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Abstract In this paper, we study “robust” dominating sets of random graphs that retain the domination property
even if a small deterministic set of edges are removed. We motivate our study by illustrating with examples
from wireless networks in harsh environments. We then use the probabilistic method and martingale difference
techniques to determine sufficient conditions for the asymptotic optimality of the robust domination number. We
also discuss robust domination in sparse random graphs where the number of edges grows at most linearly in the
number of vertices.
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1 Introduction

Domination of graphs is an important topic from both theoretical and application perspectives and has been
extensively studied in the random graph context as well. Throughout, random graphs refer to the Bernoulli or
Erdös-Rényi random graph G obtained by allowing each edge in the complete graph on n vertices to be present
with a certain probability p, independent of the other edges (for formal definitions, please refer to Sect. 2). In
[7], two point concentration for the domination number of G is obtained for the case when p is essentially a
constant and this concentration phenomenon was extended for a wide range of p in [5]. Since then many other
variants of domination have also been studied (see for e.g. [3] [6]).

Dominating sets also occur naturally in the design of wireless networks. In [8], an early application of
dominating sets is explored for routing in ad hoc wireless networks devoid of any central control. The nodes
belonging to the dominating sets are interpreted as “gateways" through which any two nodes in the network can
communicate with minimal delay. This was extended to higher dimensional wireless networks in [9] and for a
survey on the usage of domination in communications, we refer to [4].

Ad hoc networks are especially fragile in terms of linkage in the sense that the sensors are continually moving
around and so links may break or form randomly. Moreover, due to environmental constraints like shadowing
and fading, it may happen that links between certain nodes are simply not feasible. In such a situation, it is of
natural interest to know whether the domination property is still retained and this is the topic of study in this
paper. We consider dominating sets in the Bernoulli random graph G and are interested in obtaining “robust"
dominating sets that retain the domination property even if a small deterministic set of edges are removed. We
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obtain sufficient conditions for asymptotic optimality of the robust domination number in terms of the maximum
vertex degree and the number of edges of the graph that has been removed from Kn .

The paper is organized as follows: In Sect. 2, we state and prove our main result regarding robust domination
number in random graphs for the dense regime.We use the probabilistic method to establish sufficient conditions
for asymptotic optimality. Next, in Sect. 3, we also discuss our results for the robust domination in the sparse
regime.

2 Robust domination

Let Kn be the complete graph on n vertices and let {Z( f )} f ∈Kn be independent random variables indexed by
the edge set of Kn and with distribution

P(Z( f ) = 1) = p = 1 − P(Z( f ) = 0) (1)

where 0 < p < 1. Let G be the random graph formed by the union of all edges f satisfying Z( f ) = 1 and let H
be any deterministic subgraph of Kn with m = m(n) edges and a maximum vertex degree of � = �(n).

A set S ⊂ V is said to be a dominating set of G\H if each vertex in V \S is adjacent to at least one vertex
in S in the graph G\H. We also say that S is a H−robust dominating set or simply a robust dominating set.
The H−robust domination number or simply the robust domination number is defined to be the minimum size
of a dominating set in G\H and is denoted by γ (G\H).

We seek conditions on H so that the robust domination number �n := γ (G\H) and the actual domination
number γ (G) ≤ �n are of the same order. Intuitively, if H is sparse, then we expect �n and γ (G) to be close
with high probability, i.e., with probability converging to one as n → ∞. This is illustrated in our first result
below that obtains bounds for �n in terms of the maximum vertex degree � of the graph H. For 0 < x, y < 1
we define un(x, y) := log(nx)

| log(1−y)| and set un := un(p, p). Moreover, we use the notation an = o(bn) to denote

that an
bn

−→ 0, as n → ∞.

Lemma 1 The following properties hold:

(a) Let λa := np and λb := n| log(1 − p)| > λa . For every θ > 2, there exists a λ0 = λ0(θ) > 0 such that
if λ0

n ≤ p ≤ 1 − 1
n3

, then

P

(
�n ≥ un

(
1 − θ log log λb

log λa

))
≥ 1 − exp

(
−3n

8
· (log λb)

θ

λa

)
. (2)

(b) Let � be the maximum vertex degree of H and suppose np −→ ∞ and
p ≤ p0 for some constant 0 < p0 < 1. For every ε > 0 and all n large,

P (�n ≤ un(1 + ε) + �) ≥ 1 − 1

log(np)
. (3)

Consequently if � = o(un) and p ≤ p0 is such that np −→ ∞, then �n
un

−→ 1 in probability as n → ∞.

The condition np −→ ∞ ensures that G is reasonably dense in terms of its vertex degrees. In particular if the
edge probability p is a constant, then un is of the order of log n and moreover both λa and λb are of the order

of n. Setting θ = 3 in (2), we then get that �n ≥ un
(
1 − O

(
log log n
log n

))
with probability at leat 1 − e−C(log n)3

for some constant C > 0. Similarly, the final statement (3) implies that if � = o(log n), then �n ≤ un(1 + 2ε)
with high probability, for any arbitrary constant ε > 0.

Combining the observations of the previous paragraph, we get that �n ∼ un with high probability, where we
use the notation an ∼ bn to denote that
an
bn

−→ 1 as n → ∞. Thus the robust domination number satisfies
�n ∼ un ∼ γ (G) and is therefore asymptotically equal to the “ideal" domination number γ (G), with high
probability.
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Proof of Lemma 1 (a): Since γ (G\H) ≥ γ (G), it suffices to lower bound γ (G) and for completeness, we
give a small proof using a union bound argument covering all possibilities, as in [7] [5]. Specifically, let-
ting λa := np, λb = n| log(1 − p)| and tn := log λa−θ log log λb

| log(1−p)| vertices, we show that there exists a dominating
set containing tn vertices, with high probability.

We begin with upper and lower bounds for tn .Using | log(1− p)| > p,we see that tn ≤ log λa
p = n log λa

λa
< n

4

if λa ≥ λ0, a sufficiently large absolute constant. Moreover, we have that λa > (log λb)
2θ for all n ≥ N0 =

N0(θ) large, provided np ≥ λ0 = λ0(θ) is large. Indeed if p ≤ 1
2 , then using | log(1 − p)| < 2p, we get

that λa − (log λb)
2θ ≥ np − (log(2np))2θ > 0 if np ≥ λ0 = λ0(θ) is sufficiently large. On the other hand

if 1
2 ≤ p ≤ 1 − 1

n3
, then λa = np > n

2 and

(log λb)
2θ =

(
log n + log log

(
1

1 − p

))2θ

≤ (log n + 6 log log n)2θ <
n

2

for all n ≥ N0 = N0(θ) large. Summarizing, we get that

log λa

2| log(1 − p)| < tn < n
log λa

λa
<

n

4
(4)

for all n large.
Let S be any set containing tn vertices. For a vertex v ∈ Sc, the probability that v is not adjacent to any vertex

of S is (1− p)tn = (log λb)
θ

λa
. Thus the vertex v is adjacent to some vertex of S with probability 1− (log λb)

θ

λa
and so

if Edom(S) is the event that S is a dominating set, then using the fact that the complement set Sc has n− tn ≥ 3n
4

vertices (see (4)), we get that

P (Edom (S)) ≤
(
1 − (log λb)

θ

λa

) 3n
4

≤ exp

(
−3n

4
· (log λb)

θ

λa

)
.

Since there are
(n
tn

) ≤
(
ne
tn

)tn = exp
(
tn log

(
ne
tn

))
sets of size tn, we use the union bound and the bounds

in (4), to see that the probability that there exists a dominating set of size at most tn is bounded above by

exp

(
tn log

(
ne

tn

))
exp

(
−3n

4
· (log λb)

θ

λa

)

≤ exp

(
n
log λa

λa
log

(
2ne| log(1 − p)|

log λa

))
exp

(
−3n

4
· (log λb)

θ

λa

)

= exp

(
n
log λa

λa
log

(
2eλb
log λa

))
exp

(
−3n

4
· (log λb)

θ

λa

)

≤ exp

(
n
log λa

λa
log (2eλb)

)
exp

(
−3n

4
· (log λb)

θ

λa

)

≤ exp

(
n
(log(2eλb))2

λa

)
exp

(
−3n

4
· (log λb)

θ

λa

)

≤ exp

(
−3n

8
· (log λb)

θ

λa

)
(5)

for all n ≥ N0 not depending on λa or λb, where the second inequality in (5) is true provided np = λa ≥ λ0 is
large and the final inequality in (5) is true if we choose θ > 2 strictly. 	

Proof of Lemma 1 (b): Let D be any set containing (1+ ε)un + � vertices. Each vertex v /∈ D is adjacent to at
least (1 + ε)un vertices of D in the graph Kn\H and so the probability that v is not adjacent to any vertex of D
in G\H, is at most (1 − p)(1+ε)un = 1

(np)1+ε . Thus if B is the set of all vertices not dominated by D in G\H,

then E#B ≤ n
(np)1+ε and so a direct application of Markov inequality gives that

P

(
#B ≥ n log(np)

(np)1+ε

)
≤ 1

log(np)
. (6)
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430 G. Ganesan

By definition D ∪ B is a dominating set in G\H and has size

#(D ∪ B) ≤ (1 + ε)un + � + n log(np)

(np)1+ε
(7)

with probability at least 1− 1
log np , by (6). Also since p ≤ p0 a constant, we have that | log(1− p)| ≤ ∑

k≥1 p
k ≤

p
1−p ≤ p

1−p0
and so

n log(np)

(np)1+ε
= 1

(np)ε
log(np)

p
<

1

(np)ε
un

1 − p0
< εun

for all n large, since np −→ ∞. From (7), we then the upper deviation bound in (3). 	

From the discussion following Lemma 1,we see that if the edge probability p is a constant, then� = o(log n)

is sufficient to ensure the asymptotic equivalence of the robust and the ideal domination numbers. However, in
this case we also know that with high probability, the vertex degree in the random graph G in fact grows linearly
with n, which is much larger than log n. Therefore could we, perhaps under additional assumptions, establish
asymptotic equivalence for conflict graphs H that are sparse in comparison to G? Addressing this issue, we have
the following result for random graphs with a convergent edge probability sequence.

Theorem 1 Suppose np −→ ∞, p ≤ 1− 1
n3

and p = p(n) −→ p0 for some constant 0 ≤ p0 ≤ 1. As before,
let H = H(n) be any deterministic graph with maximum vertex degree � = �(n) and containing m = m(n)

edges. If either

� = o(n(1 − p)) or m = o(nun(1 − p)), (8)

then �n
un

−→ 1 in probability as n → ∞.

Continuingwith constant edge probability example, we see fromTheorem1 that if p is a constant, then either� =
o(n) or m = o(n log n) is sufficient for �n and γ (G) to be asymptotically equal.

For the case p0 = 0 which is of interest in communication networks, we see that there are robust dominating
sets that asymptotically have the same size as the ideal dominating sets even if the number of edges removed
per vertex is much larger than the vertex degree itself. This is true because the expected degree of a vertex in G
equals (n − 1)p ≈ np and so by the standard deviation estimate (34), we can deduce that each vertex has degree
at most of the order of np with high probability. Condition (8) ensures that the robust domination number is
asymptotically optimal provided � = o(n), even if � is much larger than np.

To prove Theorem 1, we perform a case by case analysis of �n based on the asymptotic edge probability p0.
Recalling the definition of un(x, y) and un = un(p, p) prior to Lemma 1, we have the following result.

Lemma 2 Suppose that � ≤ r0n − 1 for some constant 0 < r0 < 1.

(a) For every ε > 0 there are positive constants λi = λi (ε, r0), i = 1, 2 such that if λ1
n ≤ p ≤

min
(
1
2 , 1 − exp

(
− ε2(1−r0)

16

))
, then

P

(
�n ≤ (1 + 6ε)un

1 − r0

)
≥ 1 − zn, (9)

where

zn := min

(
exp

(
− λ2n

4(np)(1+4ε)(1−r0)−1

)
,

1

(np)ε/2

)
.

(b) For every ε > 0 and every constant 0 < p < 1, we have that

P (�n ≤ (1 + ε)un(p, p(1 − ε) − r0)) ≥ 1 − exp

(
−ε2np

8

)
. (10)

(c) For every ε > 0, there is a constant C = C(ε) > 0 such that if q1 := max
(
1 − p, �

n

) ≤ 2−2/ε−2 then

P (�n ≤ (1 + ε)un(p, 1 − q1)) ≥ 1 − C

nε/2 . (11)
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Parts (a), (b) and (c) of Lemma 2 essentially obtain deviation upper bounds for �n for the cases p0 = 0, 0 <

p0 < 1 and p0 = 1, respectively.
We use the probabilistic method to prove Lemma 2 and so we begin with a couple of common definitions. For

integer t ≥ 1 let X := (X1, . . . , Xt ) be a random t−tuple chosen from V t , that is independent of the graph G.

Also let PX denote the probability distribution of X . In each of the three cases below, we choose the tuple X
appropriately so that certain niceness properties are satisfied and exploit this to estimate the domination number.

Proof of Lemma 2 (a): For a constant 0 < ζ < 1 to be determined later, let t = un
1−ζ

.Assuming that Xi , 1 ≤ i ≤ t
are independent and chosen uniformly randomly from V, we estimate below the number of vertices “left out"
by the set D := {X1, . . . , Xt }. For a vertex v, the PX−probability that the random variable X1 is equal to v or
adjacent to v in H is at most �+1

n ≤ r0. Therefore if Q(v) is the number of indices i, 1 ≤ i ≤ t such that Xi is
not adjacent to v in the graph H, then EX (Q(v)) ≥ t (1− r0) and using the standard deviation estimate (34) we
get for ε > 0 that

PX (Q(v) ≥ t (1 − r0)(1 − ε)) ≤ exp

(
−ε2

4
t (1 − r0)

)
. (12)

In the Appendix we show that un(x, x) = log(nx)
| log(1−x)| is strictly decreasing for all x >

λlow
n where λlow > 0

is a sufficiently large absolute constant. Therefore if
λlow

n
≤ p ≤ λup := 1 − exp

(
− ε2(1−r0)

16

)
, then for

all n ≥ N0(ε, r0) large we have that

t ≥ un(p, p) ≥ un(λup, λup) ≥ log n

2| log(1 − λup)| = 8

ε2(1 − r0)
log n, (13)

where the second inequality in (13) is true since λup is a constant and so log(nλup) ≥ log n
2 for all n large.

Therefore setting

Etot :=
⋂
v /∈D

{Q(v) ≥ t (1 − r0)(1 − ε)} ,

we get from the union bound, (12) and (13) that

PX (Etot ) ≥ 1 − n · 1

n2
= 1 − 1

n
.

We assume henceforth that Etot occurs.
Next, we estimate the number of distinct entries inX . Since | log(1− p)| > p,we get for any constant ζ > 0

that t = 1
1−ζ

log(np)
| log(1−p)| <

log(np)
p(1−ζ )

< εn
2 (1 − r0), provided np ≥ λlow = λlow(ε, ζ, r0) is large enough.

Now, for i = j, the probability that Xi equals X j is 1
n and so the PX−expected number of repeated entries

is at most t2
n ≤ εt

2 (1 − r0). If Erep is the event that the number of repeated entries is at most tε(1 − r0)
then PX (Ec

rep) ≤ 1
2 , by the Markov inequality. Combining with the estimate for PX (Etot ) in the previous

paragraph we then get from the union bound that Etot ∩ Erep occurs with PX−probability at least 1
2 − 1

n > 0.
Weassume henceforth that Etot∩Erep occurs so that each vertex v is adjacent to least t (1−ε)(1−r0)−tε(1−

r0) ≥ t (1 − 2ε)(1 − r0) and at most t = un
1−ζ

vertices of D, in the graph Kn\H. Setting 1 − ζ := (1−2ε)(1−r0)
1+ε

,

we then get that the probability of the event Jv that v is not adjacent to any vertex of D in the graph G\H, is at
most (1− p)(1+ε)un = 1

(np)1+ε and at least (1− p)t = 1
(np)(1−ζ )−1 . If Ltot := ∑

v /∈D 11(Jv), then ELtot ≤ n
(np)1+ε

and a direct application of the Markov inequality gives us that

P

(
Ltot ≥ n

(np)1+ε/2

)
≤ 1

(np)ε/2
. (14)

Similarly ELtot ≥ n
(np)(1−ζ )−1 and so using the standard deviation estimate (34) we get that

P

(
Ltot ≥ 2n

(np)1+ε

)
≤ exp

(
− Cn

(np)(1−ζ )−1

)
≤ exp

(
− Cn

(np)(1+4ε)/(1−r0)

)
(15)
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432 G. Ganesan

since (1− ζ )−1 = 1+ε
(1−2ε)(1−r0)

≤ 1+4ε
1−r0

provided ε > 0 is a small enough constant. We fix such an ε henceforth.
If Ltot ≤ n

(np)1+ε/2 , then �n ≤ #D + Ltot ≤ un
1−ζ

+ n
(np)1+ε/2 and moreover, using | log(1 − p)| < 2p

for p < 1
2 , we have for np ≥ λlow large enough that n

(np)1+ε/2 < ε
log(np)

p < 2εun . Thus

�n ≤
(

1

1 − ζ
+ 2ε

)
un ≤

(
1 + 4ε

1 − r0
+ 2ε

)
un ≤ (1 + 6ε)un

1 − r0

and together with (14) and (15), this obtains the desired upper bound in (9). 	

Proof of Lemma 2 (b): We begin with a couple of preliminary calculations. If dG(v) is the degree of v in G,

then EdG(v) = (n − 1)p. Therefore from the deviation estimate (34), we get that dG(v) ≥ np(1 − ε) with

probability at least 1 − exp
(
− ε2

5 np
)

. Letting Edeg := ⋂
v{dG(v) ≥ np(1 − ε)}, we get from the union bound

that

P(Edeg) ≥ 1 − n exp

(
−ε2

5
np

)
≥ 1 − exp

(
−ε2

8
np

)
(16)

for all n large.
We henceforth assume that Edeg occurs and let X j , 1 ≤ j ≤ t be independently and uniformly chosen from

the vertex set V also independent of the graph G. LetN (Xi ) be the set of all neighbours of Xi in the graph G\H
and set N [Xi ] := {Xi } ∪ N (Xi ) to be the closed neighbourhood of Xi . Setting B := ⋃

1≤ j≤t N [X j ], we see
that each vertex in B is adjacent to at least one vertex in {X j }1≤ j≤t and so D := ⋃{X j }1≤ j≤t

⋃
(V \B) is a

dominating set for G\H. Letting PX be the distribution of {X j }1≤ j≤t , we see that the PX−expected size ofD is

EX#D ≤ t + (n − EX#B) (17)

and in the rest of the proof below, we use telescoping to bound the expected size of B.

Formally, for 1 ≤ j ≤ t we let B j := ⋃
1≤i≤ j N [Xi ] and estimate the expected increment EX#B j −

EX#B j−1. Adding these increments would then give us the desired bound for B = Bt . Specifically, we have by
construction that #B j = #B j−1 + #

(N [X j ]\B j−1
)
and for any set S,

#
(N [X j ] ∩ S) =

∑
y∈S

11
(
y ∈ N [X j ]

)

=
∑
y∈S

11(y = X j ) + 11
(
y ∈ N (X j )

)

=
∑
y∈S

11(y = X j ) + 11
(
X j ∈ N (y)

)
.

Thus EX#
(N [X j ] ∩ S) = 1

n

∑
y∈S(d(y) + 1), where d(y) is the degree of vertex y in G\H and setting S =

V \B j−1 =: Bc
j−1, we therefore get that

EX#B j = EX#B j−1 + 1

n
E

∑
y∈Bc

j−1

(d(y) + 1). (18)

We recall that Edeg occurs and also that the maximum vertex degree of H is � and so
∑

y∈Bc
j−1

(d(y)+1) ≥
#Bc

j−1(np(1 − ε) + 1 − �). Defining β j := E#B j
n , we then get that β j ≥ θ1 + θ2β j−1, where θ1 = 1 − θ2 :=

p − pε − �−1
n . Applying recursion and using the fact that β1 > 0, we get that

βt ≥ θ1

(
1 + θ2 + . . . + θ t−2

2

)
+ θ t−1

2 β1

≥ θ1

1 − θ2
(1 − θ t−1

2 )

= 1 − (1 − θ1)
t−1. (19)
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Substituting (19) into (17) and using #B
n = βt , we finally get that EX#D ≤ t + n(1 − θ1)

t−1.

Summarizing, if the event Edeg occurs, then there exists a dominating set of size at most t + n(1 − θ1)
t−1.

Setting t−1 = (1+ε)
log (np)

| log(1−θ1)| weget that n(1−θ1)
t−1 = n

(np)1+ε = O
( 1
nε

)
and so the above iteration procedure

necessarily terminates after at most t steps to provide the desired dominating set D of size at most t + 1. By
Lemma statement

θ1 = p(1 − ε) − � − 1

n
≥ p(1 − ε) − r0

for all n large and so D has size at most (1 + ε)un(p, p(1 − ε) − r0). From (16), we then get (10). 	

Proof of Lemma 2 (c): For t ≤ 2 log n, letX = (X1, . . . , Xt ) be a uniformly randomly chosen t−tuple from V t

with distinct entries. Say that a vertex v is bad if v is not adjacent to any vertex of X in G\H and let q := 1− p.
The vertex v is not adjacent to Xi in G\H if either v = Xi or v is adjacent to Xi in H or the edge (v, Xi ) is not
present in G. Therefore if Ai denotes the event that v is not adjacent to Xi in G\H, then

P(Ai ) = 11(Zi ) + 11(Zc
i )q (20)

where Zi is the event that either v = Xi or v is adjacent to Xi in H. Moreover, because the entries of X are
distinct, the events Ai and A j are mutually P−independent, given X .

Thus denoting Abad(v) to be the event that v is bad, we see that

EXP(Abad(v)) = EXP

⎛
⎝ ⋂

1≤ j≤t

A j

⎞
⎠

= EX

t∏
j=1

P(A j )

= EX

⎛
⎝ t−1∏

j=1

P(A j )EX (P(At ) | X1, . . . , Xt−1)

⎞
⎠ . (21)

Given X1, . . . , Xt−1, the random variable Xt is equally likely to be any of the remaining n − t + 1 vertices
from {1, 2, . . . n} and since the vertex v is adjacent to at most � vertices in H, the event Zi defined prior to (20)
occurs with conditional probability

PX (Zi | X1, . . . , Xt−1) ≤ � + 1

n − t + 1
.

Plugging this into (20) we obtain

EX (P(At ) | X1, . . . , Xt−1) ≤ � + 1

n − t + 1
+ q ≤ �

n − 2 log n
+ q ≤ 2q1

for all n large, where q1 := max
(
q, �

n

)
. Continuing iteratively, we see from (21) that

EXP(Abad(v)) ≤ (2q1)
t ≤ 1

(np)1+ε/2 (22)

provided we set t := (
1 + ε

2

) log (np)
| log(2q1)| . Using p ≤ 1 and q1 ≤ 2−2/ε−2 we see that the required condition t ≤

2 log n is satisfied for all n large.
If Nbad := ∑

v 11(Abad(v)) is the total number of bad vertices, then from (22) we see that

EXENbad ≤ n

(np)1+ε/2

and so there exists a choice of X such that ENbad ≤ n
(np)1+ε/2 . We fix such a X henceforth and get from the

Markov inequality that

P(Nbad ≥ 1) ≤ n

(np)1+ε/2 ≤ C

nε/2 ,
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434 G. Ganesan

for some constant C > 0 since p ≥ 1− 2−2/ε−2 (see statement of the Lemma). In other words, with probability
at least 1 − C

nε/2 , the vertices in X form a dominating set of G and so

P

(
�n ≤

(
1 + ε

2

) log (np)

| log(2q1)|
)

≥ 1 − C

nε/2 . (23)

Again using q1 ≤ 2−2/ε−2 we have that 1+ε/2
| log(2q1)| ≤ 1+ε

| log q1| and so (23) implies that �n ≤ (1 + ε)un(p, 1 − q1)
and this obtains the desired deviation upper bound in (10). 	


We now use Lemma 2 to prove Theorem 1 below.

Proof of Theorem 1 We consider three separate subcases depending on whether the asymptotic edge proba-
bility p0 = 0, 1 or otherwise. For p0 = 0 and � = o(n), we use the lower deviation bound in part (a) of
Lemma 1 and the upper deviation bound in part (a) of Lemma 2 to get that �n

un
−→ 1 in probability. Similarly,

the cases 0 < p0 < 1 and p0 = 1 are obtained using parts (b) and (c), respectively, of Lemma 2.
For m = o(nun(1− p)), we include a small “preprocessing" step. First consider the case p0 = 0. For ε > 0

letQ be the set of all vertices with degree at most εn. In the proof of Lemma 2(a), we now choose Xi , 1 ≤ i ≤ t
uniformly and independently fromQ and estimate the number of vertices covered by the setD := {X1, . . . , Xt }∪
Qc.For ε > 0 and a vertex v, thePX−probability that X1 is equal or adjacent to v in H is atmost �+1

#Q ≤ ε
1−ε

< 2ε
since by definition, the set Qc has size o(un) < εun < εn for all n large.

If Ltot is the number of vertices “left out" by {X1, . . . , Xt }, then arguing as in the proof of Lemma 2(a) we
get that both (14) and (15) holds and so

�n ≤ #D + Ltot ≤ (1 + C1ε)un + #Qc ≤ (1 + C2ε)un

for some constants C1,C2 > 0. Since ε > 0 is arbitrary, we argue as in the first paragraph of this proof to then
get that E�n = un(1 + o(1)). An analogous analysis holds for the cases 0 < p0 < 1 and p0 = 1 as well.

3 The sparse regime

In this section, we discuss robust domination in the sparse regime when np −→ λ < ∞. We consider the
cases λ = 0 and 0 < λ < ∞ separately and have the following result regarding the robust domination number.

Theorem 2 We have:

(a) If np −→ 0, n2 p −→ ∞ and either � = o(n) or m = o(n3 p), then 4�n
n2 p

−→ 1 in probability as n → ∞.

(b) Suppose np −→ λ for some 0 < λ < ∞ and either � = o(n) or m = o(n2). For every ε > 0, we have

P

(
a(λ)(1 − ε) ≤ γ (G)

n
≤ �n

n
≤ b(λ)(1 + ε)

)
−→ 1 (24)

where

a(λ) :=
⎧⎨
⎩

λe−2λ λ ≤ λ0

log λ−3 log log λ
λ

, λ > λ0

, b(λ) :=
⎧⎨
⎩

λ
4 , λ ≤ 1

log λ+1
λ

, λ > 1
,

and λ0 > 0 is an absolute constant not depending on the choice of λ or H.

Essentially, for λ = 0 we see that �n is of the order of n2 p while for the “intermediate" regime 0 < λ < ∞, the
robust domination number is of the order of n, with high probability.

Proof of Theorem 2 (a): If Ytot and Ztot denote, respectively, the number of edges and the number of isolated
edges of G\H, then Ytot

2 ≤ �n ≤ Ztot
2 and so it suffices to bound Ytot and Ztot . The expected number of edges

in G is
(n
2

)
p = n2 p

2 (1 + o(1)) and so from the deviation estimate (34) in Appendix, we get that
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P

(
2�n ≥ Ztot ≥ n2 p

2
(1 + ε)

)
≤ exp

(
−ε2n2 p

8

)
. (25)

This provides an upper bound for �n .

We now obtain general lower bounds for �n assuming that np −→ λ and � ≤ r0n − 1 for some finite
constants 0 < r0 < 1 and 0 ≤ λ < ∞. As discussed before, it suffices to obtain a deviation bound for Ytot
and we use the second moment method. For an edge e ∈ Kn\H, let Ae be the event that e is isolated so
that Ytot = ∑

e∈Kn\H 11(Ae), where 11(.) is the indicator function. Since each vertex has degree at most n, we
have that

P(Ae) ≥ p(1 − p)2n−4

= p

(1 − p)4
(1 − p)2n

= p

(1 − p)4
e−2λ(1 + o(1))

= pe−2λ(1 + o(1)) (26)

and since � ≤ r0n we have that the number of edges in H is m ≤ 1
2�n ≤ 1

2r0n
2. Therefore from (26), we get

that

EYtot ≥
((

n

2

)
− m

)
pe−2λ(1 + o(1)) ≥ n2 p

2
e−2λ(1 − r0 − ε) (27)

for all n large.
Next, the minimum vertex degree in Kn\H is n − 1 − � ≥ n(1 − r0) and so for distinct edges e1 = e2

in Kn\H, we argue as in (26) to get that

P
(
Ae1 ∩ Ae2

) ≤ p2(1 − p)4(n−r0n−3) = p2e−4λ(1−r0)(1 + o(1)).

Thus again using (26), we get that P
(
Ae1 ∩ Ae2

) − P(Ae1)P(Ae2) is bounded above by

p2e−4λ
(
e4λr0 − 1

)
(1 + o(1)) ≤ P(Ae1)P(Ae2)

(
e4λr0 − 1

)
(1 + o(1))

and therefore

var(Ytot ) =
∑

e∈Kn\H
P(Ae) − P

2(Ae) +
∑
e1 =e2

P
(
Ae1 ∩ Ae2

) − P(Ae1)P(Ae2)

≤
∑

e∈Kn\H
P(Ae) +

∑
e1 =e2

P(Ae1)P(Ae2)
(
e4λr0 − 1

)
(1 + o(1))

≤ EYtot + (EYtot )
2
(
e4λr0 − 1

)
(1 + o(1)). (28)

Using (28), (27) and the Chebychev inequality, we get for ε > 0 that

P (Ytot ≤ EYtot (1 − ε)) ≤ var(Ytot )

ε2(EYtot )2

≤ 1

EYtot
+

(
e4λr0 − 1

)
(1 + o(1))

≤ C

n2 p
+

(
e4λr0 − 1

)
(1 + o(1))

≤ C

n2 p
+ 2

(
e4λr0 − 1

)
(29)

where C = C(λ, r0, ε) > 0 is a constant. Again using (27) and (29), we get that

P

(
2�n ≥ Ytot ≥ n2 p

2
e−2λ(1 − r0 − 2ε)

)
≥ 1 − C

n2 p
− 2

(
e4λr0 − 1

)
. (30)
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If � = o(n) and λ = 0, then we can set r0 arbitrarily small in the above analysis and get from (25) and (30)
that 4�n

n2 p
−→ 1 in probability as n → ∞. If m = o(n3 p), then the number of vertices with degree larger

than εn for ε > 0 is o(n2 p). Performing the “pre-processing" steps as in the proof of Theorem 1, we again get
that 4�n

n2 p
−→ 1 in probability. 	


Proof of Theorem 2 (b): We show that there exists a constant C > 0 such that for every ε > 0,

a(λ)(1 − ε) ≤ E�n

n
≤ b(λ)(1 + ε) and var(�n) ≤ Cn(log n)2 = o(E�n)

2. (31)

From (31) and the Chebychev inequality, we then get (24). Also, we only consider the case � = o(n) and the
preprocessing arguments analogous to the proof of Theorem 2(a) holds for the case m = o(n2).

For convenience, we assume throughout that np = λ and begin with the lower bounds for E�n . Set θ = 3 in
Lemma 1(a) and let λ0 := λ0(3). Since p = λ

n , we have that

un = log(np)

| log(1 − p)| ∼ n
log λ

λ
, λa = np = λ, λb = n| log(1 − p)| ∼ λ

and so for ε > 0 we have that un
(
1 − 3 log log λb

log λa

)
≥ a(λ)n(1− ε) for all n large. Consequently, for λ > λ0, we

get from (2) in Lemma 1 that

P (�n ≥ a(λ)n(1 − ε)) ≥ 1 − e−Cn

and so E�n ≥ a(λ)n(1 − 2ε) for all n large. For λ < λ0, we use (27) and the fact that � = o(n) to get

that E�n ≥ n2 p
4 e−2λ(1 − 2ε) = a(λ)n(1 − 2ε) for all n large.

Next, for the upper bound for E�n for λ ≤ 1, we recall from the discussion prior to (27) that E�n ≤ EZtot
2 ≤

n2 p
4 = λn

4 . For λ > 1, we use the alteration method as in the proof of Lemma 1(b). Let D be any set of un + �

vertices. Each vertex v /∈ D is adjacent to at least un vertices of D and so v is not adjacent to any vertex of D
in G\H with probability at most (1− p)un = 1

np and if B is the set of all “bad" vertices inDc not adjacent to any

vertex of D, then the expected size of B is at most 1
p = n

λ
. Moreover, the asymptotic relation | log(1 − p)| ∼ p

and � = o(n) imply that D has size un + � ≤
(
log λ

λ
+ o(1)

)
n. The set D ∪B is a dominating set of G\H and

has an expected size of at most n
(
log λ+1

λ
+ o(1)

)
≤ b(λ)n(1 + ε) for all n large. This completes the proof of

the expectation bounds in (31).
Next, to prove the variance bound in (31), we use the martingale difference method. For 1 ≤ j ≤ n,

let F j = σ ({Z( f ) : f = (u, v), 1 ≤ u < v ≤ j}) denote the sigma field generated by the state of the edges
in the complete subgraph K j . Defining the martingale difference R j := E(�n | F j ) − E(�n | F j−1), we get
that �n − E�n = ∑n

j=1 R j . By the martingale property we then have

var(�n) = E

⎛
⎝ n∑

j=1

R j

⎞
⎠

2

=
n∑
j=1

ER2
j . (32)

To evaluate ER2
j , we introduce the graph G( j) obtained by using independent copies for the states of all

edges (u, j), 1 ≤ u < j and retaining the same state as G for the rest of the edges. With this notation, we
rewrite R j = E(�n − �

( j)
n | F j ), where �

( j)
n is the domination number of the graph G( j)\H and so squaring

and taking expectations, we get ER2
j ≤ E(�n − �

( j)
n )2. To estimate the difference |�n − �

( j)
n |, we let D be any

minimum size dominating set of G\H. Adding all vertices adjacent to the vertex j in the graph G( j) to the setD
gives us a dominating set of G( j)\H and so �n ≤ �

( j)
n + l j , where l j is the total number of edges containing j

as an endvertex either in G or G( j). By symmetry, we therefore get |�n − �
( j)
n | ≤ l j and so ER2

j ≤ El2j .
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The expected number of edges in G containing j as an endvertex is
(n − 1)p ≤ λ and so if Eup is the event that the vertex j is adjacent to at most C1 log n edges in G then using
Chernoff bound we get for s > 0 that

P(Ec
up) ≤ e−sC1 log n(1 − p + es p)n−1

≤ e−sC1 log n exp
(
(es − 1)(n − 1)p

)
≤ C2e

−sC1 log n (33)

for some constant C2 = C2(λ, s) > 0. Setting s = 1 and choosing C1 large, we get that P(Ec
up) ≤ 1

n6
. Defining

an analogous event E ( j)
up for the graph G( j), we get from the union bound that Fup := Eup ∩ E ( j)

up occurs with
probability at least 1 − 2

n6
. If Fup occurs, then l j ≤ 2C1 log n and other wise, we use the bound l j ≤ 2n.

Combining this with the discussion in the previous paragraph, we get

ER2
j ≤ El2j

≤ (2C1 log n)2 + 4(2n)2P(Fc
up)

≤ (2C1 log n)2 + 2(2n)2

n6

≤ C3(log n)2

for some constant C3 > 0. Plugging this into (32) gives the variance bound in (31) and therefore completes the
proof of Theorem 2(b). 	
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Appendix

Standard Deviation Estimate: Let Zi , 1 ≤ i ≤ t be independent Bernoulli random variables satisfying P(Zi =
1) = pi = 1 − P(Zi = 0). If Wt = ∑t

i=1 Zi and μt = EWt , then for any 0 < η < 1
2 we have that

P (|Wt − μt | ≥ ημt ) ≤ 2 exp

(
−η2

4
μt

)
. (34)

For a proof of (34), we refer to Corollary A.1.14, pp. 312, Alon and Spencer (2008).
Montonicity of un(x): The function un(x) := log(nx)

| log(1−x)| has a derivative

u′
n(x) = H(x) − x log n

x(1 − x)| log(1 − x)|2
where

H(x) := −x · log x − (1 − x) · log(1 − x) (35)

is the binary entropy function and logarithms are natural throughout. If x > 1
2 , then H(x)−x log n ≤ 1− log n

2 < 0
for all n ≥ 4. The numerator H(x) − x log n has derivative log

( 1
x − 1

) − log n < 0 for all x > 1
n+1 . Thus

for λ
n < x < 1

2 and λ > 1 we use (1 − x)| log(1 − x)| < x to get that H(x) − x log n is bounded above by

H

(
λ

n

)
− λ log n

n
= −λ log λ

n
−

(
1 − λ

n

)
log

(
1 − λ

n

)
≤ −λ log λ

n
+ λ

n

which is strictly less than zero if λ > e.
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