S we have ∫
PtE

φi (wk + eiθ x)dτt E (x) = ψt (wk).

Hence by Fubini’s and the mean theorems there exist x0 ∈ PtE such that

1

2π

∫ 2π

0
φi (wk + eiθ x0)dθ ≤ φi (y0) + 2ε, when k > k0.

Let fi (ξ) = wk + ξ x0 be a mapping of the unit disk into Wi and let f = Fi ◦ fi . Since P f (0) = Pi fi (0) =
z0 + zk and φ is weakly P-psh,

u(z0 + zk) ≤ 1

2π

∫ 2π

0
φ( f (eiθ ))dθ ≤ 1

2π

∫ 2π

0
φi ( fi (e

iθ ))dθ ≤ u(z0) + 2ε.

Thus u is sequential usc. ��
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Now to conclude the proof of the theorem for a mapping h ∈ H(W0) such that h(0) = z0, we will establish for
every ε > 0 we have

u(z0) ≤ 1

2π

∫ 2π

0
u(h(eiθ ))dθ + ε. (4.1)

For this we will replace the integrand u in inequality above by a topologically better function ui . Note that
by Lemma 3.3 the function ui are E-ausc.
Lemma 4.3 Let Z be a Hausdorff sequential complete local convex space and let P be a projection of Z onto Y .
Let E be a basic system in Y . If a decreasing net of E-ausc functions ui , i ∈ I , on an open set W0 ⊂ Y converges
to an usc function u, then for every h ∈ H(W0) and ε > 0 there are a sequence of vectors yn ∈ Y converging to
0 and a sequence of in ∈ I such that

1

2π

∫ 2π

0
uin (hn(e

iθ ))dθ ≤ 1

2π

∫ 2π

0
u(h(eiθ ))dθ + ε,

where hn(ζ ) = h(ζ ) + ζ yn.

Proof By Lemma 3.2 we take E ∈ E and a mapping g ∈ H(
1) such that LEg = h. For n = 1, 2, ... let
Wn

0 = {x ∈ W0 : x + n−1E ⊂ W0} and

uin(x) =
∫
Pn−1E

ui (x + y)dτn−1E (y), ∀x ∈ Wn
0 .

By Lemma 3.1 the functions uin are usc on h(S).
Since the functions ui are decreasing and locally bounded above, uin ≤ u jn when i ≥ j and for any i0 ∈ I

the functions uin, i ≥ i0, are uniformly bounded above on h(S). Moreover, since the functions ui are E-ausc,

lim sup
n→∞

uin ≤ ui

on h(S). By Lebesgue’s monotone convergence theorem for every n ≥ n0 there is in ∈ I such that

1

2π

∫ 2π

0
uinn(h(eiθ ))dθ ≤ 1

2π

∫ 2π

0
u(h(eiθ ))dθ + ε.

By the definition of uinn , Fubini’s theorem, and the mean velue theorem we can find a vector yn ∈ Pn−1E such
that

1

2π

∫ 2π

0
uin (h(eiθ ) + eiθ yn)dθ ≤ 1

2π

∫ 2π

0
u(h(eiθ ))dθ + 2ε.

��
We use Lemma 4.3 to find a mapping h′ ∈ H(W0) with h′(0) = z0 and i ∈ I such that

1

2π

∫ 2π

0
ui (h

′(eiθ ))dθ ≤ 1

2π

∫ 2π

0
u(h(eiθ ))dθ + ε.

Now we see that the subaveraging inequality (4.1) will be proved if we establish that

u(z0) ≤ 1

2π

∫ 2π

0
ui (h

′(eiθ ))dθ + ε. (4.2)

Let us denote h′ by h.
Now we claim the existence of a continuous selection minimizing some functional.
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Lemma 4.4 Let P be a projection on a Hausdorff sequential complete local convex space and let W ⊂ Z be
an open with path connected fibers. Let E be a basic system in Y = P(Z) and W0 = P(W ). If φ is an E-ausc
function on W, then for every h ∈ H(W0) and every ε > 0 there are a family E ∈ E , a finite set F ⊂ Z, a
positive number s < ε, a vector zs ∈ PsE , a continuous mapping q : S → 
1, and g ∈ H(
1) such that for
E ′ = F ∪ E and f = LE ′q we have: h = LE ′g, P ◦ f (ξ) = h(ξ) + ξ z on S, and

1

2π

∫ 2π

0
φ( f (eiθ ))dθ ≤ 1

2π

∫ 2π

0
u(h(eiθ ))dθ + ε, where u = IPφ.

Proof By Lemma 3.2 we choose for h a system E ∈ E and a mapping g ∈ H(
1) such that LE ◦ g = h. For
t > 0 let Wt = {x ∈ W : x + t PE ⊂ W } and let

ψt (z) =
∫
PtE

φ(x + y)dτt E (y).

We may assume that h(U ) ⊂ P(Wt ) and we let

vt (z) = inf{ψt (w) : Pw = z, w ∈ Wt }.
Since φ is E-ausc, lim supt→0+ ψt (z) ≤ φ(z),∀z ∈ W . Thus lim supt→0+ vt (z) ≤ u(z),∀z ∈ W0.

Moreover, by Lemma 3.1 the functions ψt (x) are usc along E . Therefore the functions vt are usc along E ,
and consequently the functions vt (h(ξ)) are usc on S.

Since the function φ is locally bounded above, we can find a constant C and open sets W1,W2, . . . ,Wn in
W such that φ < C on each of Wj and the union of P(Wj ) covers h(S). Hence vt (h(ξ)) < C on S when t is
sufficiently small, and by Fatou’s lemma for ε > 0 we can find s so small that

1

2π

∫ 2π

0
vs(h(eiθ ))dθ ≤ 1

2π

∫ 2π

0
u(h(eiθ ))dθ + ε. (4.3)

Let us take a continuous function v on S such that v ≥ vs ◦ h and

1

2π

∫ 2π

0
v(eiθ )dθ ≤ 1

2π

∫ 2π

0
vs(h(eiθ ))dθ + ε. (4.4)

For every ξ ∈ S we take zξ ∈ Ws such that Pzξ = h(ξ) and ψs(zξ ) < v(ξ) + ε. Since ψs is usc along E ,
there is an open arc Vξ ⊂ S containing ξ such that pξ (ζ ) = zξ + h(ζ ) − h(ξ) ∈ Ws and ψs(pξ (ζ )) < v(ζ ) + ε

on Vξ .
We can find finitely many points ξ1, ξ2, . . . , ξn such that the arcs Vj = Vξ j cover S. Let us take closed arcs

V
′
j ⊂ Vj that still cover S. We may assume that none of these arcs contains another. We let γ1 = V1 and delete

the interior of γ1 from away all V
′
j , j ≥ 2. We continue to denote the obtained arcs by V

′
j . Then we throw away

all V
′
j that are empty or consist of one point. We take one of remaining arcs, denote it by γ2, and repeat the

process deleting from all arcs except γ1 and γ2 the interior of γ2. In at most n steps we will get closed arcs
γ j , 1 ≤ j ≤ m, covering S and with disjoint interiors.

Each of the arcs γ j was obtained from some arc Vk . Hence the mappings pξk are defined on γ j . We will
denote them by p j . After a renumbering and rotation we may assume that γ j = {eiθ : α j−1 ≤ θ ≤ α j }.

Let us denote by p the mapping of the interiors of the arcs γ j into Ws equal to p j on γ j . By the definition
of ψs , Fubini’s, theorem and the mean value theorem there is a vector zs ∈ PsE such that

1

2π

∫ 2π

0
φ(p(eiθ ) + eiθ zs)dθ ≤ 1

2π

∫ 2π

0
φs(p(e

iθ )dθ + ε.

Since ψs(p(ζ )) < v(ζ ) + ε, it follows from (4.3) and (4.4) that

1

2π

∫ 2π

0
φ(p(eiθ ) + eiθ zs)dθ ≤ 1

2π

∫ 2π

0
u(h(eiθ ))dθ + 3ε. (4.5)

Let p′
j (ζ ) = p j (ζ ) + ζ zs and let p′ ≡ p on the interior of the arcs γ j . Since fibers of W are path connected,

for every 1 ≤ j ≤ m there is a piecewise linear continuous mapping ρ j of [0, 1] into the fiber over p′
j (e

iα j )
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such that ρ j (0) = p′
j (e

iα j ) and ρ j (1) = p′
j+1(e

iα j ). The union of all sets p′
j (γ j ) and ρ j ([0, 1]) is compact, and

therefore has a neighborhood V ⊂ W where the function φ is bounded above by some constant, say, A > 0.
We take as F the set of all points z j = zξ j and all vertices of the paths ρ j , 1 ≤ j ≤ m. Let E ′ = F ∪ E .

Then points z j lie in the image of LE ′ and we choose w j , 1 ≤ j ≤ m, and ws such that LE ′ws = zs . For every
1 ≤ j ≤ m we define the mapping q j of γ j into 
1 as q j (ζ ) = g(ζ ) − g(ξ j ) + w j + ζws (g was introduced
in the beginning of the proof). Note that LE ′q j = p′

j . Since all vertices of the paths ρ j are in F , we can find a

piecewise linear continuous mapping σ j of [0, 1] into 
1 such that σ j (0) = q j (eiα j ), σ j (1) = q j+1(eiα j ) and
LE ′σ j = ρ j .

Let us choose points α j−1 < β ′
j < α j < β ′′

j < α j+1 so close to each other that the length of the union G ′
of the arcs [β ′

j , β
′′
j ] is less than ε/A and

1

2π

∫
G ′

φ(p′(eiθ ))dθ ≤ ε.

We set h1(ζ ) = h(ζ ) + ζ zs and g1(ζ ) = g(ζ ) + ζws . Let m j (t) be a linear function on [β ′
j , β

′′
j ] equal to 0

at the left end and to 1 at the right one. We define a mapping q : S → 
1 as q j (eiα) when β ′′
j−1 ≤ α ≤ β ′

j , and
for α ∈ [β ′

j , β
′′
j ] we let

q(eiα) = (1 − m j (α))(q j (e
iβ ′

j ) − q j (e
iα j )) + σ j (m j (α))

+ m j (α)(q j+1(e
iβ ′′

j ) − q j+1(e
iα j )) + g1(e

iα)

− (1 − m j (α))g1(e
β ′
j ) − m j (α)g1(e

β ′′
j ).

It easy to verify that q is continuous and PLE ′q = h1. We may also choose points β ′
j and β ′′

j so close that q
maps S into V .

Let f = LE ′q. We denote by G the complement of G ′ in S. Recalling the choice of the sets G ′ and of the
mapping q and also (4.5), we see that

1

2π

∫ 2π

0
φ( f (eiθ ))dθ = 1

2π

∫
G

φ(p′(eiθ ))dθ + 1

2π

∫
G ′

φ( f (eiθ ))dθ

≤ 1

2π

∫ 2π

0
φ(p′(eiθ ))dθ + 2ε

≤ 1

2π

∫ 2π

0
u(p′(eiθ ))dθ + 5ε.

��
Let us return to prove Theorem 4.1 and prove (4.2). We apply Lemma 4.4 to φi , take any s satisfying the

conclusion of the lemma, and denote h(ζ ) + ζ zs by h1(ζ ). Let

ψt (z) =
∫
PtE ′

φi (z + y)dτt E ′(y)

and let ψ ′
t = ψt ◦ LE ′ . Since φi is E-ausc, we can find t > 0 such that

1

2π

∫ 2π

0
ψt ( f (e

iθ ))dθ ≤ 1

2π

∫ 2π

0
φi ( f (e

iθ ))dθ + ε. (4.6)

We can choose t so small that f (S) lies in the set Wt = {x ∈ W : x + t PE ′ ⊂ W }. The function ψ ′
t is usc on

Wt = L−1
E ′ (Wt ). By Lemma 2.4 in [18], there exist a mapping

q1(ζ ) = g(ζ ) + ζws +
N∑

k=−N

ckζ
k
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of C \ {0} into 
1 such that LE ′(g(ζ ) + ζws) = h1(ζ ), Pi LE ′q1 = h1 on S, q1(S) ⊂ Wt , and

1

2π

∫ 2π

0
ψ ′
t (q1(e

iθ ))dθ ≤ 1

2π

∫ 2π

0
ψt ( f (e

iθ ))dθ + ε. (4.7)

Let

f1(ζ ) = LE ′q1(ζ ) = h1(ζ ) +
N∑

k=−N

dkζ
k .

Fubini’s theorem and the mean value theorem applied to (4.6) and (4.7) show that there is y0 ∈ PtE ′ such that

1

2π

∫ 2π

0
φi ( f1(e

iθ ) + eiθ y0)dθ ≤ 1

2π

∫ 2π

0
φi ( f (e

iθ ))dθ + 3ε.

The mapping f2(ζ ) = f1(ζ ) + ζ y0 maps S into Wi , and has a pole of order at most N at the origin. Hence
the mapping f3 = Fi ◦ f2 has no poles on S and only finitely many in U . By Lemma 2.3 there is a Blaschke
product B such that the mapping f4(ζ ) = A(B(ζ ), f3(ζ )) is in H(Z). Since the function φ is S-invariant,
φ( f4(ζ )) = φ( f3(ζ )) ≤ φi ( f2(ζ )) when |ζ | = 1. Therefore

1

2π

∫ 2π

0
φ( f4(e

iθ ))dθ ≤ 1

2π

∫ 2π

0
φi ( f2(e

iθ ))dθ ≤ 1

2π

∫ 2π

0
ui (h(eiθ ))dθ + 4ε.

Note that on S we have:

P f4(ζ ) = P f3(ζ ) = Pi f2(ζ ) = h1(ζ ) + ζ Pi y0.

Thus P f4(0) = z0. The function φ is P-psh, and therefore

u(h(0)) ≤ 1

2π

∫ 2π

0
ui (h(eiθ ))dθ + 4ε.

This proves (4.2) and the theorem. ��
According to this theorem, we must verify that a function φ is P-psh to establish the minimum principle.

Clearly it could be done easier if it will suffice to verify the weak P-plurisubharmonicity. The following, we are
going to prove in the case of U -invariant domains, i. e., A(ζ, z) ∈ W whenever z ∈ W and |ζ | ≤ 1, the weak
P-plurisubharmonicity implies P-plurisubharmonicity.

Theorem 4.5 Let Z be a Hausdorff sequential complete local convex space with a holomorphic U-action A and
let Pz = A(0, z). Let W be an U-invariant open set in Z and let φ be a weakly P-psh S-invariant function on
W. Then φ is P-psh.

Proof Note that now W0 = P(W ) ⊂ W . For f ∈ H(Z) such that f (0) = z, P ◦ f = h ∈ H(W0), and
f (S) ⊂ W we consider F(ζ, ξ) = A(ζ, f (ξ)). The preimage D of W under the mapping F is an open set
containing neighborhoods of sets {(ζ, ξ) : |ξ | ≤ 1, ζ = 0}. Therefore there is an integer N > 0 such that the
mapping g(ξ) = (ξ N , ξ) is in H(D). Let G = F ◦ g. Then G ∈ H(W ), P ◦ G = h, and φ(G(ξ)) = φ( f (ξ))

when |ξ | = 1. Since φ is weakly P-psh,

IPφ(z) ≤ 1

2π

∫ 2π

0
φ(G(eiθ ))dθ = 1

2π

∫ 2π

0
φ( f (eiθ ))dθ,

and therefore φ is P-psh. ��
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