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Abstract The minimum principle establishes cases when the infimum of a family of functions is plurisubhar-
monic. In [18], the author has otained this principle on the space that is the special inductive limits of Banach
spaces. In this paper, we will establish the minimum principle on some classes of Hausdorff sequential complete
local convex spaces.
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1 Introduction

In this section, we will review some definitions and the motivation to obtain the main result of the paper. In this
paper by U we always mean the unit disk in C, U is the closure of U and S is the unit circle. And with X is any
set, we denote H (X) the set of all holomorphic mappings of a neighborhood of U into X, H(X) the set of all
mappings of unit disk continuous on U and holomorphic on U into X

Let W be an open set in a topological vector space Z. We denote PSH(W) is the set of the plurisubharmonic
(psh) functions on W, thatis u € PSH(W) if anh only if it is an upper semicontinuous (usc) functions and satisfy
the subaveraging inequality follow

2
u(f(0)) < i/ u(f()do,vf e HW). (1.1)
2 0

Let P : Z — Y be a projection from Z onto a subspace ¥ C Z and ¢ € PSH(W). Then the subenvelope of
¢ is defined as follow

Ipp(z2) =inf{p(w): we W, P(w) =z},Vz € Wy = P(W). (1.2)

From (1.1) we see that the supremum of any family of psh functions on W is also psh, provided it is usc. But
the minimum of two psh functions on W need not to be psh. So the subenvelope /p¢ of ¢ is not psh in general.

In [10], C. Kiselman has been proved that under some conditions, the subenvelope is psh that he called “the
minimum principle”, as follow
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Theorem 1.1 Suppose that W is a pseudoconvex open set in C* and ¢ is a psh function on W such that both W
and ¢ are S-invariant, i.e., if (z, w) € W, then (z, ¢“w) € W and ¢ (z, ¢'“w) = ¢ (z, w) for every real number
o. Also suppose that for every (z, w) € W the fiber {x|(z,x) € W} are connected. If P(z, w) = z, then the
Sunction Ipp(z) = inf(; yyew ¢ (z, w) is subharmonic.

CLINT3

We can see in the Theorem 1.1 that all the sufficient conditions such as “pseudoconvex”, “S-invariant”, “psh”
and “connected fibers” are very close to the necessary. Indeed, first clearly ¢ must be psh. If W consists of two
disjoint components, then the function /p¢ is the minimum of two psh functions and it is easy to make the
minimum not psh. In [18], the author has given two example to show that the remain conditions are important.
We cite here for convenient.

Example 1.2 Let W be the unit bidisk in C? and ¢(z, w) = log|2zw — 1|. Then Ip¢(z) = —oo when |z| > %
and Ip¢(0) = 0 when z = 0. This means that /p¢ is not subharmonic.

Example 1.3 Let W = {(z, w) € C? : |z] < 2, —|z]*> + 4 < |w|*} and ¢ (z, w) = |w|?. Then both W and ¢ are
S-invariant but W is not pseudoconvex. Now Ip¢(0) = 4 and Ip¢(z) = 3 when |z| = 1. Again we see that Ip¢
is not subharmonic.

In [16] the author has been investigated the following situation: Let ¥ = C", let Wy be an open set in Y, and let
Z = H(C").Wedefine W = {f € Z: f(U) C Wp}. Let Pf = f(0) be the canonical projection of Z onto Y.
It was proved in [16] that, under mild conditions on a function ¢ on W, its subenvelope is psh. Here, we can see
that the main results in [10] and [16] are very different each other because their conditions such as, by [16], Z
was infinitely dimensional, ¢ was not psh or even usc, and W was not psuedoconvex.

In [18], the author has been given the definition P-psh function. Let us call an absolutely measurable function
(see section 3) ¢ on W be P-psh if for every holomorphic mapping f € H(Z) such that f(S) C W and Pf
maps U into Wy = P(W) we have

1 2 .
Ip¢p(Pf(0)) = T d(f(e'?))do. (1.3)
T Jo

Comparing the inequality (1.3) with the subaveraging inequality (1.1) we see that a bigger choice of values
of ¢ in the left side is compensated by also a bigger choice of mappings f in the right side. So the inequality
(1.3) does not follow immediately from the plurisubharmonicity of ¢. It will if we need to verify (1.3) only for
f € H(W). In this case, the function ¢ is called a weakly P-psh function.

By considering the P-psh function ¢ on a open subset in Z that is the special inductive limits of Banach
spaces Z;, in [18], the author has been improved the Kiselman’s framework in [10] to be a new result that include
the results from [16]. In this paper, we use the same technics similar to [18] to prove the minimum principle on
the Hausdorff sequential complete local convex spaces.

2 Holomorphic U — actions on the local convex space

First we review some basic properties in functional analysis. Let X be a compact metric space and Z be Hausdorff
sequential complete local convex space. Let F : X — Z be continuous mapping. We denote the set A is the
closure of the convex hull of F(X) and p,4 is Minkowski functional of the set A. If we set Z4 = span(A) then
(Za, pa) is a Banach space. Moreover, if Z’ is the topological dual space of Z and z* € Z’ then z* € (Z4, pa)’.
Lemma 2.1 Let Z be a Hausdorff sequential complete local convex space. If f is a continuous mapping of u"

into Z holomorphic in U™ then it is holomorphic in U" as a mapping into (Z 4, pa) with A = conv(f(ﬁn)).

Proof Since f is continuous as a mapping from U" into (Z4, pa) so if g is a function is defined as follow

FEn ) \
d&,...d§,, V¢ = sy Cn U”,
/ /H, g, Y= (61, ) €

then g maps U" holomorphically into (Z 4, pa).Letz* € Z'.Ifh(¢) = z*(f(¢)), Y¢ € U" then h is holomorphic
on U". By Cauchy integral formula we have

h, ..., .
d cdxiy.
(2711)"/ /H, 1€ —¢; ot

g) = (27”),1

h(¢) =
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1288 H. N. Quy

From the definition of function g above we have z*(g(¢)) = h(¢). So z*(f(¢)) = z*(g(¢)), Ve e U", z* € Z'.
This imply that f = g on U". O

Suppose that E = {¢1, ..., ¢,} C U and f is a continuous mapping of U \ E into Z, holomorphic in U \ E.
We say that f has a pole of order at most m ; at ¢; if

lim (¢ —¢)™ ™t f) =0.
{=¢j

Corollary 2.2 Let Z be a Hausdorff sequential complete local convex space. If f is a continuous mapping of
U\ E into Z, holomorphic in U \ E with poles of order at most m j at {j, then there exist g € H(Z ) such that

g(&)
H?‘:l(g - Qj)mj.

Proof We set h(¢) = ]_[7:1(4“ — §j)”’f'+2f(§). Then foreach ¢; € E, j =1, ...,n we have

h(zj) = lim h(¢) =0
=g

f&) =

So h is a continuous mapping of U into Z, holomorphic in U. By Lemma 2.1 then € H(Z4).
On the other hand, it is easy to see that &’ (¢j) =0,V1 < j < n. So by Taylor expansion formula of % at {; we
have

@) = =8 Fi(zy)
' 1_[7':1(5 _§j)2
Since g(¢) = ]_[?=1 & =) f©) e ‘H(Z4) and the corollary follows. |

Let Z be a sequential complete local convex space. A continuous mapping A(§, z) of U x Z into Z is called
a holomophic U -action if:

i. A is a holomorphhic mapping of U x Z into Z

ii. Forevery & € U the mapping A (&, z) is linear in z
m. A(l,z) =z
iv. A0, A&, z2)) = A, 2).

It followsn that Pz = A(0, z) is a projection of Z onto Y = P Z and the orbit A(&, z) of a point z € Z lies in
the fiber of P over Pz.

Given a holomorphic U-action A on Z. Let W C Z be open set and ¢ be function on W. The set W is called
S-invariant if A(§,z) € W forevery z € W and £ € S. The function ¢ is called S-invariant if W is S-invariant
and ¢ (A(§,2)) = ¢(z) foreveryz € Wand & € S.

Lemma 2.3 Let Z be a Hausdorff sequential complete local convex space and A be a holomorphic U-action
on Z. Let Pz = A(0, z) be a projection in Z. Let E = {¢1,...,¢,} C U and let f be a continuous mapping
of U \ E into Z, holomorphic in U\E, with poles of order at most mjatlj,1 < j < n. Wedenote by B the
Blaschke product as follow

n r—¢; nj
B@o) =[] ( — ) :
j=1 1 - gjg

wheren; > mj, 1 < j < n.Ifthemappingh = Pfis in H(Z), thenforeveryn € S the mapping A(mB(¢), f(¢))
is also in H(Z).

Proof By Corollary 2.2 the mapping g(¢) = Q(¢) f(¢), where Q(¢) = l_l?=1 (¢ —¢))™,isin H(Zy). If we
set

A&, — h
FE. ) = AG. £©) —hig) = 2& g@ng@ ©

then F(0,¢) = 0.
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Set G(§,¢) = A&, g(2)) — Q(&)h(¢), we have G(0, ¢) = 0. But G is a continuous mapping of Uz into Z,
holomorphic in U2. So by Lemma 2.1 we have G € H(Zy).

By the Taylor expansion formula of G at (0, 0) wecanseethat G (&, ¢) = £§G (&, ¢), where G is holomorphic
in U? and continuous on the boundary where £ # 0.

Since G(nB(¢), ¢) = nB()G1(nB(¢), ¢), the mapping
AMB(), f(£) = FB(&), ) + h(&)

is holomorphihc in U. Itis also continuous up to the boundary because |[B(¢)| = lon Sand [{;| < 1,1 < j <n.
[m|

A function ¢ on an open set W in Z is called sequential usc (susc) if for every point z € W and every
sequence of points z; € W convergence to z we have

limsup ¢(z;) < ¢(2).

j—o00

Here we note that, if a function is usc then it is also sequential usc and if the space Z is metrizable then the both
notions coincide.

A function ¢ on an open set W in Z is called sequential psh (spsh) if it is sequential usc and satisfy the
subaveraging inequality.

3 Almost upper semicontinuous functions

Let ﬁN = {z = (21,22, ...) : zj € C,|z;| < 1} be the product of countably many closed unit disk equipped
with the product topology and, consequently, a compact topological space. This topology has a countable basis:
for every choice of naturals ji, ..., j,, positive rationals ry, ..., r,, and points ¢q, ..., ¢, in U with rational
coordinates we take the set

—N
V={zeU :lzj,—&l<mn.k=12,...,n}.

The set U carries a unique Radon measure t with the following property: if {ji, ..., j,} is any set of n
indices and ¢ is any continuous function on ﬁN such that ¢ (z) = ¢(zj,, ..., zj,). then

1
dt = —— iy 2i)dzi NdZj..dzi NdZ; .
/UN¢ T (Zﬂi)"/L/ /I,/¢(le 2j,)dzjy Tji---@Zj, NAZj,

This measure is translational invariant, i.e., if F C U is a Borel setand x € U suchthat F+x Cc U,
then t(F) = t(F + x).

Let Z be a sequential compete local convex space. The sequence E = (x,) in Z is called summable if every
continuous semi-norm p on Z, then ) ;2 p(x,) < oo. The set

o0
Pp={xeZ:x=Y x. |Gl <1LVj=12 .}
j=1

is called a generalized polydisk. The mapping F : ﬁN — Pg defined as F(z) = ) z;x; is continuous and
therefore defines the measure tg on Pg as the pushforward of the measure 7.
If Pg is a generalized polydisk and

o0
C={xeZ:x=) {x.lgl<c; <LVj=12 .1}
j=1
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1290 H. N. Quy

then C is the intersection of the decreasing sequence of closed sets

o
Ci={xeZ:x=Y ¢x,[¢jl <cj,V1<j <k}
j=l1
Therefore 7 (C) = ]_[j”;l c?.
A function ¢ on aset W C Z is called absolutely measureable if it is measurable with respect to any regular

Borel measure with compact support on W. Given a summable sequence E = {x;}, an open set W C Z, and a
local bounded above absolutely measurable function ¢ on W, we define the function

¢E(z)=/P ¢z + y)dte(y)

ontheset Wg ={ze W:z+4+ Pr C W}.
The linear operator Lz : £' — Z defined as

Lg(C1, 6, ..) = Zé“jxj

J=1

is continuous. We say that a function # on W is usc along E if for every z € W the function u(z + Lg¢) is usc
at the origin of the space £!.

Lemma 3.1 Ler Z be a sequential complete local convex space and ¢ be a local bounded above absolutely
measurable on an open set W in Z. Let E = {x;} be a summable sequence in Z. Then the function ¢ is usc
along E on Wg.

Proof Let us take a point zg € Wg. We will assume that ¢pg(z9) > —o0. If ¢g(z9) = —oo then the proof is
similar.

Since the set K = zo + Pg is compact, we can find a continuous seminorm p and a constant ¢ > 0 such that
¢(x) < cwhen p(x —y) < 1 for some y € K. We also may assume that z € Wg when p(z — z0) < 1.

Since the mapping L is continuous, there is §; > 0 such that p(Lg¢) < 1 when ) || < 8. For such ¢ we
let

F={yePp:y=) &x & <1-1¢l
j=1

By absolute continuity of the integral, for every € > 0 there exist €’ such that

/ ¢(zo0 + y)dTte(y) > —%
A

when 1 (A) < €.
We have tg(F) = ]_[3":1(1 — |§j|)2. So there is 0 < § < &; such that 7 (Pg\F) < 5~ when ) [¢;| < 8.
Letz; =zo+ »_ ¢jxj, > |¢jl <&,andletz = z; — zo. Then Fi = F 4+ z C Pg. Hence

¢E(z1)=/P ¢ (z1 + y)dTe(y)
=/ ¢ (z1 +y)dTe(y) +/ ¢ (z1 +y)dTe(y)
F Pp\F

€
< ¢ (zo + y)dTe(y) + 0
F+z

< ., @(z0 + ¥)dte(y) + € = ¢p(z0) + €,
E

and this means that ¢ is usc along E. O
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Let Z be a sequential complete local convex space and Y be subspace in Z. A system £ of summable sequences
E C Y will be called basic in Y if for every summable sequence F = {x;} C Y there is a family £ € £ and a
sequence of vectors y; € ¢! convergence to 0 such that L gy, = x;. Here we note that, in a finite-dimensional
space a basic system may consist of only one sequence E that is the basis of the space. In an infinite-dimensional
space the system of all summable sequence is basic.

Lemma 3.2 Let Z be a Hausdorff sequential complete local convex space and Y be a subspace of Z and let £
be a basic system in Y. For everyh € H(Y) thereis E € £ and g € H (Y such thath = Lg o g

Proof Since h € H(Y) there exist r > 1 such that 4 is a continuous mapping of U, into Y, holomorphic in U, .
Where U, = {z € C: |z] <r}. Ifh(¢) = h(r_lg“) then i, € H(Y). By Lemma 2.1 then h, € H(Y4, pa),

where A = conv(h,(U)) = conv(h(U,)) and py4 is the Minkowski functional of A. And so & can be represented
by its Taylor series

oo o0
@) =) axgt, where ) patani® < oo,
k=0 k=0

for some 1 < ¢ < r. This infer that the sequence F = {t*a;} is summable. Thus we can find a sequence E € &£
and a sequence of vectors by € ¢! converging to 0 such that Lgby = t*ay. We set

HOEDI IS
k=0

The series for g converges absolutely in U; so g € H(£!) and Lrg(¢) = h(¢) when [¢] < t. O

Let £ be a system of summable sequence in Z. A function ¢ defined on an open set W in Z is called almost upper
semicontinuous with respect to £ (€-ausc) if it is locally bounded above, absolutely measurable and for every
sequence E’{x;} of vectors in Z which is the union of a sequence E € £ and finitely many vectors z1, . .., z, in
Z we have

lim sup ¢; g/ (x) < ¢(x),

t—07F
where rE’ = {tx;}. By Fatou lemma, an usc function is also £-ausc.

Lemma 3.3 Let Z be sequential complete local convex space and P be a projection of Z onto Y. Let € be a
basic system in Y. Let W be an open set in Z and let ¢ be an E-ausc function on W. If the functionu = Ip¢ is
absolutely measurable on Wy = P(W), then it is E-ausc.

Proof We fix a point wy € Wy, E € &, a finite set y;,...,y, in Y and € > 0. We find zg € W such that
Pzy = wo and ¢ (z0) < u(zg) + €. If E/ = EU F, then

lim sup / u(wo + y)dtg(y) < limsup o (z0 + y)dre(y)
P.E

t—0t t—0t JPE'

< ¢ (z0) < u(zo) +e.

4 The main results

Before starting and proving the main results we will give some notions.

Let A be a proper subset of Z. We say that a mapping F of Z \ A into another topological vector space Z’ is
rational with poles in A if for every g € H(Z) either g(U) C A or the set Ay = g N (A)NUisfiniteand F o g
has poles of finite order at points of A,. Also for a holomorphic mapping of 2 : U \ {0} — Z with a pole of
finite order at 0, the mapping F o & has a pole of finite order at O too. In the case of finite dimensional topological
vector space this definition produces standard rational mappings. Also linear mappings are rational.

Now we recall a basis result in functional analysis. If (Z, &) is a sequential complete local convex space then
there is the strongest local convex topology 1 on Z such that £ and n have the same bounded sets in Z and (Z, n)
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1292 H. N. Quy

is the inductive limit of family Banach spaces (Z;,i € I) with some the directed set /. From this we give the
notion of weakly £-ausc function as follow.

Let Z be a sequential complete local convex space that is also the inductive limit of family Banach spaces
(Z;,i € I) with I is the directed set. Let P be a projection of Z onto Y. Let £ be a basic system in Y. A function
¢ on an open set W in Z is called weakly £-ausc if there is rational mappings F; : W; — Z with poles outside
of W; C Z;, projections P; on Z; and £-ausc functions ¢; on W; such that:

L. P(Z2) = Pi(Z) =Y, Pi(W;) = P(W) = Wo;
ii. Fi(Wi) C W, PoFi(z) = Pi(2);
iii. ¢(Fi(2)) < ¢i(2);
iv. The function u; = Ip,¢; are absolutely measurable and from a decreasing net such that lim; u; = Ip¢.

The net {Z;, W;, F;, P;, ¢;} will be called an approximating net. We can see that a £-ausc function is also
weakly £-ausc.

The following theorem is the main of the paper.

Theorem 4.1 Let Z be a Hausdorff sequential complete local convex space with a holomorphic U-action A.
Let Pz = A(0,z) and let Y = P(Z). Let £ be a basic system in Y. Let W be an S-invariant open set in Z and
let ¢ be an S-invariant absolutely measurable function on W. If ¢ is weakly E-ausc with an approximating net
{Zi, Wi, F;, P;, ¢;i} and the fibers Wi, = {w € W; : P;(w) = z} are path connected, then the functionu = Ip¢
is sequential psh if and only if ¢ is P-psh.

Proof First, we will prove the necessity of the theorem. If h € H(Wy), Wo = P(W),and f : § - Wisa
continuous mapping such that P o f = h on S, then for a psh function # we have

2

2
u(h(0)) < — f uh(@ndo < — [ ¢(F(e?))an,
21 Jo 2r Jo

Thus ¢ is P-psh.
The proof of sufficiency is more complicated and will follow from a sequence of the following lemmas.
Lemma 4.2 In conditions of Theorem 4.1 the function u = Ip¢ is sequential usc.

Proof Letzobeapointin Wy and let {z;} be a sequence of points in W, converging to 0. We have H = {zo, zo+2x}
is a compact set in Y. Set G = conv(H) and Y5 = span(G) and p¢ is a Minkovsky functional of G. Then
(Y, pc) is the Banach space.

Switching if necessary to a subsequence, we can assume that the family F = {kzx} is summable in Ys. So
we can find a sequence E € £ and a sequence of vectors x; € £! converging to 0 such that L gx; = z.

Fix some € > 0 and find i € I and a point wy € Wy such that P;wy = z¢ and ¢; (wo) < u(zp) + €. For every
k > 1 we set wr = wo + 7. Let us take s > 0 so small that wy + Psg C W; for all k. Let

llfz(y)=/ ¢i (y +x)dtg(x).
PtE

Since ¢; is £-ausc, for any € > 0 we can find 0 < ¢ < s such that ¥ (wg) < ¢;(wp) + €. Since the function
is usc along 7 E and L.g(t~'x;) = zx, there is ko such that ¥, (wr) < ¢i(wo) + 2€ when k > k.
For every ¢! € S we have

i bi(wy + ¢ x)dT g (x) = Yy (wy).
tE

Hence by Fubini’s and the mean theorems there exist xo € Py such that
1 2 )
7 b (wi + €Px0)d0 < ¢i(yo) + 2¢, when k > ko.
T Jo
Let fi (&) = wx + £xo be a mapping of the unit disk into W; and let f = F; o f;. Since Pf(0) = P; f;(0) =
z0 + zk and ¢ is weakly P-psh,

2

1 2 ) 1 )
u@o+z) < — | o(fENdo < — | ¢i(fi(€'")db < u(zo) + 2e.
2 0 2 0

Thus u is sequential usc. O
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Now to conclude the proof of the theorem for a mapping & € H (Wp) such that #(0) = z¢, we will establish for
every € > 0 we have

1 2 .
u(zo) < —/ u(h(e?))do + e. @.1)
2 0
For this we will replace the integrand u in inequality above by a topologically better function ;. Note that
by Lemma 3.3 the function u; are £-ausc.

Lemma 4.3 Let Z be a Hausdorff sequential complete local convex space and let P be a projection of Z onto Y.
Let & be a basic system in Y. If a decreasing net of £-ausc functions u;, i € I, on an open set Wy C Y converges
to an usc function u, then for every h € H(Wy) and € > 0 there are a sequence of vectors y, € Y converging to
0 and a sequence of i, € I such that

1 2 ) 1 2 )
o [ @0 = o [ uthean +e.
0 0

where h, () = h(¢) + Cyn.

Proof By Lemma 3.2 we take E € £ and a mapping g € H(¢!) such that Lpg = h. Forn = 1,2, ... let
Wy =1{xe Wo:x+n"'E C Wp}and

Uin(x) = / ui(x + y)dt,—1g(y), Vx € Wj.
PlflE

By Lemma 3.1 the functions u;, are usc on i(S).
Since the functions u; are decreasing and locally bounded above, u;, < u;, wheni > j and for any iy € /
the functions u;,, i > ig, are uniformly bounded above on (S). Moreover, since the functions u; are £-ausc,

limsupu;, < u;
n—oo

on /(S). By Lebesgue’s monotone convergence theorem for every n > ng there is i, € I such that

1 2 ) 1 2 )
g/ win(h(e'))do < g[ u(h(e'?))do + e.
0 0

By the definition of u;,,, Fubini’s theorem, and the mean velue theorem we can find a vector y, € P,-1g such
that

1 2w ) ) 1 2 .
2—/ w;, (h(e'?) + €% y,)do < 2—f u(h(e'%))do + 2e.
T Jo T Jo

O
We use Lemma 4.3 to find a mapping i’ € H(Wp) with h’(0) = zg and i € I such that
1 2 ) 1 2 )
— / ui (W (?))do < — / u(h(e'?))do + e.
2 0 2 0
Now we see that the subaveraging inequality (4.1) will be proved if we establish that
1 2 )
u(zp) < —/ ui (h'(€9))d6 + e. 4.2)
2 0

Let us denote 4’ by h.
Now we claim the existence of a continuous selection minimizing some functional.
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Lemma 4.4 Let P be a projection on a Hausdorff sequential complete local convex space and let W C Z be
an open with path connected fibers. Let € be a basic system in Y = P(Z) and Wy = P(W). If ¢ is an E-ausc
Sfunction on W, then for every h € H(Wy) and every € > 0 there are a family E € &, a finite set F C Z, a
positive number s < €, a vector z; € Psg, a continuous mapping q : S — ', and g € H(L") such that for
E'=FUEand f = Lggqwehave:h = Lgg, Po f(§)=h()+&zonS, and

1 2 . 1 2 .
— (f(€9))do < —/ u(h(€'?))do + e, whereu = Ipé.
2 0 2 0

Proof By Lemma 3.2 we choose for 4 a system E € £ and a mapping g € H(¢') such that Lg o g = h. For
t>0letW ={xeW:x+tPg C W}and let

Vi (2) = ¢(x + y)dte(y).

P

We may assume that h(U) c P(W") and we let
v (2) = inf{y; (w) : Pw =z, w € W'}.

Since ¢ is £-ausc, lim sup,_, g+ ¥;(2) < ¢(2), Yz € W. Thus lim sup,_, o+ v:(2) < u(z), ¥z € Wo.

Moreover, by Lemma 3.1 the functions v (x) are usc along E. Therefore the functions v; are usc along E,
and consequently the functions v;(h(§)) are usc on S.

Since the function ¢ is locally bounded above, we can find a constant C and open sets Wi, Wp, ..., W, in
W such that ¢ < C on each of W; and the union of P(W;) covers h(S). Hence v;(h(§)) < C on S when ¢ is
sufficiently small, and by Fatou’s lemma for ¢ > 0 we can find s so small that

2 2
1 f vy (h(e'?))do < 1 / u(h(€))do + e. (4.3)
27‘[ 0 27‘[ 0

Let us take a continuous function v on § such that v > vy o & and

1 2 ) 1 2 .
— / v(e'ydo < — / vs (h(€'?))do + e. (4.4)
2 0 2 0

For every £ € S we take zz: € W* such that Pzz = h(§) and ¥, (z¢) < v(§) + €. Since ¥, is usc along E,
there is an open arc Ve C § containing & such that pg (£) = z¢ +h(¢) — h(§) € W* and Y (p:(£)) < v() +€
on Vg.

We can find finitely many points &1, &, ..., &, such that the arcs V; = ng cover S. Let us take closed arcs
V; C V; that still cover S. We may assume that none of these arcs contains another. We let y; = Vi and delete
the interior of y; from away all V}, Jj > 2. We continue to denote the obtained arcs by V}. Then we throw away

all V. that are empty or consist of one point. We take one of remaining arcs, denote it by y», and repeat the
process deleting from all arcs except y; and y» the interior of y». In at most n steps we will get closed arcs
vj» 1 < j < m, covering S and with disjoint interiors.

Each of the arcs y; was obtained from some arc Vj. Hence the mappings pg, are defined on y;. We will
denote them by p;. After a renumbering and rotation we may assume that y; = (e : a -1 <0 <aj}

Let us denote by p the mapping of the interiors of the arcs y; into W* equal to p; on y;. By the definition
of 15, Fubini’s, theorem and the mean value theorem there is a vector z; € Psg such that

2 2

1 . . .
— | ppE®) +e%%0)d0 < — | ¢u(p(®)do +e.
27‘[ 0 27'[ 0

Since Y5 (p(¢)) < v(¢) + €, it follows from (4.3) and (4.4) that
2

21
L7 oo + ez)d0 < — / u(h(e'))do + 3e. (4.5)
2z 0 27 0

Let p;. (¢) = pj(¢)+ ¢z, and let p’ = p on the interior of the arcs y;. Since fibers of W are path connected,
for every 1 < j < m there is a piecewise linear continuous mapping p; of [0, 1] into the fiber over p;. (e'®i)
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such that p;(0) = p’, (€!®i) and pj(l) = p}H (¢'®7). The union of all sets p} (y;) and p; ([0, 1]) is compact, and
therefore has a neigﬁborhood V C W where the function ¢ is bounded above by some constant, say, A > 0.

We take as F the set of all points z; = zg; and all vertices of the paths p;, 1 < j < m. Let E' =FUE.
Then points z; lie in the image of L/ and we choose w;, 1 < j < m, and wy such that L grwy = z,. For every
1 < j < m we define the mapping g; of y; into el as q;(¢) = g) —gj) +w; + Cw, (g was introduced
in the beginning of the proof). Note that Lg/q; = p}. Since all vertices of the paths p; are in F, we can find a
piecewise linear continuous mapping o; of [0, 1] into ¢! such that 0;(0) =g; ('), oj(1) =qjn (e'*i) and
LE/(T]' = pPj-

Let us choose points aj 1 < ﬂ} <a; < ,3}/ < aj41 so close to each other that the length of the union G’
of the arcs [,3}, /3}/] is less than €/A and

1 /o 160
—/ ¢(p'(e'”))do < e.
27 G’

We set h1(¢) = h(¢) + ¢z and g1(¢) = g(¢) + Swy. Let mj(¢) be a linear function on [,3}, ﬂ}’] equal to 0
at the left end and to 1 at the right one. We define a mapping g : S — ¢! as g;(¢'*) when /3;.’71 <ac< ,3;., and
fora € [,3}, ﬂ}/] we let

g€ = (1= m;@)(g;(e?) = q;()) + o;(m (@)
m @) (g1 PT) = gj11)) + g1(e™)
— (1 =mj@)gi”) —m(@)gi(e’).

It easy to verify that g is continuous and PL /g = hi. We may also choose points ,3;. and ,3;-’ so close that ¢
maps S into V.

Let f = Lg/g. We denote by G the complement of G’ in S. Recalling the choice of the sets G’ and of the
mapping ¢ and also (4.5), we see that

1 27 ) 1 ) 1 )
[ o = / (0 (@))do + — / (f(e%))do
7 Jo 27 Jg 2w Jor

2w

< L d(p'(€9))do + 2¢
27‘[ 0

A

IA

1 2 )
> / u(p'(€'%))do + 5e.
T Jo

O

Let us return to prove Theorem 4.1 and prove (4.2). We apply Lemma 4.4 to ¢;, take any s satisfying the
conclusion of the lemma, and denote h(¢) + {zg by h1(Z). Let

Y (z) = / ¢i(z+ y)dt g (y)
Py

and let ¥/ = V¥ o L. Since ¢; is £-ausc, we can find 7 > 0 such that
2

. 1 [« .
5 Ui (fE@Ndo < — [ ¢i(f(e?))do +e. (4.6)
bs 21 Jo

We can choose ¢ so small that f(S) lies in the set W = {x € W : x 4+ t P C W}. The function ¥, is usc on
W, = LE,I (W"). By Lemma 2.4 in [18], there exist a mapping

N
Q1) =g@) +tws+ Y exdt
k=—N
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of C \ {0} into ¢! such that Lg/(g(¢) + Cwy) = h1(¢), P;Lg:qi = hyon S, q1(S) C W;, and

2

1 ) 1 2 .
7 U (q1eNdo < — | wi(f(e?))do +e. 4.7)
7T Jo 21 Jo

Let

N
A@ =Lpq@) =h@)+ Y dg*.

k=—N
Fubini’s theorem and the mean value theorem applied to (4.6) and (4.7) show that there is yg € P;g such that

2 1 2

1 . . .
— | di(fie)+ePy0)do < — | di(f(e9))d6 + 3e.
2 0 2 0

The mapping f2(¢) = f1(¢) + ¢yo maps S into W;, and has a pole of order at most N at the origin. Hence
the mapping f3 = F; o f> has no poles on § and only finitely many in U. By Lemma 2.3 there is a Blaschke
product B such that the mapping f1(¢) = A(B(¢), f3(¢)) is in H(Z). Since the function ¢ is S-invariant,

¢ (f2(8)) = ¢(f3(2)) = ¢i(f2(£)) when [{| = 1. Therefore

1 2 " 1
- ¢(fa(e'”)dO < —

2m ) 1 27 ]
< 8 (fo())do < — / i (h(e))d6 + de.
2w 0 2 0 27 0

Note that on S we have:

Pf4(5) = Pf3(¢) = P; f2(¢) = h1(¢) + ¢ Piyo.

Thus P f4(0) = z¢. The function ¢ is P-psh, and therefore

2
u(h(0)) < i/ ui (h(€'?))do + 4e.
27 0

This proves (4.2) and the theorem. |

According to this theorem, we must verify that a function ¢ is P-psh to establish the minimum principle.
Clearly it could be done easier if it will suffice to verify the weak P-plurisubharmonicity. The following, we are
going to prove in the case of U-invariant domains, i. e., A(Z,z) € W whenever z € W and |¢| < 1, the weak
P-plurisubharmonicity implies P-plurisubharmonicity.

Theorem 4.5 Let Z be a Hausdorff sequential complete local convex space with a holomorphic U-action A and
let Pz = A(0, z). Let W be an U -invariant open set in Z and let ¢ be a weakly P-psh S-invariant function on
W. Then ¢ is P-psh.

Proof Note that now Wy = P(W) C W. For f € H(Z) such that f(0) =z, Po f = h € H(Wp), and
f(S) € W we consider F(¢,§) = A(¢, f(§)). The preimage D of W under the mapping F is an open set
containing neighborhoods of sets {(¢, §) : |€] < 1, ¢ = 0}. Therefore there is an integer N > 0 such that the
mapping g(&) = (6N, &) isin H(D).Let G = Fog. Then G € H(W), P o G = h, and ¢(G(£)) = ¢ (f(£))
when |&| = 1. Since ¢ is weakly P-psh,

1 2 . 1 2 )
Ipp(2) = o ¢(GE")do = — | ¢(f())as,
T Jo 2w 0

and therefore ¢ is P-psh. O
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