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Abstract In this paper, we consider the Cauchy problem for the Burgers equation in the line. We shall prove
that this problem is ill-posed in the Sobolev space Hs(R) with 1 ≤ s < 3

2 in the sense of “norm inflation” by
constructing an explicit example of initial data.
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1 Introduction

1.1 The Concept of Well-posedness

We say that the Cauchy problem {
∂t f = F( f ),

f (0, x) = f0(x).
(1.1)

is locally well-posed in a Banach space X if the following three conditions hold

1. (Local existence) For any initial data u0 ∈ X , there exists a short time T = T (u0) > 0 and a solution
St (u0) ∈ C([0, T ), X) to the Cauchy problem (1.1);

2. (Uniqueness) This solution St (u0) is unique in the space C([0, T ), X);
3. (Continuous Dependence) The data-to-solution map u0 �→ St (u0) is continuous in the following sense: for

any T1 < T and ε > 0, there exists δ > 0, such that if ‖u0 − ũ0‖X ≤ δ, then St (̃u0) exists up to T1 and

‖St (u0) − St (̃u0)‖C([0,T ),X) ≤ ε.
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The problem is said to be ill-posed in X if it is not well-posed in the above sense. Based on the definition of
well-posedness, at least three types of ill-posedness were studied in the literature: nonexistence, non-uniqueness,
and discontinuous dependence on the data. In this paper we are interested in discontinuity with respect to the
data.

1.2 The Burgers equation

The Burgers equation with fractional dissipation is written as

{
∂t u + uux + �γ u = 0, (t, x) ∈ R

+ × R,

u(0, x) = u0(x), x ∈ R,
(1.2)

where γ ∈ [0, 2] and the fractional power operator �γ is defined by Fourier multiplier with the symbol |ξ |γ

�γ u(x) = F−1(|ξ |γFu(ξ)
)
.

The Burgers equation (1.2) with γ = 0 and γ = 2 has received an extensive amount of attention since the studies
by Burgers in the 1940s. If γ = 0, the equation is perhaps the most basic example of a PDE evolution leading to
shocks. If γ = 2, it provides an accessible model for studying the interaction between nonlinear and dissipative
phenomena. Kiselev et al. [8] gave a complete study for general γ ∈ [0, 2] for the periodic case. In particular,

for the case γ = 1, they proved the global well-posedness of the equation in the critical Hilbert space H
1
2 (T) by

using the method of modulus of continuity. Subsequently, Miao-Wu [12] proved the global well-posedness of the
critical Burgers equation in critical Besov spaces B1/p

p,1 (R) with p ∈ [1,∞) with the help of Fourier localization
technique and the method of modulus of continuity. For more results on the fractional Burgers equation and
dispersive perturbations of Burgers equations, we refer the readers to see [1,3,9–11] and the references therein.
We should mention that Molinet et al. [11] proved that the Cauchy problem for a class of dispersive perturbations
of Burgers equations is locally well-posed in Hs(R).

In this paper, we focus on the well-posedness problem of the following Burgers equation as the most simple
quasilinear symmetric hyperbolic equation.

{
∂t u + uux = 0, (t, x) ∈ R

+ × R,

u(0, x) = u0(x), x ∈ R.
(1.3)

Kato [6] demonstrated that the flow map cannot be of Hölder continuous type. Roughly speaking, (1.3) can
be viewed as the simplest in the family of partial differential equations modeling the Euler and Navier-Stokes
equation nonlinearity. The local well-posedness of the Burgers equation (1.3) for data in Hs(R)with any s > 3/2
can be proved by combining the Sobolev embedding Hs−1(R) ↪→ L∞(R) and the classical energy estimate

‖u‖Hs ≤ ‖u0‖Hs exp

(
C

∫ t

0
‖ux‖L∞dτ

)
.

Also, in [13] it is obtained that the solution map is continuous dependence while not uniformly continuous
dependence on initial data for the Burgers equation (1.3) in the same space Hs(R) with s > 3/2. For the
endpoint case, Linares et al. in [10] proved that the Cauchy problem for (1.3) is ill-posed in H3/2(R), where
the key point is that the available local well-posedness theory in Hs(R) with any s > 3/2 have be used, for
more details see Remark 1.6. Using the idea developed in [10], Guo et al. in [4] proved the ill-posedness for the
Camassa-Holm equation in the critical Sobolev space H3/2(R) and even in the Besov space B1+1/p

p,r (R) with
r > 1.

In this paper, we shall prove that the Cauchy problem for the Burgers equation (1.3) in the Sobolev space
Hs(R) with 1 ≤ s < 3

2 is ill-posed in the sense of “norm inflation" by constructing an explicit example of initial
data.
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1.3 Main Result

Now let us state our main ill-posedness result of this paper.

Theorem 1.1 Let 1 ≤ s < 3
2 . For any δ > 0, there exists initial data satisfying

‖u0‖Hs ≤ δ,

such that a solution u(t) ∈ C([0, T0]; Hs) of the Cauchy problem (1.3) satisfies

‖u(T0)‖Hs ≥ 1

δ
for some 0 < T0 < δ.

Remark 1.1 Theorem 1.1 indicates that the Burgers equation is ill-posed in Hs(R)with 1 ≤ s < 3
2 by exhibiting

a strong discontinuity with respect to the initial data known as a norm inflation.

Strategies to Proof. We shall outline the main ideas in the proof of Theorem 1.1.

• Firstly, we construct an explicit example for initial data u0, where the norm ‖u0‖Hs is sufficiently small while
‖u′

0‖L∞ can be large enough.
• Secondly, we express the solution to the Burgers equation (1.3) by exploring fully the properties of the flow
map and give the explicit blow-up time T ∗.

• Lastly, we mainly observe that the transport term does cause growth of the L2-norm of ux as t tends to
T ∗. Precisely speaking, we estimate the L2-norm of ux over (−ψ(t, q0), ψ(t, q0)) and obtain that its lower
bound can be arbitrarily large as t tends to T ∗.
The structure of the paper. In Section 2 we provide several key Lemmas. In Section 3 we present the proof

of Theorem 1.1.
Let us complete this section with some notations we shall use throughout this paper.

Notations. The notation A ≤ a ∧ b means that A ≤ a and A ≤ b. a ≈ b means C−1b ≤ a ≤ Cb for some
positive harmless constants C . Given a Banach space X , we denote its norm by ‖ · ‖X . For I ⊂ R, we denote by
C(I ; X) the set of continuous functions on I with values in X . For all f ∈ S ′, the Fourier transform f̂ is defined
by

f̂ (ξ) =
∫
R

e−i xξ f (x)dx for any ξ ∈ R.

We denote J s := (1 − ∂2x )
s
2 . For s ∈ R, the nonhomogeneous Sobolev space is defined by

‖ f ‖2Hs = ‖(1 − ∂2x )
s
2 f ‖2L2 =

∫
R

(1 + |ξ |2)s | f̂ (ξ)|2dξ.

2 Preliminary

In the section, we make some preparations for the proof of the main theorem.

2.1 Key Example for Initial Data

Firstly, we construct an explicit example as follows. Set

u0(x) := p0
(
e−|x+q0| − e−|x−q0|),

where two positive numbers p0 and q0 ∈ (0, 1) will be fixed later.
It is easy to check that u0(x) is an odd function. Furthermore, we can deduce that the following result holds:

Lemma 2.1 For every q0 ∈ (0, 1) and s ∈ ( 12 ,
3
2 ), there exists C = Cs > 0 such that

C−1 p0q
3/2−s
0 ≤ ‖u0‖Hs ≤ Cp0q

3/2−s
0 . (2.4)
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Proof The proof essentially follows that of Lemma 3.1 in [2] or Proposition 1 in [5]. For the sake of readability,
we sketch the proof here. Defining the function

f (x) := e−|x+q0| − e−|x−q0|,

then using the fact ê−|x |(ξ) = 2/
(
1 + ξ2

)
, we have

f̂ (ξ) = 2(eiq0ξ − e−iq0ξ )

1 + ξ2
= 4i sin(q0ξ)

1 + ξ2
.

Using the definition of the Hs-norm and the change of variable setup y = q0ξ , we have

‖ f ‖2Hs (R) = 16
∫
R

(
1 + ξ2

)s−2
sin2(q0ξ)dξ

≥ 32

(
1 + π2

q20

)s−2 ∫ π/q0

0
sin2(q0ξ)dξ

= 32

(
1 + π2

q20

)s−2

· 1

q0

∫ π

0
sin2 ydy

≥ 16π
(
1 + π2

)−3/2
q3−2s
0 ,

where we have used s ∈ ( 1
2 ,

3
2

)
and q0 ∈ (0, 1). This proves the lower bound.

To get the upper bound, we split the domain of integration as

‖ f ‖2Hs (R) = 32
∫ ∞

0

(
1 + ξ2

)s−2
sin2(q0ξ)dξ

= 32

(∫ 1/q0

0
+

∫ ∞

1/q0

) (
1 + ξ2

)s−2
sin2(q0ξ)dξ

=: 32(I1 + I2).

Due to the simple fact sin2(q0ξ) ≤ |q0ξ |2 ∧ 1, we have

I1 ≤ 32q20

∫ 1/q0

0
ξ2s−2dξ ≤

(
32

2s − 1

)
q3−2s
0 ,

I2 ≤ 32
∫ ∞

1/q0
ξ2s−4dξ ≤

(
32

3 − 2s

)
q3−2s
0 ,

which completes the proof of Lemma 2.1.

2.2 Existence and Blow-up criterion

Lemma 2.2 For every s ∈ [1, 3
2 ), there exists a solution u ∈ C([0, T ∗); Hs)∩ L∞([0, T ∗);Lip) for the Burgers

equation (1.3), where T ∗ < ∞ is the maximal time for initial data u0. Furthermore, we have

lim
t↑T ∗

(‖u(t)‖Hs + ‖∂xu(t)‖L∞
) = +∞ ⇔ lim

t↑T ∗ ‖∂xu(t)‖L∞ = +∞.

Proof Easy computations give that

u′
0(x) =

⎧⎪⎨
⎪⎩

−p0(e−q0 − eq0)ex , if x ∈ (−∞,−q0),

−p0e−q0(ex + e−x ), if x ∈ (−q0, q0),

−p0(e−q0 − eq0)e−x , if x ∈ (q0,+∞),

(2.5)

from which and Lemma 2.1, we get that u0 ∈ Hs ∩ Lip.
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Applying J s to (1.3) and taking the L2 inner product of the resulting equality with J su, then using the
following commutator estimate (see [7])

‖[J s, f ]g‖L2 ≤ C
(‖∂x f ‖L∞‖g‖Hs−1 + ‖ f ‖Hs‖g‖L∞

)
, s > 0,

we obtain

1

2

d

dt
‖u‖2Hs = 1

2

∫
R

∂xu|J su|2dx −
∫
R

[J s, u]∂xu · J sudx ≤ C‖∂xu‖L∞‖u‖2Hs ,

which implies that

‖u(t)‖Hs ≤ ‖u0‖Hs exp

(
C

∫ t

0
‖∂xu(τ )‖L∞dτ

)
.

Applying ∂x to (1.3) and taking the inner product of the resulting equality with |∂xu|p−2∂xu with p ≥ 2, we
obtain

‖∂xu‖p−1
L p

d

dt
‖∂xu‖L p = 1

p

d

dt
‖∂xu‖p

L p = p − 1

p

∫
R

∂xu|∂xu|pdx ≤ ‖∂xu‖L∞‖∂xu‖p
L p ,

which reduces to

d

dt
‖∂xu‖L p ≤ ‖∂xu‖L∞‖∂xu‖L p .

Using Gronwall’s inequality and letting p = ∞, we get

‖∂xu(t)‖L∞ ≤ ‖∂xu0‖L∞ exp

(
C

∫ t

0
‖∂xu(τ )‖L∞dτ

)
.

This is enough to complete the proof of Lemma 2.2.

2.3 The Equation Along the Flow

Given a Lipschitz velocity field u, we may solve the following ODE to find the flow induced by u:{
d
dt ψ(t, x) = u(t, ψ(t, x)),

ψ(0, x) = x,
(2.6)

which is equivalent to the integral form

ψ(t, x) = x +
∫ t

0
u(τ, ψ(τ, x))dτ.

Furthermore, we get from (1.3) that

d

dt
u(t, ψ(t, x)) = ut (t, ψ(t, x)) + ux (t, ψ(t, x))

d

dt
ψ(t, x) = 0,

which means that

u(t, ψ(t, x)) = u0(x), namely, u(t, x) = u0(ψ
−1(t, x)). (2.7)

Thus we can give the explicit expression of the flow as

ψ(t, x) = x + tu0(x). (2.8)

Let y = ψ(t, x), then we have

ψ−1(t, y) = y − tu0(ψ
−1(t, y)) = y − tu(t, y). (2.9)

Differentiating (1.3) with respect to space variable x , we find

utx + uuxx + (ux )
2 = 0.

Combining the above and (2.6), we obtain
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d

dt
ux (t, ψ(t, x)) = utx (t, ψ(t, x)) + uxx (t, ψ(t, x))

d

dt
ψ(t, x),

= utx (t, ψ(t, x)) + uxx (t, ψ(t, x))u(t, ψ(t, x))

= −(ux )
2(t, ψ(t, x)),

which reduces to

ux (t, ψ(t, x)) = 1

t + 1
u′
0(x)

. (2.10)

We should mention that the above can also be deduced from (2.7) and (2.8).
According to the definition of u0, we can deduce that the maximal existence time of the solution to (1.3) is

T ∗ = − 1

inf
x∈R u

′
0(x)

= − 1

u′
0(q

−
0 )

∈
(

1

2p0
,
1

p0

)
.

Because the velocity field is Lipschitz, then we get that for t ∈ [0, T ∗)

ψx (t, x) = exp

(∫ t

0
ux (τ, ψ(τ, x))dτ

)
> 0.

This shows that ψ(t, ·) is an increasing diffeomorphism over R, that is, for all x, y ∈ R, there holds that
ψ(t, x) < ψ(t, y) if x < y.

3 Proof of Main Theorem

In this section, we prove Theorem 1.1.

Proof of Theorem 1.1 By the definition of u′
0(x) and (2.10), we know that ux (t, ψ(t, x)) is continuous in

[0, T ∗) × (−q0, q0). We should emphasize that ux (t, x) is discontinuous in [0, T ∗) × R, but we can claim
that ux (t, x) is continuous in [0, T ∗) × (−ψ(t, q0), ψ(t, q0)). In fact, for any x, y ∈ (−ψ(t, q0), ψ(t, q0)), we
have ψ−1(t, x), ψ−1(t, y) ∈ (−q0, q0). Moreover, we deduce from (2.9) that for t ∈ [0, T ∗)

|ψ−1(t, x) − ψ−1(t, y)| ≤ |∂xψ−1(t, x)||x − y|
≤ |x − y|(1 + T ∗‖ux‖L∞

t (L∞)

)
. (3.11)

Also, it follows from (2.9) and (1.3) that

|ψ−1(t, x) − ψ−1(s, x)| = |tu(t, x) − su(s, x)|
≤ ‖u0‖L∞|t − s| + T ∗

∣∣∣∣
∫ t

s
‖∂t u(τ, ·)‖L∞dτ

∣∣∣∣
≤ C

(
1 + T ∗‖ux‖L∞

t (L∞)

)|t − s|. (3.12)

Thus, we obtain from (2.5) and (3.11)-(3.12) for s, t ∈ [0, T ∗) and x, y ∈ (−ψ(t, q0), ψ(t, q0))

|ux (t, x) − ux (s, y)| ≤ |ux (t, x) − ux (t, y)| + |ux (t, y) − ux (s, y)|
≤ |ux (t, ψ(t, ψ−1(t, x))) − ux (t, ψ(t, ψ−1(t, y)))|

+ |ux (t, ψ(t, ψ−1(t, y))) − ux (s, ψ(s, ψ−1(s, y)))|
→ 0 as (t, x) → (s, y).

By the Burgers equation ∂t u = −uux , we can deduce that ∂t u(t, x) is continuous in [0, T ∗) × (−ψ(t, q0),
ψ(t, q0)). That is u(t, x) ∈ C1([0, T ∗) × (−ψ(t, q0), ψ(t, q0))). Furthermore, one has

uxx (t, ψ(t, x)) = u′′
0(x)(

1 + tu′
0(x)

)3 .
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The similar argument shows that ux (t, x) ∈ C1([0, T ∗) × (−ψ(t, q0), ψ(t, q0))).
For notational convenience we now set

m̃(t) := ux (t, ψ(t, 0)) = 1

t + 1
u′
0(0)

.

Thus, we have

ux (t, ψ(t, x)) ≤ m̃(t) for all x ∈ (−q0, q0). (3.13)

Set w(t, x) := ux (t, x), then we obtain from (1.3)

∂tw + ∂x (uw) = 0,

which implies that for (t, x) ∈ [0, T ∗) × (−ψ(t, q0), ψ(t, q0))

∂t (w
2) + ∂x (uw2) + ∂xuw2 = 0. (3.14)

Integrating (3.14) with respect to space variable x over [−ψ(t, q0), ψ(t, q0)], we have∫
|x |≤ψ(t,q0)

∂t (w
2)dx +

∫
|x |≤ψ(t,q0)

∂x (uw2)dx +
∫

|x |≤ψ(t,q0)
∂xuw2dx = 0. (3.15)

As u0(x) is odd, the solution of Burgers equation satisfies u(t, x) = −u(t,−x), which tells us that w(t, x) =
w(t,−x). Thus we have∫

|x |≤ψ(t,q0)
∂t (w

2)dx = d

dt

∫
|x |≤ψ(t,q0)

w2dx − 2u(t, ψ(t, q0))w
2(t, ψ−(t, q0)), (3.16)

and ∫
|x |≤ψ(t,q0)

∂x (uw2)dx = 2u(t, ψ(t, q0))w
2(t, ψ−(t, q0)). (3.17)

Inserting (3.16) and (3.17) into (3.15) yields

d

dt

∫
|x |≤ψ(t,q0)

w2dx +
∫

|x |≤ψ(t,q0)
∂xu(t, x)w2dx = 0. (3.18)

To simplify notation let

A(t) :=
∫

|x |≤ψ(t,q0)
w2(t, x)dx for t ∈ [0, T ∗),

combining (3.13), then (3.18) reduces to

A′(t) =
∫

|x |≤ψ(t,q0)
−ux (t, x)w

2dx ≥ −m̃(t)A(t).

Solving the above differential inequality gives us that

A(t) ≥ A0 exp

(∫ t

0
−m̃(τ )dτ

)
= A0 · m̃(t)

m̃(0)
,

which implies

‖w‖L2 ≥ A
1
2
0 ·

√
m̃(t)

u′
0(0)

. (3.19)

Notice that

A0 =
∫

|x |≤q0

(
u′
0(x)

)2dx ≈ p20q0,
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and

lim
t↑T ∗ m̃(t) = 1

− 1
u′
0(q

−
0 )

+ 1
u′
0(0)

= u′
0(q

−
0 )u′

0(0)

u′
0(q

−
0 ) − u′

0(0)
,

combining the above and (3.19) yields

lim
t↑T ∗ ‖u(t)‖H1 ≥ lim

t↑T ∗ ‖w‖L2

≥ Cp0
√
q0

√
u′
0(q

−
0 )

u′
0(q

−
0 ) − u′

0(0)

≥ C
p0

√
q0

1 − e−q0

≈ Cp0q
− 1

2
0 ,

where we have used that

u′
0(0) = −2p0e

−q0 and u′
0(q

−
0 ) = −p0(e

−2q0 + 1)

and in the last step used

q0
2

≤ 1 − e−q0 ≤ q0 for q0 ∈ (0, 1).

By Lemma 2.1, one has

‖u0‖Hs ≤ c1 p0q
3
2−s
0 ≤ δ and T ∗ ≤ 1

p0
≤ δ,

but

lim
t↑T ∗ ‖u(t)‖H1 ≥ c2 p0q

− 1
2

0 ≥ 1

δ2
,

if some large p0 and small q0 is chosen. In fact, we can take p0 and q0 such that

p0 ≥ 1

δ
and q0 ≤ (

δ/(c1 p0)
)2/(3−2s) ∧ c22 p

2
0δ

4.

Hence, we can choose T0 ∈ [0, T ∗) such that

‖u(T0)‖Hs ≥ C‖u(T0)‖H1 ≥ 1

δ
.

This completes the proof of Theorem 1.1.
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