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Abstract In this paper, we study the existence of normalized solutions to the Kirchhoff equation with L2-
subcritical or critical nonlinearities

− (
a + b

∫
R2 |∇u|2dx) �u = λu + |u|p−2u + μ|u|q−2u in R

2,

where a, b, μ > 0, 2 < q < p ≤ 6. By minimizing methods and the concentration compactness principle, we
prove the existence and nonexistence of normalized solutions when (p, q) belongs to a certain domain in R

2,
and discuss how μ affects the existence of normalized solutions. Our main results may be illustrated by the red
areas and green areas shown in Figure 1. Our results partially extend the results of Soave (J. Differ. Equ. 2020).
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1 Introduction

In this paper, we study the existence of normalized solutions to the Kirchhoff equation with L2-subcritical or
critical nonlinearities

− (
a + b

∫
R2 |∇u|2dx) �u = λu + |u|p−2u + μ|u|q−2u in R

2, (1.1)

where a, b, μ > 0, 2 < q < p ≤ 6. The problem (1.1) is related to the equation

− (
a + b

∫
RN |∇u|2dx) �u = f (x, u) (1.2)

proposed byKirchhoff as an extension of the classicalD’Alembert’swave equations.Mathematically, the problem
(1.2) is often referred to be nonlocal as the appearance of the term b

∫
RN |∇u|2dx implies that (1.2) is no longer

a pointwise identity. This phenomenon causes some mathematical difficulties, which make the study of (1.2)
particularly interesting.
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After the pioneering work of Lions [7], the Kirchhoff type problem (1.2) began to receive much attention
and many important results were established, see [1,3,9,14]. When f (x, u) = λu + g(x, u), to find solutions
for problem (1.2), a possible choice is to consider fixed λ, or even with an additional external and fixed potential
V [4,6]. Another possible choice is to search for solutions to (1.2) having prescribed L2-norm, see [5,12,13].
In this case, (1.2) can be viewed as an eigenvalue problem by taking λ as amn unknown Lagrange multiplier,
and solved by studying some constrained variational problems. Inspired by the works of [10,12], we consider
the following minimization problem

m(c) := inf
Sc

Eμ(u), (1.3)

where Eμ(u) = a
2 |∇u|22+ b

4 |∇u|42− 1
p |u|pp− μ

q |u|qq , Sc = {
u ∈ H1(R2) : |u|22 = c

}
, and |·|r denotes the standard

norm in Lr (R2). If u ∈ Sc is a minimizer of problem (1.3), then there exists λc ∈ R such that Eμ
′(u) = λcu,

namely, u ∈ Sc is a solution of (1.1) for some λc. It is known that p = 6 is a L2-critical exponent, that is, Eμ is
bounded from below on Sc if 2 < p < 6, while Eμ is not bounded from below on Sc if p > 6.

When μ = 0, Ye [12] considered problem (1.3) with L2-subcritical case, and proved the existence of
minimizers to (1.3). Later, Zeng and Zhang [13] gave a new proof for the results of [12] by using technical
energy estimates, and showed that the minimizer of (1.3), if exists, is unique and must be a scaling of Q, where
Q is the unique radially symmetric positive solution of the following equation

−�u + 2
p−2u − 2

p−2 |u|p−2u = 0 in R
2. (1.4)

When μ �= 0, Li, Luo and Yang [5] considered the existence of multiple solutions to problem (1.1) with
the L2-subcritical and supercritical case in R

3 by constructing a suitable Palais-Smale sequence and Ekeland’s
variational principle, and obtained the existence of ground state solution in the L2-supercritical case by using
minimax methods. However, to the best of our knowledge, the existence of normalized solutions to problem (1.1)
with L2-subcritical or critical case in R

2 is still unknown.
Motivated by the above works, in this paper we consider that the existence of normalized solutions to problem

(1.1) with L2-subcritical or critical case, namely, 2 < q < 4 and 2 < p ≤ 6 in R
2. In addition, we discuss how

μ affects the existence of normalized solutions to problem (1.1).
We recall that Q is an optimizer of the following sharp Gagliardo-Nirenberg [11] inequality

|u|pp ≤ p

2|Q|p−2
2

|∇u|p−2
2 |u|22, ∀u ∈ H1(R2).

Moreover, combining the Pohozaev identity, Q satisfies |∇Q|22 = |Q|22 = 2
p |Q|pp. Let

c∗ := b|Q|42
2 , c∗

p(a, b) := 2|Q|p−2
2

(
a

6−p

) 6−p
2

(
b

2(p−4)

) p−4
2

,

our first result is the nonexistence of minimizers to problem (1.3).

Theorem 1.1 Assume that 2 < q < p ≤ 6 and c, μ > 0. Then problem (1.3) has no minimizer if one of the
following conditions holds.

(i) q = 4, p = 6, either c < c∗ and μc ≤ a|Q|22, or c = c∗ and μc < a|Q|22.
(ii) q = 4 < p < 6, μc < a|Q|22, and c < c∗

p(a0, b), where a0 = a|Q|22−μc

|Q|22
> 0.

(iii) 4 < q < 6 = p, c < c∗, and μc < c∗
q(a, b0), where b0 = b|Q|42−2c

|Q|42
> 0.

Remark 1.1 (a) Theorem 1.1 may be illustrated by the red area shown in Figure 1. (b) When μ = 0, problem
(1.3) also has no minimizer under the conditions (i), (ii) and (iii) (see [13]). Theorem 1.1 shows that the
nonexistence of minimizers to problem (1.3) still holds for small μ, which partially extends the result of Zeng
and Zhang [13]. (c) Theorem 1.1 shows that the nonexistence of minimizers to problem (1.3). In fact, we may
proceed as in Theorem 1.2 of [12] to prove that Eμ has no constraint critical point on Sc under the conditions (i)
by Gagliardo-Nirenberg inequality and Pohozaev identity. For the cases (ii) and (iii), we can further constrain μ

and c by Young’s inequality such that Eμ has no constraint critical point on Sc.

Let c∗
p = +∞ if 2 < p < 6, c∗

p = c∗ if p = 6, we have the following result.
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Fig. 1 The nonexistence (red area) and existence (green area) of constraint minimizers

Theorem 1.2 Assume that 2 < q < 4, 2 < p ≤ 6, q < p and μ > 0. Then the problem (1.3) has a minimizer
for every c ∈ (0, c∗

p).

Remark 1.2 (a) The results in Theorem 1.2 may be illustrated by the green area shown in Figure 1. (b) Theorem
1.2 shows the existence of normalized solutions to problem (1.1) with 2 < q < 4 and 2 < p ≤ 6, which partially
extends existence result of Soave [10] in case where b = 0 and 2 < q < 4 ≤ p < +∞.

Remark 1.3 If 4 ≤ p ≤ 6, Ye [12] showed that the nonexistence of minimizers to (1.3) with μ = 0 for small
c > 0. But Theorem 1.2 shows thatμ > 0 will affect the existence of minimizers to problem (1.3) for c ∈ (0, c∗

p)

in the case where 2 < q < 4 and q < p. The reason is that under the conditions of Theorem 1.2, we have
m(c) < 0, which guarantees that m(c) satisfies the strict sub-additivity inequalities in Lemma 2.4. This is the
key to prove the existence of normalized solutions.

To prove Theorem 1.2, since that every minimizing sequence for (1.3) is bounded, we only need to exclude
the two possibilities of vanishing and dichotomy, namely, un ⇀ 0 in H1(R2) and un ⇀ u �= 0 in H1(R2), 0 <

|u|22 < c. By vanishing lemma of Lions, the former can be avoided. The latter can be excluded by the strict
inequality m(c) < m(α) + m(c − α) for every 0 < α < c.

Regarding the notation, in this paper, we use → and ⇀ to denote the strong and weak convergence in the
related function space respectively. := and =: denote definitions. The rest of this paper is organized as follows.
In Sect. 2, we present some preliminary results for Theorems 1.1 and 1.2. In Sect. 3, we prove Theorems 1.1
and 1.2.

2 Preliminary results for Theorems 1.1 and 1.2

Lemma 2.1 Assume c, μ > 0, then Eμ is coercive on Sc if one of the following conditions holds.

(i) 2 < q < p < 6.
(ii) 2 < q < 6 = p, c < c∗.
(iii) q = 4, p = 6, c = c∗ and μc < a|Q|22.
Especially, if the condition (iii) holds, then Eμ(u) > 0 for every u ∈ Sc.

Proof For every u ∈ Sc, we have Eμ(u) ≥ a
2 |∇u|22 + b

4 |∇u|42 − c
2|Q|p−2

2

|∇u|p−2
2 − μc

2|Q|q−2
2

|∇u|q−2
2 . It is easy to

check that Eμ(u) → +∞ as |∇u|2 → +∞. �
Lemma 2.2 (1) Assume that the conditions of Lemma 2.1 hold, then m(c) is well defined and m(c) ≤ 0.
(2) Assume that 2 < q < 4, 2 < p ≤ 6, q < p and μ > 0, then m(c) < 0 for every c ∈ (0, c∗

p).

Proof (1) By Lemma 2.1, Eμ is bounded from below on Sc. Let ut (x) = t
1
2 u

(
t
1
2 x

)
, then ut ∈ Sc, and

Eμ(ut ) = a
2 t |∇u|22 + b

4 t
2|∇u|42 − 1

p t
p−2
2 |u|pp − μ

q t
q−2
2 |u|qq → 0 as t → 0. Thus m(c) ≤ 0.
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(2) Let us(x) = c
1
2

s
1
2 Q

(
s
1
2 x

)

|Q|2 for s > 0, then us ∈ Sc, and

Eμ(us) = a
2 cs + b

4c
2s2 − c

p
2

2|Q|p−2
2

s
p−2
2 − μc

q
2 |Q|qq

q|Q|q2
s
q−2
2 .

It is easy to see that there exists s0 > 0 such that Eμ(us0) < 0 when 2 < q < 4, 2 < p ≤ 6 and c ∈ (0, c∗
p).�

Remark 2.1 By Lemma 2.1, we know that if q = 4, p = 6, c = c∗ and μc < a|Q|22, then Eμ(u) > 0 for every
u ∈ Sc, so m(c) has no minimizer.

Lemma 2.3 Assume that 2 < q < 4, 2 < p ≤ 6, q < p and μ > 0. Then m(c) is continuous on (0, c∗
p).

Proof The proof is similar to that of Theorem 2.1 in [2], so we omit it.

Lemma 2.4 Assume that 2 < q < 4, 2 < p ≤ 6, q < p and μ > 0. Then for every c ∈ (0, c∗
p), m(c) <

m(α) + m(c − α) when 0 < α < c.

Proof By Lemma 2.2, m(c) < 0 for every c ∈ (0, c∗
p). Let {un} ⊂ Sc be a minimizing sequence for m(c), that

is, Eμ(un) → m(c). Since Eμ is coercive on Sc, then {un} is bounded in H1(R2). We claim that there exists a
constant k1 > 0 such that |∇un|22 ≥ k1. In fact, if |∇un|2 → 0 then

Eμ(un) ≥ a
2 |∇un|22 + b

4 |∇un|42 − c
2|Q|p−2

2

|∇un|p−2
2 − μc

2|Q|q−2
2

|∇un|q−2
2 → 0.

Since Eμ(un) ≤ a
2 |∇un|22 + b

4 |∇un|42 → 0, then Eμ(un) → 0, a contradiction.

For every u ∈ Sc, let uθ (x) = u
(
θ− 1

2 x
)
for θ > 0, then uθ ∈ Sθc, so uθ

n ∈ Sθc. Let θ > 1 such that θc < c∗
p,

then

m(θc) ≤ Eμ(uθ
n) = a

2 |∇un|22 + b
4 |∇un|42 − 1

p θ |un|pp − μ
q θ |un|qq

= θEμ(un) + a
2 (1 − θ) |∇un|22 + b

4 (1 − θ) |∇un|42
≤ θEμ(un) + a

2 (1 − θ) k1 + b
4 (1 − θ) k21 .

Since the second term on the right is negative, we have m(θc) < θm(c), and from this the thesis follows as in
Lemma II.1 of [8]. �

3 Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.1 It is enough to show that Eμ(u) > 0 for every u ∈ Sc. Since m(c) ≤ 0, then m(c) has no
minimizer.

(i) If q = 4, p = 6, and either c < c∗, μc ≤ a|Q|22 or c = c∗, μc < a|Q|22, then by Gagliardo-Nirenberg

inequality, we have Eμ(u) ≥ 1
2

(
a − μc

|Q|22

)
|∇u|22 + 1

2

(
b
2 − c

|Q|42

)
|∇u|42 > 0.

(ii) If q = 4 < p < 6 and μc < a|Q|22, then

Eμ(u) ≥ 1
2

(
a − μc

|Q|22

)
|∇u|22 + b

4 |∇u|42 − c
2|Q|p−2

2

|∇u|p−2
2 .

Let |∇u|22 = t, α = 6−p
2 , β = p−4

2 . By Young’s inequality, we deduce that

a0
2
t + b

4
t2 = α · a0

2α
t + β · b

4β
t2 ≥

( a0
2α

)α
(

b

4β

)β

tα+2β =
( a0
2α

)α
(

b

4β

)β

t
p−2
2 ,

where the equality holds if and only if t = 2(p−4)a0
(6−p)b . Thus Eμ(u) ≥ c∗

p(a0,b)−c

2|Q|p−2
2

|∇u|p−2
2 > 0 for every u ∈ Sc.
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(iii) If 4 < q < 6 = p, c < c∗ and μc < c∗
q(a, b0), then for every u ∈ Sc, by Young’s inequality

Eμ(u) ≥ a
2 |∇u|22 + 1

4

(
b − 2c

|Q|42

)
|∇u|42 − μc

2|Q|q−2
2

|∇u|q−2
2 ≥ c∗

q (a,b0)−μc

2|Q|q−2
2

|∇u|q−2
2 > 0.

Proof of Theorem 1.2. Let {un} ⊂ Sc be a minimizing sequence form(c), namely, Eμ(un) → m(c) and |un|22 =
c. Since Eμ is coercive on Sc, then {un} is bounded in H1(R2). Then

δ := lim
n→∞

sup
y∈R2

∫
B1(y)

|un|2dx > 0.

Otherwise, by vanishing lemma of Lions, un → 0 in Lr (R2) for 2 < r < +∞, and then 0 ≤
lim
n→∞

( a
2 |∇un|22 + b

4 |∇un|42
) = lim

n→∞ Eμ(un) = m(c) < 0, a contradiction. Therefore, there exists a sequence

{yn} ⊂ R
2 such that

∫
B1(yn)

|un|2dx > δ
2 > 0. Let vn = un(x + yn), and then

∫
B1(0)

|vn|2dx > δ
2 . (3.1)

Moreover {vn} ⊂ Sc also a bounded minimizing sequence for m(c), and then we may assume that vn ⇀

v0 in H1(R2), vn → v0 in Lr
loc(R

2) for r ∈ [1,+∞), vn(x) → v0(x) a.e. in R
2, which and (3.1) imply that

v0 �= 0. Thus α := |v0|22 ∈ (0, c].
We now prove that α = c. Suppose that α < c, then c = |vn|22 = |v0|22 + |vn − v0|22 + o(1). Combining

Brezis-Lieb Lemma and Lemma 2.3, we see that

m(c) = lim
n→∞ Eμ(vn) = Eμ(v0) + lim

n→∞ Eμ(vn − v0) ≥ m(α) + m(c − α),

which contradicts Lemma 2.4. So α = c, namely, v0 ∈ Sc. Since m(c) ≤ Eμ(v0) ≤ lim
n→∞

Eμ(vn) = m(c), then

v0 ∈ Sc is a minimizer of m(c). �
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